blob: 5306c792ebdffdb5fc1925f22d6f26ada28fa119 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/bitops.h"
static void update_mv_component_stats(int comp, nmv_component *mvcomp,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
MvSubpelPrecision precision) {
assert(comp != 0);
int offset;
const int sign = comp < 0;
const int mag = sign ? -comp : comp;
const int mv_class = av1_get_mv_class(mag - 1, &offset);
const int d = offset >> 3; // int mv data
const int fr = (offset >> 1) & 3; // fractional mv data
const int hp = offset & 1; // high precision mv data
// Sign
update_cdf(mvcomp->sign_cdf, sign, 2);
// Class
#if CONFIG_ADAPTIVE_MVD
update_cdf(is_adaptive_mvd ? mvcomp->amvd_classes_cdf : mvcomp->classes_cdf,
mv_class, MV_CLASSES);
#else
update_cdf(mvcomp->classes_cdf, mv_class, MV_CLASSES);
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_ADAPTIVE_MVD
int use_mv_class_offset = 1;
if (is_adaptive_mvd && (mv_class != MV_CLASS_0 || d > 0)) {
assert(fr == 3 && hp == 1);
precision = MV_SUBPEL_NONE;
}
if (mv_class > MV_CLASS_0 && is_adaptive_mvd) use_mv_class_offset = 0;
if (use_mv_class_offset) {
#endif // CONFIG_ADAPTIVE_MVD
// Integer bits
if (mv_class == MV_CLASS_0) {
update_cdf(mvcomp->class0_cdf, d, CLASS0_SIZE);
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (int i = 0; i < n; ++i)
update_cdf(mvcomp->bits_cdf[i], (d >> i) & 1, 2);
}
#if CONFIG_ADAPTIVE_MVD
}
#endif // CONFIG_ADAPTIVE_MVD
// Fractional bits
if (precision > MV_SUBPEL_NONE) {
aom_cdf_prob *fp_cdf =
mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf;
update_cdf(fp_cdf, fr, MV_FP_SIZE);
}
// High precision bit
if (precision > MV_SUBPEL_LOW_PRECISION) {
aom_cdf_prob *hp_cdf =
mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf;
update_cdf(hp_cdf, hp, 2);
}
}
void av1_update_mv_stats(const MV *mv, const MV *ref, nmv_context *mvctx,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
MvSubpelPrecision precision) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
#if CONFIG_ADAPTIVE_MVD
if (is_adaptive_mvd) assert(j < MV_JOINTS - 1);
#if IMPROVED_AMVD
if (is_adaptive_mvd && precision > MV_SUBPEL_NONE)
precision = MV_SUBPEL_LOW_PRECISION;
#endif // IMPROVED_AMVD
if (is_adaptive_mvd)
update_cdf(mvctx->amvd_joints_cdf, j, MV_JOINTS);
else
#endif // CONFIG_ADAPTIVE_MVD
update_cdf(mvctx->joints_cdf, j, MV_JOINTS);
if (mv_joint_vertical(j))
update_mv_component_stats(diff.row, &mvctx->comps[0],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
precision);
if (mv_joint_horizontal(j))
update_mv_component_stats(diff.col, &mvctx->comps[1],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
precision);
}
static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
MvSubpelPrecision precision) {
assert(comp != 0);
int offset;
const int sign = comp < 0;
const int mag = sign ? -comp : comp;
const int mv_class = av1_get_mv_class(mag - 1, &offset);
const int d = offset >> 3; // int mv data
const int fr = (offset >> 1) & 3; // fractional mv data
const int hp = offset & 1; // high precision mv data
// Sign
aom_write_symbol(w, sign, mvcomp->sign_cdf, 2);
// Class
aom_write_symbol(
w, mv_class,
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd ? mvcomp->amvd_classes_cdf : mvcomp->classes_cdf,
#else
mvcomp->classes_cdf,
#endif // CONFIG_ADAPTIVE_MVD
MV_CLASSES);
#if CONFIG_ADAPTIVE_MVD
int use_mv_class_offset = 1;
if (is_adaptive_mvd && (mv_class != MV_CLASS_0 || d > 0)) {
assert(fr == 3 && hp == 1);
precision = MV_SUBPEL_NONE;
}
if (mv_class > MV_CLASS_0 && is_adaptive_mvd) use_mv_class_offset = 0;
if (use_mv_class_offset) {
#endif // CONFIG_ADAPTIVE_MVD
// Integer bits
if (mv_class == MV_CLASS_0) {
aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (i = 0; i < n; ++i)
aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2);
}
#if CONFIG_ADAPTIVE_MVD
}
#endif // CONFIG_ADAPTIVE_MVD
// Fractional bits
if (precision > MV_SUBPEL_NONE) {
aom_write_symbol(
w, fr,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE);
}
// High precision bit
if (precision > MV_SUBPEL_LOW_PRECISION)
aom_write_symbol(
w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf,
2);
}
static void build_nmv_component_cost_table(int *mvcost,
#if CONFIG_ADAPTIVE_MVD
int *amvd_mvcost,
#endif // CONFIG_ADAPTIVE_MVD
const nmv_component *const mvcomp,
MvSubpelPrecision precision) {
int i, v;
int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
#if CONFIG_ADAPTIVE_MVD
int amvd_class_cost[MV_CLASSES];
#endif // CONFIG_ADAPTIVE_MVD
int bits_cost[MV_OFFSET_BITS][2];
int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
int class0_hp_cost[2], hp_cost[2];
av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL);
av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL);
#if CONFIG_ADAPTIVE_MVD
av1_cost_tokens_from_cdf(amvd_class_cost, mvcomp->amvd_classes_cdf, NULL);
#endif // CONFIG_ADAPTIVE_MVD
av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL);
for (i = 0; i < MV_OFFSET_BITS; ++i) {
av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL);
}
for (i = 0; i < CLASS0_SIZE; ++i)
av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], NULL);
av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL);
if (precision > MV_SUBPEL_LOW_PRECISION) {
av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL);
av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL);
}
mvcost[0] = 0;
for (v = 1; v <= MV_MAX; ++v) {
int z, c, o, d, e, f, cost = 0;
#if CONFIG_ADAPTIVE_MVD
// cost calculation for adaptive MVD resolution
int amvd_cost = 0;
#endif // CONFIG_ADAPTIVE_MVD
z = v - 1;
c = av1_get_mv_class(z, &o);
cost += class_cost[c];
#if CONFIG_ADAPTIVE_MVD
amvd_cost += amvd_class_cost[c];
#endif // CONFIG_ADAPTIVE_MVD
d = (o >> 3); /* int mv data */
f = (o >> 1) & 3; /* fractional pel mv data */
e = (o & 1); /* high precision mv data */
if (c == MV_CLASS_0) {
cost += class0_cost[d];
#if CONFIG_ADAPTIVE_MVD
amvd_cost += class0_cost[d];
#endif // CONFIG_ADAPTIVE_MVD
} else {
const int b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)];
}
#if CONFIG_ADAPTIVE_MVD
if (precision > MV_SUBPEL_NONE) {
if (c == MV_CLASS_0 && d == 0) {
amvd_cost += class0_fp_cost[d][f];
}
#if !IMPROVED_AMVD
if (precision > MV_SUBPEL_LOW_PRECISION) {
if (c == MV_CLASS_0 && d == 0) {
amvd_cost += class0_hp_cost[e];
}
}
#endif // !IMPROVED_AMVD
}
#endif // CONFIG_ADAPTIVE_MVD
if (precision > MV_SUBPEL_NONE) {
if (c == MV_CLASS_0) {
cost += class0_fp_cost[d][f];
} else {
cost += fp_cost[f];
}
if (precision > MV_SUBPEL_LOW_PRECISION) {
if (c == MV_CLASS_0) {
cost += class0_hp_cost[e];
} else {
cost += hp_cost[e];
}
}
}
#if CONFIG_ADAPTIVE_MVD
amvd_mvcost[v] = amvd_cost + sign_cost[0];
amvd_mvcost[-v] = amvd_cost + sign_cost[1];
#endif // CONFIG_ADAPTIVE_MVD
mvcost[v] = cost + sign_cost[0];
mvcost[-v] = cost + sign_cost[1];
}
}
void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref,
nmv_context *mvctx, int usehp) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
#if CONFIG_ADAPTIVE_MVD
const AV1_COMMON *cm = &cpi->common;
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
#endif // CONFIG_ADAPTIVE_MVD
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
// If the mv_diff is zero, then we should have used near or nearest instead.
assert(j != MV_JOINT_ZERO);
if (cpi->common.features.cur_frame_force_integer_mv) {
usehp = MV_SUBPEL_NONE;
}
#if CONFIG_ADAPTIVE_MVD
if (is_adaptive_mvd) {
assert(j < MV_JOINTS - 1);
#if IMPROVED_AMVD
if (usehp > MV_SUBPEL_NONE) usehp = MV_SUBPEL_LOW_PRECISION;
#endif // IMPROVED_AMVD
}
if (is_adaptive_mvd)
aom_write_symbol(w, j, mvctx->amvd_joints_cdf, MV_JOINTS);
else
#endif // CONFIG_ADAPTIVE_MVD
aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS);
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, &mvctx->comps[0],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
usehp);
if (mv_joint_horizontal(j))
encode_mv_component(w, diff.col, &mvctx->comps[1],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
usehp);
// If auto_mv_step_size is enabled then keep track of the largest
// motion vector component used.
if (cpi->sf.mv_sf.auto_mv_step_size) {
int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3;
cpi->mv_search_params.max_mv_magnitude =
AOMMAX(maxv, cpi->mv_search_params.max_mv_magnitude);
}
}
void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref,
nmv_context *mvctx) {
// DV and ref DV should not have sub-pel.
assert((mv->col & 7) == 0);
assert((mv->row & 7) == 0);
assert((ref->col & 7) == 0);
assert((ref->row & 7) == 0);
const MV diff = { mv->row - ref->row, mv->col - ref->col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS);
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, &mvctx->comps[0],
#if CONFIG_ADAPTIVE_MVD
0,
#endif // CONFIG_ADAPTIVE_MVD
MV_SUBPEL_NONE);
if (mv_joint_horizontal(j))
encode_mv_component(w, diff.col, &mvctx->comps[1],
#if CONFIG_ADAPTIVE_MVD
0,
#endif // CONFIG_ADAPTIVE_MVD
MV_SUBPEL_NONE);
}
void av1_build_nmv_cost_table(int *mvjoint,
#if CONFIG_ADAPTIVE_MVD
int *amvd_mvjoint, int *amvd_mvcost[2],
#endif // CONFIG_ADAPTIVE_MVD
int *mvcost[2], const nmv_context *ctx,
MvSubpelPrecision precision) {
av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL);
#if CONFIG_ADAPTIVE_MVD
av1_cost_tokens_from_cdf(amvd_mvjoint, ctx->amvd_joints_cdf, NULL);
build_nmv_component_cost_table(mvcost[0], amvd_mvcost[0], &ctx->comps[0],
precision);
build_nmv_component_cost_table(mvcost[1], amvd_mvcost[1], &ctx->comps[1],
precision);
#else
build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision);
build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision);
#endif // CONFIG_ADAPTIVE_MVD
}
int_mv av1_get_ref_mv_from_stack(int ref_idx,
const MV_REFERENCE_FRAME *ref_frame,
int ref_mv_idx,
const MB_MODE_INFO_EXT *mbmi_ext) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const CANDIDATE_MV *curr_ref_mv_stack =
mbmi_ext->ref_mv_stack[ref_frame_type];
if (is_inter_ref_frame(ref_frame[1])) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
#if CONFIG_TIP
if (ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type]) {
return curr_ref_mv_stack[ref_mv_idx].this_mv;
} else if (is_tip_ref_frame(ref_frame_type)) {
int_mv zero_mv;
zero_mv.as_int = 0;
return zero_mv;
} else {
return mbmi_ext->global_mvs[ref_frame_type];
}
#else
return ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type]
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext->global_mvs[ref_frame_type];
#endif // CONFIG_TIP
}
int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
if (have_nearmv_newmv_in_inter_mode(mbmi->mode)) {
assert(has_second_ref(mbmi));
}
return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, mbmi->ref_mv_idx,
x->mbmi_ext);
}
/**
* Get the best reference MV (for use with intrabc) from the refmv stack.
* This function will search all available references and return the first one
* that is not zero or invalid.
*
* @param allow_hp Can high-precision be used?
* @param mbmi_ext The MB ext struct. Used in get_ref_mv_from_stack.
* @param ref_frame The reference frame to find motion vectors from.
* @param is_integer is the MV an integer?
* @return The best MV, or INVALID_MV if none exists.
*/
int_mv av1_find_best_ref_mv_from_stack(int allow_hp,
const MB_MODE_INFO_EXT *mbmi_ext,
MV_REFERENCE_FRAME ref_frame,
int is_integer) {
int_mv mv;
bool found_ref_mv = false;
MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
int range = AOMMIN(mbmi_ext->ref_mv_count[ref_frame], MAX_REF_MV_STACK_SIZE);
for (int i = 0; i < range; i++) {
mv = av1_get_ref_mv_from_stack(0, ref_frames, i, mbmi_ext);
if (mv.as_int != 0 && mv.as_int != INVALID_MV) {
found_ref_mv = true;
break;
}
}
lower_mv_precision(&mv.as_mv, allow_hp, is_integer);
if (!found_ref_mv) mv.as_int = INVALID_MV;
return mv;
}
int_mv av1_find_first_ref_mv_from_stack(int allow_hp,
const MB_MODE_INFO_EXT *mbmi_ext,
MV_REFERENCE_FRAME ref_frame,
int is_integer) {
int_mv mv;
const int ref_idx = 0;
MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext);
lower_mv_precision(&mv.as_mv, allow_hp, is_integer);
return mv;
}