| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <assert.h> |
| #include <immintrin.h> /*AVX2*/ |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| #include "av1/common/av1_txfm.h" |
| #include "av1/encoder/av1_fwd_txfm1d_cfg.h" |
| #include "aom_dsp/txfm_common.h" |
| #include "aom_ports/mem.h" |
| #include "aom_dsp/x86/txfm_common_sse2.h" |
| #include "aom_dsp/x86/txfm_common_avx2.h" |
| |
| static INLINE void load_buffer_8x8_avx2(const int16_t *input, __m256i *out, |
| int stride, int flipud, int fliplr, |
| int shift) { |
| __m128i out1[8]; |
| if (!flipud) { |
| out1[0] = _mm_load_si128((const __m128i *)(input + 0 * stride)); |
| out1[1] = _mm_load_si128((const __m128i *)(input + 1 * stride)); |
| out1[2] = _mm_load_si128((const __m128i *)(input + 2 * stride)); |
| out1[3] = _mm_load_si128((const __m128i *)(input + 3 * stride)); |
| out1[4] = _mm_load_si128((const __m128i *)(input + 4 * stride)); |
| out1[5] = _mm_load_si128((const __m128i *)(input + 5 * stride)); |
| out1[6] = _mm_load_si128((const __m128i *)(input + 6 * stride)); |
| out1[7] = _mm_load_si128((const __m128i *)(input + 7 * stride)); |
| |
| } else { |
| out1[7] = _mm_load_si128((const __m128i *)(input + 0 * stride)); |
| out1[6] = _mm_load_si128((const __m128i *)(input + 1 * stride)); |
| out1[5] = _mm_load_si128((const __m128i *)(input + 2 * stride)); |
| out1[4] = _mm_load_si128((const __m128i *)(input + 3 * stride)); |
| out1[3] = _mm_load_si128((const __m128i *)(input + 4 * stride)); |
| out1[2] = _mm_load_si128((const __m128i *)(input + 5 * stride)); |
| out1[1] = _mm_load_si128((const __m128i *)(input + 6 * stride)); |
| out1[0] = _mm_load_si128((const __m128i *)(input + 7 * stride)); |
| } |
| if (!fliplr) { |
| out[0] = _mm256_cvtepi16_epi32(out1[0]); |
| out[1] = _mm256_cvtepi16_epi32(out1[1]); |
| out[2] = _mm256_cvtepi16_epi32(out1[2]); |
| out[3] = _mm256_cvtepi16_epi32(out1[3]); |
| out[4] = _mm256_cvtepi16_epi32(out1[4]); |
| out[5] = _mm256_cvtepi16_epi32(out1[5]); |
| out[6] = _mm256_cvtepi16_epi32(out1[6]); |
| out[7] = _mm256_cvtepi16_epi32(out1[7]); |
| |
| } else { |
| out[0] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[0])); |
| out[1] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[1])); |
| out[2] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[2])); |
| out[3] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[3])); |
| out[4] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[4])); |
| out[5] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[5])); |
| out[6] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[6])); |
| out[7] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[7])); |
| } |
| out[0] = _mm256_slli_epi32(out[0], shift); |
| out[1] = _mm256_slli_epi32(out[1], shift); |
| out[2] = _mm256_slli_epi32(out[2], shift); |
| out[3] = _mm256_slli_epi32(out[3], shift); |
| out[4] = _mm256_slli_epi32(out[4], shift); |
| out[5] = _mm256_slli_epi32(out[5], shift); |
| out[6] = _mm256_slli_epi32(out[6], shift); |
| out[7] = _mm256_slli_epi32(out[7], shift); |
| } |
| static INLINE void col_txfm_8x8_rounding(__m256i *in, int shift) { |
| const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); |
| |
| in[0] = _mm256_add_epi32(in[0], rounding); |
| in[1] = _mm256_add_epi32(in[1], rounding); |
| in[2] = _mm256_add_epi32(in[2], rounding); |
| in[3] = _mm256_add_epi32(in[3], rounding); |
| in[4] = _mm256_add_epi32(in[4], rounding); |
| in[5] = _mm256_add_epi32(in[5], rounding); |
| in[6] = _mm256_add_epi32(in[6], rounding); |
| in[7] = _mm256_add_epi32(in[7], rounding); |
| |
| in[0] = _mm256_srai_epi32(in[0], shift); |
| in[1] = _mm256_srai_epi32(in[1], shift); |
| in[2] = _mm256_srai_epi32(in[2], shift); |
| in[3] = _mm256_srai_epi32(in[3], shift); |
| in[4] = _mm256_srai_epi32(in[4], shift); |
| in[5] = _mm256_srai_epi32(in[5], shift); |
| in[6] = _mm256_srai_epi32(in[6], shift); |
| in[7] = _mm256_srai_epi32(in[7], shift); |
| } |
| static INLINE void load_buffer_8x16_avx2(const int16_t *input, __m256i *out, |
| int stride, int flipud, int fliplr, |
| int shift) { |
| const int16_t *topL = input; |
| const int16_t *botL = input + 8 * stride; |
| |
| const int16_t *tmp; |
| |
| if (flipud) { |
| tmp = topL; |
| topL = botL; |
| botL = tmp; |
| } |
| load_buffer_8x8_avx2(topL, out, stride, flipud, fliplr, shift); |
| load_buffer_8x8_avx2(botL, out + 8, stride, flipud, fliplr, shift); |
| } |
| static INLINE void load_buffer_16xn_avx2(const int16_t *input, __m256i *out, |
| int stride, int height, int outstride, |
| int flipud, int fliplr) { |
| __m256i out1[64]; |
| if (!flipud) { |
| for (int i = 0; i < height; i++) { |
| out1[i] = _mm256_loadu_si256((const __m256i *)(input + i * stride)); |
| } |
| } else { |
| for (int i = 0; i < height; i++) { |
| out1[(height - 1) - i] = |
| _mm256_loadu_si256((const __m256i *)(input + i * stride)); |
| } |
| } |
| if (!fliplr) { |
| for (int i = 0; i < height; i++) { |
| out[i * outstride] = |
| _mm256_cvtepi16_epi32(_mm256_castsi256_si128(out1[i])); |
| out[i * outstride + 1] = |
| _mm256_cvtepi16_epi32(_mm256_extractf128_si256(out1[i], 1)); |
| } |
| } else { |
| for (int i = 0; i < height; i++) { |
| out[i * outstride + 1] = _mm256_cvtepi16_epi32( |
| mm_reverse_epi16(_mm256_castsi256_si128(out1[i]))); |
| out[i * outstride + 0] = _mm256_cvtepi16_epi32( |
| mm_reverse_epi16(_mm256_extractf128_si256(out1[i], 1))); |
| } |
| } |
| } |
| |
| static void fwd_txfm_transpose_8x8_avx2(const __m256i *in, __m256i *out, |
| const int instride, |
| const int outstride) { |
| __m256i u0, u1, u2, u3, u4, u5, u6, u7; |
| __m256i x0, x1; |
| |
| u0 = _mm256_unpacklo_epi32(in[0 * instride], in[1 * instride]); |
| u1 = _mm256_unpackhi_epi32(in[0 * instride], in[1 * instride]); |
| |
| u2 = _mm256_unpacklo_epi32(in[2 * instride], in[3 * instride]); |
| u3 = _mm256_unpackhi_epi32(in[2 * instride], in[3 * instride]); |
| |
| u4 = _mm256_unpacklo_epi32(in[4 * instride], in[5 * instride]); |
| u5 = _mm256_unpackhi_epi32(in[4 * instride], in[5 * instride]); |
| |
| u6 = _mm256_unpacklo_epi32(in[6 * instride], in[7 * instride]); |
| u7 = _mm256_unpackhi_epi32(in[6 * instride], in[7 * instride]); |
| |
| x0 = _mm256_unpacklo_epi64(u0, u2); |
| x1 = _mm256_unpacklo_epi64(u4, u6); |
| out[0 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20); |
| out[4 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31); |
| |
| x0 = _mm256_unpackhi_epi64(u0, u2); |
| x1 = _mm256_unpackhi_epi64(u4, u6); |
| out[1 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20); |
| out[5 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31); |
| |
| x0 = _mm256_unpacklo_epi64(u1, u3); |
| x1 = _mm256_unpacklo_epi64(u5, u7); |
| out[2 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20); |
| out[6 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31); |
| |
| x0 = _mm256_unpackhi_epi64(u1, u3); |
| x1 = _mm256_unpackhi_epi64(u5, u7); |
| out[3 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20); |
| out[7 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31); |
| } |
| static INLINE void round_shift_32_8xn_avx2(__m256i *in, int size, int bit, |
| int stride) { |
| if (bit < 0) { |
| bit = -bit; |
| __m256i round = _mm256_set1_epi32(1 << (bit - 1)); |
| for (int i = 0; i < size; ++i) { |
| in[stride * i] = _mm256_add_epi32(in[stride * i], round); |
| in[stride * i] = _mm256_srai_epi32(in[stride * i], bit); |
| } |
| } else if (bit > 0) { |
| for (int i = 0; i < size; ++i) { |
| in[stride * i] = _mm256_slli_epi32(in[stride * i], bit); |
| } |
| } |
| } |
| static INLINE void store_buffer_avx2(const __m256i *const in, int32_t *out, |
| const int stride, const int out_size) { |
| for (int i = 0; i < out_size; ++i) { |
| _mm256_store_si256((__m256i *)(out), in[i]); |
| out += stride; |
| } |
| } |
| static INLINE void fwd_txfm_transpose_16x16_avx2(const __m256i *in, |
| __m256i *out) { |
| fwd_txfm_transpose_8x8_avx2(&in[0], &out[0], 2, 2); |
| fwd_txfm_transpose_8x8_avx2(&in[1], &out[16], 2, 2); |
| fwd_txfm_transpose_8x8_avx2(&in[16], &out[1], 2, 2); |
| fwd_txfm_transpose_8x8_avx2(&in[17], &out[17], 2, 2); |
| } |
| |
| static INLINE __m256i av1_half_btf_avx2(const __m256i *w0, const __m256i *n0, |
| const __m256i *w1, const __m256i *n1, |
| const __m256i *rounding, int bit) { |
| __m256i x, y; |
| |
| x = _mm256_mullo_epi32(*w0, *n0); |
| y = _mm256_mullo_epi32(*w1, *n1); |
| x = _mm256_add_epi32(x, y); |
| x = _mm256_add_epi32(x, *rounding); |
| x = _mm256_srai_epi32(x, bit); |
| return x; |
| } |
| #define btf_32_avx2_type0(w0, w1, in0, in1, out0, out1, bit) \ |
| do { \ |
| const __m256i ww0 = _mm256_set1_epi32(w0); \ |
| const __m256i ww1 = _mm256_set1_epi32(w1); \ |
| const __m256i in0_w0 = _mm256_mullo_epi32(in0, ww0); \ |
| const __m256i in1_w1 = _mm256_mullo_epi32(in1, ww1); \ |
| out0 = _mm256_add_epi32(in0_w0, in1_w1); \ |
| round_shift_32_8xn_avx2(&out0, 1, -bit, 1); \ |
| const __m256i in0_w1 = _mm256_mullo_epi32(in0, ww1); \ |
| const __m256i in1_w0 = _mm256_mullo_epi32(in1, ww0); \ |
| out1 = _mm256_sub_epi32(in0_w1, in1_w0); \ |
| round_shift_32_8xn_avx2(&out1, 1, -bit, 1); \ |
| } while (0) |
| |
| #define btf_32_type0_avx2_new(ww0, ww1, in0, in1, out0, out1, r, bit) \ |
| do { \ |
| const __m256i in0_w0 = _mm256_mullo_epi32(in0, ww0); \ |
| const __m256i in1_w1 = _mm256_mullo_epi32(in1, ww1); \ |
| out0 = _mm256_add_epi32(in0_w0, in1_w1); \ |
| out0 = _mm256_add_epi32(out0, r); \ |
| out0 = _mm256_srai_epi32(out0, bit); \ |
| const __m256i in0_w1 = _mm256_mullo_epi32(in0, ww1); \ |
| const __m256i in1_w0 = _mm256_mullo_epi32(in1, ww0); \ |
| out1 = _mm256_sub_epi32(in0_w1, in1_w0); \ |
| out1 = _mm256_add_epi32(out1, r); \ |
| out1 = _mm256_srai_epi32(out1, bit); \ |
| } while (0) |
| |
| typedef void (*transform_1d_avx2)(__m256i *in, __m256i *out, |
| const int8_t cos_bit, int instride, |
| int outstride); |
| static void fdct8_avx2(__m256i *in, __m256i *out, const int8_t bit, |
| const int col_num, const int outstride) { |
| const int32_t *cospi = cospi_arr(bit); |
| const __m256i cospi32 = _mm256_set1_epi32(cospi[32]); |
| const __m256i cospim32 = _mm256_set1_epi32(-cospi[32]); |
| const __m256i cospi48 = _mm256_set1_epi32(cospi[48]); |
| const __m256i cospi16 = _mm256_set1_epi32(cospi[16]); |
| const __m256i cospi56 = _mm256_set1_epi32(cospi[56]); |
| const __m256i cospi8 = _mm256_set1_epi32(cospi[8]); |
| const __m256i cospi24 = _mm256_set1_epi32(cospi[24]); |
| const __m256i cospi40 = _mm256_set1_epi32(cospi[40]); |
| const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1)); |
| __m256i u[8], v[8]; |
| for (int col = 0; col < col_num; ++col) { |
| u[0] = _mm256_add_epi32(in[0 * col_num + col], in[7 * col_num + col]); |
| v[7] = _mm256_sub_epi32(in[0 * col_num + col], in[7 * col_num + col]); |
| u[1] = _mm256_add_epi32(in[1 * col_num + col], in[6 * col_num + col]); |
| u[6] = _mm256_sub_epi32(in[1 * col_num + col], in[6 * col_num + col]); |
| u[2] = _mm256_add_epi32(in[2 * col_num + col], in[5 * col_num + col]); |
| u[5] = _mm256_sub_epi32(in[2 * col_num + col], in[5 * col_num + col]); |
| u[3] = _mm256_add_epi32(in[3 * col_num + col], in[4 * col_num + col]); |
| v[4] = _mm256_sub_epi32(in[3 * col_num + col], in[4 * col_num + col]); |
| v[0] = _mm256_add_epi32(u[0], u[3]); |
| v[3] = _mm256_sub_epi32(u[0], u[3]); |
| v[1] = _mm256_add_epi32(u[1], u[2]); |
| v[2] = _mm256_sub_epi32(u[1], u[2]); |
| |
| v[5] = _mm256_mullo_epi32(u[5], cospim32); |
| v[6] = _mm256_mullo_epi32(u[6], cospi32); |
| v[5] = _mm256_add_epi32(v[5], v[6]); |
| v[5] = _mm256_add_epi32(v[5], rnding); |
| v[5] = _mm256_srai_epi32(v[5], bit); |
| |
| u[0] = _mm256_mullo_epi32(u[5], cospi32); |
| v[6] = _mm256_mullo_epi32(u[6], cospim32); |
| v[6] = _mm256_sub_epi32(u[0], v[6]); |
| v[6] = _mm256_add_epi32(v[6], rnding); |
| v[6] = _mm256_srai_epi32(v[6], bit); |
| |
| // stage 3 |
| // type 0 |
| v[0] = _mm256_mullo_epi32(v[0], cospi32); |
| v[1] = _mm256_mullo_epi32(v[1], cospi32); |
| u[0] = _mm256_add_epi32(v[0], v[1]); |
| u[0] = _mm256_add_epi32(u[0], rnding); |
| u[0] = _mm256_srai_epi32(u[0], bit); |
| |
| u[1] = _mm256_sub_epi32(v[0], v[1]); |
| u[1] = _mm256_add_epi32(u[1], rnding); |
| u[1] = _mm256_srai_epi32(u[1], bit); |
| |
| // type 1 |
| v[0] = _mm256_mullo_epi32(v[2], cospi48); |
| v[1] = _mm256_mullo_epi32(v[3], cospi16); |
| u[2] = _mm256_add_epi32(v[0], v[1]); |
| u[2] = _mm256_add_epi32(u[2], rnding); |
| u[2] = _mm256_srai_epi32(u[2], bit); |
| |
| v[0] = _mm256_mullo_epi32(v[2], cospi16); |
| v[1] = _mm256_mullo_epi32(v[3], cospi48); |
| u[3] = _mm256_sub_epi32(v[1], v[0]); |
| u[3] = _mm256_add_epi32(u[3], rnding); |
| u[3] = _mm256_srai_epi32(u[3], bit); |
| |
| u[4] = _mm256_add_epi32(v[4], v[5]); |
| u[5] = _mm256_sub_epi32(v[4], v[5]); |
| u[6] = _mm256_sub_epi32(v[7], v[6]); |
| u[7] = _mm256_add_epi32(v[7], v[6]); |
| |
| // stage 4 |
| // stage 5 |
| v[0] = _mm256_mullo_epi32(u[4], cospi56); |
| v[1] = _mm256_mullo_epi32(u[7], cospi8); |
| v[0] = _mm256_add_epi32(v[0], v[1]); |
| v[0] = _mm256_add_epi32(v[0], rnding); |
| out[1 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[4] |
| |
| v[0] = _mm256_mullo_epi32(u[4], cospi8); |
| v[1] = _mm256_mullo_epi32(u[7], cospi56); |
| v[0] = _mm256_sub_epi32(v[1], v[0]); |
| v[0] = _mm256_add_epi32(v[0], rnding); |
| out[7 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[7] |
| |
| v[0] = _mm256_mullo_epi32(u[5], cospi24); |
| v[1] = _mm256_mullo_epi32(u[6], cospi40); |
| v[0] = _mm256_add_epi32(v[0], v[1]); |
| v[0] = _mm256_add_epi32(v[0], rnding); |
| out[5 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[5] |
| |
| v[0] = _mm256_mullo_epi32(u[5], cospi40); |
| v[1] = _mm256_mullo_epi32(u[6], cospi24); |
| v[0] = _mm256_sub_epi32(v[1], v[0]); |
| v[0] = _mm256_add_epi32(v[0], rnding); |
| out[3 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[6] |
| |
| out[0 * outstride + col] = u[0]; // buf0[0] |
| out[4 * outstride + col] = u[1]; // buf0[1] |
| out[2 * outstride + col] = u[2]; // buf0[2] |
| out[6 * outstride + col] = u[3]; // buf0[3] |
| } |
| } |
| static void fadst8_avx2(__m256i *in, __m256i *out, const int8_t bit, |
| const int col_num, const int outstirde) { |
| (void)col_num; |
| const int32_t *cospi = cospi_arr(bit); |
| const __m256i cospi32 = _mm256_set1_epi32(cospi[32]); |
| const __m256i cospi16 = _mm256_set1_epi32(cospi[16]); |
| const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]); |
| const __m256i cospi48 = _mm256_set1_epi32(cospi[48]); |
| const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]); |
| const __m256i cospi4 = _mm256_set1_epi32(cospi[4]); |
| const __m256i cospim4 = _mm256_set1_epi32(-cospi[4]); |
| const __m256i cospi60 = _mm256_set1_epi32(cospi[60]); |
| const __m256i cospi20 = _mm256_set1_epi32(cospi[20]); |
| const __m256i cospim20 = _mm256_set1_epi32(-cospi[20]); |
| const __m256i cospi44 = _mm256_set1_epi32(cospi[44]); |
| const __m256i cospi28 = _mm256_set1_epi32(cospi[28]); |
| const __m256i cospi36 = _mm256_set1_epi32(cospi[36]); |
| const __m256i cospim36 = _mm256_set1_epi32(-cospi[36]); |
| const __m256i cospi52 = _mm256_set1_epi32(cospi[52]); |
| const __m256i cospim52 = _mm256_set1_epi32(-cospi[52]); |
| const __m256i cospi12 = _mm256_set1_epi32(cospi[12]); |
| const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1)); |
| const __m256i zero = _mm256_setzero_si256(); |
| __m256i u0, u1, u2, u3, u4, u5, u6, u7; |
| __m256i v0, v1, v2, v3, v4, v5, v6, v7; |
| __m256i x, y; |
| for (int col = 0; col < col_num; ++col) { |
| u0 = in[0 * col_num + col]; |
| u1 = _mm256_sub_epi32(zero, in[7 * col_num + col]); |
| u2 = _mm256_sub_epi32(zero, in[3 * col_num + col]); |
| u3 = in[4 * col_num + col]; |
| u4 = _mm256_sub_epi32(zero, in[1 * col_num + col]); |
| u5 = in[6 * col_num + col]; |
| u6 = in[2 * col_num + col]; |
| u7 = _mm256_sub_epi32(zero, in[5 * col_num + col]); |
| |
| // stage 2 |
| v0 = u0; |
| v1 = u1; |
| |
| x = _mm256_mullo_epi32(u2, cospi32); |
| y = _mm256_mullo_epi32(u3, cospi32); |
| v2 = _mm256_add_epi32(x, y); |
| v2 = _mm256_add_epi32(v2, rnding); |
| v2 = _mm256_srai_epi32(v2, bit); |
| |
| v3 = _mm256_sub_epi32(x, y); |
| v3 = _mm256_add_epi32(v3, rnding); |
| v3 = _mm256_srai_epi32(v3, bit); |
| |
| v4 = u4; |
| v5 = u5; |
| |
| x = _mm256_mullo_epi32(u6, cospi32); |
| y = _mm256_mullo_epi32(u7, cospi32); |
| v6 = _mm256_add_epi32(x, y); |
| v6 = _mm256_add_epi32(v6, rnding); |
| v6 = _mm256_srai_epi32(v6, bit); |
| |
| v7 = _mm256_sub_epi32(x, y); |
| v7 = _mm256_add_epi32(v7, rnding); |
| v7 = _mm256_srai_epi32(v7, bit); |
| |
| // stage 3 |
| u0 = _mm256_add_epi32(v0, v2); |
| u1 = _mm256_add_epi32(v1, v3); |
| u2 = _mm256_sub_epi32(v0, v2); |
| u3 = _mm256_sub_epi32(v1, v3); |
| u4 = _mm256_add_epi32(v4, v6); |
| u5 = _mm256_add_epi32(v5, v7); |
| u6 = _mm256_sub_epi32(v4, v6); |
| u7 = _mm256_sub_epi32(v5, v7); |
| |
| // stage 4 |
| v0 = u0; |
| v1 = u1; |
| v2 = u2; |
| v3 = u3; |
| |
| x = _mm256_mullo_epi32(u4, cospi16); |
| y = _mm256_mullo_epi32(u5, cospi48); |
| v4 = _mm256_add_epi32(x, y); |
| v4 = _mm256_add_epi32(v4, rnding); |
| v4 = _mm256_srai_epi32(v4, bit); |
| |
| x = _mm256_mullo_epi32(u4, cospi48); |
| y = _mm256_mullo_epi32(u5, cospim16); |
| v5 = _mm256_add_epi32(x, y); |
| v5 = _mm256_add_epi32(v5, rnding); |
| v5 = _mm256_srai_epi32(v5, bit); |
| |
| x = _mm256_mullo_epi32(u6, cospim48); |
| y = _mm256_mullo_epi32(u7, cospi16); |
| v6 = _mm256_add_epi32(x, y); |
| v6 = _mm256_add_epi32(v6, rnding); |
| v6 = _mm256_srai_epi32(v6, bit); |
| |
| x = _mm256_mullo_epi32(u6, cospi16); |
| y = _mm256_mullo_epi32(u7, cospi48); |
| v7 = _mm256_add_epi32(x, y); |
| v7 = _mm256_add_epi32(v7, rnding); |
| v7 = _mm256_srai_epi32(v7, bit); |
| |
| // stage 5 |
| u0 = _mm256_add_epi32(v0, v4); |
| u1 = _mm256_add_epi32(v1, v5); |
| u2 = _mm256_add_epi32(v2, v6); |
| u3 = _mm256_add_epi32(v3, v7); |
| u4 = _mm256_sub_epi32(v0, v4); |
| u5 = _mm256_sub_epi32(v1, v5); |
| u6 = _mm256_sub_epi32(v2, v6); |
| u7 = _mm256_sub_epi32(v3, v7); |
| |
| // stage 6 |
| x = _mm256_mullo_epi32(u0, cospi4); |
| y = _mm256_mullo_epi32(u1, cospi60); |
| v0 = _mm256_add_epi32(x, y); |
| v0 = _mm256_add_epi32(v0, rnding); |
| v0 = _mm256_srai_epi32(v0, bit); |
| |
| x = _mm256_mullo_epi32(u0, cospi60); |
| y = _mm256_mullo_epi32(u1, cospim4); |
| v1 = _mm256_add_epi32(x, y); |
| v1 = _mm256_add_epi32(v1, rnding); |
| v1 = _mm256_srai_epi32(v1, bit); |
| |
| x = _mm256_mullo_epi32(u2, cospi20); |
| y = _mm256_mullo_epi32(u3, cospi44); |
| v2 = _mm256_add_epi32(x, y); |
| v2 = _mm256_add_epi32(v2, rnding); |
| v2 = _mm256_srai_epi32(v2, bit); |
| |
| x = _mm256_mullo_epi32(u2, cospi44); |
| y = _mm256_mullo_epi32(u3, cospim20); |
| v3 = _mm256_add_epi32(x, y); |
| v3 = _mm256_add_epi32(v3, rnding); |
| v3 = _mm256_srai_epi32(v3, bit); |
| |
| x = _mm256_mullo_epi32(u4, cospi36); |
| y = _mm256_mullo_epi32(u5, cospi28); |
| v4 = _mm256_add_epi32(x, y); |
| v4 = _mm256_add_epi32(v4, rnding); |
| v4 = _mm256_srai_epi32(v4, bit); |
| |
| x = _mm256_mullo_epi32(u4, cospi28); |
| y = _mm256_mullo_epi32(u5, cospim36); |
| v5 = _mm256_add_epi32(x, y); |
| v5 = _mm256_add_epi32(v5, rnding); |
| v5 = _mm256_srai_epi32(v5, bit); |
| |
| x = _mm256_mullo_epi32(u6, cospi52); |
| y = _mm256_mullo_epi32(u7, cospi12); |
| v6 = _mm256_add_epi32(x, y); |
| v6 = _mm256_add_epi32(v6, rnding); |
| v6 = _mm256_srai_epi32(v6, bit); |
| |
| x = _mm256_mullo_epi32(u6, cospi12); |
| y = _mm256_mullo_epi32(u7, cospim52); |
| v7 = _mm256_add_epi32(x, y); |
| v7 = _mm256_add_epi32(v7, rnding); |
| v7 = _mm256_srai_epi32(v7, bit); |
| |
| // stage 7 |
| out[0 * outstirde + col] = v1; |
| out[1 * outstirde + col] = v6; |
| out[2 * outstirde + col] = v3; |
| out[3 * outstirde + col] = v4; |
| out[4 * outstirde + col] = v5; |
| out[5 * outstirde + col] = v2; |
| out[6 * outstirde + col] = v7; |
| out[7 * outstirde + col] = v0; |
| } |
| } |
| static void idtx8_avx2(__m256i *in, __m256i *out, const int8_t bit, int col_num, |
| int outstride) { |
| (void)bit; |
| (void)outstride; |
| int num_iters = 8 * col_num; |
| for (int i = 0; i < num_iters; i += 8) { |
| out[i] = _mm256_add_epi32(in[i], in[i]); |
| out[i + 1] = _mm256_add_epi32(in[i + 1], in[i + 1]); |
| out[i + 2] = _mm256_add_epi32(in[i + 2], in[i + 2]); |
| out[i + 3] = _mm256_add_epi32(in[i + 3], in[i + 3]); |
| out[i + 4] = _mm256_add_epi32(in[i + 4], in[i + 4]); |
| out[i + 5] = _mm256_add_epi32(in[i + 5], in[i + 5]); |
| out[i + 6] = _mm256_add_epi32(in[i + 6], in[i + 6]); |
| out[i + 7] = _mm256_add_epi32(in[i + 7], in[i + 7]); |
| } |
| } |
| void av1_fwd_txfm2d_8x8_avx2(const int16_t *input, int32_t *coeff, int stride, |
| TX_TYPE tx_type, int bd) { |
| __m256i in[8], out[8]; |
| const TX_SIZE tx_size = TX_8X8; |
| const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int width = tx_size_wide[tx_size]; |
| const int width_div8 = (width >> 3); |
| |
| switch (tx_type) { |
| case DCT_DCT: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case ADST_DCT: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case DCT_ADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case ADST_ADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case FLIPADST_DCT: |
| load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case DCT_FLIPADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case FLIPADST_FLIPADST: |
| load_buffer_8x8_avx2(input, in, stride, 1, 1, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case ADST_FLIPADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case FLIPADST_ADST: |
| load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case IDTX: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case V_DCT: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case H_DCT: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case V_ADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case H_ADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]); |
| idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case V_FLIPADST: |
| load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| case H_FLIPADST: |
| load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]); |
| idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8); |
| store_buffer_avx2(in, coeff, 8, 8); |
| break; |
| default: assert(0); |
| } |
| (void)bd; |
| } |
| |
| static void fdct16_avx2(__m256i *in, __m256i *out, const int8_t bit, |
| const int col_num, const int outstride) { |
| const int32_t *cospi = cospi_arr(bit); |
| const __m256i cospi32 = _mm256_set1_epi32(cospi[32]); |
| const __m256i cospim32 = _mm256_set1_epi32(-cospi[32]); |
| const __m256i cospi48 = _mm256_set1_epi32(cospi[48]); |
| const __m256i cospi16 = _mm256_set1_epi32(cospi[16]); |
| const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]); |
| const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]); |
| const __m256i cospi56 = _mm256_set1_epi32(cospi[56]); |
| const __m256i cospi8 = _mm256_set1_epi32(cospi[8]); |
| const __m256i cospi24 = _mm256_set1_epi32(cospi[24]); |
| const __m256i cospi40 = _mm256_set1_epi32(cospi[40]); |
| const __m256i cospi60 = _mm256_set1_epi32(cospi[60]); |
| const __m256i cospi4 = _mm256_set1_epi32(cospi[4]); |
| const __m256i cospi28 = _mm256_set1_epi32(cospi[28]); |
| const __m256i cospi36 = _mm256_set1_epi32(cospi[36]); |
| const __m256i cospi44 = _mm256_set1_epi32(cospi[44]); |
| const __m256i cospi20 = _mm256_set1_epi32(cospi[20]); |
| const __m256i cospi12 = _mm256_set1_epi32(cospi[12]); |
| const __m256i cospi52 = _mm256_set1_epi32(cospi[52]); |
| const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1)); |
| __m256i u[16], v[16], x; |
| int col; |
| |
| // Calculate the column 0, 1, 2, 3 |
| for (col = 0; col < col_num; ++col) { |
| // stage 0 |
| // stage 1 |
| u[0] = _mm256_add_epi32(in[0 * col_num + col], in[15 * col_num + col]); |
| u[15] = _mm256_sub_epi32(in[0 * col_num + col], in[15 * col_num + col]); |
| u[1] = _mm256_add_epi32(in[1 * col_num + col], in[14 * col_num + col]); |
| u[14] = _mm256_sub_epi32(in[1 * col_num + col], in[14 * col_num + col]); |
| u[2] = _mm256_add_epi32(in[2 * col_num + col], in[13 * col_num + col]); |
| u[13] = _mm256_sub_epi32(in[2 * col_num + col], in[13 * col_num + col]); |
| u[3] = _mm256_add_epi32(in[3 * col_num + col], in[12 * col_num + col]); |
| u[12] = _mm256_sub_epi32(in[3 * col_num + col], in[12 * col_num + col]); |
| u[4] = _mm256_add_epi32(in[4 * col_num + col], in[11 * col_num + col]); |
| u[11] = _mm256_sub_epi32(in[4 * col_num + col], in[11 * col_num + col]); |
| u[5] = _mm256_add_epi32(in[5 * col_num + col], in[10 * col_num + col]); |
| u[10] = _mm256_sub_epi32(in[5 * col_num + col], in[10 * col_num + col]); |
| u[6] = _mm256_add_epi32(in[6 * col_num + col], in[9 * col_num + col]); |
| u[9] = _mm256_sub_epi32(in[6 * col_num + col], in[9 * col_num + col]); |
| u[7] = _mm256_add_epi32(in[7 * col_num + col], in[8 * col_num + col]); |
| u[8] = _mm256_sub_epi32(in[7 * col_num + col], in[8 * col_num + col]); |
| |
| // stage 2 |
| v[0] = _mm256_add_epi32(u[0], u[7]); |
| v[7] = _mm256_sub_epi32(u[0], u[7]); |
| v[1] = _mm256_add_epi32(u[1], u[6]); |
| v[6] = _mm256_sub_epi32(u[1], u[6]); |
| v[2] = _mm256_add_epi32(u[2], u[5]); |
| v[5] = _mm256_sub_epi32(u[2], u[5]); |
| v[3] = _mm256_add_epi32(u[3], u[4]); |
| v[4] = _mm256_sub_epi32(u[3], u[4]); |
| v[8] = u[8]; |
| v[9] = u[9]; |
| |
| v[10] = _mm256_mullo_epi32(u[10], cospim32); |
| x = _mm256_mullo_epi32(u[13], cospi32); |
| v[10] = _mm256_add_epi32(v[10], x); |
| v[10] = _mm256_add_epi32(v[10], rnding); |
| v[10] = _mm256_srai_epi32(v[10], bit); |
| |
| v[13] = _mm256_mullo_epi32(u[10], cospi32); |
| x = _mm256_mullo_epi32(u[13], cospim32); |
| v[13] = _mm256_sub_epi32(v[13], x); |
| v[13] = _mm256_add_epi32(v[13], rnding); |
| v[13] = _mm256_srai_epi32(v[13], bit); |
| |
| v[11] = _mm256_mullo_epi32(u[11], cospim32); |
| x = _mm256_mullo_epi32(u[12], cospi32); |
| v[11] = _mm256_add_epi32(v[11], x); |
| v[11] = _mm256_add_epi32(v[11], rnding); |
| v[11] = _mm256_srai_epi32(v[11], bit); |
| |
| v[12] = _mm256_mullo_epi32(u[11], cospi32); |
| x = _mm256_mullo_epi32(u[12], cospim32); |
| v[12] = _mm256_sub_epi32(v[12], x); |
| v[12] = _mm256_add_epi32(v[12], rnding); |
| v[12] = _mm256_srai_epi32(v[12], bit); |
| v[14] = u[14]; |
| v[15] = u[15]; |
| |
| // stage 3 |
| u[0] = _mm256_add_epi32(v[0], v[3]); |
| u[3] = _mm256_sub_epi32(v[0], v[3]); |
| u[1] = _mm256_add_epi32(v[1], v[2]); |
| u[2] = _mm256_sub_epi32(v[1], v[2]); |
| u[4] = v[4]; |
| |
| u[5] = _mm256_mullo_epi32(v[5], cospim32); |
| x = _mm256_mullo_epi32(v[6], cospi32); |
| u[5] = _mm256_add_epi32(u[5], x); |
| u[5] = _mm256_add_epi32(u[5], rnding); |
| u[5] = _mm256_srai_epi32(u[5], bit); |
| |
| u[6] = _mm256_mullo_epi32(v[5], cospi32); |
| x = _mm256_mullo_epi32(v[6], cospim32); |
| u[6] = _mm256_sub_epi32(u[6], x); |
| u[6] = _mm256_add_epi32(u[6], rnding); |
| u[6] = _mm256_srai_epi32(u[6], bit); |
| |
| u[7] = v[7]; |
| u[8] = _mm256_add_epi32(v[8], v[11]); |
| u[11] = _mm256_sub_epi32(v[8], v[11]); |
| u[9] = _mm256_add_epi32(v[9], v[10]); |
| u[10] = _mm256_sub_epi32(v[9], v[10]); |
| u[12] = _mm256_sub_epi32(v[15], v[12]); |
| u[15] = _mm256_add_epi32(v[15], v[12]); |
| u[13] = _mm256_sub_epi32(v[14], v[13]); |
| u[14] = _mm256_add_epi32(v[14], v[13]); |
| |
| // stage 4 |
| u[0] = _mm256_mullo_epi32(u[0], cospi32); |
| u[1] = _mm256_mullo_epi32(u[1], cospi32); |
| v[0] = _mm256_add_epi32(u[0], u[1]); |
| v[0] = _mm256_add_epi32(v[0], rnding); |
| v[0] = _mm256_srai_epi32(v[0], bit); |
| |
| v[1] = _mm256_sub_epi32(u[0], u[1]); |
| v[1] = _mm256_add_epi32(v[1], rnding); |
| v[1] = _mm256_srai_epi32(v[1], bit); |
| |
| v[2] = _mm256_mullo_epi32(u[2], cospi48); |
| x = _mm256_mullo_epi32(u[3], cospi16); |
| v[2] = _mm256_add_epi32(v[2], x); |
| v[2] = _mm256_add_epi32(v[2], rnding); |
| v[2] = _mm256_srai_epi32(v[2], bit); |
| |
| v[3] = _mm256_mullo_epi32(u[2], cospi16); |
| x = _mm256_mullo_epi32(u[3], cospi48); |
| v[3] = _mm256_sub_epi32(x, v[3]); |
| v[3] = _mm256_add_epi32(v[3], rnding); |
| v[3] = _mm256_srai_epi32(v[3], bit); |
| |
| v[4] = _mm256_add_epi32(u[4], u[5]); |
| v[5] = _mm256_sub_epi32(u[4], u[5]); |
| v[6] = _mm256_sub_epi32(u[7], u[6]); |
| v[7] = _mm256_add_epi32(u[7], u[6]); |
| v[8] = u[8]; |
| |
| v[9] = _mm256_mullo_epi32(u[9], cospim16); |
| x = _mm256_mullo_epi32(u[14], cospi48); |
| v[9] = _mm256_add_epi32(v[9], x); |
| v[9] = _mm256_add_epi32(v[9], rnding); |
| v[9] = _mm256_srai_epi32(v[9], bit); |
| |
| v[14] = _mm256_mullo_epi32(u[9], cospi48); |
| x = _mm256_mullo_epi32(u[14], cospim16); |
| v[14] = _mm256_sub_epi32(v[14], x); |
| v[14] = _mm256_add_epi32(v[14], rnding); |
| v[14] = _mm256_srai_epi32(v[14], bit); |
| |
| v[10] = _mm256_mullo_epi32(u[10], cospim48); |
| x = _mm256_mullo_epi32(u[13], cospim16); |
| v[10] = _mm256_add_epi32(v[10], x); |
| v[10] = _mm256_add_epi32(v[10], rnding); |
| v[10] = _mm256_srai_epi32(v[10], bit); |
| |
| v[13] = _mm256_mullo_epi32(u[10], cospim16); |
| x = _mm256_mullo_epi32(u[13], cospim48); |
| v[13] = _mm256_sub_epi32(v[13], x); |
| v[13] = _mm256_add_epi32(v[13], rnding); |
| v[13] = _mm256_srai_epi32(v[13], bit); |
| |
| v[11] = u[11]; |
| v[12] = u[12]; |
| v[15] = u[15]; |
| |
| // stage 5 |
| u[0] = v[0]; |
| u[1] = v[1]; |
| u[2] = v[2]; |
| u[3] = v[3]; |
| |
| u[4] = _mm256_mullo_epi32(v[4], cospi56); |
| x = _mm256_mullo_epi32(v[7], cospi8); |
| u[4] = _mm256_add_epi32(u[4], x); |
| u[4] = _mm256_add_epi32(u[4], rnding); |
| u[4] = _mm256_srai_epi32(u[4], bit); |
| |
| u[7] = _mm256_mullo_epi32(v[4], cospi8); |
| x = _mm256_mullo_epi32(v[7], cospi56); |
| u[7] = _mm256_sub_epi32(x, u[7]); |
| u[7] = _mm256_add_epi32(u[7], rnding); |
| u[7] = _mm256_srai_epi32(u[7], bit); |
| |
| u[5] = _mm256_mullo_epi32(v[5], cospi24); |
| x = _mm256_mullo_epi32(v[6], cospi40); |
| u[5] = _mm256_add_epi32(u[5], x); |
| u[5] = _mm256_add_epi32(u[5], rnding); |
| u[5] = _mm256_srai_epi32(u[5], bit); |
| |
| u[6] = _mm256_mullo_epi32(v[5], cospi40); |
| x = _mm256_mullo_epi32(v[6], cospi24); |
| u[6] = _mm256_sub_epi32(x, u[6]); |
| u[6] = _mm256_add_epi32(u[6], rnding); |
| u[6] = _mm256_srai_epi32(u[6], bit); |
| |
| u[8] = _mm256_add_epi32(v[8], v[9]); |
| u[9] = _mm256_sub_epi32(v[8], v[9]); |
| u[10] = _mm256_sub_epi32(v[11], v[10]); |
| u[11] = _mm256_add_epi32(v[11], v[10]); |
| u[12] = _mm256_add_epi32(v[12], v[13]); |
| u[13] = _mm256_sub_epi32(v[12], v[13]); |
| u[14] = _mm256_sub_epi32(v[15], v[14]); |
| u[15] = _mm256_add_epi32(v[15], v[14]); |
| |
| // stage 6 |
| v[0] = u[0]; |
| v[1] = u[1]; |
| v[2] = u[2]; |
| v[3] = u[3]; |
| v[4] = u[4]; |
| v[5] = u[5]; |
| v[6] = u[6]; |
| v[7] = u[7]; |
| |
| v[8] = _mm256_mullo_epi32(u[8], cospi60); |
| x = _mm256_mullo_epi32(u[15], cospi4); |
| v[8] = _mm256_add_epi32(v[8], x); |
| v[8] = _mm256_add_epi32(v[8], rnding); |
| v[8] = _mm256_srai_epi32(v[8], bit); |
| |
| v[15] = _mm256_mullo_epi32(u[8], cospi4); |
| x = _mm256_mullo_epi32(u[15], cospi60); |
| v[15] = _mm256_sub_epi32(x, v[15]); |
| v[15] = _mm256_add_epi32(v[15], rnding); |
| v[15] = _mm256_srai_epi32(v[15], bit); |
| |
| v[9] = _mm256_mullo_epi32(u[9], cospi28); |
| x = _mm256_mullo_epi32(u[14], cospi36); |
| v[9] = _mm256_add_epi32(v[9], x); |
| v[9] = _mm256_add_epi32(v[9], rnding); |
| v[9] = _mm256_srai_epi32(v[9], bit); |
| |
| v[14] = _mm256_mullo_epi32(u[9], cospi36); |
| x = _mm256_mullo_epi32(u[14], cospi28); |
| v[14] = _mm256_sub_epi32(x, v[14]); |
| v[14] = _mm256_add_epi32(v[14], rnding); |
| v[14] = _mm256_srai_epi32(v[14], bit); |
| |
| v[10] = _mm256_mullo_epi32(u[10], cospi44); |
| x = _mm256_mullo_epi32(u[13], cospi20); |
| v[10] = _mm256_add_epi32(v[10], x); |
| v[10] = _mm256_add_epi32(v[10], rnding); |
| v[10] = _mm256_srai_epi32(v[10], bit); |
| |
| v[13] = _mm256_mullo_epi32(u[10], cospi20); |
| x = _mm256_mullo_epi32(u[13], cospi44); |
| v[13] = _mm256_sub_epi32(x, v[13]); |
| v[13] = _mm256_add_epi32(v[13], rnding); |
| v[13] = _mm256_srai_epi32(v[13], bit); |
| |
| v[11] = _mm256_mullo_epi32(u[11], cospi12); |
| x = _mm256_mullo_epi32(u[12], cospi52); |
| v[11] = _mm256_add_epi32(v[11], x); |
| v[11] = _mm256_add_epi32(v[11], rnding); |
| v[11] = _mm256_srai_epi32(v[11], bit); |
| |
| v[12] = _mm256_mullo_epi32(u[11], cospi52); |
| x = _mm256_mullo_epi32(u[12], cospi12); |
| v[12] = _mm256_sub_epi32(x, v[12]); |
| v[12] = _mm256_add_epi32(v[12], rnding); |
| v[12] = _mm256_srai_epi32(v[12], bit); |
| |
| out[0 * outstride + col] = v[0]; |
| out[1 * outstride + col] = v[8]; |
| out[2 * outstride + col] = v[4]; |
| out[3 * outstride + col] = v[12]; |
| out[4 * outstride + col] = v[2]; |
| out[5 * outstride + col] = v[10]; |
| out[6 * outstride + col] = v[6]; |
| out[7 * outstride + col] = v[14]; |
| out[8 * outstride + col] = v[1]; |
| out[9 * outstride + col] = v[9]; |
| out[10 * outstride + col] = v[5]; |
| out[11 * outstride + col] = v[13]; |
| out[12 * outstride + col] = v[3]; |
| out[13 * outstride + col] = v[11]; |
| out[14 * outstride + col] = v[7]; |
| out[15 * outstride + col] = v[15]; |
| } |
| } |
| static void fadst16_avx2(__m256i *in, __m256i *out, const int8_t bit, |
| const int num_cols, const int outstride) { |
| const int32_t *cospi = cospi_arr(bit); |
| const __m256i cospi32 = _mm256_set1_epi32(cospi[32]); |
| const __m256i cospi48 = _mm256_set1_epi32(cospi[48]); |
| const __m256i cospi16 = _mm256_set1_epi32(cospi[16]); |
| const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]); |
| const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]); |
| const __m256i cospi8 = _mm256_set1_epi32(cospi[8]); |
| const __m256i cospi56 = _mm256_set1_epi32(cospi[56]); |
| const __m256i cospim56 = _mm256_set1_epi32(-cospi[56]); |
| const __m256i cospim8 = _mm256_set1_epi32(-cospi[8]); |
| const __m256i cospi24 = _mm256_set1_epi32(cospi[24]); |
| const __m256i cospim24 = _mm256_set1_epi32(-cospi[24]); |
| const __m256i cospim40 = _mm256_set1_epi32(-cospi[40]); |
| const __m256i cospi40 = _mm256_set1_epi32(cospi[40]); |
| const __m256i cospi2 = _mm256_set1_epi32(cospi[2]); |
| const __m256i cospi62 = _mm256_set1_epi32(cospi[62]); |
| const __m256i cospim2 = _mm256_set1_epi32(-cospi[2]); |
| const __m256i cospi10 = _mm256_set1_epi32(cospi[10]); |
| const __m256i cospi54 = _mm256_set1_epi32(cospi[54]); |
| const __m256i cospim10 = _mm256_set1_epi32(-cospi[10]); |
| const __m256i cospi18 = _mm256_set1_epi32(cospi[18]); |
| const __m256i cospi46 = _mm256_set1_epi32(cospi[46]); |
| const __m256i cospim18 = _mm256_set1_epi32(-cospi[18]); |
| const __m256i cospi26 = _mm256_set1_epi32(cospi[26]); |
| const __m256i cospi38 = _mm256_set1_epi32(cospi[38]); |
| const __m256i cospim26 = _mm256_set1_epi32(-cospi[26]); |
| const __m256i cospi34 = _mm256_set1_epi32(cospi[34]); |
| const __m256i cospi30 = _mm256_set1_epi32(cospi[30]); |
| const __m256i cospim34 = _mm256_set1_epi32(-cospi[34]); |
| const __m256i cospi42 = _mm256_set1_epi32(cospi[42]); |
| const __m256i cospi22 = _mm256_set1_epi32(cospi[22]); |
| const __m256i cospim42 = _mm256_set1_epi32(-cospi[42]); |
| const __m256i cospi50 = _mm256_set1_epi32(cospi[50]); |
| const __m256i cospi14 = _mm256_set1_epi32(cospi[14]); |
| const __m256i cospim50 = _mm256_set1_epi32(-cospi[50]); |
| const __m256i cospi58 = _mm256_set1_epi32(cospi[58]); |
| const __m256i cospi6 = _mm256_set1_epi32(cospi[6]); |
| const __m256i cospim58 = _mm256_set1_epi32(-cospi[58]); |
| const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1)); |
| const __m256i zero = _mm256_setzero_si256(); |
| |
| __m256i u[16], v[16], x, y; |
| int col; |
| |
| for (col = 0; col < num_cols; ++col) { |
| // stage 0 |
| // stage 1 |
| u[0] = in[0 * num_cols + col]; |
| u[1] = _mm256_sub_epi32(zero, in[15 * num_cols + col]); |
| u[2] = _mm256_sub_epi32(zero, in[7 * num_cols + col]); |
| u[3] = in[8 * num_cols + col]; |
| u[4] = _mm256_sub_epi32(zero, in[3 * num_cols + col]); |
| u[5] = in[12 * num_cols + col]; |
| u[6] = in[4 * num_cols + col]; |
| u[7] = _mm256_sub_epi32(zero, in[11 * num_cols + col]); |
| u[8] = _mm256_sub_epi32(zero, in[1 * num_cols + col]); |
| u[9] = in[14 * num_cols + col]; |
| u[10] = in[6 * num_cols + col]; |
| u[11] = _mm256_sub_epi32(zero, in[9 * num_cols + col]); |
| u[12] = in[2 * num_cols + col]; |
| u[13] = _mm256_sub_epi32(zero, in[13 * num_cols + col]); |
| u[14] = _mm256_sub_epi32(zero, in[5 * num_cols + col]); |
| u[15] = in[10 * num_cols + col]; |
| |
| // stage 2 |
| v[0] = u[0]; |
| v[1] = u[1]; |
| |
| x = _mm256_mullo_epi32(u[2], cospi32); |
| y = _mm256_mullo_epi32(u[3], cospi32); |
| v[2] = _mm256_add_epi32(x, y); |
| v[2] = _mm256_add_epi32(v[2], rnding); |
| v[2] = _mm256_srai_epi32(v[2], bit); |
| |
| v[3] = _mm256_sub_epi32(x, y); |
| v[3] = _mm256_add_epi32(v[3], rnding); |
| v[3] = _mm256_srai_epi32(v[3], bit); |
| |
| v[4] = u[4]; |
| v[5] = u[5]; |
| |
| x = _mm256_mullo_epi32(u[6], cospi32); |
| y = _mm256_mullo_epi32(u[7], cospi32); |
| v[6] = _mm256_add_epi32(x, y); |
| v[6] = _mm256_add_epi32(v[6], rnding); |
| v[6] = _mm256_srai_epi32(v[6], bit); |
| |
| v[7] = _mm256_sub_epi32(x, y); |
| v[7] = _mm256_add_epi32(v[7], rnding); |
| v[7] = _mm256_srai_epi32(v[7], bit); |
| |
| v[8] = u[8]; |
| v[9] = u[9]; |
| |
| x = _mm256_mullo_epi32(u[10], cospi32); |
| y = _mm256_mullo_epi32(u[11], cospi32); |
| v[10] = _mm256_add_epi32(x, y); |
| v[10] = _mm256_add_epi32(v[10], rnding); |
| v[10] = _mm256_srai_epi32(v[10], bit); |
| |
| v[11] = _mm256_sub_epi32(x, y); |
| v[11] = _mm256_add_epi32(v[11], rnding); |
| v[11] = _mm256_srai_epi32(v[11], bit); |
| |
| v[12] = u[12]; |
| v[13] = u[13]; |
| |
| x = _mm256_mullo_epi32(u[14], cospi32); |
| y = _mm256_mullo_epi32(u[15], cospi32); |
| v[14] = _mm256_add_epi32(x, y); |
| v[14] = _mm256_add_epi32(v[14], rnding); |
| v[14] = _mm256_srai_epi32(v[14], bit); |
| |
| v[15] = _mm256_sub_epi32(x, y); |
| v[15] = _mm256_add_epi32(v[15], rnding); |
| v[15] = _mm256_srai_epi32(v[15], bit); |
| |
| // stage 3 |
| u[0] = _mm256_add_epi32(v[0], v[2]); |
| u[1] = _mm256_add_epi32(v[1], v[3]); |
| u[2] = _mm256_sub_epi32(v[0], v[2]); |
| u[3] = _mm256_sub_epi32(v[1], v[3]); |
| u[4] = _mm256_add_epi32(v[4], v[6]); |
| u[5] = _mm256_add_epi32(v[5], v[7]); |
| u[6] = _mm256_sub_epi32(v[4], v[6]); |
| u[7] = _mm256_sub_epi32(v[5], v[7]); |
| u[8] = _mm256_add_epi32(v[8], v[10]); |
| u[9] = _mm256_add_epi32(v[9], v[11]); |
| u[10] = _mm256_sub_epi32(v[8], v[10]); |
| u[11] = _mm256_sub_epi32(v[9], v[11]); |
| u[12] = _mm256_add_epi32(v[12], v[14]); |
| u[13] = _mm256_add_epi32(v[13], v[15]); |
| u[14] = _mm256_sub_epi32(v[12], v[14]); |
| u[15] = _mm256_sub_epi32(v[13], v[15]); |
| |
| // stage 4 |
| v[0] = u[0]; |
| v[1] = u[1]; |
| v[2] = u[2]; |
| v[3] = u[3]; |
| v[4] = av1_half_btf_avx2(&cospi16, &u[4], &cospi48, &u[5], &rnding, bit); |
| v[5] = av1_half_btf_avx2(&cospi48, &u[4], &cospim16, &u[5], &rnding, bit); |
| v[6] = av1_half_btf_avx2(&cospim48, &u[6], &cospi16, &u[7], &rnding, bit); |
| v[7] = av1_half_btf_avx2(&cospi16, &u[6], &cospi48, &u[7], &rnding, bit); |
| v[8] = u[8]; |
| v[9] = u[9]; |
| v[10] = u[10]; |
| v[11] = u[11]; |
| v[12] = av1_half_btf_avx2(&cospi16, &u[12], &cospi48, &u[13], &rnding, bit); |
| v[13] = |
| av1_half_btf_avx2(&cospi48, &u[12], &cospim16, &u[13], &rnding, bit); |
| v[14] = |
| av1_half_btf_avx2(&cospim48, &u[14], &cospi16, &u[15], &rnding, bit); |
| v[15] = av1_half_btf_avx2(&cospi16, &u[14], &cospi48, &u[15], &rnding, bit); |
| |
| // stage 5 |
| u[0] = _mm256_add_epi32(v[0], v[4]); |
| u[1] = _mm256_add_epi32(v[1], v[5]); |
| u[2] = _mm256_add_epi32(v[2], v[6]); |
| u[3] = _mm256_add_epi32(v[3], v[7]); |
| u[4] = _mm256_sub_epi32(v[0], v[4]); |
| u[5] = _mm256_sub_epi32(v[1], v[5]); |
| u[6] = _mm256_sub_epi32(v[2], v[6]); |
| u[7] = _mm256_sub_epi32(v[3], v[7]); |
| u[8] = _mm256_add_epi32(v[8], v[12]); |
| u[9] = _mm256_add_epi32(v[9], v[13]); |
| u[10] = _mm256_add_epi32(v[10], v[14]); |
| u[11] = _mm256_add_epi32(v[11], v[15]); |
| u[12] = _mm256_sub_epi32(v[8], v[12]); |
| u[13] = _mm256_sub_epi32(v[9], v[13]); |
| u[14] = _mm256_sub_epi32(v[10], v[14]); |
| u[15] = _mm256_sub_epi32(v[11], v[15]); |
| |
| // stage 6 |
| v[0] = u[0]; |
| v[1] = u[1]; |
| v[2] = u[2]; |
| v[3] = u[3]; |
| v[4] = u[4]; |
| v[5] = u[5]; |
| v[6] = u[6]; |
| v[7] = u[7]; |
| v[8] = av1_half_btf_avx2(&cospi8, &u[8], &cospi56, &u[9], &rnding, bit); |
| v[9] = av1_half_btf_avx2(&cospi56, &u[8], &cospim8, &u[9], &rnding, bit); |
| v[10] = av1_half_btf_avx2(&cospi40, &u[10], &cospi24, &u[11], &rnding, bit); |
| v[11] = |
| av1_half_btf_avx2(&cospi24, &u[10], &cospim40, &u[11], &rnding, bit); |
| v[12] = av1_half_btf_avx2(&cospim56, &u[12], &cospi8, &u[13], &rnding, bit); |
| v[13] = av1_half_btf_avx2(&cospi8, &u[12], &cospi56, &u[13], &rnding, bit); |
| v[14] = |
| av1_half_btf_avx2(&cospim24, &u[14], &cospi40, &u[15], &rnding, bit); |
| v[15] = av1_half_btf_avx2(&cospi40, &u[14], &cospi24, &u[15], &rnding, bit); |
| |
| // stage 7 |
| u[0] = _mm256_add_epi32(v[0], v[8]); |
| u[1] = _mm256_add_epi32(v[1], v[9]); |
| u[2] = _mm256_add_epi32(v[2], v[10]); |
| u[3] = _mm256_add_epi32(v[3], v[11]); |
| u[4] = _mm256_add_epi32(v[4], v[12]); |
| u[5] = _mm256_add_epi32(v[5], v[13]); |
| u[6] = _mm256_add_epi32(v[6], v[14]); |
| u[7] = _mm256_add_epi32(v[7], v[15]); |
| u[8] = _mm256_sub_epi32(v[0], v[8]); |
| u[9] = _mm256_sub_epi32(v[1], v[9]); |
| u[10] = _mm256_sub_epi32(v[2], v[10]); |
| u[11] = _mm256_sub_epi32(v[3], v[11]); |
| u[12] = _mm256_sub_epi32(v[4], v[12]); |
| u[13] = _mm256_sub_epi32(v[5], v[13]); |
| u[14] = _mm256_sub_epi32(v[6], v[14]); |
| u[15] = _mm256_sub_epi32(v[7], v[15]); |
| |
| // stage 8 |
| v[0] = av1_half_btf_avx2(&cospi2, &u[0], &cospi62, &u[1], &rnding, bit); |
| v[1] = av1_half_btf_avx2(&cospi62, &u[0], &cospim2, &u[1], &rnding, bit); |
| v[2] = av1_half_btf_avx2(&cospi10, &u[2], &cospi54, &u[3], &rnding, bit); |
| v[3] = av1_half_btf_avx2(&cospi54, &u[2], &cospim10, &u[3], &rnding, bit); |
| v[4] = av1_half_btf_avx2(&cospi18, &u[4], &cospi46, &u[5], &rnding, bit); |
| v[5] = av1_half_btf_avx2(&cospi46, &u[4], &cospim18, &u[5], &rnding, bit); |
| v[6] = av1_half_btf_avx2(&cospi26, &u[6], &cospi38, &u[7], &rnding, bit); |
| v[7] = av1_half_btf_avx2(&cospi38, &u[6], &cospim26, &u[7], &rnding, bit); |
| v[8] = av1_half_btf_avx2(&cospi34, &u[8], &cospi30, &u[9], &rnding, bit); |
| v[9] = av1_half_btf_avx2(&cospi30, &u[8], &cospim34, &u[9], &rnding, bit); |
| v[10] = av1_half_btf_avx2(&cospi42, &u[10], &cospi22, &u[11], &rnding, bit); |
| v[11] = |
| av1_half_btf_avx2(&cospi22, &u[10], &cospim42, &u[11], &rnding, bit); |
| v[12] = av1_half_btf_avx2(&cospi50, &u[12], &cospi14, &u[13], &rnding, bit); |
| v[13] = |
| av1_half_btf_avx2(&cospi14, &u[12], &cospim50, &u[13], &rnding, bit); |
| v[14] = av1_half_btf_avx2(&cospi58, &u[14], &cospi6, &u[15], &rnding, bit); |
| v[15] = av1_half_btf_avx2(&cospi6, &u[14], &cospim58, &u[15], &rnding, bit); |
| |
| // stage 9 |
| out[0 * outstride + col] = v[1]; |
| out[1 * outstride + col] = v[14]; |
| out[2 * outstride + col] = v[3]; |
| out[3 * outstride + col] = v[12]; |
| out[4 * outstride + col] = v[5]; |
| out[5 * outstride + col] = v[10]; |
| out[6 * outstride + col] = v[7]; |
| out[7 * outstride + col] = v[8]; |
| out[8 * outstride + col] = v[9]; |
| out[9 * outstride + col] = v[6]; |
| out[10 * outstride + col] = v[11]; |
| out[11 * outstride + col] = v[4]; |
| out[12 * outstride + col] = v[13]; |
| out[13 * outstride + col] = v[2]; |
| out[14 * outstride + col] = v[15]; |
| out[15 * outstride + col] = v[0]; |
| } |
| } |
| static void idtx16_avx2(__m256i *in, __m256i *out, const int8_t bit, |
| int col_num, const int outstride) { |
| (void)bit; |
| (void)outstride; |
| __m256i fact = _mm256_set1_epi32(2 * NewSqrt2); |
| __m256i offset = _mm256_set1_epi32(1 << (NewSqrt2Bits - 1)); |
| __m256i a_low; |
| |
| int num_iters = 16 * col_num; |
| for (int i = 0; i < num_iters; i++) { |
| a_low = _mm256_mullo_epi32(in[i], fact); |
| a_low = _mm256_add_epi32(a_low, offset); |
| out[i] = _mm256_srai_epi32(a_low, NewSqrt2Bits); |
| } |
| } |
| static const transform_1d_avx2 col_highbd_txfm8x16_arr[TX_TYPES] = { |
| fdct16_avx2, // DCT_DCT |
| fadst16_avx2, // ADST_DCT |
| fdct16_avx2, // DCT_ADST |
| fadst16_avx2, // ADST_ADST |
| fadst16_avx2, // FLIPADST_DCT |
| fdct16_avx2, // DCT_FLIPADST |
| fadst16_avx2, // FLIPADST_FLIPADST |
| fadst16_avx2, // ADST_FLIPADST |
| fadst16_avx2, // FLIPADST_ADST |
| idtx16_avx2, // IDTX |
| fdct16_avx2, // V_DCT |
| idtx16_avx2, // H_DCT |
| fadst16_avx2, // V_ADST |
| idtx16_avx2, // H_ADST |
| fadst16_avx2, // V_FLIPADST |
| idtx16_avx2 // H_FLIPADST |
| }; |
| static const transform_1d_avx2 row_highbd_txfm8x8_arr[TX_TYPES] = { |
| fdct8_avx2, // DCT_DCT |
| fdct8_avx2, // ADST_DCT |
| fadst8_avx2, // DCT_ADST |
| fadst8_avx2, // ADST_ADST |
| fdct8_avx2, // FLIPADST_DCT |
| fadst8_avx2, // DCT_FLIPADST |
| fadst8_avx2, // FLIPADST_FLIPADST |
| fadst8_avx2, // ADST_FLIPADST |
| fadst8_avx2, // FLIPADST_ADST |
| idtx8_avx2, // IDTX |
| idtx8_avx2, // V_DCT |
| fdct8_avx2, // H_DCT |
| idtx8_avx2, // V_ADST |
| fadst8_avx2, // H_ADST |
| idtx8_avx2, // V_FLIPADST |
| fadst8_avx2 // H_FLIPADST |
| }; |
| void av1_fwd_txfm2d_8x16_avx2(const int16_t *input, int32_t *coeff, int stride, |
| TX_TYPE tx_type, int bd) { |
| __m256i in[16], out[16]; |
| const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X16]; |
| const int txw_idx = get_txw_idx(TX_8X16); |
| const int txh_idx = get_txh_idx(TX_8X16); |
| const transform_1d_avx2 col_txfm = col_highbd_txfm8x16_arr[tx_type]; |
| const transform_1d_avx2 row_txfm = row_highbd_txfm8x8_arr[tx_type]; |
| const int8_t bit = av1_fwd_cos_bit_col[txw_idx][txh_idx]; |
| int ud_flip, lr_flip; |
| get_flip_cfg(tx_type, &ud_flip, &lr_flip); |
| |
| load_buffer_8x16_avx2(input, in, stride, ud_flip, lr_flip, shift[0]); |
| col_txfm(in, out, bit, 1, 1); |
| col_txfm_8x8_rounding(out, -shift[1]); |
| col_txfm_8x8_rounding(&out[8], -shift[1]); |
| fwd_txfm_transpose_8x8_avx2(out, in, 1, 2); |
| fwd_txfm_transpose_8x8_avx2(&out[8], &in[1], 1, 2); |
| row_txfm(in, out, bit, 2, 2); |
| fwd_txfm_transpose_8x8_avx2(out, in, 2, 1); |
| fwd_txfm_transpose_8x8_avx2(&out[1], &in[8], 2, 1); |
| av1_round_shift_rect_array_32_avx2(in, in, 16, -shift[2], NewSqrt2); |
| store_buffer_avx2(in, coeff, 8, 16); |
| (void)bd; |
| } |
| static const transform_1d_avx2 col_highbd_txfm8x8_arr[TX_TYPES] = { |
| fdct8_avx2, // DCT_DCT |
| fadst8_avx2, // ADST_DCT |
| fdct8_avx2, // DCT_ADST |
| fadst8_avx2, // ADST_ADST |
| fadst8_avx2, // FLIPADST_DCT |
| fdct8_avx2, // DCT_FLIPADST |
| fadst8_avx2, // FLIPADST_FLIPADST |
| fadst8_avx2, // ADST_FLIPADST |
| fadst8_avx2, // FLIPADST_ADST |
| idtx8_avx2, // IDTX |
| fdct8_avx2, // V_DCT |
| idtx8_avx2, // H_DCT |
| fadst8_avx2, // V_ADST |
| idtx8_avx2, // H_ADST |
| fadst8_avx2, // V_FLIPADST |
| idtx8_avx2 // H_FLIPADST |
| }; |
| static const transform_1d_avx2 row_highbd_txfm8x16_arr[TX_TYPES] = { |
| fdct16_avx2, // DCT_DCT |
| fdct16_avx2, // ADST_DCT |
| fadst16_avx2, // DCT_ADST |
| fadst16_avx2, // ADST_ADST |
| fdct16_avx2, // FLIPADST_DCT |
| fadst16_avx2, // DCT_FLIPADST |
| fadst16_avx2, // FLIPADST_FLIPADST |
| fadst16_avx2, // ADST_FLIPADST |
| fadst16_avx2, // FLIPADST_ADST |
| idtx16_avx2, // IDTX |
| idtx16_avx2, // V_DCT |
| fdct16_avx2, // H_DCT |
| idtx16_avx2, // V_ADST |
| fadst16_avx2, // H_ADST |
| idtx16_avx2, // V_FLIPADST |
| fadst16_avx2 // H_FLIPADST |
| }; |
| void av1_fwd_txfm2d_16x8_avx2(const int16_t *input, int32_t *coeff, int stride, |
| TX_TYPE tx_type, int bd) { |
| __m256i in[16], out[16]; |
| const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X8]; |
| const int txw_idx = get_txw_idx(TX_16X8); |
| const int txh_idx = get_txh_idx(TX_16X8); |
| const transform_1d_avx2 col_txfm = col_highbd_txfm8x8_arr[tx_type]; |
| const transform_1d_avx2 row_txfm = row_highbd_txfm8x16_arr[tx_type]; |
| const int8_t bit = av1_fwd_cos_bit_col[txw_idx][txh_idx]; |
| int ud_flip, lr_flip; |
| get_flip_cfg(tx_type, &ud_flip, &lr_flip); |
| |
| load_buffer_16xn_avx2(input, in, stride, 8, 2, ud_flip, lr_flip); |
| round_shift_32_8xn_avx2(in, 16, shift[0], 1); |
| col_txfm(in, out, bit, 2, 2); |
| round_shift_32_8xn_avx2(out, 16, shift[1], 1); |
| fwd_txfm_transpose_8x8_avx2(out, in, 2, 1); |
| fwd_txfm_transpose_8x8_avx2(&out[1], &in[8], 2, 1); |
| row_txfm(in, out, bit, 1, 1); |
| fwd_txfm_transpose_8x8_avx2(out, in, 1, 2); |
| fwd_txfm_transpose_8x8_avx2(&out[8], &in[1], 1, 2); |
| av1_round_shift_rect_array_32_avx2(in, in, 16, -shift[2], NewSqrt2); |
| store_buffer_avx2(in, coeff, 8, 16); |
| (void)bd; |
| } |
| void av1_fwd_txfm2d_16x16_avx2(const int16_t *input, int32_t *coeff, int stride, |
| TX_TYPE tx_type, int bd) { |
| __m256i in[32], out[32]; |
| const TX_SIZE tx_size = TX_16X16; |
| const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const int width_div8 = (width >> 3); |
| const int width_div16 = (width >> 4); |
| const int size = (height << 1); |
| switch (tx_type) { |
| case DCT_DCT: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case ADST_DCT: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case DCT_ADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case ADST_ADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case FLIPADST_DCT: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case DCT_FLIPADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case FLIPADST_FLIPADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 1); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case ADST_FLIPADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case FLIPADST_ADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case IDTX: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case V_DCT: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case H_DCT: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case V_ADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case H_ADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case V_FLIPADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| case H_FLIPADST: |
| load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1); |
| round_shift_32_8xn_avx2(in, size, shift[0], width_div16); |
| idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(out, size, shift[1], width_div16); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8, |
| width_div8); |
| fwd_txfm_transpose_16x16_avx2(out, in); |
| store_buffer_avx2(in, coeff, 8, 32); |
| break; |
| default: assert(0); |
| } |
| (void)bd; |
| } |
| static INLINE void fdct32_avx2(__m256i *input, __m256i *output, |
| const int8_t cos_bit, const int instride, |
| const int outstride) { |
| __m256i buf0[32]; |
| __m256i buf1[32]; |
| const int32_t *cospi; |
| int startidx = 0 * instride; |
| int endidx = 31 * instride; |
| // stage 0 |
| // stage 1 |
| buf1[0] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[31] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[1] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[30] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[2] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[29] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[3] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[28] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[4] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[27] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[5] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[26] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[6] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[25] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[7] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[24] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[8] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[23] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[9] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[22] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[10] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[21] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[11] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[20] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[12] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[19] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[13] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[18] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[14] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[17] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| startidx += instride; |
| endidx -= instride; |
| buf1[15] = _mm256_add_epi32(input[startidx], input[endidx]); |
| buf1[16] = _mm256_sub_epi32(input[startidx], input[endidx]); |
| |
| // stage 2 |
| cospi = cospi_arr(cos_bit); |
| buf0[0] = _mm256_add_epi32(buf1[0], buf1[15]); |
| buf0[15] = _mm256_sub_epi32(buf1[0], buf1[15]); |
| buf0[1] = _mm256_add_epi32(buf1[1], buf1[14]); |
| buf0[14] = _mm256_sub_epi32(buf1[1], buf1[14]); |
| buf0[2] = _mm256_add_epi32(buf1[2], buf1[13]); |
| buf0[13] = _mm256_sub_epi32(buf1[2], buf1[13]); |
| buf0[3] = _mm256_add_epi32(buf1[3], buf1[12]); |
| buf0[12] = _mm256_sub_epi32(buf1[3], buf1[12]); |
| buf0[4] = _mm256_add_epi32(buf1[4], buf1[11]); |
| buf0[11] = _mm256_sub_epi32(buf1[4], buf1[11]); |
| buf0[5] = _mm256_add_epi32(buf1[5], buf1[10]); |
| buf0[10] = _mm256_sub_epi32(buf1[5], buf1[10]); |
| buf0[6] = _mm256_add_epi32(buf1[6], buf1[9]); |
| buf0[9] = _mm256_sub_epi32(buf1[6], buf1[9]); |
| buf0[7] = _mm256_add_epi32(buf1[7], buf1[8]); |
| buf0[8] = _mm256_sub_epi32(buf1[7], buf1[8]); |
| buf0[16] = buf1[16]; |
| buf0[17] = buf1[17]; |
| buf0[18] = buf1[18]; |
| buf0[19] = buf1[19]; |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf1[20], buf1[27], buf0[20], |
| buf0[27], cos_bit); |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf1[21], buf1[26], buf0[21], |
| buf0[26], cos_bit); |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf1[22], buf1[25], buf0[22], |
| buf0[25], cos_bit); |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf1[23], buf1[24], buf0[23], |
| buf0[24], cos_bit); |
| buf0[28] = buf1[28]; |
| buf0[29] = buf1[29]; |
| buf0[30] = buf1[30]; |
| buf0[31] = buf1[31]; |
| |
| // stage 3 |
| cospi = cospi_arr(cos_bit); |
| buf1[0] = _mm256_add_epi32(buf0[0], buf0[7]); |
| buf1[7] = _mm256_sub_epi32(buf0[0], buf0[7]); |
| buf1[1] = _mm256_add_epi32(buf0[1], buf0[6]); |
| buf1[6] = _mm256_sub_epi32(buf0[1], buf0[6]); |
| buf1[2] = _mm256_add_epi32(buf0[2], buf0[5]); |
| buf1[5] = _mm256_sub_epi32(buf0[2], buf0[5]); |
| buf1[3] = _mm256_add_epi32(buf0[3], buf0[4]); |
| buf1[4] = _mm256_sub_epi32(buf0[3], buf0[4]); |
| buf1[8] = buf0[8]; |
| buf1[9] = buf0[9]; |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf0[10], buf0[13], buf1[10], |
| buf1[13], cos_bit); |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf0[11], buf0[12], buf1[11], |
| buf1[12], cos_bit); |
| buf1[14] = buf0[14]; |
| buf1[15] = buf0[15]; |
| buf1[16] = _mm256_add_epi32(buf0[16], buf0[23]); |
| buf1[23] = _mm256_sub_epi32(buf0[16], buf0[23]); |
| buf1[17] = _mm256_add_epi32(buf0[17], buf0[22]); |
| buf1[22] = _mm256_sub_epi32(buf0[17], buf0[22]); |
| buf1[18] = _mm256_add_epi32(buf0[18], buf0[21]); |
| buf1[21] = _mm256_sub_epi32(buf0[18], buf0[21]); |
| buf1[19] = _mm256_add_epi32(buf0[19], buf0[20]); |
| buf1[20] = _mm256_sub_epi32(buf0[19], buf0[20]); |
| buf1[24] = _mm256_sub_epi32(buf0[31], buf0[24]); |
| buf1[31] = _mm256_add_epi32(buf0[31], buf0[24]); |
| buf1[25] = _mm256_sub_epi32(buf0[30], buf0[25]); |
| buf1[30] = _mm256_add_epi32(buf0[30], buf0[25]); |
| buf1[26] = _mm256_sub_epi32(buf0[29], buf0[26]); |
| buf1[29] = _mm256_add_epi32(buf0[29], buf0[26]); |
| buf1[27] = _mm256_sub_epi32(buf0[28], buf0[27]); |
| buf1[28] = _mm256_add_epi32(buf0[28], buf0[27]); |
| |
| // stage 4 |
| cospi = cospi_arr(cos_bit); |
| buf0[0] = _mm256_add_epi32(buf1[0], buf1[3]); |
| buf0[3] = _mm256_sub_epi32(buf1[0], buf1[3]); |
| buf0[1] = _mm256_add_epi32(buf1[1], buf1[2]); |
| buf0[2] = _mm256_sub_epi32(buf1[1], buf1[2]); |
| buf0[4] = buf1[4]; |
| btf_32_avx2_type0(-cospi[32], cospi[32], buf1[5], buf1[6], buf0[5], buf0[6], |
| cos_bit); |
| buf0[7] = buf1[7]; |
| buf0[8] = _mm256_add_epi32(buf1[8], buf1[11]); |
| buf0[11] = _mm256_sub_epi32(buf1[8], buf1[11]); |
| buf0[9] = _mm256_add_epi32(buf1[9], buf1[10]); |
| buf0[10] = _mm256_sub_epi32(buf1[9], buf1[10]); |
| buf0[12] = _mm256_sub_epi32(buf1[15], buf1[12]); |
| buf0[15] = _mm256_add_epi32(buf1[15], buf1[12]); |
| buf0[13] = _mm256_sub_epi32(buf1[14], buf1[13]); |
| buf0[14] = _mm256_add_epi32(buf1[14], buf1[13]); |
| buf0[16] = buf1[16]; |
| buf0[17] = buf1[17]; |
| btf_32_avx2_type0(-cospi[16], cospi[48], buf1[18], buf1[29], buf0[18], |
| buf0[29], cos_bit); |
| btf_32_avx2_type0(-cospi[16], cospi[48], buf1[19], buf1[28], buf0[19], |
| buf0[28], cos_bit); |
| btf_32_avx2_type0(-cospi[48], -cospi[16], buf1[20], buf1[27], buf0[20], |
| buf0[27], cos_bit); |
| btf_32_avx2_type0(-cospi[48], -cospi[16], buf1[21], buf1[26], buf0[21], |
| buf0[26], cos_bit); |
| buf0[22] = buf1[22]; |
| buf0[23] = buf1[23]; |
| buf0[24] = buf1[24]; |
| buf0[25] = buf1[25]; |
| buf0[30] = buf1[30]; |
| buf0[31] = buf1[31]; |
| |
| // stage 5 |
| cospi = cospi_arr(cos_bit); |
| btf_32_avx2_type0(cospi[32], cospi[32], buf0[0], buf0[1], buf1[0], buf1[1], |
| cos_bit); |
| btf_32_avx2_type0(cospi[16], cospi[48], buf0[3], buf0[2], buf1[2], buf1[3], |
| cos_bit); |
| buf1[4] = _mm256_add_epi32(buf0[4], buf0[5]); |
| buf1[5] = _mm256_sub_epi32(buf0[4], buf0[5]); |
| buf1[6] = _mm256_sub_epi32(buf0[7], buf0[6]); |
| buf1[7] = _mm256_add_epi32(buf0[7], buf0[6]); |
| buf1[8] = buf0[8]; |
| btf_32_avx2_type0(-cospi[16], cospi[48], buf0[9], buf0[14], buf1[9], buf1[14], |
| cos_bit); |
| btf_32_avx2_type0(-cospi[48], -cospi[16], buf0[10], buf0[13], buf1[10], |
| buf1[13], cos_bit); |
| buf1[11] = buf0[11]; |
| buf1[12] = buf0[12]; |
| buf1[15] = buf0[15]; |
| buf1[16] = _mm256_add_epi32(buf0[16], buf0[19]); |
| buf1[19] = _mm256_sub_epi32(buf0[16], buf0[19]); |
| buf1[17] = _mm256_add_epi32(buf0[17], buf0[18]); |
| buf1[18] = _mm256_sub_epi32(buf0[17], buf0[18]); |
| buf1[20] = _mm256_sub_epi32(buf0[23], buf0[20]); |
| buf1[23] = _mm256_add_epi32(buf0[23], buf0[20]); |
| buf1[21] = _mm256_sub_epi32(buf0[22], buf0[21]); |
| buf1[22] = _mm256_add_epi32(buf0[22], buf0[21]); |
| buf1[24] = _mm256_add_epi32(buf0[24], buf0[27]); |
| buf1[27] = _mm256_sub_epi32(buf0[24], buf0[27]); |
| buf1[25] = _mm256_add_epi32(buf0[25], buf0[26]); |
| buf1[26] = _mm256_sub_epi32(buf0[25], buf0[26]); |
| buf1[28] = _mm256_sub_epi32(buf0[31], buf0[28]); |
| buf1[31] = _mm256_add_epi32(buf0[31], buf0[28]); |
| buf1[29] = _mm256_sub_epi32(buf0[30], buf0[29]); |
| buf1[30] = _mm256_add_epi32(buf0[30], buf0[29]); |
| |
| // stage 6 |
| cospi = cospi_arr(cos_bit); |
| buf0[0] = buf1[0]; |
| buf0[1] = buf1[1]; |
| buf0[2] = buf1[2]; |
| buf0[3] = buf1[3]; |
| btf_32_avx2_type0(cospi[8], cospi[56], buf1[7], buf1[4], buf0[4], buf0[7], |
| cos_bit); |
| btf_32_avx2_type0(cospi[40], cospi[24], buf1[6], buf1[5], buf0[5], buf0[6], |
| cos_bit); |
| buf0[8] = _mm256_add_epi32(buf1[8], buf1[9]); |
| buf0[9] = _mm256_sub_epi32(buf1[8], buf1[9]); |
| buf0[10] = _mm256_sub_epi32(buf1[11], buf1[10]); |
| buf0[11] = _mm256_add_epi32(buf1[11], buf1[10]); |
| buf0[12] = _mm256_add_epi32(buf1[12], buf1[13]); |
| buf0[13] = _mm256_sub_epi32(buf1[12], buf1[13]); |
| buf0[14] = _mm256_sub_epi32(buf1[15], buf1[14]); |
| buf0[15] = _mm256_add_epi32(buf1[15], buf1[14]); |
| buf0[16] = buf1[16]; |
| btf_32_avx2_type0(-cospi[8], cospi[56], buf1[17], buf1[30], buf0[17], |
| buf0[30], cos_bit); |
| btf_32_avx2_type0(-cospi[56], -cospi[8], buf1[18], buf1[29], buf0[18], |
| buf0[29], cos_bit); |
| buf0[19] = buf1[19]; |
| buf0[20] = buf1[20]; |
| btf_32_avx2_type0(-cospi[40], cospi[24], buf1[21], buf1[26], buf0[21], |
| buf0[26], cos_bit); |
| btf_32_avx2_type0(-cospi[24], -cospi[40], buf1[22], buf1[25], buf0[22], |
| buf0[25], cos_bit); |
| buf0[23] = buf1[23]; |
| buf0[24] = buf1[24]; |
| buf0[27] = buf1[27]; |
| buf0[28] = buf1[28]; |
| buf0[31] = buf1[31]; |
| |
| // stage 7 |
| cospi = cospi_arr(cos_bit); |
| buf1[0] = buf0[0]; |
| buf1[1] = buf0[1]; |
| buf1[2] = buf0[2]; |
| buf1[3] = buf0[3]; |
| buf1[4] = buf0[4]; |
| buf1[5] = buf0[5]; |
| buf1[6] = buf0[6]; |
| buf1[7] = buf0[7]; |
| btf_32_avx2_type0(cospi[4], cospi[60], buf0[15], buf0[8], buf1[8], buf1[15], |
| cos_bit); |
| btf_32_avx2_type0(cospi[36], cospi[28], buf0[14], buf0[9], buf1[9], buf1[14], |
| cos_bit); |
| btf_32_avx2_type0(cospi[20], cospi[44], buf0[13], buf0[10], buf1[10], |
| buf1[13], cos_bit); |
| btf_32_avx2_type0(cospi[52], cospi[12], buf0[12], buf0[11], buf1[11], |
| buf1[12], cos_bit); |
| buf1[16] = _mm256_add_epi32(buf0[16], buf0[17]); |
| buf1[17] = _mm256_sub_epi32(buf0[16], buf0[17]); |
| buf1[18] = _mm256_sub_epi32(buf0[19], buf0[18]); |
| buf1[19] = _mm256_add_epi32(buf0[19], buf0[18]); |
| buf1[20] = _mm256_add_epi32(buf0[20], buf0[21]); |
| buf1[21] = _mm256_sub_epi32(buf0[20], buf0[21]); |
| buf1[22] = _mm256_sub_epi32(buf0[23], buf0[22]); |
| buf1[23] = _mm256_add_epi32(buf0[23], buf0[22]); |
| buf1[24] = _mm256_add_epi32(buf0[24], buf0[25]); |
| buf1[25] = _mm256_sub_epi32(buf0[24], buf0[25]); |
| buf1[26] = _mm256_sub_epi32(buf0[27], buf0[26]); |
| buf1[27] = _mm256_add_epi32(buf0[27], buf0[26]); |
| buf1[28] = _mm256_add_epi32(buf0[28], buf0[29]); |
| buf1[29] = _mm256_sub_epi32(buf0[28], buf0[29]); |
| buf1[30] = _mm256_sub_epi32(buf0[31], buf0[30]); |
| buf1[31] = _mm256_add_epi32(buf0[31], buf0[30]); |
| |
| // stage 8 |
| cospi = cospi_arr(cos_bit); |
| buf0[0] = buf1[0]; |
| buf0[1] = buf1[1]; |
| buf0[2] = buf1[2]; |
| buf0[3] = buf1[3]; |
| buf0[4] = buf1[4]; |
| buf0[5] = buf1[5]; |
| buf0[6] = buf1[6]; |
| buf0[7] = buf1[7]; |
| buf0[8] = buf1[8]; |
| buf0[9] = buf1[9]; |
| buf0[10] = buf1[10]; |
| buf0[11] = buf1[11]; |
| buf0[12] = buf1[12]; |
| buf0[13] = buf1[13]; |
| buf0[14] = buf1[14]; |
| buf0[15] = buf1[15]; |
| btf_32_avx2_type0(cospi[2], cospi[62], buf1[31], buf1[16], buf0[16], buf0[31], |
| cos_bit); |
| btf_32_avx2_type0(cospi[34], cospi[30], buf1[30], buf1[17], buf0[17], |
| buf0[30], cos_bit); |
| btf_32_avx2_type0(cospi[18], cospi[46], buf1[29], buf1[18], buf0[18], |
| buf0[29], cos_bit); |
| btf_32_avx2_type0(cospi[50], cospi[14], buf1[28], buf1[19], buf0[19], |
| buf0[28], cos_bit); |
| btf_32_avx2_type0(cospi[10], cospi[54], buf1[27], buf1[20], buf0[20], |
| buf0[27], cos_bit); |
| btf_32_avx2_type0(cospi[42], cospi[22], buf1[26], buf1[21], buf0[21], |
| buf0[26], cos_bit); |
| btf_32_avx2_type0(cospi[26], cospi[38], buf1[25], buf1[22], buf0[22], |
| buf0[25], cos_bit); |
| btf_32_avx2_type0(cospi[58], cospi[6], buf1[24], buf1[23], buf0[23], buf0[24], |
| cos_bit); |
| |
| startidx = 0 * outstride; |
| endidx = 31 * outstride; |
| // stage 9 |
| output[startidx] = buf0[0]; |
| output[endidx] = buf0[31]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[16]; |
| output[endidx] = buf0[15]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[8]; |
| output[endidx] = buf0[23]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[24]; |
| output[endidx] = buf0[7]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[4]; |
| output[endidx] = buf0[27]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[20]; |
| output[endidx] = buf0[11]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[12]; |
| output[endidx] = buf0[19]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[28]; |
| output[endidx] = buf0[3]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[2]; |
| output[endidx] = buf0[29]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[18]; |
| output[endidx] = buf0[13]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[10]; |
| output[endidx] = buf0[21]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[26]; |
| output[endidx] = buf0[5]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[6]; |
| output[endidx] = buf0[25]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[22]; |
| output[endidx] = buf0[9]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[14]; |
| output[endidx] = buf0[17]; |
| startidx += outstride; |
| endidx -= outstride; |
| output[startidx] = buf0[30]; |
| output[endidx] = buf0[1]; |
| } |
| static INLINE void idtx32x32_avx2(__m256i *input, __m256i *output, |
| const int8_t cos_bit, int instride, |
| int outstride) { |
| (void)cos_bit; |
| for (int i = 0; i < 32; i += 8) { |
| output[i * outstride] = _mm256_slli_epi32(input[i * instride], 2); |
| output[(i + 1) * outstride] = |
| _mm256_slli_epi32(input[(i + 1) * instride], 2); |
| output[(i + 2) * outstride] = |
| _mm256_slli_epi32(input[(i + 2) * instride], 2); |
| output[(i + 3) * outstride] = |
| _mm256_slli_epi32(input[(i + 3) * instride], 2); |
| output[(i + 4) * outstride] = |
| _mm256_slli_epi32(input[(i + 4) * instride], 2); |
| output[(i + 5) * outstride] = |
| _mm256_slli_epi32(input[(i + 5) * instride], 2); |
| output[(i + 6) * outstride] = |
| _mm256_slli_epi32(input[(i + 6) * instride], 2); |
| output[(i + 7) * outstride] = |
| _mm256_slli_epi32(input[(i + 7) * instride], 2); |
| } |
| } |
| static const transform_1d_avx2 col_txfm8x32_arr[TX_TYPES] = { |
| fdct32_avx2, // DCT_DCT |
| NULL, // ADST_DCT |
| NULL, // DCT_ADST |
| NULL, // ADST_ADST |
| NULL, // FLIPADST_DCT |
| NULL, // DCT_FLIPADST |
| NULL, // FLIPADST_FLIPADST |
| NULL, // ADST_FLIPADST |
| NULL, // FLIPADST_ADST |
| idtx32x32_avx2, // IDTX |
| NULL, // V_DCT |
| NULL, // H_DCT |
| NULL, // V_ADST |
| NULL, // H_ADST |
| NULL, // V_FLIPADST |
| NULL // H_FLIPADST |
| }; |
| static const transform_1d_avx2 row_txfm8x32_arr[TX_TYPES] = { |
| fdct32_avx2, // DCT_DCT |
| NULL, // ADST_DCT |
| NULL, // DCT_ADST |
| NULL, // ADST_ADST |
| NULL, // FLIPADST_DCT |
| NULL, // DCT_FLIPADST |
| NULL, // FLIPADST_FLIPADST |
| NULL, // ADST_FLIPADST |
| NULL, // FLIPADST_ADST |
| idtx32x32_avx2, // IDTX |
| NULL, // V_DCT |
| NULL, // H_DCT |
| NULL, // V_ADST |
| NULL, // H_ADST |
| NULL, // V_FLIPADST |
| NULL // H_FLIPADST |
| }; |
| void av1_fwd_txfm2d_32x32_avx2(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, |
| PREDICTION_MODE mode, int bd) { |
| (void)mode; |
| (void)bd; |
| __m256i buf0[128], buf1[128]; |
| const int tx_size = TX_32X32; |
| const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx]; |
| const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx]; |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const transform_1d_avx2 col_txfm = col_txfm8x32_arr[tx_type]; |
| const transform_1d_avx2 row_txfm = row_txfm8x32_arr[tx_type]; |
| int r, c; |
| const int width_div16 = (width >> 4); |
| const int width_div8 = (width >> 3); |
| |
| for (int i = 0; i < width_div16; i++) { |
| load_buffer_16xn_avx2(input + (i << 4), &buf0[(i << 1)], stride, height, |
| width_div8, 0, 0); |
| round_shift_32_8xn_avx2(&buf0[(i << 1)], height, shift[0], width_div8); |
| round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[0], width_div8); |
| col_txfm(&buf0[(i << 1)], &buf0[(i << 1)], cos_bit_col, width_div8, |
| width_div8); |
| col_txfm(&buf0[(i << 1) + 1], &buf0[(i << 1) + 1], cos_bit_col, width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(&buf0[(i << 1)], height, shift[1], width_div8); |
| round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[1], width_div8); |
| } |
| |
| for (r = 0; r < height; r += 8) { |
| for (c = 0; c < width_div8; c++) { |
| fwd_txfm_transpose_8x8_avx2(&buf0[r * width_div8 + c], |
| &buf1[c * 8 * width_div8 + (r >> 3)], |
| width_div8, width_div8); |
| } |
| } |
| |
| for (int i = 0; i < width_div16; i++) { |
| row_txfm(&buf1[(i << 1)], &buf1[(i << 1)], cos_bit_row, width_div8, |
| width_div8); |
| row_txfm(&buf1[(i << 1) + 1], &buf1[(i << 1) + 1], cos_bit_row, width_div8, |
| width_div8); |
| round_shift_32_8xn_avx2(&buf1[(i << 1)], height, shift[2], width_div8); |
| round_shift_32_8xn_avx2(&buf1[(i << 1) + 1], height, shift[2], width_div8); |
| } |
| |
| for (r = 0; r < height; r += 8) { |
| for (c = 0; c < width_div8; c++) { |
| fwd_txfm_transpose_8x8_avx2(&buf1[r * width_div8 + c], |
| &buf0[c * 8 * width_div8 + (r >> 3)], |
| width_div8, width_div8); |
| } |
| } |
| |
| store_buffer_avx2(buf0, output, 8, 128); |
| } |
| static INLINE void fdct64_stage2_avx2(__m256i *x1, __m256i *x2, |
| __m256i *cospi_m32, __m256i *cospi_p32, |
| const __m256i *__rounding, |
| int8_t cos_bit) { |
| x2[0] = _mm256_add_epi32(x1[0], x1[31]); |
| x2[31] = _mm256_sub_epi32(x1[0], x1[31]); |
| x2[1] = _mm256_add_epi32(x1[1], x1[30]); |
| x2[30] = _mm256_sub_epi32(x1[1], x1[30]); |
| x2[2] = _mm256_add_epi32(x1[2], x1[29]); |
| x2[29] = _mm256_sub_epi32(x1[2], x1[29]); |
| x2[3] = _mm256_add_epi32(x1[3], x1[28]); |
| x2[28] = _mm256_sub_epi32(x1[3], x1[28]); |
| x2[4] = _mm256_add_epi32(x1[4], x1[27]); |
| x2[27] = _mm256_sub_epi32(x1[4], x1[27]); |
| x2[5] = _mm256_add_epi32(x1[5], x1[26]); |
| x2[26] = _mm256_sub_epi32(x1[5], x1[26]); |
| x2[6] = _mm256_add_epi32(x1[6], x1[25]); |
| x2[25] = _mm256_sub_epi32(x1[6], x1[25]); |
| x2[7] = _mm256_add_epi32(x1[7], x1[24]); |
| x2[24] = _mm256_sub_epi32(x1[7], x1[24]); |
| x2[8] = _mm256_add_epi32(x1[8], x1[23]); |
| x2[23] = _mm256_sub_epi32(x1[8], x1[23]); |
| x2[9] = _mm256_add_epi32(x1[9], x1[22]); |
| x2[22] = _mm256_sub_epi32(x1[9], x1[22]); |
| x2[10] = _mm256_add_epi32(x1[10], x1[21]); |
| x2[21] = _mm256_sub_epi32(x1[10], x1[21]); |
| x2[11] = _mm256_add_epi32(x1[11], x1[20]); |
| x2[20] = _
|