blob: ca60e4981e1bbe1646e5a08c6d97b27e4d6c7704 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <float.h>
#include <stdint.h>
#include "av1/encoder/thirdpass.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_codec.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tpl_model.h"
static INLINE double exp_bounded(double v) {
// When v > 700 or <-700, the exp function will be close to overflow
// For details, see the "Notes" in the following link.
// https://en.cppreference.com/w/c/numeric/math/exp
if (v > 700) {
return DBL_MAX;
} else if (v < -700) {
return 0;
}
return exp(v);
}
void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
tpl_txfm_stats->ready = 0;
tpl_txfm_stats->coeff_num = 256;
tpl_txfm_stats->txfm_block_count = 0;
memset(tpl_txfm_stats->abs_coeff_sum, 0,
sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
memset(tpl_txfm_stats->abs_coeff_mean, 0,
sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
}
#if CONFIG_BITRATE_ACCURACY
void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
TplTxfmStats *accumulated_stats) {
accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
}
}
void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
const tran_low_t *coeff) {
// For transform larger than 16x16, the scale of coeff need to be adjusted.
// It's not LOSSLESS_Q_STEP.
assert(tpl_txfm_stats->coeff_num <= 256);
for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
}
++tpl_txfm_stats->txfm_block_count;
}
void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
if (txfm_stats->txfm_block_count > 0) {
for (int j = 0; j < txfm_stats->coeff_num; j++) {
txfm_stats->abs_coeff_mean[j] =
txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
}
txfm_stats->ready = 1;
} else {
txfm_stats->ready = 0;
}
}
static AOM_INLINE void av1_tpl_store_txfm_stats(
TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats,
const int frame_index) {
tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
}
#endif // CONFIG_BITRATE_ACCURACY
static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane,
const tran_low_t *coeff,
tran_low_t *qcoeff,
tran_low_t *dqcoeff, TX_SIZE tx_size,
uint16_t *eob, int64_t *recon_error,
int64_t *sse) {
const struct macroblock_plane *const p = &x->plane[plane];
const MACROBLOCKD *xd = &x->e_mbd;
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
const int shift = tx_size == TX_32X32 ? 0 : 2;
QUANT_PARAM quant_param;
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
scan_order, &quant_param);
*recon_error =
av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
} else {
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
&quant_param);
*recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
}
#else
(void)xd;
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
&quant_param);
*recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
#endif // CONFIG_AV1_HIGHBITDEPTH
*recon_error = AOMMAX(*recon_error, 1);
*sse = (*sse) >> shift;
*sse = AOMMAX(*sse, 1);
}
static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2,
uint8_t *tpl_bsize_1d) {
// tpl stats bsize: 2 means 16x16
*block_mis_log2 = 2;
// Block size used in tpl motion estimation
*tpl_bsize_1d = 16;
// MIN_TPL_BSIZE_1D = 16;
assert(*tpl_bsize_1d >= 16);
}
void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
CommonModeInfoParams *const mi_params, int width,
int height, int byte_alignment, int lag_in_frames) {
SequenceHeader *const seq_params = &ppi->seq_params;
TplParams *const tpl_data = &ppi->tpl_data;
set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
&tpl_data->tpl_bsize_1d);
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
tpl_data->border_in_pixels =
ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
const int alloc_y_plane_only =
ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
const int mi_cols =
ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
const int mi_rows =
ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
tpl_frame->is_valid = 0;
tpl_frame->width = mi_cols >> block_mis_log2;
tpl_frame->height = mi_rows >> block_mis_log2;
tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
tpl_frame->mi_rows = mi_params->mi_rows;
tpl_frame->mi_cols = mi_params->mi_cols;
}
tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
// If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
// allocations are avoided for buffers in tpl_data.
if (lag_in_frames <= 1) return;
AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
sizeof(*tpl_data->txfm_stats_list)));
for (int frame = 0; frame < lag_in_frames; ++frame) {
AOM_CHECK_MEM_ERROR(
&ppi->error, tpl_data->tpl_stats_pool[frame],
aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
tpl_data->tpl_stats_buffer[frame].height,
sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
if (aom_alloc_frame_buffer(
&tpl_data->tpl_rec_pool[frame], width, height,
seq_params->subsampling_x, seq_params->subsampling_y,
seq_params->use_highbitdepth, tpl_data->border_in_pixels,
byte_alignment, 0, alloc_y_plane_only))
aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
}
static AOM_INLINE int32_t tpl_get_satd_cost(BitDepthInfo bd_info,
int16_t *src_diff, int diff_stride,
const uint8_t *src, int src_stride,
const uint8_t *dst, int dst_stride,
tran_low_t *coeff, int bw, int bh,
TX_SIZE tx_size) {
const int pix_num = bw * bh;
av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
dst, dst_stride);
av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
return aom_satd(coeff, pix_num);
}
static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
int rate_cost = 1;
for (int idx = 0; idx < eob; ++idx) {
unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
}
return (rate_cost << AV1_PROB_COST_SHIFT);
}
static AOM_INLINE void txfm_quant_rdcost(
const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
const MACROBLOCKD *xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
uint16_t eob;
av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
dst, dst_stride);
av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
sse);
*rate_cost = rate_estimator(qcoeff, eob, tx_size);
if (do_recon)
av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
dst_stride, eob, 0);
}
static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
uint8_t *cur_frame_buf,
uint8_t *ref_frame_buf, int stride,
int ref_stride, int width, int ref_width,
BLOCK_SIZE bsize, MV center_mv,
int_mv *best_mv) {
AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
int step_param;
uint32_t bestsme = UINT_MAX;
FULLPEL_MV_STATS best_mv_stats;
int distortion;
uint32_t sse;
int cost_list[5];
FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
// Setup frame pointers
x->plane[0].src.buf = cur_frame_buf;
x->plane[0].src.stride = stride;
x->plane[0].src.width = width;
xd->plane[0].pre[0].buf = ref_frame_buf;
xd->plane[0].pre[0].stride = ref_stride;
xd->plane[0].pre[0].width = ref_width;
step_param = tpl_sf->reduce_first_step_size;
step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
const search_site_config *search_site_cfg =
cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
if (search_site_cfg->stride != ref_stride)
search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
assert(search_site_cfg->stride == ref_stride);
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
start_mv, search_site_cfg,
tpl_sf->search_method,
/*fine_search_interval=*/0);
bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
cond_cost_list(cpi, cost_list),
&best_mv->as_fullmv, &best_mv_stats, NULL);
// When sub-pel motion search is skipped, populate sub-pel precision MV and
// return.
if (tpl_sf->subpel_force_stop == FULL_PEL) {
best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
return bestsme;
}
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
cost_list);
ms_params.forced_stop = tpl_sf->subpel_force_stop;
ms_params.var_params.subpel_search_type = USE_2_TAPS;
ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
best_mv_stats.err_cost = 0;
MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
bestsme = cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
&distortion, &sse, NULL);
return bestsme;
}
typedef struct {
int_mv mv;
int sad;
} center_mv_t;
static int compare_sad(const void *a, const void *b) {
const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
return 0;
}
static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
int center_mvs_count, int skip_alike_starting_mv) {
// MV difference threshold is in 1/8 precision.
const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
int thr = mv_diff_thr[skip_alike_starting_mv];
int i;
for (i = 0; i < center_mvs_count; i++) {
if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
return 1;
}
return 0;
}
static void get_rate_distortion(
int *rate_cost, int64_t *recon_error, int64_t *pred_error,
int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
TplTxfmStats *tpl_txfm_stats) {
const SequenceHeader *seq_params = cm->seq_params;
*rate_cost = 0;
*recon_error = 1;
*pred_error = 1;
(void)tpl_txfm_stats;
MACROBLOCKD *xd = &x->e_mbd;
int is_compound = (best_mode == NEW_NEWMV);
int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
xd->cur_buf->y_buffer,
xd->cur_buf->u_buffer,
xd->cur_buf->v_buffer,
};
const int src_stride_pool[MAX_MB_PLANE] = {
xd->cur_buf->y_stride,
xd->cur_buf->uv_stride,
xd->cur_buf->uv_stride,
};
const int_interpfilters kernel =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
for (int plane = 0; plane < num_planes; ++plane) {
struct macroblockd_plane *pd = &xd->plane[plane];
BLOCK_SIZE bsize_plane =
av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
[pd->subsampling_y];
int dst_buffer_stride = rec_stride_pool[plane];
int dst_mb_offset =
((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
((mi_col * MI_SIZE) >> pd->subsampling_x);
uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
for (int ref = 0; ref < 1 + is_compound; ++ref) {
if (!is_inter_mode(best_mode)) {
av1_predict_intra_block(
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
block_size_wide[bsize_plane], block_size_high[bsize_plane],
max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
dst_buffer_stride, 0, 0, plane);
} else {
int_mv best_mv = xd->mi[0]->mv[ref];
uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
ref_frame_ptr[ref]->y_buffer,
ref_frame_ptr[ref]->u_buffer,
ref_frame_ptr[ref]->v_buffer,
};
InterPredParams inter_pred_params;
struct buf_2d ref_buf = {
NULL, ref_buffer_pool[plane],
plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
};
av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
block_size_high[bsize_plane],
(mi_row * MI_SIZE) >> pd->subsampling_y,
(mi_col * MI_SIZE) >> pd->subsampling_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
is_cur_buf_hbd(xd), 0,
xd->block_ref_scale_factors[0], &ref_buf, kernel);
if (is_compound) av1_init_comp_mode(&inter_pred_params);
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
&best_mv.as_mv, &inter_pred_params);
}
}
int src_stride = src_stride_pool[plane];
int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
((mi_col * MI_SIZE) >> pd->subsampling_x);
int this_rate = 1;
int64_t this_recon_error = 1;
int64_t sse;
txfm_quant_rdcost(
x, src_diff, block_size_wide[bsize_plane],
src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
do_recon, &this_rate, &this_recon_error, &sse);
#if CONFIG_BITRATE_ACCURACY
if (plane == 0 && tpl_txfm_stats) {
// We only collect Y plane's transform coefficient
av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
}
#endif // CONFIG_BITRATE_ACCURACY
*recon_error += this_recon_error;
*pred_error += sse;
*rate_cost += this_rate;
}
}
static AOM_INLINE int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
const uint8_t *src_mb_buffer,
int src_stride,
TplBuffers *tpl_tmp_buffers,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int mi_row, int mi_col, int rf_idx,
MV *rfidx_mv, int use_pred_sad) {
const BitDepthInfo bd_info = get_bit_depth_info(xd);
TplParams *tpl_data = &cpi->ppi->tpl_data;
const YV12_BUFFER_CONFIG *const ref_frame_ptr =
tpl_data->src_ref_frame[rf_idx];
int16_t *src_diff = tpl_tmp_buffers->src_diff;
tran_low_t *coeff = tpl_tmp_buffers->coeff;
const int bw = 4 << mi_size_wide_log2[bsize];
const int bh = 4 << mi_size_high_log2[bsize];
int32_t inter_cost;
if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
const int_interpfilters kernel =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
uint8_t *predictor =
is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
ref_frame_ptr->y_width, ref_frame_ptr->y_height,
ref_frame_ptr->y_stride };
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
&tpl_data->sf, &ref_buf, kernel);
inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
&inter_pred_params);
if (use_pred_sad) {
inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
predictor, bw);
} else {
inter_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
predictor, bw, coeff, bw, bh, tx_size);
}
} else {
int ref_mb_offset =
mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
int ref_stride = ref_frame_ptr->y_stride;
const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
// Since sub-pel motion search is not performed, use the prediction pixels
// directly from the reference block ref_mb
if (use_pred_sad) {
inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
src_mb_buffer, src_stride,
&ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
} else {
inter_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
&ref_mb[fullmv.row * ref_stride + fullmv.col],
ref_stride, coeff, bw, bh, tx_size);
}
}
return inter_cost;
}
static AOM_INLINE void mode_estimation(AV1_COMP *cpi,
TplTxfmStats *tpl_txfm_stats,
TplBuffers *tpl_tmp_buffers,
MACROBLOCK *x, int mi_row, int mi_col,
BLOCK_SIZE bsize, TX_SIZE tx_size,
TplDepStats *tpl_stats) {
AV1_COMMON *cm = &cpi->common;
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
(void)gf_group;
MACROBLOCKD *xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
TplParams *tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
const int bw = 4 << mi_size_wide_log2[bsize];
const int bh = 4 << mi_size_high_log2[bsize];
int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
int32_t best_intra_cost = INT32_MAX;
int32_t intra_cost;
PREDICTION_MODE best_mode = DC_PRED;
const int mb_y_offset =
mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
const int src_stride = xd->cur_buf->y_stride;
const int src_width = xd->cur_buf->y_width;
int dst_mb_offset =
mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
uint8_t *rec_buffer_pool[3] = {
tpl_frame->rec_picture->y_buffer,
tpl_frame->rec_picture->u_buffer,
tpl_frame->rec_picture->v_buffer,
};
const int rec_stride_pool[3] = {
tpl_frame->rec_picture->y_stride,
tpl_frame->rec_picture->uv_stride,
tpl_frame->rec_picture->uv_stride,
};
for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
struct macroblockd_plane *pd = &xd->plane[plane];
pd->subsampling_x = xd->cur_buf->subsampling_x;
pd->subsampling_y = xd->cur_buf->subsampling_y;
}
uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
int16_t *src_diff = tpl_tmp_buffers->src_diff;
tran_low_t *coeff = tpl_tmp_buffers->coeff;
tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
uint8_t *predictor =
is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
int64_t recon_error = 1;
int64_t pred_error = 1;
memset(tpl_stats, 0, sizeof(*tpl_stats));
tpl_stats->ref_frame_index[0] = -1;
tpl_stats->ref_frame_index[1] = -1;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_params.mi_rows, cm->mi_params.mi_cols);
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
av1_num_planes(cm));
xd->mi[0]->bsize = bsize;
xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
// Intra prediction search
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
// Pre-load the bottom left line.
if (xd->left_available &&
mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
if (is_cur_buf_hbd(xd)) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
for (int i = 0; i < bw; ++i)
dst[(bw + i) * dst_buffer_stride - 1] =
dst[(bw - 1) * dst_buffer_stride - 1];
} else {
for (int i = 0; i < bw; ++i)
dst_buffer[(bw + i) * dst_buffer_stride - 1] =
dst_buffer[(bw - 1) * dst_buffer_stride - 1];
}
}
// if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
// H_PRED, and V_PRED
const PREDICTION_MODE last_intra_mode =
tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
const SequenceHeader *seq_params = cm->seq_params;
for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
++mode) {
av1_predict_intra_block(xd, seq_params->sb_size,
seq_params->enable_intra_edge_filter,
block_size_wide[bsize], block_size_high[bsize],
tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
dst_buffer_stride, predictor, bw, 0, 0, 0);
if (tpl_frame->use_pred_sad) {
intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
src_mb_buffer, src_stride, predictor, bw);
} else {
intra_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
predictor, bw, coeff, bw, bh, tx_size);
}
if (intra_cost < best_intra_cost) {
best_intra_cost = intra_cost;
best_mode = mode;
}
}
// Calculate SATD of the best intra mode if SAD was used for mode decision
// as best_intra_cost is used in ML model to skip intra mode evaluation.
if (tpl_frame->use_pred_sad) {
av1_predict_intra_block(
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
0, 0);
best_intra_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
predictor, bw, coeff, bw, bh, tx_size);
}
int rate_cost = 1;
if (cpi->use_ducky_encode) {
get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->intra_rate = rate_cost;
}
if (cpi->third_pass_ctx &&
frame_offset < cpi->third_pass_ctx->frame_info_count &&
tpl_data->frame_idx < gf_group->size) {
double ratio_h, ratio_w;
av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
cm->width, &ratio_h, &ratio_w);
THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
if (third_pass_mode >= last_intra_mode &&
third_pass_mode < INTRA_MODE_END) {
av1_predict_intra_block(
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
block_size_wide[bsize], block_size_high[bsize], tx_size,
third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
dst_buffer_stride, predictor, bw, 0, 0, 0);
intra_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
predictor, bw, coeff, bw, bh, tx_size);
if (intra_cost < best_intra_cost) {
best_intra_cost = intra_cost;
best_mode = third_pass_mode;
}
}
}
// Motion compensated prediction
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
xd->mi[0]->ref_frame[1] = NONE_FRAME;
xd->mi[0]->compound_idx = 1;
int best_rf_idx = -1;
int_mv best_mv[2];
int32_t inter_cost;
int32_t best_inter_cost = INT32_MAX;
int rf_idx;
int_mv single_mv[INTER_REFS_PER_FRAME];
best_mv[0].as_int = INVALID_MV;
best_mv[1].as_int = INVALID_MV;
for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
single_mv[rf_idx].as_int = INVALID_MV;
if (tpl_data->ref_frame[rf_idx] == NULL ||
tpl_data->src_ref_frame[rf_idx] == NULL) {
tpl_stats->mv[rf_idx].as_int = INVALID_MV;
continue;
}
const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
const int ref_mb_offset =
mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
const int ref_stride = ref_frame_ptr->y_stride;
const int ref_width = ref_frame_ptr->y_width;
int_mv best_rfidx_mv = { 0 };
uint32_t bestsme = UINT32_MAX;
center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
{ { 0 }, INT_MAX },
{ { 0 }, INT_MAX },
{ { 0 }, INT_MAX } };
int refmv_count = 1;
int idx;
if (xd->up_available) {
TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
tpl_sf->skip_alike_starting_mv)) {
center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
++refmv_count;
}
}
if (xd->left_available) {
TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
tpl_sf->skip_alike_starting_mv)) {
center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
++refmv_count;
}
}
if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
block_mis_log2)];
if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
tpl_sf->skip_alike_starting_mv)) {
center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
++refmv_count;
}
}
if (cpi->third_pass_ctx &&
frame_offset < cpi->third_pass_ctx->frame_info_count &&
tpl_data->frame_idx < gf_group->size) {
double ratio_h, ratio_w;
av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
cm->width, &ratio_h, &ratio_w);
THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
rf_idx + LAST_FRAME);
if (tp_mv.as_int != INVALID_MV &&
!is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
tpl_sf->skip_alike_starting_mv)) {
center_mvs[0].mv = tp_mv;
}
}
// Prune starting mvs
if (tpl_sf->prune_starting_mv && refmv_count > 1) {
// Get each center mv's sad.
for (idx = 0; idx < refmv_count; ++idx) {
FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
clamp_fullmv(&mv, &x->mv_limits);
center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
ref_stride);
}
// Rank center_mv using sad.
qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
// Further reduce number of refmv based on sad difference.
if (refmv_count > 1) {
int last_sad = center_mvs[refmv_count - 1].sad;
int second_to_last_sad = center_mvs[refmv_count - 2].sad;
if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
refmv_count--;
}
}
for (idx = 0; idx < refmv_count; ++idx) {
int_mv this_mv;
uint32_t thissme = motion_estimation(
cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
if (thissme < bestsme) {
bestsme = thissme;
best_rfidx_mv = this_mv;
}
}
tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
single_mv[rf_idx] = best_rfidx_mv;
inter_cost = get_inter_cost(
cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
// Store inter cost for each ref frame. This is used to prune inter modes.
tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
if (inter_cost < best_inter_cost) {
best_rf_idx = rf_idx;
best_inter_cost = inter_cost;
best_mv[0].as_int = best_rfidx_mv.as_int;
}
}
// Calculate SATD of the best inter mode if SAD was used for mode decision
// as best_inter_cost is used in ML model to skip intra mode evaluation.
if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
assert(best_rf_idx != -1);
best_inter_cost = get_inter_cost(
cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
}
if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
best_mode = NEWMV;
xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
}
// Start compound predition search.
int comp_ref_frames[3][2] = {
{ 0, 4 },
{ 0, 6 },
{ 3, 6 },
};
int start_rf = 0;
int end_rf = 3;
if (!tpl_sf->allow_compound_pred) end_rf = 0;
if (cpi->third_pass_ctx &&
frame_offset < cpi->third_pass_ctx->frame_info_count &&
tpl_data->frame_idx < gf_group->size) {
double ratio_h, ratio_w;
av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
cm->width, &ratio_h, &ratio_w);
THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
if (this_mi->ref_frame[0] >= LAST_FRAME &&
this_mi->ref_frame[1] >= LAST_FRAME) {
int found = 0;
for (int i = 0; i < 3; i++) {
if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
found = 1;
break;
}
}
if (!found || !tpl_sf->allow_compound_pred) {
comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
if (!tpl_sf->allow_compound_pred) {
start_rf = 2;
end_rf = 3;
}
}
}
}
xd->mi_row = mi_row;
xd->mi_col = mi_col;
int best_cmp_rf_idx = -1;
const int_interpfilters kernel =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
if (tpl_data->ref_frame[rf_idx0] == NULL ||
tpl_data->src_ref_frame[rf_idx0] == NULL ||
tpl_data->ref_frame[rf_idx1] == NULL ||
tpl_data->src_ref_frame[rf_idx1] == NULL) {
continue;
}
const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
tpl_data->src_ref_frame[rf_idx0],
tpl_data->src_ref_frame[rf_idx1],
};
xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
xd->mi[0]->mode = NEW_NEWMV;
const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
// Set up ref_mv for av1_joint_motion_search().
CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
struct buf_2d yv12_mb[2][MAX_MB_PLANE];
for (int i = 0; i < 2; ++i) {
av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
xd->block_ref_scale_factors[i],
xd->block_ref_scale_factors[i], MAX_MB_PLANE);
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
xd->plane[plane].pre[i] = yv12_mb[i][plane];
}
}
int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
int rate_mv;
av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
!cpi->sf.mv_sf.disable_second_mv,
NUM_JOINT_ME_REFINE_ITER);
for (int ref = 0; ref < 2; ++ref) {
struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
ref_frame_ptr[ref]->y_width,
ref_frame_ptr[ref]->y_height,
ref_frame_ptr[ref]->y_stride };
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
0, &tpl_data->sf, &ref_buf, kernel);
av1_init_comp_mode(&inter_pred_params);
inter_pred_params.conv_params = get_conv_params_no_round(
ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
&inter_pred_params);
}
inter_cost =
tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
predictor, bw, coeff, bw, bh, tx_size);
if (inter_cost < best_inter_cost) {
best_cmp_rf_idx = cmp_rf_idx;
best_inter_cost = inter_cost;
best_mv[0] = tmp_mv[0];
best_mv[1] = tmp_mv[1];
}
}
if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
best_mode = NEW_NEWMV;
const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
}
if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
best_cmp_rf_idx >= 0
? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
: tpl_data->src_ref_frame[best_rf_idx],
best_cmp_rf_idx >= 0
? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
: NULL,
};
rate_cost = 1;
get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
tpl_stats->srcrf_rate = rate_cost;
}
best_intra_cost = AOMMAX(best_intra_cost, 1);
best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
tpl_stats->inter_cost = best_inter_cost;
tpl_stats->intra_cost = best_intra_cost;
tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
// Final encode
rate_cost = 0;
const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
ref_frame_ptr[0] =
best_mode == NEW_NEWMV
? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
: best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
: NULL;
ref_frame_ptr[1] =
best_mode == NEW_NEWMV
? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
: NULL;
get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
use_y_only_rate_distortion, 1 /*do_recon*/,
tpl_txfm_stats);
tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->recrf_rate = rate_cost;
if (!is_inter_mode(best_mode)) {
tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->srcrf_rate = rate_cost;
tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
}
tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
if (best_mode == NEW_NEWMV) {
ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
ref_frame_ptr[1] =
tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->cmp_recrf_rate[0] = rate_cost;
tpl_stats->cmp_recrf_dist[0] =
AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
tpl_stats->cmp_recrf_rate[0] =
AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
tpl_stats->cmp_recrf_dist[0] =
AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
tpl_stats->cmp_recrf_rate[0] =
AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
rate_cost = 0;
ref_frame_ptr[0] =
tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->cmp_recrf_rate[1] = rate_cost;
tpl_stats->cmp_recrf_dist[1] =
AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
tpl_stats->cmp_recrf_rate[1] =
AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
tpl_stats->cmp_recrf_dist[1] =
AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
tpl_stats->cmp_recrf_rate[1] =
AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
}
if (best_mode == NEWMV) {
tpl_stats->mv[best_rf_idx] = best_mv[0];
tpl_stats->ref_frame_index[0] = best_rf_idx;
tpl_stats->ref_frame_index[1] = NONE_FRAME;
} else if (best_mode == NEW_NEWMV) {
tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
}
for (int idy = 0; idy < mi_height; ++idy) {
for (int idx = 0; idx < mi_width; ++idx) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
}
}
}
}
static int round_floor(int ref_pos, int bsize_pix) {
int round;
if (ref_pos < 0)
round = -(1 + (-ref_pos - 1) / bsize_pix);
else
round = ref_pos / bsize_pix;
return round;
}
int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
int height) {
int min_row = AOMMAX(row_a, row_b);
int max_row = AOMMIN(row_a + height, row_b + height);
int min_col = AOMMAX(col_a, col_b);
int max_col = AOMMIN(col_a + width, col_b + width);
if (min_row < max_row && min_col < max_col) {
return (max_row - min_row) * (max_col - min_col);
}
return 0;
}
int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
}
int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
int64_t srcrf_dist, int pix_num) {
double beta = (double)srcrf_dist / recrf_dist;
int64_t rate_cost = delta_rate;
if (srcrf_dist <= 128) return rate_cost;
double dr =
(double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
pix_num;
double log_den = log(beta) / log(2.0) + 2.0 * dr;
if (log_den > log(10.0) / log(2.0)) {
rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
return rate_cost;
}
double num = pow(2.0, log_den);
double den = num * beta + (1 - beta) * beta;
rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
return rate_cost;
}
static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
int mi_col, const BLOCK_SIZE bsize,
int frame_idx, int ref) {
TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
TplDepFrame *tpl_frame = tpl_data->tpl_frame;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
TplDepFrame *ref_tpl_frame =
&tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
const FULLPEL_MV full_mv =
get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
const int bw = 4 << mi_size_wide_log2[bsize];
const int bh = 4 << mi_size_high_log2[bsize];
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
const int pix_num = bw * bh;
// top-left on grid block location in pixel
int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
int block;
int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
: tpl_stats_ptr->srcrf_dist;
int64_t srcrf_rate =
is_compound
? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
: (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
int64_t mc_dep_dist =
(int64_t)(tpl_stats_ptr->mc_dep_dist *
((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
tpl_stats_ptr->recrf_dist));
int64_t delta_rate =
(tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
int64_t mc_dep_rate =
av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
srcrf_dist, pix_num);
for (block = 0; block < 4; ++block) {
int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
ref_pos_row, ref_pos_col, bw, bh);
int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
assert((1 << block_mis_log2) == mi_height);
assert((1 << block_mis_log2) == mi_width);
TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
des_stats->mc_dep_dist +=
((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
des_stats->mc_dep_rate +=
((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
}
}
}
static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row,
int mi_col, int frame_idx) {
const BLOCK_SIZE tpl_stats_block_size =
convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
0);
tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1);
}
static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
int mi_col, int stride,
const TplDepStats *src_stats,
uint8_t block_mis_log2) {
int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
*tpl_ptr = *src_stats;
tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
}
// Reset the ref and source frame pointers of tpl_data.
static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) {
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
tpl_data->ref_frame[i] = NULL;
tpl_data->src_ref_frame[i] = NULL;
}
}
static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) {
int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
return gop_length;
}
// Initialize the mc_flow parameters used in computing tpl data.
static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
int pframe_qindex) {
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
gf_group, cpi->sf.inter_sf.selective_ref_frame,
tpl_sf->prune_ref_frames_in_tpl, frame_idx);
int gop_length = get_gop_length(gf_group);
int ref_frame_flags;
AV1_COMMON *cm = &cpi->common;
int rdmult, idx;
ThreadData *td = &cpi->td;
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
tpl_data->frame_idx = frame_idx;
tpl_reset_src_ref_frames(tpl_data);
av1_tile_init(&xd->tile, cm, 0, 0);
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
// Setup scaling factor
av1_setup_scale_factors_for_frame(
&tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
this_frame->y_crop_width, this_frame->y_crop_height);
xd->cur_buf = this_frame;
for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
TplDepFrame *tpl_ref_frame =
&tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
}
// Store the reference frames based on priority order
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
ref_frames_ordered[i] =
tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
}
// Work out which reference frame slots may be used.
ref_frame_flags =
get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
tpl_frame->frame_display_index);
// Prune reference frames
for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
if ((ref_frame_flags & (1 << idx)) == 0) {
tpl_data->ref_frame[idx] = NULL;
}
}
// Skip motion estimation w.r.t. reference frames which are not
// considered in RD search, using "selective_ref_frame" speed feature.
// The reference frame pruning is not enabled for frames beyond the gop
// length, as there are fewer reference frames and the reference frames
// differ from the frames considered during RD search.
if (ref_pruning_enabled && (frame_idx < gop_length)) {
for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
ref_frame_display_indices)) {
tpl_data->ref_frame[idx] = NULL;
}
}
}
// Make a temporary mbmi for tpl model
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
xd->block_ref_scale_factors[0] = &tpl_data->sf;
xd->block_ref_scale_factors[1] = &tpl_data->sf;
const int base_qindex =
cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
// Get rd multiplier set up.
rdmult = (int)av1_compute_rd_mult(
base_qindex, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi));
if (rdmult < 1) rdmult = 1;
av1_set_error_per_bit(&x->errorperbit, rdmult);
av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
tpl_frame->is_valid = 1;
cm->quant_params.base_qindex = base_qindex;
av1_frame_init_quantizer(cpi);
const BitDepthInfo bd_info = get_bit_depth_info(xd);
const FRAME_UPDATE_TYPE update_type =
gf_group->update_type[cpi->gf_frame_index];
tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
bd_info.bit_depth, update_type, base_qindex) /
6;
if (cpi->use_ducky_encode)
tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
av1_init_tpl_txfm_stats(tpl_txfm_stats);
// Initialize x->mbmi_ext when compound predictions are enabled.
if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
// Set the pointer to null since mbmi is only allocated inside this function.
assert(xd->mi == &mbmi_ptr);
xd->mi = NULL;
// Tpl module is called before the setting of speed features at frame level.
// Thus, turning off this speed feature for key frame is done here and not
// integrated into the speed feature setting itself.
const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
tpl_frame->use_pred_sad =
tpl_sf->use_sad_for_mode_decision &&
gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
gf_group->layer_depth[frame_idx] >= layer_depth_th;
}
// This function stores the motion estimation dependencies of all the blocks in
// a row
void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_width = mi_size_wide[bsize];
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
MACROBLOCKD *xd = &x->e_mbd;
const int tplb_cols_in_tile =
ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
mi_col += mi_width, tplb_col_in_tile++) {
(*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
tplb_col_in_tile);
#if CONFIG_MULTITHREAD
if (mt_info->num_workers > 1) {
pthread_mutex_lock(tpl_row_mt->mutex_);
const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
pthread_mutex_unlock(tpl_row_mt->mutex_);
// Exit in case any worker has encountered an error.
if (tpl_mt_exit) return;
}
#endif
TplDepStats tpl_stats;
// Motion estimation column boundary
av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
tpl_data->border_in_pixels);
xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
xd->mb_to_right_edge =
GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
bsize, tx_size, &tpl_stats);
// Motion flow dependency dispenser.
tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
&tpl_stats, tpl_data->tpl_stats_block_mis_log2);
(*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
tplb_col_in_tile, tplb_cols_in_tile);
}
}
static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
ThreadData *td = &cpi->td;
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
const BLOCK_SIZE bsize =
convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const int mi_height = mi_size_high[bsize];
for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
// Motion estimation row boundary
av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
cpi->ppi->tpl_data.border_in_pixels);
xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
mi_row, bsize, tx_size);
}
}
static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
int mi_cols) {
if (!frame_idx) {
return;
}
const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
}
}
}
static AOM_INLINE void init_gop_frames_for_tpl(
AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
AV1_COMMON *cm = &cpi->common;
assert(cpi->gf_frame_index == 0);
*pframe_qindex = 0;
RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
init_ref_map_pair(cpi, ref_frame_map_pairs);
int remapped_ref_idx[REF_FRAMES];
EncodeFrameParams frame_params = *init_frame_params;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
int ref_picture_map[REF_FRAMES];
for (int i = 0; i < REF_FRAMES; ++i) {
if (frame_params.frame_type == KEY_FRAME) {
tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
} else {
tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
tpl_data->tpl_frame[-i - 1].frame_display_index =
cm->ref_frame_map[i]->display_order_hint;
}
ref_picture_map[i] = -i - 1;
}
*tpl_group_frames = 0;
int gf_index;
int process_frame_count = 0;
const int gop_length = get_gop_length(gf_group);
for (gf_index = 0; gf_index < gop_length; ++gf_index) {
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
int lookahead_index =
gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
frame_params.show_frame = frame_update_type != ARF_UPDATE &&
frame_update_type != INTNL_ARF_UPDATE;
frame_params.show_existing_frame =
frame_update_type == INTNL_OVERLAY_UPDATE ||
frame_update_type == OVERLAY_UPDATE;
frame_params.frame_type = gf_group->frame_type[gf_index];
if (frame_update_type == LF_UPDATE)
*pframe_qindex = gf_group->q_val[gf_index];
const struct lookahead_entry *buf = av1_lookahead_peek(
cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
if (buf == NULL) break;
tpl_frame->gf_picture = &buf->img;
// Use filtered frame buffer if available. This will make tpl stats more
// precise.
FRAME_DIFF frame_diff;
const YV12_BUFFER_CONFIG *tf_buf =
av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
if (tf_buf != NULL) {
tpl_frame->gf_picture = tf_buf;
}
// 'cm->current_frame.frame_number' is the display number
// of the current frame.
// 'lookahead_index' is frame offset within the gf group.
// 'lookahead_index + cm->current_frame.frame_number'
// is the display index of the frame.
tpl_frame->frame_display_index =
lookahead_index + cm->current_frame.frame_number;
assert(buf->display_idx ==
cpi->frame_index_set.show_frame_count + lookahead_index);
if (frame_update_type != OVERLAY_UPDATE &&
frame_update_type != INTNL_OVERLAY_UPDATE) {
tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
++process_frame_count;
}
const int true_disp = (int)(tpl_frame->frame_display_index);
av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
remapped_ref_idx);
int refresh_mask =
av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
gf_index, true_disp, ref_frame_map_pairs);
// Make the frames marked as is_frame_non_ref to non-reference frames.
if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
if (refresh_frame_map_index < REF_FRAMES &&
refresh_frame_map_index != INVALID_IDX) {
ref_frame_map_pairs[refresh_frame_map_index].disp_order =
AOMMAX(0, true_disp);
ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
cpi->ppi->gf_group.max_layer_depth);
}
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
tpl_frame->ref_map_index[i - LAST_FRAME] =
ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
++*tpl_group_frames;
}
const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
int extend_frame_count = 0;
int extend_frame_length = AOMMIN(
tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
gf_group->arf_src_offset[gop_length - 1] + 1;
for (;
gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
++gf_index) {
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
frame_params.show_frame = frame_update_type != ARF_UPDATE &&
frame_update_type != INTNL_ARF_UPDATE;
frame_params.show_existing_frame =
frame_update_type == INTNL_OVERLAY_UPDATE;
frame_params.frame_type = INTER_FRAME;
int lookahead_index = frame_display_index;
struct lookahead_entry *buf = av1_lookahead_peek(
cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
if (buf == NULL) break;
tpl_frame->gf_picture = &buf->img;
tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
// 'cm->current_frame.frame_number' is the display number
// of the current frame.
// 'frame_display_index' is frame offset within the gf group.
// 'frame_display_index + cm->current_frame.frame_number'
// is the display index of the frame.
tpl_frame->frame_display_index =
frame_display_index + cm->current_frame.frame_number;
++process_frame_count;
gf_group->update_type[gf_index] = LF_UPDATE;
#if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
*pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
} else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
// TODO(angiebird): Find a more adaptive method to decide pframe_qindex
// override the pframe_qindex in the second pass when bitrate accuracy
// is on. We found that setting this pframe_qindex make the tpl stats
// more stable.
*pframe_qindex = 128;
}
}
#endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
gf_group->q_val[gf_index] = *pframe_qindex;
const int true_disp = (int)(tpl_frame->frame_display_index);
av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
remapped_ref_idx);
int refresh_mask =
av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
gf_index, true_disp, ref_frame_map_pairs);
int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
if (refresh_frame_map_index < REF_FRAMES &&
refresh_frame_map_index != INVALID_IDX) {
ref_frame_map_pairs[refresh_frame_map_index].disp_order =
AOMMAX(0, true_disp);
ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
cpi->ppi->gf_group.max_layer_depth);
}
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
tpl_frame->ref_map_index[i - LAST_FRAME] =
ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
++*tpl_group_frames;
++extend_frame_count;
++frame_display_index;
}
}
void av1_init_tpl_stats(TplParams *const tpl_data) {
tpl_data->ready = 0;
set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
&tpl_data->tpl_bsize_1d);
for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
tpl_frame->is_valid = 0;
}
for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
memset(tpl_data->tpl_stats_pool[frame_idx], 0,
tpl_frame->height * tpl_frame->width *
sizeof(*tpl_frame->tpl_stats_ptr));
}
}
int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
if (tpl_data->ready == 0) {
return 0;
}
if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
// The sub-GOP length exceeds the TPL buffer capacity.
// Hence the TPL related functions are disabled hereafter.
return 0;
}
return tpl_data->tpl_frame[gf_frame_index].is_valid;
}
static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) {
switch (gop_eval) {
case 1:
// Allow larger GOP size if the base layer ARF has higher dependency
// factor than the intermediate ARF and both ARFs have reasonably high
// dependency factors.
return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
case 2:
if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
return 1; // Don't shorten the gf interval
else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
return 0; // Shorten the gf interval
else
return 2; // Cannot decide the gf interval, so redo the
// tpl stats calculation.
case 3: return beta[0] > 1.1;
default: return 2;
}
}
// TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
// the scope of input arguments.
void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
const EncodeFrameParams *const frame_params) {
AV1_COMMON *cm = &cpi->common;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
int bottom_index, top_index;
if (cpi->use_ducky_encode) return;
cm->current_frame.frame_type = frame_params->frame_type;
for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
++gf_index) {
cm->current_frame.frame_type = gf_group->frame_type[gf_index];
cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
}
}
static AOM_INLINE int skip_tpl_for_frame(const GF_GROUP *gf_group,
int frame_idx, int gop_eval,
int approx_gop_eval,
int reduce_num_frames) {
// When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
// layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
// tpl stats calculation is limited to ARFs from base layer and (base+1)
// layer.
const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
const int gop_length = get_gop_length(gf_group);
if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
return 1;
// When approx_gop_eval = 1, skip tpl stats calculation for higher layer
// frames and for frames beyond gop length.
if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
frame_idx >= gop_length))
return 1;
if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
frame_idx < gop_length)
return 1;
return 0;
}
int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
const EncodeFrameParams *const frame_params) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_tpl_setup_stats_time);
#endif
assert(cpi->gf_frame_index == 0);
AV1_COMMON *cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
EncodeFrameParams this_frame_params = *frame_params;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
int approx_gop_eval = (gop_eval > 1);
if (cpi->superres_mode != AOM_SUPERRES_NONE) {
assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
av1_init_tpl_stats(tpl_data);
return 0;
}
cm->current_frame.frame_type = frame_params->frame_type;
for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
++gf_index) {
cm->current_frame.frame_type = gf_group->frame_type[gf_index];
av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
gf_group->update_type[gf_index],
gf_group->refbuf_state[gf_index], 0);
memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
sizeof(cpi->refresh_frame));
}
int pframe_qindex;
int tpl_gf_group_frames;
init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
&pframe_qindex);
cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
av1_init_tpl_stats(tpl_data);
TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
"Error allocating tpl data");
}
tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
cm->width, cm->height);
if (frame_params->frame_type == KEY_FRAME) {
av1_init_mv_probs(cm);
}
av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
const int num_planes =
cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
// As tpl module is called before the setting of speed features at frame
// level, turning off this speed feature for the first GF group of the
// key-frame interval is done here.
int reduce_num_frames =
cpi->sf.tpl_sf.reduce_num_frames &&
gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
gf_group->max_layer_depth > 2;
// TPL processing is skipped for frames of type LF_UPDATE when
// 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
// to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
// frames in the gf group on an average.
tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
// Backward propagation from tpl_group_frames to 1.
for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
++frame_idx) {
if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
reduce_num_frames))
continue;
init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
if (mt_info->num_workers > 1) {
tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
av1_mc_flow_dispenser_mt(cpi);
} else {
mc_flow_dispenser(cpi);
}
#if CONFIG_BITRATE_ACCURACY
av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
#endif // CONFIG_BITRATE_ACCURACY
#if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
int frame_coding_idx =
av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
&cpi->td.tpl_txfm_stats);
}
#endif // CONFIG_RATECTRL_LOG
aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
num_planes);
}
for (int frame_idx = tpl_gf_group_frames - 1;
frame_idx >= cpi->gf_frame_index; --frame_idx) {
if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
reduce_num_frames))
continue;
mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
cm->mi_params.mi_cols);
}
av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
gf_group->update_type[cpi->gf_frame_index],
gf_group->update_type[cpi->gf_frame_index], 0);
cm->current_frame.frame_type = frame_params->frame_type;
cm->show_frame = frame_params->show_frame;
#if CONFIG_COLLECT_COMPONENT_TIMING
// Record the time if the function returns.
if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
!gop_eval)
end_timing(cpi, av1_tpl_setup_stats_time);
#endif
tpl_dealloc_temp_buffers(tpl_tmp_buffers);
if (!approx_gop_eval) {
tpl_data->ready = 1;
}
if (cpi->common.tiles.large_scale) return 0;
if (gf_group->max_layer_depth_allowed == 0) return 1;
if (!gop_eval) return 0;
assert(gf_group->arf_index >= 0);
double beta[2] = { 0.0 };
const int frame_idx_0 = gf_group->arf_index;
const int frame_idx_1 =
AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0);
beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_tpl_setup_stats_time);
#endif
return eval_gop_length(beta, gop_eval);
}
void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
const int tpl_idx = cpi->gf_frame_index;
assert(
IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
TplParams *const tpl_data = &cpi->ppi->tpl_data;
const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
if (!tpl_frame->is_valid) return;
const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
const int tpl_stride = tpl_frame->stride;
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int block_size = BLOCK_16X16;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const double c = 1.2;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
// Loop through each 'block_size' X 'block_size' block.
for (int row = 0; row < num_rows; row++) {
for (int col = 0; col < num_cols; col++) {
double intra_cost = 0.0, mc_dep_cost = 0.0;
// Loop through each mi block.
for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
mi_row += step) {
for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
mi_col += step) {
if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
mc_dep_cost +=
(double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
}
}
const double rk = intra_cost / mc_dep_cost;
const int index = row * num_cols + col;
cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
}
}
}
void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
BLOCK_SIZE sb_size, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
if (!tpl_frame->is_valid) return;
if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int sb_mi_width_sr = coded_to_superres_mi(
mi_size_wide[sb_size], cm->superres_scale_denominator);
const int bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
int row, col;
double base_block_count = 0.0;
double log_sum = 0.0;
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col_sr / num_mi_h;
col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
base_block_count += 1.0;
}
}
const CommonQuantParams *quant_params = &cm->quant_params;
const int orig_qindex_rdmult =
quant_params->base_qindex + quant_params->y_dc_delta_q;
const int orig_rdmult = av1_compute_rd_mult(
orig_qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi));
const int new_qindex_rdmult = quant_params->base_qindex +
x->rdmult_delta_qindex +
quant_params->y_dc_delta_q;
const int new_rdmult = av1_compute_rd_mult(
new_qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi));
const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
double scale_adj = log(scaling_factor) - log_sum / base_block_count;
scale_adj = exp_bounded(scale_adj);
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col_sr / num_mi_h;
col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
scale_adj * cpi->tpl_rdmult_scaling_factors[index];
}
}
}
double av1_exponential_entropy(double q_step, double b) {
b = AOMMAX(b, TPL_EPSILON);
double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
return -log2(1 - z) - z * log2(z) / (1 - z);
}
double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
// zero bin's size is zero_bin_ratio * q_step
// non-zero bin's size is q_step
b = AOMMAX(b, TPL_EPSILON);
double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
double h = av1_exponential_entropy(q_step, b);
double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
return r;
}
double av1_laplace_estimate_frame_rate(int q_index, int block_count,
const double *abs_coeff_mean,
int coeff_num) {
double zero_bin_ratio = 2;
double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
double est_rate = 0;
// dc coeff
est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
// ac coeff
for (int i = 1; i < coeff_num; ++i) {
est_rate +=
av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
}
est_rate *= block_count;
return est_rate;
}
double av1_estimate_coeff_entropy(double q_step, double b,
double zero_bin_ratio, int qcoeff) {
b = AOMMAX(b, TPL_EPSILON);
int abs_qcoeff = abs(qcoeff);
double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
if (abs_qcoeff == 0) {
double r = -log2(1 - z0);
return r;
} else {
double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
return r;
}
}
double av1_estimate_txfm_block_entropy(int q_index,
const double *abs_coeff_mean,
int *qcoeff_arr, int coeff_num) {
double zero_bin_ratio = 2;
double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
double est_rate = 0;
// dc coeff
est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0],
zero_bin_ratio, qcoeff_arr[0]);
// ac coeff
for (int i = 1; i < coeff_num; ++i) {
est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i],
zero_bin_ratio, qcoeff_arr[i]);
}
return est_rate;
}
#if CONFIG_RD_COMMAND
void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
FILE *fptr = fopen(filepath, "r");
fscanf(fptr, "%d", &rd_command->frame_count);
rd_command->frame_index = 0;
for (int i = 0; i < rd_command->frame_count; ++i) {
int option;
fscanf(fptr, "%d", &option);
rd_command->option_ls[i] = (RD_OPTION)option;
if (option == RD_OPTION_SET_Q) {
fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
} else if (option == RD_OPTION_SET_Q_RDMULT) {
fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
}
}
fclose(fptr);
}
#endif // CONFIG_RD_COMMAND
double av1_tpl_get_frame_importance(const TplParams *tpl_data,
int gf_frame_index) {
const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const int tpl_stride = tpl_frame->stride;
double intra_cost_base = 0;
double mc_dep_cost_base = 0;
double cbcmp_base = 1;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
for (int row = 0; row < tpl_frame->mi_rows; row += step) {
for (int col = 0; col < tpl_frame->mi_cols; col += step) {
const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
double cbcmp = (double)this_stats->srcrf_dist;
const int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
dist_scaled = AOMMAX(dist_scaled, 1);
intra_cost_base += log(dist_scaled) * cbcmp;
mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
cbcmp_base += cbcmp;
}
}
return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
}
double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
return 1;
}
const double frame_importance =
av1_tpl_get_frame_importance(tpl_data, gf_frame_index);
return sqrt(1 / frame_importance);
}
int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
aom_bit_depth_t bit_depth) {
const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
const double target_qstep = leaf_qstep * qstep_ratio;
int qindex = leaf_qindex;
if (qstep_ratio < 1.0) {
for (qindex = leaf_qindex; qindex > 0; --qindex) {
const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (qstep <= target_qstep) break;
}
} else {
for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (qstep >= target_qstep) break;
}
}
return qindex;
}
int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
int leaf_qindex, aom_bit_depth_t bit_depth) {
const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
}
#if CONFIG_BITRATE_ACCURACY
void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
int show_frame_count) {
av1_zero(*vbr_rc_info);
vbr_rc_info->ready = 0;
vbr_rc_info->total_bit_budget = total_bit_budget;
vbr_rc_info->show_frame_count = show_frame_count;
const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
0.94559, 1, 1,
0.94559 };
// TODO(angiebird): Based on the previous code, only the scale factor 0.94559
// will be used in most of the cases with --limi=17. Figure out if the
// following scale factors works better.
// const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
// 1.10199, 1, 1,
// 0.16393 };
const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
memcpy(vbr_rc_info->scale_factors, scale_factors,
sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
vbr_rc_reset_gop_data(vbr_rc_info);
#if CONFIG_THREE_PASS
// TODO(angiebird): Explain why we use -1 here
vbr_rc_info->cur_gop_idx = -1;
vbr_rc_info->gop_count = 0;
vbr_rc_info->total_frame_count = 0;
#endif // CONFIG_THREE_PASS
}
#if CONFIG_THREE_PASS
int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
int gf_frame_index) {
int gop_idx = vbr_rc_info->cur_gop_idx;
int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
return gop_start_idx + gf_frame_index;
}
void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
const TPL_INFO *tpl_info) {
int gop_start_idx = vbr_rc_info->total_frame_count;
vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
for (int i = 0; i < tpl_info->gf_length; ++i) {
vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
tpl_info->txfm_stats_list[i];
vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
tpl_info->qstep_ratio_ls[i];
vbr_rc_info->update_type_list[gop_start_idx + i] =
tpl_info->update_type_list[i];
}
vbr_rc_info->total_frame_count += tpl_info->gf_length;
vbr_rc_info->gop_count++;
}
#endif // CONFIG_THREE_PASS
void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
int gop_showframe_count) {
vbr_rc_info->gop_showframe_count = gop_showframe_count;
vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
gop_showframe_count /
vbr_rc_info->show_frame_count;
}
void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
const double *qstep_ratio_list,
aom_bit_depth_t bit_depth,
int *q_index_list) {
for (int i = 0; i < frame_count; ++i) {
q_index_list[i] = av1_get_q_index_from_qstep_ratio(
base_q_index, qstep_ratio_list[i], bit_depth);
}
}
double av1_vbr_rc_info_estimate_gop_bitrate(
int base_q_index, aom_bit_depth_t bit_depth,
const double *update_type_scale_factors, int frame_count,
const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
const TplTxfmStats *stats_list, int *q_index_list,
double *estimated_bitrate_byframe) {
av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
bit_depth, q_index_list);
double estimated_gop_bitrate = 0;
for (int frame_index = 0; frame_index < frame_count; frame_index++) {
const TplTxfmStats *frame_stats = &stats_list[frame_index];
double frame_bitrate = 0;
if (frame_stats->ready) {
int q_index = q_index_list[frame_index];
frame_bitrate = av1_laplace_estimate_frame_rate(
q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
frame_stats->coeff_num);
}
FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
estimated_gop_bitrate +=
frame_bitrate * update_type_scale_factors[update_type];
if (estimated_bitrate_byframe != NULL) {
estimated_bitrate_byframe[frame_index] = frame_bitrate;
}
}
return estimated_gop_bitrate;
}
int av1_vbr_rc_info_estimate_base_q(
double bit_budget, aom_bit_depth_t bit_depth,
const double *update_type_scale_factors, int frame_count,
const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
const TplTxfmStats *stats_list, int *q_index_list,
double *estimated_bitrate_byframe) {
int q_max = 255; // Maximum q value.
int q_min = 0; // Minimum q value.
int q = (q_max + q_min) / 2;
double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q_max, bit_depth, update_type_scale_factors, frame_count,
update_type_list, qstep_ratio_list, stats_list, q_index_list,
estimated_bitrate_byframe);
double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q_min, bit_depth, update_type_scale_factors, frame_count,
update_type_list, qstep_ratio_list, stats_list, q_index_list,
estimated_bitrate_byframe);
while (q_min + 1 < q_max) {
double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
if (estimate > bit_budget) {
q_min = q;
q_min_estimate = estimate;
} else {
q_max = q;
q_max_estimate = estimate;
}
q = (q_max + q_min) / 2;
}
// Pick the estimate that lands closest to the budget.
if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
q = q_max;
} else {
q = q_min;
}
// Update q_index_list and vbr_rc_info.
av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
return q;
}
void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
const TplParams *tpl_data,
const GF_GROUP *gf_group,
aom_bit_depth_t bit_depth) {
vbr_rc_info->q_index_list_ready = 1;
double gop_bit_budget = vbr_rc_info->gop_bit_budget;
for (int i = 0; i < gf_group->size; i++) {
vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
}
double mv_bits = 0;
for (int i = 0; i < gf_group->size; i++) {
double frame_mv_bits = 0;
if (av1_tpl_stats_ready(tpl_data, i)) {
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
tpl_frame, tpl_data->tpl_stats_block_mis_log2);
FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
}
}
mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
gop_bit_budget -= mv_bits;
vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
gf_group->update_type, vbr_rc_info->qstep_ratio_list,
tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
}
#endif // CONFIG_BITRATE_ACCURACY
// Use upper and left neighbor block as the reference MVs.
// Compute the minimum difference between current MV and reference MV.
int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
int step, int tpl_stride, int right_shift) {
const TplDepStats *tpl_stats =
&tpl_frame
->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
int current_mv_magnitude =
abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
// Retrieve the up and left neighbors.
int up_error = INT_MAX;
int_mv up_mv_diff;
if (row - step >= 0) {
tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
row - step, col, tpl_stride, right_shift)];
up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
}
int left_error = INT_MAX;
int_mv left_mv_diff;
if (col - step >= 0) {
tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
row, col - step, tpl_stride, right_shift)];
left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
}
// Return the MV with the minimum distance from current.
if (up_error < left_error && up_error < current_mv_magnitude) {
return up_mv_diff;
} else if (left_error < up_error && left_error < current_mv_magnitude) {
return left_mv_diff;
}
return current_mv;
}
/* Compute the entropy of motion vectors for a single frame. */
double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
uint8_t right_shift) {
if (!tpl_frame->is_valid) {
return 0;
}
int count_row[500] = { 0 };
int count_col[500] = { 0 };
int n = 0; // number of MVs to process
const int tpl_stride = tpl_frame->stride;
const int step = 1 << right_shift;
for (int row = 0; row < tpl_frame->mi_rows; row += step) {
for (int col = 0; col < tpl_frame->mi_cols; col += step) {
int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
tpl_stride, right_shift);
count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
n += 1;
}
}
// Estimate the bits used using the entropy formula.
double rate_row = 0;
double rate_col = 0;
for (int i = 0; i < 500; i++) {