blob: dfec09119d2a5edbe8c0991a87ca419adcdb9c94 [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <vector>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "test/function_equivalence_test.h"
#include "test/register_state_check.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/encoder/pickrst.h"
#define MAX_WIENER_BLOCK 384
#define MAX_DATA_BLOCK (MAX_WIENER_BLOCK + WIENER_WIN)
using libaom_test::FunctionEquivalenceTest;
namespace {
static void compute_stats_win_opt_c(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H) {
ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
int i, j, k, l, m, n;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const double avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
std::vector<std::vector<int64_t> > M_int(wiener_win,
std::vector<int64_t>(wiener_win, 0));
std::vector<std::vector<int64_t> > H_int(
wiener_win * wiener_win, std::vector<int64_t>(wiener_win * 8, 0));
std::vector<std::vector<int32_t> > sumY(wiener_win,
std::vector<int32_t>(wiener_win, 0));
int32_t sumX = 0;
const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j += 2) {
const uint8_t X1 = src[i * src_stride + j];
const uint8_t X2 = src[i * src_stride + j + 1];
sumX += X1 + X2;
const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l;
int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0];
const uint8_t D1 = dgd_ijkl[0];
const uint8_t D2 = dgd_ijkl[1];
sumY[k][l] += D1 + D2;
M_int[l][k] += D1 * X1 + D2 * X2;
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] +
D2 * dgd_ij[n + dgd_stride * m + 1];
}
}
}
}
}
}
const double avg_square_sum = avg * avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
M[l * wiener_win + k] =
M_int[l][k] + avg_square_sum - avg * (sumX + sumY[k][l]);
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] =
H_int[(l * wiener_win + k)][n * 8 + m] + avg_square_sum -
avg * (sumY[k][l] + sumY[n][m]);
}
}
}
}
}
void compute_stats_opt_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
int h_start, int h_end, int v_start, int v_end,
int dgd_stride, int src_stride, double *M, double *H) {
if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) {
compute_stats_win_opt_c(wiener_win, dgd, src, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H);
} else {
av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M, H);
}
}
static const int kIterations = 100;
static const double min_error = (double)(0.01);
typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H);
typedef libaom_test::FuncParam<compute_stats_Func> TestFuncs;
////////////////////////////////////////////////////////////////////////////////
// 8 bit
////////////////////////////////////////////////////////////////////////////////
typedef ::testing::tuple<const compute_stats_Func> WienerTestParam;
class WienerTest : public ::testing::TestWithParam<WienerTestParam> {
public:
virtual void SetUp() { target_func_ = GET_PARAM(0); }
void runWienerTest(const int32_t wiener_win, int32_t run_times);
void runWienerTest_ExtremeValues(const int32_t wiener_win);
private:
compute_stats_Func target_func_;
ACMRandom rng_;
};
void WienerTest::runWienerTest(const int32_t wiener_win, int32_t run_times) {
const int32_t wiener_halfwin = wiener_win >> 1;
const int32_t wiener_win2 = wiener_win * wiener_win;
DECLARE_ALIGNED(32, uint8_t, dgd_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]);
DECLARE_ALIGNED(32, uint8_t, src_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]);
DECLARE_ALIGNED(32, double, M_ref[WIENER_WIN2]);
DECLARE_ALIGNED(32, double, H_ref[WIENER_WIN2 * WIENER_WIN2]);
DECLARE_ALIGNED(32, double, M_test[WIENER_WIN2]);
DECLARE_ALIGNED(32, double, H_test[WIENER_WIN2 * WIENER_WIN2]);
const int h_start = ((rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & (~7));
int h_end =
run_times != 1 ? 256 : ((rng_.Rand16() % MAX_WIENER_BLOCK) & (~7)) + 8;
const int v_start = ((rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & (~7));
int v_end =
run_times != 1 ? 256 : ((rng_.Rand16() % MAX_WIENER_BLOCK) & (~7)) + 8;
const int dgd_stride = h_end;
const int src_stride = MAX_DATA_BLOCK;
const int iters = run_times == 1 ? kIterations : 2;
for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
dgd_buf[i] = rng_.Rand8();
src_buf[i] = rng_.Rand8();
}
uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin;
uint8_t *src = src_buf;
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M_ref, H_ref);
}
aom_usec_timer_mark(&timer);
const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M_test, H_test);
}
aom_usec_timer_mark(&timer);
const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
if (run_times > 10) {
printf("win %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, h_end, v_end, time1,
time2);
printf("(%3.2f)\n", time1 / time2);
}
int failed = 0;
for (int i = 0; i < wiener_win2; ++i) {
if (fabs(M_ref[i] - M_test[i]) > min_error) {
failed = 1;
printf("win %d M iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win,
iter, i, M_ref[i], M_test[i]);
break;
}
}
// ASSERT_EQ(failed, 0);
for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
if (fabs(H_ref[i] - H_test[i]) > min_error) {
failed = 1;
printf("win %d H iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win,
iter, i, H_ref[i], H_test[i]);
break;
}
}
ASSERT_EQ(failed, 0);
}
}
void WienerTest::runWienerTest_ExtremeValues(const int32_t wiener_win) {
const int32_t wiener_halfwin = wiener_win >> 1;
const int32_t wiener_win2 = wiener_win * wiener_win;
DECLARE_ALIGNED(32, uint8_t, dgd_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]);
DECLARE_ALIGNED(32, uint8_t, src_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]);
DECLARE_ALIGNED(32, double, M_ref[WIENER_WIN2]);
DECLARE_ALIGNED(32, double, H_ref[WIENER_WIN2 * WIENER_WIN2]);
DECLARE_ALIGNED(32, double, M_test[WIENER_WIN2]);
DECLARE_ALIGNED(32, double, H_test[WIENER_WIN2 * WIENER_WIN2]);
const int h_start = 16;
const int h_end = MAX_WIENER_BLOCK;
const int v_start = 16;
const int v_end = MAX_WIENER_BLOCK;
const int dgd_stride = h_end;
const int src_stride = MAX_DATA_BLOCK;
const int iters = 1;
for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
dgd_buf[i] = 255;
src_buf[i] = 255;
}
uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin;
uint8_t *src = src_buf;
av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M_ref, H_ref);
target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M_test, H_test);
int failed = 0;
for (int i = 0; i < wiener_win2; ++i) {
if (fabs(M_ref[i] - M_test[i]) > min_error) {
failed = 1;
printf("win %d M iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win,
iter, i, M_ref[i], M_test[i]);
break;
}
}
// ASSERT_EQ(failed, 0);
for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
if (fabs(H_ref[i] - H_test[i]) > min_error) {
failed = 1;
printf("win %d H iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win,
iter, i, H_ref[i], H_test[i]);
break;
}
}
ASSERT_EQ(failed, 0);
}
}
TEST_P(WienerTest, RandomValues) {
runWienerTest(WIENER_WIN, 1);
runWienerTest(WIENER_WIN_CHROMA, 1);
}
TEST_P(WienerTest, ExtremeValues) {
runWienerTest_ExtremeValues(WIENER_WIN);
runWienerTest_ExtremeValues(WIENER_WIN_CHROMA);
}
TEST_P(WienerTest, DISABLED_Speed) {
runWienerTest(WIENER_WIN, 200);
runWienerTest(WIENER_WIN_CHROMA, 200);
}
INSTANTIATE_TEST_CASE_P(C, WienerTest, ::testing::Values(compute_stats_opt_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_CASE_P(SSE4_1, WienerTest,
::testing::Values(av1_compute_stats_sse4_1));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
INSTANTIATE_TEST_CASE_P(AVX2, WienerTest,
::testing::Values(av1_compute_stats_avx2));
#endif // HAVE_AVX2
} // namespace