blob: 47791205e436dc6a0def5fa97f9ca843f3d26953 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <vector>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "config/aom_config.h"
#include "aom/aomcx.h"
#include "aom/aomdx.h"
#include "aom/aom_encoder.h"
#include "aom/aom_decoder.h"
#define NELEMENTS(x) static_cast<int>(sizeof(x) / sizeof(x[0]))
using libaom_test::ACMRandom;
namespace {
class CompressedSource {
public:
explicit CompressedSource(int seed) : rnd_(seed), frame_count_(0) {
aom_codec_iface_t *algo = aom_codec_av1_cx();
aom_codec_enc_cfg_t cfg;
aom_codec_enc_config_default(algo, &cfg, 0);
// force the quantizer, to reduce the sensitivity on encoding choices.
// e.g, we don't want this test to break when the rate control is modified.
{
const int max_qp = cfg.rc_max_quantizer;
const int min_qp = cfg.rc_min_quantizer;
const int q = rnd_.PseudoUniform(max_qp - min_qp + 1) + min_qp;
cfg.rc_end_usage = AOM_Q;
cfg.rc_max_quantizer = q;
cfg.rc_min_quantizer = q;
}
// choose the picture size
{
width_ = rnd_.PseudoUniform(kWidth - 8) + 8;
height_ = rnd_.PseudoUniform(kHeight - 8) + 8;
}
// choose the chroma subsampling
{
const aom_img_fmt_t fmts[] = {
AOM_IMG_FMT_I420,
AOM_IMG_FMT_I422,
AOM_IMG_FMT_I444,
};
format_ = fmts[rnd_.PseudoUniform(NELEMENTS(fmts))];
}
cfg.g_w = width_;
cfg.g_h = height_;
cfg.g_lag_in_frames = 0;
if (format_ == AOM_IMG_FMT_I420)
cfg.g_profile = 0;
else if (format_ == AOM_IMG_FMT_I444)
cfg.g_profile = 1;
else if (format_ == AOM_IMG_FMT_I422)
cfg.g_profile = 2;
aom_codec_enc_init(&enc_, algo, &cfg, 0);
}
~CompressedSource() { aom_codec_destroy(&enc_); }
const aom_codec_cx_pkt_t *ReadFrame() {
uint8_t buf[kWidth * kHeight * 3] = { 0 };
// render regular pattern
const int period = rnd_.Rand8() % 32 + 1;
const int phase = rnd_.Rand8() % period;
const int val_a = rnd_.Rand8();
const int val_b = rnd_.Rand8();
for (int i = 0; i < (int)sizeof buf; ++i)
buf[i] = (i + phase) % period < period / 2 ? val_a : val_b;
aom_image_t img;
aom_img_wrap(&img, format_, width_, height_, 0, buf);
aom_codec_encode(&enc_, &img, frame_count_++, 1, 0);
aom_codec_iter_t iter = NULL;
const aom_codec_cx_pkt_t *pkt = NULL;
do {
pkt = aom_codec_get_cx_data(&enc_, &iter);
} while (pkt && pkt->kind != AOM_CODEC_CX_FRAME_PKT);
return pkt;
}
private:
static const int kWidth = 128;
static const int kHeight = 128;
ACMRandom rnd_;
aom_img_fmt_t format_;
aom_codec_ctx_t enc_;
int frame_count_;
int width_, height_;
};
// lowers an aom_image_t to a easily comparable/printable form
std::vector<int16_t> Serialize(const aom_image_t *img) {
std::vector<int16_t> bytes;
bytes.reserve(img->d_w * img->d_h * 3);
for (int plane = 0; plane < 3; ++plane) {
const int w = aom_img_plane_width(img, plane);
const int h = aom_img_plane_height(img, plane);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
unsigned char *row = img->planes[plane] + r * img->stride[plane];
if (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH)
bytes.push_back(row[c * 2]);
else
bytes.push_back(row[c]);
}
}
}
return bytes;
}
class Decoder {
public:
explicit Decoder(int allowLowbitdepth) {
aom_codec_iface_t *algo = aom_codec_av1_dx();
aom_codec_dec_cfg_t cfg = aom_codec_dec_cfg_t();
cfg.allow_lowbitdepth = allowLowbitdepth;
aom_codec_dec_init(&dec_, algo, &cfg, 0);
}
~Decoder() { aom_codec_destroy(&dec_); }
std::vector<int16_t> decode(const aom_codec_cx_pkt_t *pkt) {
aom_codec_decode(&dec_, static_cast<uint8_t *>(pkt->data.frame.buf),
pkt->data.frame.sz, NULL);
aom_codec_iter_t iter = NULL;
return Serialize(aom_codec_get_frame(&dec_, &iter));
}
private:
aom_codec_ctx_t dec_;
};
// Try to reveal a mismatch between LBD and HBD coding paths.
TEST(CodingPathSync, SearchForHbdLbdMismatch) {
const int count_tests = 10;
for (int i = 0; i < count_tests; ++i) {
Decoder dec_hbd(0);
Decoder dec_lbd(1);
CompressedSource enc(i);
for (int k = 0; k < 3; ++k) {
const aom_codec_cx_pkt_t *frame = enc.ReadFrame();
std::vector<int16_t> lbd_yuv = dec_lbd.decode(frame);
std::vector<int16_t> hbd_yuv = dec_hbd.decode(frame);
ASSERT_EQ(lbd_yuv, hbd_yuv);
}
}
}
TEST(CodingPathSyncLarge, SearchForHbdLbdMismatchLarge) {
const int count_tests = 100;
const int seed = 1234;
for (int i = 0; i < count_tests; ++i) {
Decoder dec_hbd(0);
Decoder dec_lbd(1);
CompressedSource enc(seed + i);
for (int k = 0; k < 5; ++k) {
const aom_codec_cx_pkt_t *frame = enc.ReadFrame();
std::vector<int16_t> lbd_yuv = dec_lbd.decode(frame);
std::vector<int16_t> hbd_yuv = dec_hbd.decode(frame);
ASSERT_EQ(lbd_yuv, hbd_yuv);
}
}
}
} // namespace