blob: dc47974c683161a5e5b679e6f90d21a16407601c [file] [log] [blame]
/*
* Copyright (c) 2022, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_dsp/intrapred_common.h"
// -----------------------------------------------------------------------------
// DC
static INLINE void highbd_dc_store_4xh(uint16_t *dst, ptrdiff_t stride, int h,
uint16x4_t dc) {
for (int i = 0; i < h; ++i) {
vst1_u16(dst + i * stride, dc);
}
}
static INLINE void highbd_dc_store_8xh(uint16_t *dst, ptrdiff_t stride, int h,
uint16x8_t dc) {
for (int i = 0; i < h; ++i) {
vst1q_u16(dst + i * stride, dc);
}
}
static INLINE void highbd_dc_store_16xh(uint16_t *dst, ptrdiff_t stride, int h,
uint16x8_t dc) {
for (int i = 0; i < h; ++i) {
vst1q_u16(dst + i * stride, dc);
vst1q_u16(dst + i * stride + 8, dc);
}
}
static INLINE void highbd_dc_store_32xh(uint16_t *dst, ptrdiff_t stride, int h,
uint16x8_t dc) {
for (int i = 0; i < h; ++i) {
vst1q_u16(dst + i * stride, dc);
vst1q_u16(dst + i * stride + 8, dc);
vst1q_u16(dst + i * stride + 16, dc);
vst1q_u16(dst + i * stride + 24, dc);
}
}
static INLINE void highbd_dc_store_64xh(uint16_t *dst, ptrdiff_t stride, int h,
uint16x8_t dc) {
for (int i = 0; i < h; ++i) {
vst1q_u16(dst + i * stride, dc);
vst1q_u16(dst + i * stride + 8, dc);
vst1q_u16(dst + i * stride + 16, dc);
vst1q_u16(dst + i * stride + 24, dc);
vst1q_u16(dst + i * stride + 32, dc);
vst1q_u16(dst + i * stride + 40, dc);
vst1q_u16(dst + i * stride + 48, dc);
vst1q_u16(dst + i * stride + 56, dc);
}
}
static INLINE uint32x4_t horizontal_add_and_broadcast_long_u16x8(uint16x8_t a) {
// Need to assume input is up to 16 bits wide from dc 64x64 partial sum, so
// promote first.
const uint32x4_t b = vpaddlq_u16(a);
#if AOM_ARCH_AARCH64
const uint32x4_t c = vpaddq_u32(b, b);
return vpaddq_u32(c, c);
#else
const uint32x2_t c = vadd_u32(vget_low_u32(b), vget_high_u32(b));
const uint32x2_t d = vpadd_u32(c, c);
return vcombine_u32(d, d);
#endif
}
static INLINE uint16x8_t highbd_dc_load_partial_sum_4(const uint16_t *left) {
// Nothing to do since sum is already one vector, but saves needing to
// special case w=4 or h=4 cases. The combine will be zero cost for a sane
// compiler since vld1 already sets the top half of a vector to zero as part
// of the operation.
return vcombine_u16(vld1_u16(left), vdup_n_u16(0));
}
static INLINE uint16x8_t highbd_dc_load_partial_sum_8(const uint16_t *left) {
// Nothing to do since sum is already one vector, but saves needing to
// special case w=8 or h=8 cases.
return vld1q_u16(left);
}
static INLINE uint16x8_t highbd_dc_load_partial_sum_16(const uint16_t *left) {
const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits
const uint16x8_t a1 = vld1q_u16(left + 8);
return vaddq_u16(a0, a1); // up to 13 bits
}
static INLINE uint16x8_t highbd_dc_load_partial_sum_32(const uint16_t *left) {
const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits
const uint16x8_t a1 = vld1q_u16(left + 8);
const uint16x8_t a2 = vld1q_u16(left + 16);
const uint16x8_t a3 = vld1q_u16(left + 24);
const uint16x8_t b0 = vaddq_u16(a0, a1); // up to 13 bits
const uint16x8_t b1 = vaddq_u16(a2, a3);
return vaddq_u16(b0, b1); // up to 14 bits
}
static INLINE uint16x8_t highbd_dc_load_partial_sum_64(const uint16_t *left) {
const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits
const uint16x8_t a1 = vld1q_u16(left + 8);
const uint16x8_t a2 = vld1q_u16(left + 16);
const uint16x8_t a3 = vld1q_u16(left + 24);
const uint16x8_t a4 = vld1q_u16(left + 32);
const uint16x8_t a5 = vld1q_u16(left + 40);
const uint16x8_t a6 = vld1q_u16(left + 48);
const uint16x8_t a7 = vld1q_u16(left + 56);
const uint16x8_t b0 = vaddq_u16(a0, a1); // up to 13 bits
const uint16x8_t b1 = vaddq_u16(a2, a3);
const uint16x8_t b2 = vaddq_u16(a4, a5);
const uint16x8_t b3 = vaddq_u16(a6, a7);
const uint16x8_t c0 = vaddq_u16(b0, b1); // up to 14 bits
const uint16x8_t c1 = vaddq_u16(b2, b3);
return vaddq_u16(c0, c1); // up to 15 bits
}
#define HIGHBD_DC_PREDICTOR(w, h, shift) \
void aom_highbd_dc_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
const uint16x8_t a = highbd_dc_load_partial_sum_##w(above); \
const uint16x8_t l = highbd_dc_load_partial_sum_##h(left); \
const uint32x4_t sum = \
horizontal_add_and_broadcast_long_u16x8(vaddq_u16(a, l)); \
const uint16x4_t dc0 = vrshrn_n_u32(sum, shift); \
highbd_dc_store_##w##xh(dst, stride, (h), vdupq_lane_u16(dc0, 0)); \
}
void aom_highbd_dc_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
// In the rectangular cases we simply extend the shorter vector to uint16x8
// in order to accumulate, however in the 4x4 case there is no shorter vector
// to extend so it is beneficial to do the whole calculation in uint16x4
// instead.
(void)bd;
const uint16x4_t a = vld1_u16(above); // up to 12 bits
const uint16x4_t l = vld1_u16(left);
uint16x4_t sum = vpadd_u16(a, l); // up to 13 bits
sum = vpadd_u16(sum, sum); // up to 14 bits
sum = vpadd_u16(sum, sum);
const uint16x4_t dc = vrshr_n_u16(sum, 3);
highbd_dc_store_4xh(dst, stride, 4, dc);
}
HIGHBD_DC_PREDICTOR(8, 8, 4)
HIGHBD_DC_PREDICTOR(16, 16, 5)
HIGHBD_DC_PREDICTOR(32, 32, 6)
HIGHBD_DC_PREDICTOR(64, 64, 7)
#undef HIGHBD_DC_PREDICTOR
static INLINE int divide_using_multiply_shift(int num, int shift1,
int multiplier, int shift2) {
const int interm = num >> shift1;
return interm * multiplier >> shift2;
}
#define HIGHBD_DC_MULTIPLIER_1X2 0xAAAB
#define HIGHBD_DC_MULTIPLIER_1X4 0x6667
#define HIGHBD_DC_SHIFT2 17
static INLINE int highbd_dc_predictor_rect(int bw, int bh, int sum, int shift1,
uint32_t multiplier) {
return divide_using_multiply_shift(sum + ((bw + bh) >> 1), shift1, multiplier,
HIGHBD_DC_SHIFT2);
}
#undef HIGHBD_DC_SHIFT2
#define HIGHBD_DC_PREDICTOR_RECT(w, h, q, shift, mult) \
void aom_highbd_dc_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
uint16x8_t sum_above = highbd_dc_load_partial_sum_##w(above); \
uint16x8_t sum_left = highbd_dc_load_partial_sum_##h(left); \
uint16x8_t sum_vec = vaddq_u16(sum_left, sum_above); \
int sum = horizontal_add_u16x8(sum_vec); \
int dc0 = highbd_dc_predictor_rect((w), (h), sum, (shift), (mult)); \
highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_n_u16(dc0)); \
}
HIGHBD_DC_PREDICTOR_RECT(4, 8, , 2, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(4, 16, , 2, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(8, 4, q, 2, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(8, 16, q, 3, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(8, 32, q, 3, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(16, 4, q, 2, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(16, 8, q, 3, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(16, 32, q, 4, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(16, 64, q, 4, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(32, 8, q, 3, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(32, 16, q, 4, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(32, 64, q, 5, HIGHBD_DC_MULTIPLIER_1X2)
HIGHBD_DC_PREDICTOR_RECT(64, 16, q, 4, HIGHBD_DC_MULTIPLIER_1X4)
HIGHBD_DC_PREDICTOR_RECT(64, 32, q, 5, HIGHBD_DC_MULTIPLIER_1X2)
#undef HIGHBD_DC_PREDICTOR_RECT
#undef HIGHBD_DC_MULTIPLIER_1X2
#undef HIGHBD_DC_MULTIPLIER_1X4
// -----------------------------------------------------------------------------
// DC_128
#define HIGHBD_DC_PREDICTOR_128(w, h, q) \
void aom_highbd_dc_128_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)above; \
(void)bd; \
(void)left; \
highbd_dc_store_##w##xh(dst, stride, (h), \
vdup##q##_n_u16(0x80 << (bd - 8))); \
}
HIGHBD_DC_PREDICTOR_128(4, 4, )
HIGHBD_DC_PREDICTOR_128(4, 8, )
HIGHBD_DC_PREDICTOR_128(4, 16, )
HIGHBD_DC_PREDICTOR_128(8, 4, q)
HIGHBD_DC_PREDICTOR_128(8, 8, q)
HIGHBD_DC_PREDICTOR_128(8, 16, q)
HIGHBD_DC_PREDICTOR_128(8, 32, q)
HIGHBD_DC_PREDICTOR_128(16, 4, q)
HIGHBD_DC_PREDICTOR_128(16, 8, q)
HIGHBD_DC_PREDICTOR_128(16, 16, q)
HIGHBD_DC_PREDICTOR_128(16, 32, q)
HIGHBD_DC_PREDICTOR_128(16, 64, q)
HIGHBD_DC_PREDICTOR_128(32, 8, q)
HIGHBD_DC_PREDICTOR_128(32, 16, q)
HIGHBD_DC_PREDICTOR_128(32, 32, q)
HIGHBD_DC_PREDICTOR_128(32, 64, q)
HIGHBD_DC_PREDICTOR_128(64, 16, q)
HIGHBD_DC_PREDICTOR_128(64, 32, q)
HIGHBD_DC_PREDICTOR_128(64, 64, q)
#undef HIGHBD_DC_PREDICTOR_128
// -----------------------------------------------------------------------------
// DC_LEFT
static INLINE uint32x4_t highbd_dc_load_sum_4(const uint16_t *left) {
const uint16x4_t a = vld1_u16(left); // up to 12 bits
const uint16x4_t b = vpadd_u16(a, a); // up to 13 bits
return vcombine_u32(vpaddl_u16(b), vdup_n_u32(0));
}
static INLINE uint32x4_t highbd_dc_load_sum_8(const uint16_t *left) {
return horizontal_add_and_broadcast_long_u16x8(vld1q_u16(left));
}
static INLINE uint32x4_t highbd_dc_load_sum_16(const uint16_t *left) {
return horizontal_add_and_broadcast_long_u16x8(
highbd_dc_load_partial_sum_16(left));
}
static INLINE uint32x4_t highbd_dc_load_sum_32(const uint16_t *left) {
return horizontal_add_and_broadcast_long_u16x8(
highbd_dc_load_partial_sum_32(left));
}
static INLINE uint32x4_t highbd_dc_load_sum_64(const uint16_t *left) {
return horizontal_add_and_broadcast_long_u16x8(
highbd_dc_load_partial_sum_64(left));
}
#define DC_PREDICTOR_LEFT(w, h, shift, q) \
void aom_highbd_dc_left_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)above; \
(void)bd; \
const uint32x4_t sum = highbd_dc_load_sum_##h(left); \
const uint16x4_t dc0 = vrshrn_n_u32(sum, (shift)); \
highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u16(dc0, 0)); \
}
DC_PREDICTOR_LEFT(4, 4, 2, )
DC_PREDICTOR_LEFT(4, 8, 3, )
DC_PREDICTOR_LEFT(4, 16, 4, )
DC_PREDICTOR_LEFT(8, 4, 2, q)
DC_PREDICTOR_LEFT(8, 8, 3, q)
DC_PREDICTOR_LEFT(8, 16, 4, q)
DC_PREDICTOR_LEFT(8, 32, 5, q)
DC_PREDICTOR_LEFT(16, 4, 2, q)
DC_PREDICTOR_LEFT(16, 8, 3, q)
DC_PREDICTOR_LEFT(16, 16, 4, q)
DC_PREDICTOR_LEFT(16, 32, 5, q)
DC_PREDICTOR_LEFT(16, 64, 6, q)
DC_PREDICTOR_LEFT(32, 8, 3, q)
DC_PREDICTOR_LEFT(32, 16, 4, q)
DC_PREDICTOR_LEFT(32, 32, 5, q)
DC_PREDICTOR_LEFT(32, 64, 6, q)
DC_PREDICTOR_LEFT(64, 16, 4, q)
DC_PREDICTOR_LEFT(64, 32, 5, q)
DC_PREDICTOR_LEFT(64, 64, 6, q)
#undef DC_PREDICTOR_LEFT
// -----------------------------------------------------------------------------
// DC_TOP
#define DC_PREDICTOR_TOP(w, h, shift, q) \
void aom_highbd_dc_top_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
(void)left; \
const uint32x4_t sum = highbd_dc_load_sum_##w(above); \
const uint16x4_t dc0 = vrshrn_n_u32(sum, (shift)); \
highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u16(dc0, 0)); \
}
DC_PREDICTOR_TOP(4, 4, 2, )
DC_PREDICTOR_TOP(4, 8, 2, )
DC_PREDICTOR_TOP(4, 16, 2, )
DC_PREDICTOR_TOP(8, 4, 3, q)
DC_PREDICTOR_TOP(8, 8, 3, q)
DC_PREDICTOR_TOP(8, 16, 3, q)
DC_PREDICTOR_TOP(8, 32, 3, q)
DC_PREDICTOR_TOP(16, 4, 4, q)
DC_PREDICTOR_TOP(16, 8, 4, q)
DC_PREDICTOR_TOP(16, 16, 4, q)
DC_PREDICTOR_TOP(16, 32, 4, q)
DC_PREDICTOR_TOP(16, 64, 4, q)
DC_PREDICTOR_TOP(32, 8, 5, q)
DC_PREDICTOR_TOP(32, 16, 5, q)
DC_PREDICTOR_TOP(32, 32, 5, q)
DC_PREDICTOR_TOP(32, 64, 5, q)
DC_PREDICTOR_TOP(64, 16, 6, q)
DC_PREDICTOR_TOP(64, 32, 6, q)
DC_PREDICTOR_TOP(64, 64, 6, q)
#undef DC_PREDICTOR_TOP
// -----------------------------------------------------------------------------
// V_PRED
#define HIGHBD_V_NXM(W, H) \
void aom_highbd_v_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)left; \
(void)bd; \
vertical##W##xh_neon(dst, stride, above, H); \
}
static INLINE uint16x8x2_t load_uint16x8x2(uint16_t const *ptr) {
uint16x8x2_t x;
// Clang/gcc uses ldp here.
x.val[0] = vld1q_u16(ptr);
x.val[1] = vld1q_u16(ptr + 8);
return x;
}
static INLINE void store_uint16x8x2(uint16_t *ptr, uint16x8x2_t x) {
vst1q_u16(ptr, x.val[0]);
vst1q_u16(ptr + 8, x.val[1]);
}
static INLINE void vertical4xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const above, int height) {
const uint16x4_t row = vld1_u16(above);
int y = height;
do {
vst1_u16(dst, row);
vst1_u16(dst + stride, row);
dst += stride << 1;
y -= 2;
} while (y != 0);
}
static INLINE void vertical8xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const above, int height) {
const uint16x8_t row = vld1q_u16(above);
int y = height;
do {
vst1q_u16(dst, row);
vst1q_u16(dst + stride, row);
dst += stride << 1;
y -= 2;
} while (y != 0);
}
static INLINE void vertical16xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const above, int height) {
const uint16x8x2_t row = load_uint16x8x2(above);
int y = height;
do {
store_uint16x8x2(dst, row);
store_uint16x8x2(dst + stride, row);
dst += stride << 1;
y -= 2;
} while (y != 0);
}
static INLINE uint16x8x4_t load_uint16x8x4(uint16_t const *ptr) {
uint16x8x4_t x;
// Clang/gcc uses ldp here.
x.val[0] = vld1q_u16(ptr);
x.val[1] = vld1q_u16(ptr + 8);
x.val[2] = vld1q_u16(ptr + 16);
x.val[3] = vld1q_u16(ptr + 24);
return x;
}
static INLINE void store_uint16x8x4(uint16_t *ptr, uint16x8x4_t x) {
vst1q_u16(ptr, x.val[0]);
vst1q_u16(ptr + 8, x.val[1]);
vst1q_u16(ptr + 16, x.val[2]);
vst1q_u16(ptr + 24, x.val[3]);
}
static INLINE void vertical32xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const above, int height) {
const uint16x8x4_t row = load_uint16x8x4(above);
int y = height;
do {
store_uint16x8x4(dst, row);
store_uint16x8x4(dst + stride, row);
dst += stride << 1;
y -= 2;
} while (y != 0);
}
static INLINE void vertical64xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const above, int height) {
uint16_t *dst32 = dst + 32;
const uint16x8x4_t row = load_uint16x8x4(above);
const uint16x8x4_t row32 = load_uint16x8x4(above + 32);
int y = height;
do {
store_uint16x8x4(dst, row);
store_uint16x8x4(dst32, row32);
store_uint16x8x4(dst + stride, row);
store_uint16x8x4(dst32 + stride, row32);
dst += stride << 1;
dst32 += stride << 1;
y -= 2;
} while (y != 0);
}
HIGHBD_V_NXM(4, 4)
HIGHBD_V_NXM(4, 8)
HIGHBD_V_NXM(4, 16)
HIGHBD_V_NXM(8, 4)
HIGHBD_V_NXM(8, 8)
HIGHBD_V_NXM(8, 16)
HIGHBD_V_NXM(8, 32)
HIGHBD_V_NXM(16, 4)
HIGHBD_V_NXM(16, 8)
HIGHBD_V_NXM(16, 16)
HIGHBD_V_NXM(16, 32)
HIGHBD_V_NXM(16, 64)
HIGHBD_V_NXM(32, 8)
HIGHBD_V_NXM(32, 16)
HIGHBD_V_NXM(32, 32)
HIGHBD_V_NXM(32, 64)
HIGHBD_V_NXM(64, 16)
HIGHBD_V_NXM(64, 32)
HIGHBD_V_NXM(64, 64)
// -----------------------------------------------------------------------------
// H_PRED
static INLINE void highbd_h_store_4x4(uint16_t *dst, ptrdiff_t stride,
uint16x4_t left) {
vst1_u16(dst + 0 * stride, vdup_lane_u16(left, 0));
vst1_u16(dst + 1 * stride, vdup_lane_u16(left, 1));
vst1_u16(dst + 2 * stride, vdup_lane_u16(left, 2));
vst1_u16(dst + 3 * stride, vdup_lane_u16(left, 3));
}
static INLINE void highbd_h_store_8x4(uint16_t *dst, ptrdiff_t stride,
uint16x4_t left) {
vst1q_u16(dst + 0 * stride, vdupq_lane_u16(left, 0));
vst1q_u16(dst + 1 * stride, vdupq_lane_u16(left, 1));
vst1q_u16(dst + 2 * stride, vdupq_lane_u16(left, 2));
vst1q_u16(dst + 3 * stride, vdupq_lane_u16(left, 3));
}
static INLINE void highbd_h_store_16x1(uint16_t *dst, uint16x8_t left) {
vst1q_u16(dst + 0, left);
vst1q_u16(dst + 8, left);
}
static INLINE void highbd_h_store_16x4(uint16_t *dst, ptrdiff_t stride,
uint16x4_t left) {
highbd_h_store_16x1(dst + 0 * stride, vdupq_lane_u16(left, 0));
highbd_h_store_16x1(dst + 1 * stride, vdupq_lane_u16(left, 1));
highbd_h_store_16x1(dst + 2 * stride, vdupq_lane_u16(left, 2));
highbd_h_store_16x1(dst + 3 * stride, vdupq_lane_u16(left, 3));
}
static INLINE void highbd_h_store_32x1(uint16_t *dst, uint16x8_t left) {
vst1q_u16(dst + 0, left);
vst1q_u16(dst + 8, left);
vst1q_u16(dst + 16, left);
vst1q_u16(dst + 24, left);
}
static INLINE void highbd_h_store_32x4(uint16_t *dst, ptrdiff_t stride,
uint16x4_t left) {
highbd_h_store_32x1(dst + 0 * stride, vdupq_lane_u16(left, 0));
highbd_h_store_32x1(dst + 1 * stride, vdupq_lane_u16(left, 1));
highbd_h_store_32x1(dst + 2 * stride, vdupq_lane_u16(left, 2));
highbd_h_store_32x1(dst + 3 * stride, vdupq_lane_u16(left, 3));
}
static INLINE void highbd_h_store_64x1(uint16_t *dst, uint16x8_t left) {
vst1q_u16(dst + 0, left);
vst1q_u16(dst + 8, left);
vst1q_u16(dst + 16, left);
vst1q_u16(dst + 24, left);
vst1q_u16(dst + 32, left);
vst1q_u16(dst + 40, left);
vst1q_u16(dst + 48, left);
vst1q_u16(dst + 56, left);
}
static INLINE void highbd_h_store_64x4(uint16_t *dst, ptrdiff_t stride,
uint16x4_t left) {
highbd_h_store_64x1(dst + 0 * stride, vdupq_lane_u16(left, 0));
highbd_h_store_64x1(dst + 1 * stride, vdupq_lane_u16(left, 1));
highbd_h_store_64x1(dst + 2 * stride, vdupq_lane_u16(left, 2));
highbd_h_store_64x1(dst + 3 * stride, vdupq_lane_u16(left, 3));
}
void aom_highbd_h_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
highbd_h_store_4x4(dst, stride, vld1_u16(left));
}
void aom_highbd_h_predictor_4x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
uint16x8_t l = vld1q_u16(left);
highbd_h_store_4x4(dst + 0 * stride, stride, vget_low_u16(l));
highbd_h_store_4x4(dst + 4 * stride, stride, vget_high_u16(l));
}
void aom_highbd_h_predictor_8x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
highbd_h_store_8x4(dst, stride, vld1_u16(left));
}
void aom_highbd_h_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
uint16x8_t l = vld1q_u16(left);
highbd_h_store_8x4(dst + 0 * stride, stride, vget_low_u16(l));
highbd_h_store_8x4(dst + 4 * stride, stride, vget_high_u16(l));
}
void aom_highbd_h_predictor_16x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
highbd_h_store_16x4(dst, stride, vld1_u16(left));
}
void aom_highbd_h_predictor_16x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
uint16x8_t l = vld1q_u16(left);
highbd_h_store_16x4(dst + 0 * stride, stride, vget_low_u16(l));
highbd_h_store_16x4(dst + 4 * stride, stride, vget_high_u16(l));
}
void aom_highbd_h_predictor_32x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)above;
(void)bd;
uint16x8_t l = vld1q_u16(left);
highbd_h_store_32x4(dst + 0 * stride, stride, vget_low_u16(l));
highbd_h_store_32x4(dst + 4 * stride, stride, vget_high_u16(l));
}
// For cases where height >= 16 we use pairs of loads to get LDP instructions.
#define HIGHBD_H_WXH_LARGE(w, h) \
void aom_highbd_h_predictor_##w##x##h##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)above; \
(void)bd; \
for (int i = 0; i < (h) / 16; ++i) { \
uint16x8_t l0 = vld1q_u16(left + 0); \
uint16x8_t l1 = vld1q_u16(left + 8); \
highbd_h_store_##w##x4(dst + 0 * stride, stride, vget_low_u16(l0)); \
highbd_h_store_##w##x4(dst + 4 * stride, stride, vget_high_u16(l0)); \
highbd_h_store_##w##x4(dst + 8 * stride, stride, vget_low_u16(l1)); \
highbd_h_store_##w##x4(dst + 12 * stride, stride, vget_high_u16(l1)); \
left += 16; \
dst += 16 * stride; \
} \
}
HIGHBD_H_WXH_LARGE(4, 16)
HIGHBD_H_WXH_LARGE(8, 16)
HIGHBD_H_WXH_LARGE(8, 32)
HIGHBD_H_WXH_LARGE(16, 16)
HIGHBD_H_WXH_LARGE(16, 32)
HIGHBD_H_WXH_LARGE(16, 64)
HIGHBD_H_WXH_LARGE(32, 16)
HIGHBD_H_WXH_LARGE(32, 32)
HIGHBD_H_WXH_LARGE(32, 64)
HIGHBD_H_WXH_LARGE(64, 16)
HIGHBD_H_WXH_LARGE(64, 32)
HIGHBD_H_WXH_LARGE(64, 64)
#undef HIGHBD_H_WXH_LARGE
// -----------------------------------------------------------------------------
// PAETH
static INLINE void highbd_paeth_4or8_x_h_neon(uint16_t *dest, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
int width, int height) {
const uint16x8_t top_left = vdupq_n_u16(top_row[-1]);
const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]);
uint16x8_t top;
if (width == 4) {
top = vcombine_u16(vld1_u16(top_row), vdup_n_u16(0));
} else { // width == 8
top = vld1q_u16(top_row);
}
for (int y = 0; y < height; ++y) {
const uint16x8_t left = vdupq_n_u16(left_column[y]);
const uint16x8_t left_dist = vabdq_u16(top, top_left);
const uint16x8_t top_dist = vabdq_u16(left, top_left);
const uint16x8_t top_left_dist =
vabdq_u16(vaddq_u16(top, left), top_left_x2);
const uint16x8_t left_le_top = vcleq_u16(left_dist, top_dist);
const uint16x8_t left_le_top_left = vcleq_u16(left_dist, top_left_dist);
const uint16x8_t top_le_top_left = vcleq_u16(top_dist, top_left_dist);
// if (left_dist <= top_dist && left_dist <= top_left_dist)
const uint16x8_t left_mask = vandq_u16(left_le_top, left_le_top_left);
// dest[x] = left_column[y];
// Fill all the unused spaces with 'top'. They will be overwritten when
// the positions for top_left are known.
uint16x8_t result = vbslq_u16(left_mask, left, top);
// else if (top_dist <= top_left_dist)
// dest[x] = top_row[x];
// Add these values to the mask. They were already set.
const uint16x8_t left_or_top_mask = vorrq_u16(left_mask, top_le_top_left);
// else
// dest[x] = top_left;
result = vbslq_u16(left_or_top_mask, result, top_left);
if (width == 4) {
vst1_u16(dest, vget_low_u16(result));
} else { // width == 8
vst1q_u16(dest, result);
}
dest += stride;
}
}
#define HIGHBD_PAETH_NXM(W, H) \
void aom_highbd_paeth_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_paeth_4or8_x_h_neon(dst, stride, above, left, W, H); \
}
HIGHBD_PAETH_NXM(4, 4)
HIGHBD_PAETH_NXM(4, 8)
HIGHBD_PAETH_NXM(4, 16)
HIGHBD_PAETH_NXM(8, 4)
HIGHBD_PAETH_NXM(8, 8)
HIGHBD_PAETH_NXM(8, 16)
HIGHBD_PAETH_NXM(8, 32)
// Select the closest values and collect them.
static INLINE uint16x8_t select_paeth(const uint16x8_t top,
const uint16x8_t left,
const uint16x8_t top_left,
const uint16x8_t left_le_top,
const uint16x8_t left_le_top_left,
const uint16x8_t top_le_top_left) {
// if (left_dist <= top_dist && left_dist <= top_left_dist)
const uint16x8_t left_mask = vandq_u16(left_le_top, left_le_top_left);
// dest[x] = left_column[y];
// Fill all the unused spaces with 'top'. They will be overwritten when
// the positions for top_left are known.
const uint16x8_t result = vbslq_u16(left_mask, left, top);
// else if (top_dist <= top_left_dist)
// dest[x] = top_row[x];
// Add these values to the mask. They were already set.
const uint16x8_t left_or_top_mask = vorrq_u16(left_mask, top_le_top_left);
// else
// dest[x] = top_left;
return vbslq_u16(left_or_top_mask, result, top_left);
}
#define PAETH_PREDICTOR(num) \
do { \
const uint16x8_t left_dist = vabdq_u16(top[num], top_left); \
const uint16x8_t top_left_dist = \
vabdq_u16(vaddq_u16(top[num], left), top_left_x2); \
const uint16x8_t left_le_top = vcleq_u16(left_dist, top_dist); \
const uint16x8_t left_le_top_left = vcleq_u16(left_dist, top_left_dist); \
const uint16x8_t top_le_top_left = vcleq_u16(top_dist, top_left_dist); \
const uint16x8_t result = \
select_paeth(top[num], left, top_left, left_le_top, left_le_top_left, \
top_le_top_left); \
vst1q_u16(dest + (num * 8), result); \
} while (0)
#define LOAD_TOP_ROW(num) vld1q_u16(top_row + (num * 8))
static INLINE void highbd_paeth16_plus_x_h_neon(
uint16_t *dest, ptrdiff_t stride, const uint16_t *const top_row,
const uint16_t *const left_column, int width, int height) {
const uint16x8_t top_left = vdupq_n_u16(top_row[-1]);
const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]);
uint16x8_t top[8];
top[0] = LOAD_TOP_ROW(0);
top[1] = LOAD_TOP_ROW(1);
if (width > 16) {
top[2] = LOAD_TOP_ROW(2);
top[3] = LOAD_TOP_ROW(3);
if (width == 64) {
top[4] = LOAD_TOP_ROW(4);
top[5] = LOAD_TOP_ROW(5);
top[6] = LOAD_TOP_ROW(6);
top[7] = LOAD_TOP_ROW(7);
}
}
for (int y = 0; y < height; ++y) {
const uint16x8_t left = vdupq_n_u16(left_column[y]);
const uint16x8_t top_dist = vabdq_u16(left, top_left);
PAETH_PREDICTOR(0);
PAETH_PREDICTOR(1);
if (width > 16) {
PAETH_PREDICTOR(2);
PAETH_PREDICTOR(3);
if (width == 64) {
PAETH_PREDICTOR(4);
PAETH_PREDICTOR(5);
PAETH_PREDICTOR(6);
PAETH_PREDICTOR(7);
}
}
dest += stride;
}
}
#define HIGHBD_PAETH_NXM_WIDE(W, H) \
void aom_highbd_paeth_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_paeth16_plus_x_h_neon(dst, stride, above, left, W, H); \
}
HIGHBD_PAETH_NXM_WIDE(16, 4)
HIGHBD_PAETH_NXM_WIDE(16, 8)
HIGHBD_PAETH_NXM_WIDE(16, 16)
HIGHBD_PAETH_NXM_WIDE(16, 32)
HIGHBD_PAETH_NXM_WIDE(16, 64)
HIGHBD_PAETH_NXM_WIDE(32, 8)
HIGHBD_PAETH_NXM_WIDE(32, 16)
HIGHBD_PAETH_NXM_WIDE(32, 32)
HIGHBD_PAETH_NXM_WIDE(32, 64)
HIGHBD_PAETH_NXM_WIDE(64, 16)
HIGHBD_PAETH_NXM_WIDE(64, 32)
HIGHBD_PAETH_NXM_WIDE(64, 64)
// -----------------------------------------------------------------------------
// SMOOTH
// 256 - v = vneg_s8(v)
static INLINE uint16x4_t negate_s8(const uint16x4_t v) {
return vreinterpret_u16_s8(vneg_s8(vreinterpret_s8_u16(v)));
}
static INLINE void highbd_smooth_4xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t top_right = top_row[3];
const uint16_t bottom_left = left_column[height - 1];
const uint16_t *const weights_y = smooth_weights_u16 + height - 4;
const uint16x4_t top_v = vld1_u16(top_row);
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left);
const uint16x4_t weights_x_v = vld1_u16(smooth_weights_u16);
const uint16x4_t scaled_weights_x = negate_s8(weights_x_v);
const uint32x4_t weighted_tr = vmull_n_u16(scaled_weights_x, top_right);
for (int y = 0; y < height; ++y) {
// Each variable in the running summation is named for the last item to be
// accumulated.
const uint32x4_t weighted_top =
vmlal_n_u16(weighted_tr, top_v, weights_y[y]);
const uint32x4_t weighted_left =
vmlal_n_u16(weighted_top, weights_x_v, left_column[y]);
const uint32x4_t weighted_bl =
vmlal_n_u16(weighted_left, bottom_left_v, 256 - weights_y[y]);
const uint16x4_t pred =
vrshrn_n_u32(weighted_bl, SMOOTH_WEIGHT_LOG2_SCALE + 1);
vst1_u16(dst, pred);
dst += stride;
}
}
// Common code between 8xH and [16|32|64]xH.
static INLINE void highbd_calculate_pred8(
uint16_t *dst, const uint32x4_t weighted_corners_low,
const uint32x4_t weighted_corners_high, const uint16x4x2_t top_vals,
const uint16x4x2_t weights_x, const uint16_t left_y,
const uint16_t weight_y) {
// Each variable in the running summation is named for the last item to be
// accumulated.
const uint32x4_t weighted_top_low =
vmlal_n_u16(weighted_corners_low, top_vals.val[0], weight_y);
const uint32x4_t weighted_edges_low =
vmlal_n_u16(weighted_top_low, weights_x.val[0], left_y);
const uint16x4_t pred_low =
vrshrn_n_u32(weighted_edges_low, SMOOTH_WEIGHT_LOG2_SCALE + 1);
vst1_u16(dst, pred_low);
const uint32x4_t weighted_top_high =
vmlal_n_u16(weighted_corners_high, top_vals.val[1], weight_y);
const uint32x4_t weighted_edges_high =
vmlal_n_u16(weighted_top_high, weights_x.val[1], left_y);
const uint16x4_t pred_high =
vrshrn_n_u32(weighted_edges_high, SMOOTH_WEIGHT_LOG2_SCALE + 1);
vst1_u16(dst + 4, pred_high);
}
static void highbd_smooth_8xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t top_right = top_row[7];
const uint16_t bottom_left = left_column[height - 1];
const uint16_t *const weights_y = smooth_weights_u16 + height - 4;
const uint16x4x2_t top_vals = { { vld1_u16(top_row),
vld1_u16(top_row + 4) } };
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left);
const uint16x4x2_t weights_x = { { vld1_u16(smooth_weights_u16 + 4),
vld1_u16(smooth_weights_u16 + 8) } };
const uint32x4_t weighted_tr_low =
vmull_n_u16(negate_s8(weights_x.val[0]), top_right);
const uint32x4_t weighted_tr_high =
vmull_n_u16(negate_s8(weights_x.val[1]), top_right);
for (int y = 0; y < height; ++y) {
const uint32x4_t weighted_bl =
vmull_n_u16(bottom_left_v, 256 - weights_y[y]);
const uint32x4_t weighted_corners_low =
vaddq_u32(weighted_bl, weighted_tr_low);
const uint32x4_t weighted_corners_high =
vaddq_u32(weighted_bl, weighted_tr_high);
highbd_calculate_pred8(dst, weighted_corners_low, weighted_corners_high,
top_vals, weights_x, left_column[y], weights_y[y]);
dst += stride;
}
}
#define HIGHBD_SMOOTH_NXM(W, H) \
void aom_highbd_smooth_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_NXM(4, 4)
HIGHBD_SMOOTH_NXM(4, 8)
HIGHBD_SMOOTH_NXM(8, 4)
HIGHBD_SMOOTH_NXM(8, 8)
HIGHBD_SMOOTH_NXM(4, 16)
HIGHBD_SMOOTH_NXM(8, 16)
HIGHBD_SMOOTH_NXM(8, 32)
#undef HIGHBD_SMOOTH_NXM
// For width 16 and above.
#define HIGHBD_SMOOTH_PREDICTOR(W) \
static void highbd_smooth_##W##xh_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, \
const uint16_t *const left_column, const int height) { \
const uint16_t top_right = top_row[(W)-1]; \
const uint16_t bottom_left = left_column[height - 1]; \
const uint16_t *const weights_y = smooth_weights_u16 + height - 4; \
\
/* Precompute weighted values that don't vary with |y|. */ \
uint32x4_t weighted_tr_low[(W) >> 3]; \
uint32x4_t weighted_tr_high[(W) >> 3]; \
for (int i = 0; i < (W) >> 3; ++i) { \
const int x = i << 3; \
const uint16x4_t weights_x_low = \
vld1_u16(smooth_weights_u16 + (W)-4 + x); \
weighted_tr_low[i] = vmull_n_u16(negate_s8(weights_x_low), top_right); \
const uint16x4_t weights_x_high = \
vld1_u16(smooth_weights_u16 + (W) + x); \
weighted_tr_high[i] = vmull_n_u16(negate_s8(weights_x_high), top_right); \
} \
\
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); \
for (int y = 0; y < height; ++y) { \
const uint32x4_t weighted_bl = \
vmull_n_u16(bottom_left_v, 256 - weights_y[y]); \
uint16_t *dst_x = dst; \
for (int i = 0; i < (W) >> 3; ++i) { \
const int x = i << 3; \
const uint16x4x2_t top_vals = { { vld1_u16(top_row + x), \
vld1_u16(top_row + x + 4) } }; \
const uint32x4_t weighted_corners_low = \
vaddq_u32(weighted_bl, weighted_tr_low[i]); \
const uint32x4_t weighted_corners_high = \
vaddq_u32(weighted_bl, weighted_tr_high[i]); \
/* Accumulate weighted edge values and store. */ \
const uint16x4x2_t weights_x = { \
{ vld1_u16(smooth_weights_u16 + (W)-4 + x), \
vld1_u16(smooth_weights_u16 + (W) + x) } \
}; \
highbd_calculate_pred8(dst_x, weighted_corners_low, \
weighted_corners_high, top_vals, weights_x, \
left_column[y], weights_y[y]); \
dst_x += 8; \
} \
dst += stride; \
} \
}
HIGHBD_SMOOTH_PREDICTOR(16)
HIGHBD_SMOOTH_PREDICTOR(32)
HIGHBD_SMOOTH_PREDICTOR(64)
#undef HIGHBD_SMOOTH_PREDICTOR
#define HIGHBD_SMOOTH_NXM_WIDE(W, H) \
void aom_highbd_smooth_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_NXM_WIDE(16, 4)
HIGHBD_SMOOTH_NXM_WIDE(16, 8)
HIGHBD_SMOOTH_NXM_WIDE(16, 16)
HIGHBD_SMOOTH_NXM_WIDE(16, 32)
HIGHBD_SMOOTH_NXM_WIDE(16, 64)
HIGHBD_SMOOTH_NXM_WIDE(32, 8)
HIGHBD_SMOOTH_NXM_WIDE(32, 16)
HIGHBD_SMOOTH_NXM_WIDE(32, 32)
HIGHBD_SMOOTH_NXM_WIDE(32, 64)
HIGHBD_SMOOTH_NXM_WIDE(64, 16)
HIGHBD_SMOOTH_NXM_WIDE(64, 32)
HIGHBD_SMOOTH_NXM_WIDE(64, 64)
#undef HIGHBD_SMOOTH_NXM_WIDE
static void highbd_smooth_v_4xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t bottom_left = left_column[height - 1];
const uint16_t *const weights_y = smooth_weights_u16 + height - 4;
const uint16x4_t top_v = vld1_u16(top_row);
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left);
for (int y = 0; y < height; ++y) {
const uint32x4_t weighted_bl =
vmull_n_u16(bottom_left_v, 256 - weights_y[y]);
const uint32x4_t weighted_top =
vmlal_n_u16(weighted_bl, top_v, weights_y[y]);
vst1_u16(dst, vrshrn_n_u32(weighted_top, SMOOTH_WEIGHT_LOG2_SCALE));
dst += stride;
}
}
static void highbd_smooth_v_8xh_neon(uint16_t *dst, const ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t bottom_left = left_column[height - 1];
const uint16_t *const weights_y = smooth_weights_u16 + height - 4;
const uint16x4_t top_low = vld1_u16(top_row);
const uint16x4_t top_high = vld1_u16(top_row + 4);
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left);
for (int y = 0; y < height; ++y) {
const uint32x4_t weighted_bl =
vmull_n_u16(bottom_left_v, 256 - weights_y[y]);
const uint32x4_t weighted_top_low =
vmlal_n_u16(weighted_bl, top_low, weights_y[y]);
vst1_u16(dst, vrshrn_n_u32(weighted_top_low, SMOOTH_WEIGHT_LOG2_SCALE));
const uint32x4_t weighted_top_high =
vmlal_n_u16(weighted_bl, top_high, weights_y[y]);
vst1_u16(dst + 4,
vrshrn_n_u32(weighted_top_high, SMOOTH_WEIGHT_LOG2_SCALE));
dst += stride;
}
}
#define HIGHBD_SMOOTH_V_NXM(W, H) \
void aom_highbd_smooth_v_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_V_NXM(4, 4)
HIGHBD_SMOOTH_V_NXM(4, 8)
HIGHBD_SMOOTH_V_NXM(4, 16)
HIGHBD_SMOOTH_V_NXM(8, 4)
HIGHBD_SMOOTH_V_NXM(8, 8)
HIGHBD_SMOOTH_V_NXM(8, 16)
HIGHBD_SMOOTH_V_NXM(8, 32)
#undef HIGHBD_SMOOTH_V_NXM
// For width 16 and above.
#define HIGHBD_SMOOTH_V_PREDICTOR(W) \
static void highbd_smooth_v_##W##xh_neon( \
uint16_t *dst, const ptrdiff_t stride, const uint16_t *const top_row, \
const uint16_t *const left_column, const int height) { \
const uint16_t bottom_left = left_column[height - 1]; \
const uint16_t *const weights_y = smooth_weights_u16 + height - 4; \
\
uint16x4x2_t top_vals[(W) >> 3]; \
for (int i = 0; i < (W) >> 3; ++i) { \
const int x = i << 3; \
top_vals[i].val[0] = vld1_u16(top_row + x); \
top_vals[i].val[1] = vld1_u16(top_row + x + 4); \
} \
\
const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); \
for (int y = 0; y < height; ++y) { \
const uint32x4_t weighted_bl = \
vmull_n_u16(bottom_left_v, 256 - weights_y[y]); \
\
uint16_t *dst_x = dst; \
for (int i = 0; i < (W) >> 3; ++i) { \
const uint32x4_t weighted_top_low = \
vmlal_n_u16(weighted_bl, top_vals[i].val[0], weights_y[y]); \
vst1_u16(dst_x, \
vrshrn_n_u32(weighted_top_low, SMOOTH_WEIGHT_LOG2_SCALE)); \
\
const uint32x4_t weighted_top_high = \
vmlal_n_u16(weighted_bl, top_vals[i].val[1], weights_y[y]); \
vst1_u16(dst_x + 4, \
vrshrn_n_u32(weighted_top_high, SMOOTH_WEIGHT_LOG2_SCALE)); \
dst_x += 8; \
} \
dst += stride; \
} \
}
HIGHBD_SMOOTH_V_PREDICTOR(16)
HIGHBD_SMOOTH_V_PREDICTOR(32)
HIGHBD_SMOOTH_V_PREDICTOR(64)
#undef HIGHBD_SMOOTH_V_PREDICTOR
#define HIGHBD_SMOOTH_V_NXM_WIDE(W, H) \
void aom_highbd_smooth_v_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_V_NXM_WIDE(16, 4)
HIGHBD_SMOOTH_V_NXM_WIDE(16, 8)
HIGHBD_SMOOTH_V_NXM_WIDE(16, 16)
HIGHBD_SMOOTH_V_NXM_WIDE(16, 32)
HIGHBD_SMOOTH_V_NXM_WIDE(16, 64)
HIGHBD_SMOOTH_V_NXM_WIDE(32, 8)
HIGHBD_SMOOTH_V_NXM_WIDE(32, 16)
HIGHBD_SMOOTH_V_NXM_WIDE(32, 32)
HIGHBD_SMOOTH_V_NXM_WIDE(32, 64)
HIGHBD_SMOOTH_V_NXM_WIDE(64, 16)
HIGHBD_SMOOTH_V_NXM_WIDE(64, 32)
HIGHBD_SMOOTH_V_NXM_WIDE(64, 64)
#undef HIGHBD_SMOOTH_V_NXM_WIDE
static INLINE void highbd_smooth_h_4xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t top_right = top_row[3];
const uint16x4_t weights_x = vld1_u16(smooth_weights_u16);
const uint16x4_t scaled_weights_x = negate_s8(weights_x);
const uint32x4_t weighted_tr = vmull_n_u16(scaled_weights_x, top_right);
for (int y = 0; y < height; ++y) {
const uint32x4_t weighted_left =
vmlal_n_u16(weighted_tr, weights_x, left_column[y]);
vst1_u16(dst, vrshrn_n_u32(weighted_left, SMOOTH_WEIGHT_LOG2_SCALE));
dst += stride;
}
}
static INLINE void highbd_smooth_h_8xh_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *const top_row,
const uint16_t *const left_column,
const int height) {
const uint16_t top_right = top_row[7];
const uint16x4x2_t weights_x = { { vld1_u16(smooth_weights_u16 + 4),
vld1_u16(smooth_weights_u16 + 8) } };
const uint32x4_t weighted_tr_low =
vmull_n_u16(negate_s8(weights_x.val[0]), top_right);
const uint32x4_t weighted_tr_high =
vmull_n_u16(negate_s8(weights_x.val[1]), top_right);
for (int y = 0; y < height; ++y) {
const uint16_t left_y = left_column[y];
const uint32x4_t weighted_left_low =
vmlal_n_u16(weighted_tr_low, weights_x.val[0], left_y);
vst1_u16(dst, vrshrn_n_u32(weighted_left_low, SMOOTH_WEIGHT_LOG2_SCALE));
const uint32x4_t weighted_left_high =
vmlal_n_u16(weighted_tr_high, weights_x.val[1], left_y);
vst1_u16(dst + 4,
vrshrn_n_u32(weighted_left_high, SMOOTH_WEIGHT_LOG2_SCALE));
dst += stride;
}
}
#define HIGHBD_SMOOTH_H_NXM(W, H) \
void aom_highbd_smooth_h_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_H_NXM(4, 4)
HIGHBD_SMOOTH_H_NXM(4, 8)
HIGHBD_SMOOTH_H_NXM(4, 16)
HIGHBD_SMOOTH_H_NXM(8, 4)
HIGHBD_SMOOTH_H_NXM(8, 8)
HIGHBD_SMOOTH_H_NXM(8, 16)
HIGHBD_SMOOTH_H_NXM(8, 32)
#undef HIGHBD_SMOOTH_H_NXM
// For width 16 and above.
#define HIGHBD_SMOOTH_H_PREDICTOR(W) \
void highbd_smooth_h_##W##xh_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, \
const uint16_t *const left_column, const int height) { \
const uint16_t top_right = top_row[(W)-1]; \
\
uint16x4_t weights_x_low[(W) >> 3]; \
uint16x4_t weights_x_high[(W) >> 3]; \
uint32x4_t weighted_tr_low[(W) >> 3]; \
uint32x4_t weighted_tr_high[(W) >> 3]; \
for (int i = 0; i < (W) >> 3; ++i) { \
const int x = i << 3; \
weights_x_low[i] = vld1_u16(smooth_weights_u16 + (W)-4 + x); \
weighted_tr_low[i] = \
vmull_n_u16(negate_s8(weights_x_low[i]), top_right); \
weights_x_high[i] = vld1_u16(smooth_weights_u16 + (W) + x); \
weighted_tr_high[i] = \
vmull_n_u16(negate_s8(weights_x_high[i]), top_right); \
} \
\
for (int y = 0; y < height; ++y) { \
uint16_t *dst_x = dst; \
const uint16_t left_y = left_column[y]; \
for (int i = 0; i < (W) >> 3; ++i) { \
const uint32x4_t weighted_left_low = \
vmlal_n_u16(weighted_tr_low[i], weights_x_low[i], left_y); \
vst1_u16(dst_x, \
vrshrn_n_u32(weighted_left_low, SMOOTH_WEIGHT_LOG2_SCALE)); \
\
const uint32x4_t weighted_left_high = \
vmlal_n_u16(weighted_tr_high[i], weights_x_high[i], left_y); \
vst1_u16(dst_x + 4, \
vrshrn_n_u32(weighted_left_high, SMOOTH_WEIGHT_LOG2_SCALE)); \
dst_x += 8; \
} \
dst += stride; \
} \
}
HIGHBD_SMOOTH_H_PREDICTOR(16)
HIGHBD_SMOOTH_H_PREDICTOR(32)
HIGHBD_SMOOTH_H_PREDICTOR(64)
#undef HIGHBD_SMOOTH_H_PREDICTOR
#define HIGHBD_SMOOTH_H_NXM_WIDE(W, H) \
void aom_highbd_smooth_h_predictor_##W##x##H##_neon( \
uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
(void)bd; \
highbd_smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \
}
HIGHBD_SMOOTH_H_NXM_WIDE(16, 4)
HIGHBD_SMOOTH_H_NXM_WIDE(16, 8)
HIGHBD_SMOOTH_H_NXM_WIDE(16, 16)
HIGHBD_SMOOTH_H_NXM_WIDE(16, 32)
HIGHBD_SMOOTH_H_NXM_WIDE(16, 64)
HIGHBD_SMOOTH_H_NXM_WIDE(32, 8)
HIGHBD_SMOOTH_H_NXM_WIDE(32, 16)
HIGHBD_SMOOTH_H_NXM_WIDE(32, 32)
HIGHBD_SMOOTH_H_NXM_WIDE(32, 64)
HIGHBD_SMOOTH_H_NXM_WIDE(64, 16)
HIGHBD_SMOOTH_H_NXM_WIDE(64, 32)
HIGHBD_SMOOTH_H_NXM_WIDE(64, 64)
#undef HIGHBD_SMOOTH_H_NXM_WIDE
// -----------------------------------------------------------------------------
// Z1
static int16_t iota1_s16[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
static int16_t iota2_s16[] = { 0, 2, 4, 6, 8, 10, 12, 14 };
static AOM_FORCE_INLINE uint16x4_t highbd_dr_z1_apply_shift_x4(uint16x4_t a0,
uint16x4_t a1,
int shift) {
// The C implementation of the z1 predictor uses (32 - shift) and a right
// shift by 5, however we instead double shift to avoid an unnecessary right
// shift by 1.
uint32x4_t res = vmull_n_u16(a1, shift);
res = vmlal_n_u16(res, a0, 64 - shift);
return vrshrn_n_u32(res, 6);
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_z1_apply_shift_x8(uint16x8_t a0,
uint16x8_t a1,
int shift) {
return vcombine_u16(
highbd_dr_z1_apply_shift_x4(vget_low_u16(a0), vget_low_u16(a1), shift),
highbd_dr_z1_apply_shift_x4(vget_high_u16(a0), vget_high_u16(a1), shift));
}
static void highbd_dr_prediction_z1_upsample0_neon(uint16_t *dst,
ptrdiff_t stride, int bw,
int bh,
const uint16_t *above,
int dx) {
assert(bw % 4 == 0);
assert(bh % 4 == 0);
assert(dx > 0);
const int max_base_x = (bw + bh) - 1;
const int above_max = above[max_base_x];
const int16x8_t iota1x8 = vld1q_s16(iota1_s16);
const int16x4_t iota1x4 = vget_low_s16(iota1x8);
int x = dx;
int r = 0;
do {
const int base = x >> 6;
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above_max, bw);
dst += stride;
}
return;
}
// The C implementation of the z1 predictor when not upsampling uses:
// ((x & 0x3f) >> 1)
// The right shift is unnecessary here since we instead shift by +1 later,
// so adjust the mask to 0x3e to ensure we don't consider the extra bit.
const int shift = x & 0x3e;
if (bw == 4) {
const uint16x4_t a0 = vld1_u16(&above[base]);
const uint16x4_t a1 = vld1_u16(&above[base + 1]);
const uint16x4_t val = highbd_dr_z1_apply_shift_x4(a0, a1, shift);
const uint16x4_t cmp = vcgt_s16(vdup_n_s16(max_base_x - base), iota1x4);
const uint16x4_t res = vbsl_u16(cmp, val, vdup_n_u16(above_max));
vst1_u16(dst, res);
} else {
int c = 0;
do {
const uint16x8_t a0 = vld1q_u16(&above[base + c]);
const uint16x8_t a1 = vld1q_u16(&above[base + c + 1]);
const uint16x8_t val = highbd_dr_z1_apply_shift_x8(a0, a1, shift);
const uint16x8_t cmp =
vcgtq_s16(vdupq_n_s16(max_base_x - base - c), iota1x8);
const uint16x8_t res = vbslq_u16(cmp, val, vdupq_n_u16(above_max));
vst1q_u16(dst + c, res);
c += 8;
} while (c < bw);
}
dst += stride;
x += dx;
} while (++r < bh);
}
static void highbd_dr_prediction_z1_upsample1_neon(uint16_t *dst,
ptrdiff_t stride, int bw,
int bh,
const uint16_t *above,
int dx) {
assert(bw % 4 == 0);
assert(bh % 4 == 0);
assert(dx > 0);
const int max_base_x = ((bw + bh) - 1) << 1;
const int above_max = above[max_base_x];
const int16x8_t iota2x8 = vld1q_s16(iota2_s16);
const int16x4_t iota2x4 = vget_low_s16(iota2x8);
int x = dx;
int r = 0;
do {
const int base = x >> 5;
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above_max, bw);
dst += stride;
}
return;
}
// The C implementation of the z1 predictor when upsampling uses:
// (((x << 1) & 0x3f) >> 1)
// The right shift is unnecessary here since we instead shift by +1 later,
// so adjust the mask to 0x3e to ensure we don't consider the extra bit.
const int shift = (x << 1) & 0x3e;
if (bw == 4) {
const uint16x4x2_t a01 = vld2_u16(&above[base]);
const uint16x4_t val =
highbd_dr_z1_apply_shift_x4(a01.val[0], a01.val[1], shift);
const uint16x4_t cmp = vcgt_s16(vdup_n_s16(max_base_x - base), iota2x4);
const uint16x4_t res = vbsl_u16(cmp, val, vdup_n_u16(above_max));
vst1_u16(dst, res);
} else {
int c = 0;
do {
const uint16x8x2_t a01 = vld2q_u16(&above[base + 2 * c]);
const uint16x8_t val =
highbd_dr_z1_apply_shift_x8(a01.val[0], a01.val[1], shift);
const uint16x8_t cmp =
vcgtq_s16(vdupq_n_s16(max_base_x - base - 2 * c), iota2x8);
const uint16x8_t res = vbslq_u16(cmp, val, vdupq_n_u16(above_max));
vst1q_u16(dst + c, res);
c += 8;
} while (c < bw);
}
dst += stride;
x += dx;
} while (++r < bh);
}
// Directional prediction, zone 1: 0 < angle < 90
void av1_highbd_dr_prediction_z1_neon(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int dx, int dy, int bd) {
(void)left;
(void)dy;
(void)bd;
assert(dy == 1);
if (upsample_above) {
highbd_dr_prediction_z1_upsample1_neon(dst, stride, bw, bh, above, dx);
} else {
highbd_dr_prediction_z1_upsample0_neon(dst, stride, bw, bh, above, dx);
}
}
// -----------------------------------------------------------------------------
// Z2
#if AOM_ARCH_AARCH64
// Incrementally shift more elements from `above` into the result, merging with
// existing `left` elements.
// X0, X1, X2, X3
// Y0, X0, X1, X2
// Y0, Y1, X0, X1
// Y0, Y1, Y2, X0
// Y0, Y1, Y2, Y3
// clang-format off
static const uint8_t z2_merge_shuffles_u16x4[5][8] = {
{ 8, 9, 10, 11, 12, 13, 14, 15 },
{ 0, 1, 8, 9, 10, 11, 12, 13 },
{ 0, 1, 2, 3, 8, 9, 10, 11 },
{ 0, 1, 2, 3, 4, 5, 8, 9 },
{ 0, 1, 2, 3, 4, 5, 6, 7 },
};
// clang-format on
// Incrementally shift more elements from `above` into the result, merging with
// existing `left` elements.
// X0, X1, X2, X3, X4, X5, X6, X7
// Y0, X0, X1, X2, X3, X4, X5, X6
// Y0, Y1, X0, X1, X2, X3, X4, X5
// Y0, Y1, Y2, X0, X1, X2, X3, X4
// Y0, Y1, Y2, Y3, X0, X1, X2, X3
// Y0, Y1, Y2, Y3, Y4, X0, X1, X2
// Y0, Y1, Y2, Y3, Y4, Y5, X0, X1
// Y0, Y1, Y2, Y3, Y4, Y5, Y6, X0
// Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7
// clang-format off
static const uint8_t z2_merge_shuffles_u16x8[9][16] = {
{ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 },
{ 0, 1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 },
{ 0, 1, 2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 },
{ 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
};
// clang-format on
// clang-format off
static const uint16_t z2_y_iter_masks_u16x4[5][4] = {
{ 0U, 0U, 0U, 0U },
{ 0xffffU, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU },
};
// clang-format on
// clang-format off
static const uint16_t z2_y_iter_masks_u16x8[9][8] = {
{ 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U },
{ 0xffffU, 0U, 0U, 0U, 0U, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0U, 0U, 0U, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U },
{ 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU },
};
// clang-format on
static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_tbl_left_x4_from_x8(
const uint16x8_t left_data, const int16x4_t indices, int base, int n) {
// Need to adjust indices to operate on 0-based indices rather than
// `base`-based indices and then adjust from uint16x4 indices to uint8x8
// indices so we can use a tbl instruction (which only operates on bytes).
uint8x8_t left_indices =
vreinterpret_u8_s16(vsub_s16(indices, vdup_n_s16(base)));
left_indices = vtrn1_u8(left_indices, left_indices);
left_indices = vadd_u8(left_indices, left_indices);
left_indices = vadd_u8(left_indices, vreinterpret_u8_u16(vdup_n_u16(0x0100)));
const uint16x4_t ret = vreinterpret_u16_u8(
vqtbl1_u8(vreinterpretq_u8_u16(left_data), left_indices));
return vand_u16(ret, vld1_u16(z2_y_iter_masks_u16x4[n]));
}
static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_tbl_left_x4_from_x16(
const uint16x8x2_t left_data, const int16x4_t indices, int base, int n) {
// Need to adjust indices to operate on 0-based indices rather than
// `base`-based indices and then adjust from uint16x4 indices to uint8x8
// indices so we can use a tbl instruction (which only operates on bytes).
uint8x8_t left_indices =
vreinterpret_u8_s16(vsub_s16(indices, vdup_n_s16(base)));
left_indices = vtrn1_u8(left_indices, left_indices);
left_indices = vadd_u8(left_indices, left_indices);
left_indices = vadd_u8(left_indices, vreinterpret_u8_u16(vdup_n_u16(0x0100)));
uint8x16x2_t data_u8 = { { vreinterpretq_u8_u16(left_data.val[0]),
vreinterpretq_u8_u16(left_data.val[1]) } };
const uint16x4_t ret = vreinterpret_u16_u8(vqtbl2_u8(data_u8, left_indices));
return vand_u16(ret, vld1_u16(z2_y_iter_masks_u16x4[n]));
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_tbl_left_x8_from_x8(
const uint16x8_t left_data, const int16x8_t indices, int base, int n) {
// Need to adjust indices to operate on 0-based indices rather than
// `base`-based indices and then adjust from uint16x4 indices to uint8x8
// indices so we can use a tbl instruction (which only operates on bytes).
uint8x16_t left_indices =
vreinterpretq_u8_s16(vsubq_s16(indices, vdupq_n_s16(base)));
left_indices = vtrn1q_u8(left_indices, left_indices);
left_indices = vaddq_u8(left_indices, left_indices);
left_indices =
vaddq_u8(left_indices, vreinterpretq_u8_u16(vdupq_n_u16(0x0100)));
const uint16x8_t ret = vreinterpretq_u16_u8(
vqtbl1q_u8(vreinterpretq_u8_u16(left_data), left_indices));
return vandq_u16(ret, vld1q_u16(z2_y_iter_masks_u16x8[n]));
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_tbl_left_x8_from_x16(
const uint16x8x2_t left_data, const int16x8_t indices, int base, int n) {
// Need to adjust indices to operate on 0-based indices rather than
// `base`-based indices and then adjust from uint16x4 indices to uint8x8
// indices so we can use a tbl instruction (which only operates on bytes).
uint8x16_t left_indices =
vreinterpretq_u8_s16(vsubq_s16(indices, vdupq_n_s16(base)));
left_indices = vtrn1q_u8(left_indices, left_indices);
left_indices = vaddq_u8(left_indices, left_indices);
left_indices =
vaddq_u8(left_indices, vreinterpretq_u8_u16(vdupq_n_u16(0x0100)));
uint8x16x2_t data_u8 = { { vreinterpretq_u8_u16(left_data.val[0]),
vreinterpretq_u8_u16(left_data.val[1]) } };
const uint16x8_t ret =
vreinterpretq_u16_u8(vqtbl2q_u8(data_u8, left_indices));
return vandq_u16(ret, vld1q_u16(z2_y_iter_masks_u16x8[n]));
}
#endif // AOM_ARCH_AARCH64
static AOM_FORCE_INLINE uint16x4x2_t highbd_dr_prediction_z2_gather_left_x4(
const uint16_t *left, const int16x4_t indices, int n) {
assert(n > 0);
assert(n <= 4);
// Load two elements at a time and then uzp them into separate vectors, to
// reduce the number of memory accesses.
uint32x2_t ret0_u32 = vdup_n_u32(0);
uint32x2_t ret1_u32 = vdup_n_u32(0);
// Use a single vget_lane_u64 to minimize vector to general purpose register
// transfers and then mask off the bits we actually want.
const uint64_t indices0123 = vget_lane_u64(vreinterpret_u64_s16(indices), 0);
const int idx0 = (int16_t)((indices0123 >> 0) & 0xffffU);
const int idx1 = (int16_t)((indices0123 >> 16) & 0xffffU);
const int idx2 = (int16_t)((indices0123 >> 32) & 0xffffU);
const int idx3 = (int16_t)((indices0123 >> 48) & 0xffffU);
// At time of writing both Clang and GCC produced better code with these
// nested if-statements compared to a switch statement with fallthrough.
ret0_u32 = vld1_lane_u32((const uint32_t *)(left + idx0), ret0_u32, 0);
if (n > 1) {
ret0_u32 = vld1_lane_u32((const uint32_t *)(left + idx1), ret0_u32, 1);
if (n > 2) {
ret1_u32 = vld1_lane_u32((const uint32_t *)(left + idx2), ret1_u32, 0);
if (n > 3) {
ret1_u32 = vld1_lane_u32((const uint32_t *)(left + idx3), ret1_u32, 1);
}
}
}
return vuzp_u16(vreinterpret_u16_u32(ret0_u32),
vreinterpret_u16_u32(ret1_u32));
}
static AOM_FORCE_INLINE uint16x8x2_t highbd_dr_prediction_z2_gather_left_x8(
const uint16_t *left, const int16x8_t indices, int n) {
assert(n > 0);
assert(n <= 8);
// Load two elements at a time and then uzp them into separate vectors, to
// reduce the number of memory accesses.
uint32x4_t ret0_u32 = vdupq_n_u32(0);
uint32x4_t ret1_u32 = vdupq_n_u32(0);
// Use a pair of vget_lane_u64 to minimize vector to general purpose register
// transfers and then mask off the bits we actually want.
const uint64_t indices0123 =
vgetq_lane_u64(vreinterpretq_u64_s16(indices), 0);
const uint64_t indices4567 =
vgetq_lane_u64(vreinterpretq_u64_s16(indices), 1);
const int idx0 = (int16_t)((indices0123 >> 0) & 0xffffU);
const int idx1 = (int16_t)((indices0123 >> 16) & 0xffffU);
const int idx2 = (int16_t)((indices0123 >> 32) & 0xffffU);
const int idx3 = (int16_t)((indices0123 >> 48) & 0xffffU);
const int idx4 = (int16_t)((indices4567 >> 0) & 0xffffU);
const int idx5 = (int16_t)((indices4567 >> 16) & 0xffffU);
const int idx6 = (int16_t)((indices4567 >> 32) & 0xffffU);
const int idx7 = (int16_t)((indices4567 >> 48) & 0xffffU);
// At time of writing both Clang and GCC produced better code with these
// nested if-statements compared to a switch statement with fallthrough.
ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx0), ret0_u32, 0);
if (n > 1) {
ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx1), ret0_u32, 1);
if (n > 2) {
ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx2), ret0_u32, 2);
if (n > 3) {
ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx3), ret0_u32, 3);
if (n > 4) {
ret1_u32 =
vld1q_lane_u32((const uint32_t *)(left + idx4), ret1_u32, 0);
if (n > 5) {
ret1_u32 =
vld1q_lane_u32((const uint32_t *)(left + idx5), ret1_u32, 1);
if (n > 6) {
ret1_u32 =
vld1q_lane_u32((const uint32_t *)(left + idx6), ret1_u32, 2);
if (n > 7) {
ret1_u32 = vld1q_lane_u32((const uint32_t *)(left + idx7),
ret1_u32, 3);
}
}
}
}
}
}
}
return vuzpq_u16(vreinterpretq_u16_u32(ret0_u32),
vreinterpretq_u16_u32(ret1_u32));
}
static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_merge_x4(
uint16x4_t out_x, uint16x4_t out_y, int base_shift) {
assert(base_shift >= 0);
assert(base_shift <= 4);
// On AArch64 we can permute the data from the `above` and `left` vectors
// into a single vector in a single load (of the permute vector) + tbl.
#if AOM_ARCH_AARCH64
const uint8x8x2_t out_yx = { { vreinterpret_u8_u16(out_y),
vreinterpret_u8_u16(out_x) } };
return vreinterpret_u16_u8(
vtbl2_u8(out_yx, vld1_u8(z2_merge_shuffles_u16x4[base_shift])));
#else
uint16x4_t out = out_y;
for (int c2 = base_shift, x_idx = 0; c2 < 4; ++c2, ++x_idx) {
out[c2] = out_x[x_idx];
}
return out;
#endif
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_merge_x8(
uint16x8_t out_x, uint16x8_t out_y, int base_shift) {
assert(base_shift >= 0);
assert(base_shift <= 8);
// On AArch64 we can permute the data from the `above` and `left` vectors
// into a single vector in a single load (of the permute vector) + tbl.
#if AOM_ARCH_AARCH64
const uint8x16x2_t out_yx = { { vreinterpretq_u8_u16(out_y),
vreinterpretq_u8_u16(out_x) } };
return vreinterpretq_u16_u8(
vqtbl2q_u8(out_yx, vld1q_u8(z2_merge_shuffles_u16x8[base_shift])));
#else
uint16x8_t out = out_y;
for (int c2 = base_shift, x_idx = 0; c2 < 8; ++c2, ++x_idx) {
out[c2] = out_x[x_idx];
}
return out;
#endif
}
static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_apply_shift_x4(
uint16x4_t a0, uint16x4_t a1, int16x4_t shift) {
uint32x4_t res = vmull_u16(a1, vreinterpret_u16_s16(shift));
res =
vmlal_u16(res, a0, vsub_u16(vdup_n_u16(32), vreinterpret_u16_s16(shift)));
return vrshrn_n_u32(res, 5);
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_apply_shift_x8(
uint16x8_t a0, uint16x8_t a1, int16x8_t shift) {
return vcombine_u16(
highbd_dr_prediction_z2_apply_shift_x4(vget_low_u16(a0), vget_low_u16(a1),
vget_low_s16(shift)),
highbd_dr_prediction_z2_apply_shift_x4(
vget_high_u16(a0), vget_high_u16(a1), vget_high_s16(shift)));
}
static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_step_x4(
const uint16_t *above, const uint16x4_t above0, const uint16x4_t above1,
const uint16_t *left, int dx, int dy, int r, int c) {
const int16x4_t iota = vld1_s16(iota1_s16);
const int x0 = (c << 6) - (r + 1) * dx;
const int y0 = (r << 6) - (c + 1) * dy;
const int16x4_t x0123 = vadd_s16(vdup_n_s16(x0), vshl_n_s16(iota, 6));
const int16x4_t y0123 = vsub_s16(vdup_n_s16(y0), vmul_n_s16(iota, dy));
const int16x4_t shift_x0123 =
vshr_n_s16(vand_s16(x0123, vdup_n_s16(0x3F)), 1);
const int16x4_t shift_y0123 =
vshr_n_s16(vand_s16(y0123, vdup_n_s16(0x3F)), 1);
const int16x4_t base_y0123 = vshr_n_s16(y0123, 6);
const int base_shift = ((((r + 1) * dx) - 1) >> 6) - c;
// Based on the value of `base_shift` there are three possible cases to
// compute the result:
// 1) base_shift <= 0: We can load and operate entirely on data from the
// `above` input vector.
// 2) base_shift < vl: We can load from `above[-1]` and shift
// `vl - base_shift` elements across to the end of the
// vector, then compute the remainder from `left`.
// 3) base_shift >= vl: We can load and operate entirely on data from the
// `left` input vector.
if (base_shift <= 0) {
const int base_x = x0 >> 6;
const uint16x4_t a0 = vld1_u16(above + base_x);
const uint16x4_t a1 = vld1_u16(above + base_x + 1);
return highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123);
} else if (base_shift < 4) {
const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(
left + 1, base_y0123, base_shift);
const uint16x4_t out16_y = highbd_dr_prediction_z2_apply_shift_x4(
l01.val[0], l01.val[1], shift_y0123);
// No need to reload from above in the loop, just use pre-loaded constants.
const uint16x4_t out16_x =
highbd_dr_prediction_z2_apply_shift_x4(above0, above1, shift_x0123);
return highbd_dr_prediction_z2_merge_x4(out16_x, out16_y, base_shift);
} else {
const uint16x4x2_t l01 =
highbd_dr_prediction_z2_gather_left_x4(left + 1, base_y0123, 4);
return highbd_dr_prediction_z2_apply_shift_x4(l01.val[0], l01.val[1],
shift_y0123);
}
}
static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_step_x8(
const uint16_t *above, const uint16x8_t above0, const uint16x8_t above1,
const uint16_t *left, int dx, int dy, int r, int c) {
const int16x8_t iota = vld1q_s16(iota1_s16);
const int x0 = (c << 6) - (r + 1) * dx;
const int y0 = (r << 6) - (c + 1) * dy;
const int16x8_t x01234567 = vaddq_s16(vdupq_n_s16(x0), vshlq_n_s16(iota, 6));
const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(y0), vmulq_n_s16(iota, dy));
const int16x8_t shift_x01234567 =
vshrq_n_s16(vandq_s16(x01234567, vdupq_n_s16(0x3F)), 1);
const int16x8_t shift_y01234567 =
vshrq_n_s16(vandq_s16(y01234567, vdupq_n_s16(0x3F)), 1);
const int16x8_t base_y01234567 = vshrq_n_s16(y01234567, 6);
const int base_shift = ((((r + 1) * dx) - 1) >> 6) - c;
// Based on the value of `base_shift` there are three possible cases to
// compute the result:
// 1) base_shift <= 0: We can load and operate entirely on data from the
// `above` input vector.
// 2) base_shift < vl: We can load from `above[-1]` and shift
// `vl - base_shift` elements across to the end of the
// vector, then compute the remainder from `left`.
// 3) base_shift >= vl: We can load and operate entirely on data from the
// `left` input vector.
if (base_shift <= 0) {
const int base_x = x0 >> 6;
const uint16x8_t a0 = vld1q_u16(above + base_x);
const uint16x8_t a1 = vld1q_u16(above + base_x + 1);
return highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567);
} else if (base_shift < 8) {
const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(
left + 1, base_y01234567, base_shift);
const uint16x8_t out16_y = highbd_dr_prediction_z2_apply_shift_x8(
l01.val[0], l01.val[1], shift_y01234567);
// No need to reload from above in the loop, just use pre-loaded constants.
const uint16x8_t out16_x =
highbd_dr_prediction_z2_apply_shift_x8(above0, above1, shift_x01234567);
return highbd_dr_prediction_z2_merge_x8(out16_x, out16_y, base_shift);
} else {
const uint16x8x2_t l01 =
highbd_dr_prediction_z2_gather_left_x8(left + 1, base_y01234567, 8);
return highbd_dr_prediction_z2_apply_shift_x8(l01.val[0], l01.val[1],
shift_y01234567);
}
}
// Left array is accessed from -1 through `bh - 1` inclusive.
// Above array is accessed from -1 through `bw - 1` inclusive.
#define HIGHBD_DR_PREDICTOR_Z2_WXH(bw, bh) \
static void highbd_dr_prediction_z2_##bw##x##bh##_neon( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int upsample_above, int upsample_left, int dx, \
int dy, int bd) { \
(void)bd; \
(void)upsample_above; \
(void)upsample_left; \
assert(!upsample_above); \
assert(!upsample_left); \
assert(bw % 4 == 0); \
assert(bh % 4 == 0); \
assert(dx > 0); \
assert(dy > 0); \
\
uint16_t left_data[bh + 1]; \
memcpy(left_data, left - 1, (bh + 1) * sizeof(uint16_t)); \
\
uint16x8_t a0, a1; \
if (bw == 4) { \
a0 = vcombine_u16(vld1_u16(above - 1), vdup_n_u16(0)); \
a1 = vcombine_u16(vld1_u16(above + 0), vdup_n_u16(0)); \
} else { \
a0 = vld1q_u16(above - 1); \
a1 = vld1q_u16(above + 0); \
} \
\
int r = 0; \
do { \
if (bw == 4) { \
vst1_u16(dst, highbd_dr_prediction_z2_step_x4( \
above, vget_low_u16(a0), vget_low_u16(a1), \
left_data, dx, dy, r, 0)); \
} else { \
int c = 0; \
do { \
vst1q_u16(dst + c, highbd_dr_prediction_z2_step_x8( \
above, a0, a1, left_data, dx, dy, r, c)); \
c += 8; \
} while (c < bw); \
} \
dst += stride; \
} while (++r < bh); \
}
HIGHBD_DR_PREDICTOR_Z2_WXH(4, 16)
HIGHBD_DR_PREDICTOR_Z2_WXH(8, 16)
HIGHBD_DR_PREDICTOR_Z2_WXH(8, 32)
HIGHBD_DR_PREDICTOR_Z2_WXH(16, 4)
HIGHBD_DR_PREDICTOR_Z2_WXH(16, 8)
HIGHBD_DR_PREDICTOR_Z2_WXH(16, 16)
HIGHBD_DR_PREDICTOR_Z2_WXH(16, 32)
HIGHBD_DR_PREDICTOR_Z2_WXH(16, 64)
HIGHBD_DR_PREDICTOR_Z2_WXH(32, 8)
HIGHBD_DR_PREDICTOR_Z2_WXH(32, 16)
HIGHBD_DR_PREDICTOR_Z2_WXH(32, 32)
HIGHBD_DR_PREDICTOR_Z2_WXH(32, 64)
HIGHBD_DR_PREDICTOR_Z2_WXH(64, 16)
HIGHBD_DR_PREDICTOR_Z2_WXH(64, 32)
HIGHBD_DR_PREDICTOR_Z2_WXH(64, 64)
#undef HIGHBD_DR_PREDICTOR_Z2_WXH
typedef void (*highbd_dr_prediction_z2_ptr)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left,
int upsample_above,
int upsample_left, int dx, int dy,
int bd);
static void highbd_dr_prediction_z2_4x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left,
int upsample_above,
int upsample_left, int dx, int dy,
int bd) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
const int min_base_x = -(1 << (upsample_above + frac_bits_x));
// if `upsample_left` then we need -2 through 6 inclusive from `left`.
// else we only need -1 through 3 inclusive.
#if AOM_ARCH_AARCH64
uint16x8_t left_data0, left_data1;
if (upsample_left) {
left_data0 = vld1q_u16(left - 2);
left_data1 = vld1q_u16(left - 1);
} else {
left_data0 = vcombine_u16(vld1_u16(left - 1), vdup_n_u16(0));
left_data1 = vcombine_u16(vld1_u16(left + 0), vdup_n_u16(0));
}
#endif
const int16x4_t iota0123 = vld1_s16(iota1_s16);
const int16x4_t iota1234 = vld1_s16(iota1_s16 + 1);
for (int r = 0; r < 4; ++r) {
const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6;
const int x0 = (r + 1) * dx;
const int16x4_t x0123 = vsub_s16(vshl_n_s16(iota0123, 6), vdup_n_s16(x0));
const int base_x0 = (-x0) >> frac_bits_x;
if (base_shift <= 0) {
uint16x4_t a0, a1;
int16x4_t shift_x0123;
if (upsample_above) {
const uint16x4x2_t a01 = vld2_u16(above + base_x0);
a0 = a01.val[0];
a1 = a01.val[1];
shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F));
} else {
a0 = vld1_u16(above + base_x0);
a1 = vld1_u16(above + base_x0 + 1);
shift_x0123 = vshr_n_s16(vand_s16(x0123, vdup_n_s16(0x3F)), 1);
}
vst1_u16(dst,
highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123));
} else if (base_shift < 4) {
// Calculate Y component from `left`.
const int y_iters = base_shift;
const int16x4_t y0123 =
vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy));
const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y));
const int16x4_t shift_y0123 = vshr_n_s16(
vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1);
uint16x4_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data0, base_y0123,
left_data_base, y_iters);
l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data1, base_y0123,
left_data_base, y_iters);
#else
const uint16x4x2_t l01 =
highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, y_iters);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
const uint16x4_t out_y =
highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123);
// Calculate X component from `above`.
const int16x4_t shift_x0123 = vshr_n_s16(
vand_s16(vmul_n_s16(x0123, 1 << upsample_above), vdup_n_s16(0x3F)),
1);
uint16x4_t a0, a1;
if (upsample_above) {
const uint16x4x2_t a01 = vld2_u16(above + (base_x0 % 2 == 0 ? -2 : -1));
a0 = a01.val[0];
a1 = a01.val[1];
} else {
a0 = vld1_u16(above - 1);
a1 = vld1_u16(above + 0);
}
const uint16x4_t out_x =
highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123);
// Combine X and Y vectors.
const uint16x4_t out =
highbd_dr_prediction_z2_merge_x4(out_x, out_y, base_shift);
vst1_u16(dst, out);
} else {
const int16x4_t y0123 =
vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy));
const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y));
const int16x4_t shift_y0123 = vshr_n_s16(
vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1);
uint16x4_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data0, base_y0123,
left_data_base, 4);
l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data1, base_y0123,
left_data_base, 4);
#else
const uint16x4x2_t l01 =
highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, 4);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
vst1_u16(dst,
highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123));
}
dst += stride;
}
}
static void highbd_dr_prediction_z2_4x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left,
int upsample_above,
int upsample_left, int dx, int dy,
int bd) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
const int min_base_x = -(1 << (upsample_above + frac_bits_x));
// if `upsample_left` then we need -2 through 14 inclusive from `left`.
// else we only need -1 through 6 inclusive.
#if AOM_ARCH_AARCH64
uint16x8x2_t left_data0, left_data1;
if (upsample_left) {
left_data0 = vld1q_u16_x2(left - 2);
left_data1 = vld1q_u16_x2(left - 1);
} else {
left_data0 = (uint16x8x2_t){ { vld1q_u16(left - 1), vdupq_n_u16(0) } };
left_data1 = (uint16x8x2_t){ { vld1q_u16(left + 0), vdupq_n_u16(0) } };
}
#endif
const int16x4_t iota0123 = vld1_s16(iota1_s16);
const int16x4_t iota1234 = vld1_s16(iota1_s16 + 1);
for (int r = 0; r < 8; ++r) {
const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6;
const int x0 = (r + 1) * dx;
const int16x4_t x0123 = vsub_s16(vshl_n_s16(iota0123, 6), vdup_n_s16(x0));
const int base_x0 = (-x0) >> frac_bits_x;
if (base_shift <= 0) {
uint16x4_t a0, a1;
int16x4_t shift_x0123;
if (upsample_above) {
const uint16x4x2_t a01 = vld2_u16(above + base_x0);
a0 = a01.val[0];
a1 = a01.val[1];
shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F));
} else {
a0 = vld1_u16(above + base_x0);
a1 = vld1_u16(above + base_x0 + 1);
shift_x0123 = vand_s16(vshr_n_s16(x0123, 1), vdup_n_s16(0x1F));
}
vst1_u16(dst,
highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123));
} else if (base_shift < 4) {
// Calculate Y component from `left`.
const int y_iters = base_shift;
const int16x4_t y0123 =
vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy));
const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y));
const int16x4_t shift_y0123 = vshr_n_s16(
vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1);
uint16x4_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(
left_data0, base_y0123, left_data_base, y_iters);
l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(
left_data1, base_y0123, left_data_base, y_iters);
#else
const uint16x4x2_t l01 =
highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, y_iters);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
const uint16x4_t out_y =
highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123);
// Calculate X component from `above`.
uint16x4_t a0, a1;
int16x4_t shift_x0123;
if (upsample_above) {
const uint16x4x2_t a01 = vld2_u16(above + (base_x0 % 2 == 0 ? -2 : -1));
a0 = a01.val[0];
a1 = a01.val[1];
shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F));
} else {
a0 = vld1_u16(above - 1);
a1 = vld1_u16(above + 0);
shift_x0123 = vand_s16(vshr_n_s16(x0123, 1), vdup_n_s16(0x1F));
}
const uint16x4_t out_x =
highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123);
// Combine X and Y vectors.
const uint16x4_t out =
highbd_dr_prediction_z2_merge_x4(out_x, out_y, base_shift);
vst1_u16(dst, out);
} else {
const int16x4_t y0123 =
vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy));
const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y));
const int16x4_t shift_y0123 = vshr_n_s16(
vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1);
uint16x4_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(left_data0, base_y0123,
left_data_base, 4);
l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(left_data1, base_y0123,
left_data_base, 4);
#else
const uint16x4x2_t l01 =
highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, 4);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
vst1_u16(dst,
highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123));
}
dst += stride;
}
}
static void highbd_dr_prediction_z2_8x4_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left,
int upsample_above,
int upsample_left, int dx, int dy,
int bd) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
const int min_base_x = -(1 << (upsample_above + frac_bits_x));
// if `upsample_left` then we need -2 through 6 inclusive from `left`.
// else we only need -1 through 3 inclusive.
#if AOM_ARCH_AARCH64
uint16x8_t left_data0, left_data1;
if (upsample_left) {
left_data0 = vld1q_u16(left - 2);
left_data1 = vld1q_u16(left - 1);
} else {
left_data0 = vcombine_u16(vld1_u16(left - 1), vdup_n_u16(0));
left_data1 = vcombine_u16(vld1_u16(left + 0), vdup_n_u16(0));
}
#endif
const int16x8_t iota01234567 = vld1q_s16(iota1_s16);
const int16x8_t iota12345678 = vld1q_s16(iota1_s16 + 1);
for (int r = 0; r < 4; ++r) {
const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6;
const int x0 = (r + 1) * dx;
const int16x8_t x01234567 =
vsubq_s16(vshlq_n_s16(iota01234567, 6), vdupq_n_s16(x0));
const int base_x0 = (-x0) >> frac_bits_x;
if (base_shift <= 0) {
uint16x8_t a0, a1;
int16x8_t shift_x01234567;
if (upsample_above) {
const uint16x8x2_t a01 = vld2q_u16(above + base_x0);
a0 = a01.val[0];
a1 = a01.val[1];
shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F));
} else {
a0 = vld1q_u16(above + base_x0);
a1 = vld1q_u16(above + base_x0 + 1);
shift_x01234567 =
vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F));
}
vst1q_u16(
dst, highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567));
} else if (base_shift < 8) {
// Calculate Y component from `left`.
const int y_iters = base_shift;
const int16x8_t y01234567 =
vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy));
const int16x8_t base_y01234567 =
vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y));
const int16x8_t shift_y01234567 =
vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left),
vdupq_n_s16(0x3F)),
1);
uint16x8_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x8(
left_data0, base_y01234567, left_data_base, y_iters);
l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x8(
left_data1, base_y01234567, left_data_base, y_iters);
#else
const uint16x8x2_t l01 =
highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, y_iters);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
const uint16x8_t out_y =
highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567);
// Calculate X component from `above`.
uint16x8_t a0, a1;
int16x8_t shift_x01234567;
if (upsample_above) {
const uint16x8x2_t a01 =
vld2q_u16(above + (base_x0 % 2 == 0 ? -2 : -1));
a0 = a01.val[0];
a1 = a01.val[1];
shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F));
} else {
a0 = vld1q_u16(above - 1);
a1 = vld1q_u16(above + 0);
shift_x01234567 =
vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F));
}
const uint16x8_t out_x =
highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567);
// Combine X and Y vectors.
const uint16x8_t out =
highbd_dr_prediction_z2_merge_x8(out_x, out_y, base_shift);
vst1q_u16(dst, out);
} else {
const int16x8_t y01234567 =
vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy));
const int16x8_t base_y01234567 =
vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y));
const int16x8_t shift_y01234567 =
vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left),
vdupq_n_s16(0x3F)),
1);
uint16x8_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x8(
left_data0, base_y01234567, left_data_base, 8);
l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x8(
left_data1, base_y01234567, left_data_base, 8);
#else
const uint16x8x2_t l01 =
highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, 8);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
vst1q_u16(
dst, highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567));
}
dst += stride;
}
}
static void highbd_dr_prediction_z2_8x8_neon(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left,
int upsample_above,
int upsample_left, int dx, int dy,
int bd) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
const int min_base_x = -(1 << (upsample_above + frac_bits_x));
// if `upsample_left` then we need -2 through 14 inclusive from `left`.
// else we only need -1 through 6 inclusive.
#if AOM_ARCH_AARCH64
uint16x8x2_t left_data0, left_data1;
if (upsample_left) {
left_data0 = vld1q_u16_x2(left - 2);
left_data1 = vld1q_u16_x2(left - 1);
} else {
left_data0 = (uint16x8x2_t){ { vld1q_u16(left - 1), vdupq_n_u16(0) } };
left_data1 = (uint16x8x2_t){ { vld1q_u16(left + 0), vdupq_n_u16(0) } };
}
#endif
const int16x8_t iota01234567 = vld1q_s16(iota1_s16);
const int16x8_t iota12345678 = vld1q_s16(iota1_s16 + 1);
for (int r = 0; r < 8; ++r) {
const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6;
const int x0 = (r + 1) * dx;
const int16x8_t x01234567 =
vsubq_s16(vshlq_n_s16(iota01234567, 6), vdupq_n_s16(x0));
const int base_x0 = (-x0) >> frac_bits_x;
if (base_shift <= 0) {
uint16x8_t a0, a1;
int16x8_t shift_x01234567;
if (upsample_above) {
const uint16x8x2_t a01 = vld2q_u16(above + base_x0);
a0 = a01.val[0];
a1 = a01.val[1];
shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F));
} else {
a0 = vld1q_u16(above + base_x0);
a1 = vld1q_u16(above + base_x0 + 1);
shift_x01234567 =
vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F));
}
vst1q_u16(
dst, highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567));
} else if (base_shift < 8) {
// Calculate Y component from `left`.
const int y_iters = base_shift;
const int16x8_t y01234567 =
vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy));
const int16x8_t base_y01234567 =
vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y));
const int16x8_t shift_y01234567 =
vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left),
vdupq_n_s16(0x3F)),
1);
uint16x8_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x16(
left_data0, base_y01234567, left_data_base, y_iters);
l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x16(
left_data1, base_y01234567, left_data_base, y_iters);
#else
const uint16x8x2_t l01 =
highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, y_iters);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
const uint16x8_t out_y =
highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567);
// Calculate X component from `above`.
uint16x8_t a0, a1;
int16x8_t shift_x01234567;
if (upsample_above) {
const uint16x8x2_t a01 =
vld2q_u16(above + (base_x0 % 2 == 0 ? -2 : -1));
a0 = a01.val[0];
a1 = a01.val[1];
shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F));
} else {
a0 = vld1q_u16(above - 1);
a1 = vld1q_u16(above + 0);
shift_x01234567 =
vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F));
}
const uint16x8_t out_x =
highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567);
// Combine X and Y vectors.
const uint16x8_t out =
highbd_dr_prediction_z2_merge_x8(out_x, out_y, base_shift);
vst1q_u16(dst, out);
} else {
const int16x8_t y01234567 =
vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy));
const int16x8_t base_y01234567 =
vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y));
const int16x8_t shift_y01234567 =
vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left),
vdupq_n_s16(0x3F)),
1);
uint16x8_t l0, l1;
#if AOM_ARCH_AARCH64
const int left_data_base = upsample_left ? -2 : -1;
l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x16(
left_data0, base_y01234567, left_data_base, 8);
l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x16(
left_data1, base_y01234567, left_data_base, 8);
#else
const uint16x8x2_t l01 =
highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, 8);
l0 = l01.val[0];
l1 = l01.val[1];
#endif
vst1q_u16(
dst, highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567));
}
dst += stride;
}
}
static highbd_dr_prediction_z2_ptr dr_predictor_z2_arr_neon[7][7] = {
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, &highbd_dr_prediction_z2_4x4_neon,
&highbd_dr_prediction_z2_4x8_neon, &highbd_dr_prediction_z2_4x16_neon, NULL,
NULL },
{ NULL, NULL, &highbd_dr_prediction_z2_8x4_neon,
&highbd_dr_prediction_z2_8x8_neon, &highbd_dr_prediction_z2_8x16_neon,
&highbd_dr_prediction_z2_8x32_neon, NULL },
{ NULL, NULL, &highbd_dr_prediction_z2_16x4_neon,
&highbd_dr_prediction_z2_16x8_neon, &highbd_dr_prediction_z2_16x16_neon,
&highbd_dr_prediction_z2_16x32_neon, &highbd_dr_prediction_z2_16x64_neon },
{ NULL, NULL, NULL, &highbd_dr_prediction_z2_32x8_neon,
&highbd_dr_prediction_z2_32x16_neon, &highbd_dr_prediction_z2_32x32_neon,
&highbd_dr_prediction_z2_32x64_neon },
{ NULL, NULL, NULL, NULL, &highbd_dr_prediction_z2_64x16_neon,
&highbd_dr_prediction_z2_64x32_neon, &highbd_dr_prediction_z2_64x64_neon },
};
// Directional prediction, zone 2: 90 < angle < 180
void av1_highbd_dr_prediction_z2_neon(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int dx, int dy,
int bd) {
highbd_dr_prediction_z2_ptr f =
dr_predictor_z2_arr_neon[get_msb(bw)][get_msb(bh)];
assert(f != NULL);
f(dst, stride, above, left, upsample_above, upsample_left, dx, dy, bd);
}
// -----------------------------------------------------------------------------
// Z3
// Both the lane to the use and the shift amount must be immediates.
#define HIGHBD_DR_PREDICTOR_Z3_STEP_X4(out, iota, base, in0, in1, s0, s1, \
lane, shift) \
do { \
uint32x4_t val = vmull_lane_u16((in0), (s0), (lane)); \
val = vmlal_lane_u16(val, (in1), (s1), (lane)); \
const uint16x4_t cmp = vadd_u16((iota), vdup_n_u16(base)); \
const uint16x4_t res = vrshrn_n_u32(val, (shift)); \
*(out) = vbsl_u16(vclt_u16(cmp, vdup_n_u16(max_base_y)), res, \
vdup_n_u16(left_max)); \
} while (0)
#define HIGHBD_DR_PREDICTOR_Z3_STEP_X8(out, iota, base, in0, in1, s0, s1, \
lane, shift) \
do { \
uint32x4_t val_lo = vmull_lane_u16(vget_low_u16(in0), (s0), (lane)); \
val_lo = vmlal_lane_u16(val_lo, vget_low_u16(in1), (s1), (lane)); \
uint32x4_t val_hi = vmull_lane_u16(vget_high_u16(in0), (s0), (lane)); \
val_hi = vmlal_lane_u16(val_hi, vget_high_u16(in1), (s1), (lane)); \
const uint16x8_t cmp = vaddq_u16((iota), vdupq_n_u16(base)); \
const uint16x8_t res = vcombine_u16(vrshrn_n_u32(val_lo, (shift)), \
vrshrn_n_u32(val_hi, (shift))); \
*(out) = vbslq_u16(vcltq_u16(cmp, vdupq_n_u16(max_base_y)), res, \
vdupq_n_u16(left_max)); \
} while (0)
static void highbd_dr_prediction_z3_upsample0_neon(uint16_t *dst,
ptrdiff_t stride, int bw,
int bh, const uint16_t *left,
int dy) {
assert(bw % 4 == 0);
assert(bh % 4 == 0);
assert(dy > 0);
// Factor out left + 1 to give the compiler a better chance of recognising
// that the offsets used for the loads from left and left + 1 are otherwise
// identical.
const uint16_t *left1 = left + 1;
const int max_base_y = (bw + bh - 1);
const int left_max = left[max_base_y];
const int frac_bits = 6;
const uint16x8_t iota1x8 = vreinterpretq_u16_s16(vld1q_s16(iota1_s16));
const uint16x4_t iota1x4 = vget_low_u16(iota1x8);
// The C implementation of the z3 predictor when not upsampling uses:
// ((y & 0x3f) >> 1)
// The right shift is unnecessary here since we instead shift by +1 later,
// so adjust the mask to 0x3e to ensure we don't consider the extra bit.
const uint16x4_t shift_mask = vdup_n_u16(0x3e);
if (bh == 4) {
int y = dy;
int c = 0;
do {
// Fully unroll the 4x4 block to allow us to use immediate lane-indexed
// multiply instructions.
const uint16x4_t shifts1 =
vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask);
const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(64), shifts1);
const int base0 = (y + 0 * dy) >> frac_bits;
const int base1 = (y + 1 * dy) >> frac_bits;
const int base2 = (y + 2 * dy) >> frac_bits;
const int base3 = (y + 3 * dy) >> frac_bits;
uint16x4_t out[4];
if (base0 >= max_base_y) {
out[0] = vdup_n_u16(left_max);
} else {
const uint16x4_t l00 = vld1_u16(left + base0);
const uint16x4_t l01 = vld1_u16(left1 + base0);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[0], iota1x4, base0, l00, l01,
shifts0, shifts1, 0, 6);
}
if (base1 >= max_base_y) {
out[1] = vdup_n_u16(left_max);
} else {
const uint16x4_t l10 = vld1_u16(left + base1);
const uint16x4_t l11 = vld1_u16(left1 + base1);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[1], iota1x4, base1, l10, l11,
shifts0, shifts1, 1, 6);
}
if (base2 >= max_base_y) {
out[2] = vdup_n_u16(left_max);
} else {
const uint16x4_t l20 = vld1_u16(left + base2);
const uint16x4_t l21 = vld1_u16(left1 + base2);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[2], iota1x4, base2, l20, l21,
shifts0, shifts1, 2, 6);
}
if (base3 >= max_base_y) {
out[3] = vdup_n_u16(left_max);
} else {
const uint16x4_t l30 = vld1_u16(left + base3);
const uint16x4_t l31 = vld1_u16(left1 + base3);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[3], iota1x4, base3, l30, l31,
shifts0, shifts1, 3, 6);
}
transpose_array_inplace_u16_4x4(out);
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + r2 * stride + c, out[r2]);
}
y += 4 * dy;
c += 4;
} while (c < bw);
} else {
int y = dy;
int c = 0;
do {
int r = 0;
do {
// Fully unroll the 4x4 block to allow us to use immediate lane-indexed
// multiply instructions.
const uint16x4_t shifts1 =
vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask);
const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(64), shifts1);
const int base0 = ((y + 0 * dy) >> frac_bits) + r;
const int base1 = ((y + 1 * dy) >> frac_bits) + r;
const int base2 = ((y + 2 * dy) >> frac_bits) + r;
const int base3 = ((y + 3 * dy) >> frac_bits) + r;
uint16x8_t out[4];
if (base0 >= max_base_y) {
out[0] = vdupq_n_u16(left_max);
} else {
const uint16x8_t l00 = vld1q_u16(left + base0);
const uint16x8_t l01 = vld1q_u16(left1 + base0);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[0], iota1x8, base0, l00, l01,
shifts0, shifts1, 0, 6);
}
if (base1 >= max_base_y) {
out[1] = vdupq_n_u16(left_max);
} else {
const uint16x8_t l10 = vld1q_u16(left + base1);
const uint16x8_t l11 = vld1q_u16(left1 + base1);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[1], iota1x8, base1, l10, l11,
shifts0, shifts1, 1, 6);
}
if (base2 >= max_base_y) {
out[2] = vdupq_n_u16(left_max);
} else {
const uint16x8_t l20 = vld1q_u16(left + base2);
const uint16x8_t l21 = vld1q_u16(left1 + base2);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[2], iota1x8, base2, l20, l21,
shifts0, shifts1, 2, 6);
}
if (base3 >= max_base_y) {
out[3] = vdupq_n_u16(left_max);
} else {
const uint16x8_t l30 = vld1q_u16(left + base3);
const uint16x8_t l31 = vld1q_u16(left1 + base3);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[3], iota1x8, base3, l30, l31,
shifts0, shifts1, 3, 6);
}
transpose_array_inplace_u16_4x8(out);
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + (r + r2) * stride + c, vget_low_u16(out[r2]));
}
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + (r + r2 + 4) * stride + c, vget_high_u16(out[r2]));
}
r += 8;
} while (r < bh);
y += 4 * dy;
c += 4;
} while (c < bw);
}
}
static void highbd_dr_prediction_z3_upsample1_neon(uint16_t *dst,
ptrdiff_t stride, int bw,
int bh, const uint16_t *left,
int dy) {
assert(bw % 4 == 0);
assert(bh % 4 == 0);
assert(dy > 0);
const int max_base_y = (bw + bh - 1) << 1;
const int left_max = left[max_base_y];
const int frac_bits = 5;
const uint16x4_t iota1x4 = vreinterpret_u16_s16(vld1_s16(iota1_s16));
const uint16x8_t iota2x8 = vreinterpretq_u16_s16(vld1q_s16(iota2_s16));
const uint16x4_t iota2x4 = vget_low_u16(iota2x8);
// The C implementation of the z3 predictor when upsampling uses:
// (((x << 1) & 0x3f) >> 1)
// The two shifts are unnecessary here since the lowest bit is guaranteed to
// be zero when the mask is applied, so adjust the mask to 0x1f to avoid
// needing the shifts at all.
const uint16x4_t shift_mask = vdup_n_u16(0x1F);
if (bh == 4) {
int y = dy;
int c = 0;
do {
// Fully unroll the 4x4 block to allow us to use immediate lane-indexed
// multiply instructions.
const uint16x4_t shifts1 =
vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask);
const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(32), shifts1);
const int base0 = (y + 0 * dy) >> frac_bits;
const int base1 = (y + 1 * dy) >> frac_bits;
const int base2 = (y + 2 * dy) >> frac_bits;
const int base3 = (y + 3 * dy) >> frac_bits;
const uint16x4x2_t l0 = vld2_u16(left + base0);
const uint16x4x2_t l1 = vld2_u16(left + base1);
const uint16x4x2_t l2 = vld2_u16(left + base2);
const uint16x4x2_t l3 = vld2_u16(left + base3);
uint16x4_t out[4];
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[0], iota2x4, base0, l0.val[0],
l0.val[1], shifts0, shifts1, 0, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[1], iota2x4, base1, l1.val[0],
l1.val[1], shifts0, shifts1, 1, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[2], iota2x4, base2, l2.val[0],
l2.val[1], shifts0, shifts1, 2, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[3], iota2x4, base3, l3.val[0],
l3.val[1], shifts0, shifts1, 3, 5);
transpose_array_inplace_u16_4x4(out);
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + r2 * stride + c, out[r2]);
}
y += 4 * dy;
c += 4;
} while (c < bw);
} else {
assert(bh % 8 == 0);
int y = dy;
int c = 0;
do {
int r = 0;
do {
// Fully unroll the 4x8 block to allow us to use immediate lane-indexed
// multiply instructions.
const uint16x4_t shifts1 =
vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask);
const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(32), shifts1);
const int base0 = ((y + 0 * dy) >> frac_bits) + (r * 2);
const int base1 = ((y + 1 * dy) >> frac_bits) + (r * 2);
const int base2 = ((y + 2 * dy) >> frac_bits) + (r * 2);
const int base3 = ((y + 3 * dy) >> frac_bits) + (r * 2);
const uint16x8x2_t l0 = vld2q_u16(left + base0);
const uint16x8x2_t l1 = vld2q_u16(left + base1);
const uint16x8x2_t l2 = vld2q_u16(left + base2);
const uint16x8x2_t l3 = vld2q_u16(left + base3);
uint16x8_t out[4];
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[0], iota2x8, base0, l0.val[0],
l0.val[1], shifts0, shifts1, 0, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[1], iota2x8, base1, l1.val[0],
l1.val[1], shifts0, shifts1, 1, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[2], iota2x8, base2, l2.val[0],
l2.val[1], shifts0, shifts1, 2, 5);
HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[3], iota2x8, base3, l3.val[0],
l3.val[1], shifts0, shifts1, 3, 5);
transpose_array_inplace_u16_4x8(out);
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + (r + r2) * stride + c, vget_low_u16(out[r2]));
}
for (int r2 = 0; r2 < 4; ++r2) {
vst1_u16(dst + (r + r2 + 4) * stride + c, vget_high_u16(out[r2]));
}
r += 8;
} while (r < bh);
y += 4 * dy;
c += 4;
} while (c < bw);
}
}
// Directional prediction, zone 3: 180 < angle < 270
void av1_highbd_dr_prediction_z3_neon(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_left,
int dx, int dy, int bd) {
(void)above;
(void)dx;
(void)bd;
assert(bw % 4 == 0);
assert(bh % 4 == 0);
assert(dx == 1);
assert(dy > 0);
if (upsample_left) {
highbd_dr_prediction_z3_upsample1_neon(dst, stride, bw, bh, left, dy);
} else {
highbd_dr_prediction_z3_upsample0_neon(dst, stride, bw, bh, left, dy);
}
}
#undef HIGHBD_DR_PREDICTOR_Z3_STEP_X4
#undef HIGHBD_DR_PREDICTOR_Z3_STEP_X8