| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include "aom/aom_encoder.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_dsp/bitwriter_buffer.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/bitops.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_ports/system_state.h" |
| #if CONFIG_BITSTREAM_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/cdef.h" |
| #if CONFIG_CCSO |
| #include "av1/common/ccso.h" |
| #endif |
| #include "av1/common/cfl.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| |
| #define ENC_MISMATCH_DEBUG 0 |
| |
| static INLINE void write_uniform(aom_writer *w, int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return; |
| if (v < m) { |
| aom_write_literal(w, v, l - 1); |
| } else { |
| aom_write_literal(w, m + ((v - m) >> 1), l - 1); |
| aom_write_literal(w, (v - m) & 1, 1); |
| } |
| } |
| |
| static AOM_INLINE void loop_restoration_write_sb_coeffs( |
| const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui, |
| aom_writer *const w, int plane, FRAME_COUNTS *counts); |
| |
| #if CONFIG_IBC_SR_EXT |
| static AOM_INLINE void write_intrabc_info( |
| MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w); |
| #endif // CONFIG_IBC_SR_EXT |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, |
| const MB_MODE_INFO *mi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, |
| PREDICTION_MODE mode, |
| aom_writer *w) { |
| assert(!is_intrabc_block(mi, SHARED_PART)); |
| (void)mi; |
| aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), |
| INTRA_MODES); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, |
| FRAME_CONTEXT *ec_ctx, |
| const int16_t mode_ctx) { |
| const int16_t ismode_ctx = inter_single_mode_ctx(mode_ctx); |
| aom_write_symbol(w, mode - SINGLE_INTER_MODE_START, |
| ec_ctx->inter_single_mode_cdf[ismode_ctx], |
| INTER_SINGLE_MODES); |
| } |
| |
| static void write_drl_idx(int max_drl_bits, const int16_t mode_ctx, |
| FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| #if !CONFIG_SKIP_MODE_ENHANCEMENT |
| assert(!mbmi->skip_mode); |
| #endif // !CONFIG_SKIP_MODE_ENHANCEMENT |
| // Write the DRL index as a sequence of bits encoding a decision tree: |
| // 0 -> 0 10 -> 1 110 -> 2 111 -> 3 |
| // Also use the number of reference MVs for a frame type to reduce the |
| // number of bits written if there are less than 4 valid DRL indices. |
| assert(mbmi->ref_mv_idx < mbmi_ext_frame->ref_mv_count); |
| assert(mbmi->ref_mv_idx < max_drl_bits + 1); |
| for (int idx = 0; idx < max_drl_bits; ++idx) { |
| aom_cdf_prob *drl_cdf = |
| av1_get_drl_cdf(ec_ctx, mbmi_ext_frame->weight, mode_ctx, idx); |
| aom_write_symbol(w, mbmi->ref_mv_idx != idx, drl_cdf, 2); |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| static AOM_INLINE void write_adaptive_mvd_flag(MACROBLOCKD *xd, aom_writer *w, |
| const MB_MODE_INFO *const mbmi) { |
| if (!is_joint_mvd_coding_mode(mbmi->mode)) return; |
| aom_write_symbol(w, mbmi->adaptive_mvd_flag, xd->tile_ctx->adaptive_mvd_cdf, |
| 2); |
| } |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| |
| static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, |
| PREDICTION_MODE mode, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| const AV1_COMMON *cm, |
| const MB_MODE_INFO *const mbmi, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| const int16_t mode_ctx) { |
| assert(is_inter_compound_mode(mode)); |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (cm->features.opfl_refine_type == REFINE_SWITCHABLE && |
| is_opfl_refine_allowed(cm, mbmi)) { |
| const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW; |
| aom_write_symbol(w, use_optical_flow, |
| xd->tile_ctx->use_optflow_cdf[mode_ctx], 2); |
| } |
| int comp_mode_idx = opfl_get_comp_idx(mode); |
| aom_write_symbol(w, comp_mode_idx, |
| xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_REF_TYPES); |
| #else |
| aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), |
| xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_MODES); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| } |
| |
| #if CONFIG_NEW_TX_PARTITION |
| static void write_tx_partition(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, |
| TX_SIZE max_tx_size, int blk_row, int blk_col, |
| aom_writer *w) { |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); |
| const int bsize = mbmi->sb_type[plane_type]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| const int txb_size_index = |
| is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| if (is_inter || (!is_inter && block_signals_txsize(bsize))) { |
| const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index]; |
| const int is_rect = is_rect_tx(max_tx_size); |
| const int allow_horz = allow_tx_horz_split(max_tx_size); |
| const int allow_vert = allow_tx_vert_split(max_tx_size); |
| const int allow_horz4 = allow_tx_horz4_split(max_tx_size); |
| const int allow_vert4 = allow_tx_vert4_split(max_tx_size); |
| if (allow_horz && allow_vert) { |
| const int split4_ctx = |
| is_inter ? txfm_partition_split4_inter_context( |
| xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, bsize, max_tx_size) |
| : get_tx_size_context(xd); |
| aom_cdf_prob *split4_cdf = |
| is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] |
| : ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; |
| const TX_PARTITION_TYPE split4_partition = |
| get_split4_partition(partition); |
| aom_write_symbol(w, split4_partition, split4_cdf, 4); |
| if (((split4_partition == TX_PARTITION_VERT) && allow_vert4) || |
| ((split4_partition == TX_PARTITION_HORZ) && allow_horz4)) { |
| const int has_split = (partition == TX_PARTITION_HORZ4) || |
| (partition == TX_PARTITION_VERT4); |
| aom_cdf_prob *split2_rect_cdf = |
| is_inter ? ec_ctx->inter_2way_rect_txfm_partition_cdf |
| : ec_ctx->intra_2way_rect_txfm_partition_cdf; |
| aom_write_symbol(w, has_split, split2_rect_cdf, 2); |
| } |
| } else if (allow_horz || allow_vert) { |
| const int has_first_split = partition != TX_PARTITION_NONE; |
| aom_cdf_prob *split2_cdf = is_inter |
| ? ec_ctx->inter_2way_txfm_partition_cdf |
| : ec_ctx->intra_2way_txfm_partition_cdf; |
| aom_write_symbol(w, has_first_split, split2_cdf, 2); |
| if (has_first_split && (allow_horz4 || allow_vert4)) { |
| const int has_second_split = (partition == TX_PARTITION_VERT4) || |
| (partition == TX_PARTITION_HORZ4); |
| aom_cdf_prob *split2_rect_cdf = |
| is_inter ? ec_ctx->inter_2way_rect_txfm_partition_cdf |
| : ec_ctx->intra_2way_rect_txfm_partition_cdf; |
| aom_write_symbol(w, has_second_split, split2_rect_cdf, 2); |
| } |
| } else { |
| assert(!allow_horz && !allow_vert); |
| assert(partition == PARTITION_NONE); |
| } |
| } |
| if (is_inter) { |
| const TX_SIZE tx_size = mbmi->inter_tx_size[txb_size_index]; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, |
| max_tx_size); |
| } |
| } |
| #else |
| static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| aom_writer *w) { |
| FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type[plane_type], tx_size); |
| const int txb_size_index = |
| av1_get_txb_size_index(mbmi->sb_type[plane_type], blk_row, blk_col); |
| const int write_txfm_partition = |
| tx_size == mbmi->inter_tx_size[txb_size_index]; |
| if (write_txfm_partition) { |
| aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| // TODO(yuec): set correct txfm partition update for qttx |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| if (sub_txs == TX_4X4) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_txs, tx_size); |
| return; |
| } |
| |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = blk_row + row; |
| int offsetc = blk_col + col; |
| write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| if (block_signals_txsize(bsize)) { |
| const TX_SIZE tx_size = mbmi->tx_size; |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int depth = tx_size_to_depth(tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| |
| assert(depth >= 0 && depth <= max_depths); |
| assert(!is_inter_block(mbmi, xd->tree_type)); |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); |
| aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| max_depths + 1); |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip_txfm = mi->skip_txfm[xd->tree_type == CHROMA_PART]; |
| const int ctx = av1_get_skip_txfm_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2); |
| return skip_txfm; |
| } |
| } |
| |
| static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, |
| aom_writer *w) { |
| if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0; |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 0; |
| } |
| const int skip_mode = mi->skip_mode; |
| if (!is_comp_ref_allowed(mi->sb_type[xd->tree_type == CHROMA_PART])) { |
| assert(!skip_mode); |
| return 0; |
| } |
| #if CONFIG_NEW_REF_SIGNALING |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| #else |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| #endif // CONFIG_NEW_REF_SIGNALING |
| // These features imply single-reference mode, while skip mode implies |
| // compound reference. Hence, the two are mutually exclusive. |
| // In other words, skip_mode is implicitly 0 here. |
| assert(!skip_mode); |
| return 0; |
| } |
| const int ctx = av1_get_skip_mode_context(xd); |
| aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); |
| return skip_mode; |
| } |
| |
| static AOM_INLINE void write_is_inter(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, int segment_id, |
| aom_writer *w, const int is_inter |
| #if CONFIG_CONTEXT_DERIVATION |
| , |
| const int skip_txfm |
| #endif // CONFIG_CONTEXT_DERIVATION |
| ) { |
| #if !CONFIG_NEW_REF_SIGNALING |
| if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| #endif // !CONFIG_NEW_REF_SIGNALING |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(is_inter); |
| return; |
| } |
| const int ctx = av1_get_intra_inter_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| #if CONFIG_CONTEXT_DERIVATION |
| aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[skip_txfm][ctx], 2); |
| #else |
| aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); |
| #endif // CONFIG_CONTEXT_DERIVATION |
| #if !CONFIG_NEW_REF_SIGNALING |
| } |
| #endif // !CONFIG_NEW_REF_SIGNALING |
| } |
| |
| static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| aom_writer *w) { |
| MOTION_MODE last_motion_mode_allowed = |
| cm->features.switchable_motion_mode |
| ? motion_mode_allowed(cm->global_motion, xd, mbmi, |
| cm->features.allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| assert(mbmi->motion_mode <= last_motion_mode_allowed); |
| switch (last_motion_mode_allowed) { |
| case SIMPLE_TRANSLATION: break; |
| case OBMC_CAUSAL: |
| aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, |
| xd->tile_ctx->obmc_cdf[mbmi->sb_type[PLANE_TYPE_Y]], 2); |
| break; |
| default: |
| aom_write_symbol( |
| w, mbmi->motion_mode, |
| xd->tile_ctx->motion_mode_cdf[mbmi->sb_type[PLANE_TYPE_Y]], |
| MOTION_MODES); |
| } |
| } |
| |
| static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd, |
| int delta_qindex, aom_writer *w) { |
| int sign = delta_qindex < 0; |
| int abs = sign ? -delta_qindex : delta_qindex; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_Q_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, |
| DELTA_Q_PROBS + 1); |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, int lf_id, |
| int delta_lflevel, aom_writer *w) { |
| int sign = delta_lflevel < 0; |
| int abs = sign ? -delta_lflevel : delta_lflevel; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_LF_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (cm->delta_q_info.delta_lf_multi) { |
| assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT |
| : FRAME_LF_COUNT - 2)); |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), |
| ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); |
| } else { |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, |
| DELTA_LF_PROBS + 1); |
| } |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| #if CONFIG_NEW_COLOR_MAP_CODING |
| static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp, |
| int n, int cols, int rows) { |
| const TokenExtra *p = *tp; |
| for (int y = 0; y < rows; y++) { |
| int identity_row_flag = p->identity_row_flag; |
| aom_write_symbol(w, identity_row_flag, p->identity_row_cdf, 2); |
| for (int x = 0; x < cols; x++) { |
| if (y == 0 && x == 0) { |
| write_uniform(w, n, p->token); |
| } else if (!identity_row_flag || x == 0) { |
| aom_write_symbol(w, p->token, p->color_map_cdf, n); |
| } |
| if (!identity_row_flag || x == 0) p++; |
| } |
| } |
| *tp = p; |
| } |
| #else |
| static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp, |
| int n, int num) { |
| const TokenExtra *p = *tp; |
| write_uniform(w, n, p->token); // The first color index. |
| ++p; |
| --num; |
| for (int i = 0; i < num; ++i) { |
| aom_write_symbol(w, p->token, p->color_map_cdf, n); |
| ++p; |
| } |
| *tp = p; |
| } |
| #endif // CONFIG_NEW_COLOR_MAP_CODING |
| |
| static AOM_INLINE void av1_write_coeffs_txb_facade( |
| aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, MACROBLOCKD *xd, |
| MB_MODE_INFO *mbmi, int plane, int block, int blk_row, int blk_col, |
| TX_SIZE tx_size) { |
| #if CONFIG_FORWARDSKIP |
| // code significance and TXB |
| const int code_rest = |
| av1_write_sig_txtype(cm, x, w, blk_row, blk_col, plane, block, tx_size); |
| const TX_TYPE tx_type = |
| av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, |
| cm->features.reduced_tx_set_used); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (code_rest) { |
| if ((mbmi->fsc_mode[xd->tree_type == CHROMA_PART] && |
| #if CONFIG_IST |
| get_primary_tx_type(tx_type) == IDTX && plane == PLANE_TYPE_Y) || |
| #else |
| tx_type == IDTX && plane == PLANE_TYPE_Y) || |
| #endif // CONFIG_IST |
| use_inter_fsc(cm, plane, tx_type, is_inter)) { |
| av1_write_coeffs_txb_skip(cm, x, w, blk_row, blk_col, plane, block, |
| tx_size); |
| } else { |
| av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size); |
| } |
| } |
| #else |
| av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size); |
| #endif // CONFIG_FORWARDSKIP |
| } |
| |
| static AOM_INLINE void pack_txb_tokens( |
| aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp, |
| const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, |
| int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block, |
| int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) { |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| |
| if (tx_size == plane_tx_size || plane) { |
| av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, blk_row, |
| blk_col, tx_size); |
| #if CONFIG_RD_DEBUG |
| TOKEN_STATS tmp_token_stats; |
| init_token_stats(&tmp_token_stats); |
| token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; |
| token_stats->cost += tmp_token_stats.cost; |
| #endif |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| (void)tp; |
| (void)tok_end; |
| (void)token_stats; |
| (void)bit_depth; |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs); |
| int cur_partition = 0; |
| int bsw = 0, bsh = 0; |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { |
| const TX_SIZE sub_tx = sub_txs[cur_partition]; |
| bsw = tx_size_wide_unit[sub_tx]; |
| bsh = tx_size_high_unit[sub_tx]; |
| const int sub_step = bsw * bsh; |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, offsetr, |
| offsetc, sub_tx); |
| #if CONFIG_RD_DEBUG |
| TOKEN_STATS tmp_token_stats; |
| init_token_stats(&tmp_token_stats); |
| token_stats->txb_coeff_cost_map[offsetr][offsetc] = |
| tmp_token_stats.cost; |
| token_stats->cost += tmp_token_stats.cost; |
| #endif |
| block += sub_step; |
| cur_partition++; |
| } |
| } |
| #else |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, |
| bit_depth, block, offsetr, offsetc, sub_txs, |
| token_stats); |
| block += step; |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| |
| static INLINE void set_spatial_segment_id( |
| const CommonModeInfoParams *const mi_params, uint8_t *segment_ids, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) { |
| const int mi_offset = mi_row * mi_params->mi_cols + mi_col; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); |
| const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); |
| |
| for (int y = 0; y < ymis; ++y) { |
| for (int x = 0; x < xmis; ++x) { |
| segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id; |
| } |
| } |
| } |
| |
| int av1_neg_interleave(int x, int ref, int max) { |
| assert(x < max); |
| const int diff = x - ref; |
| if (!ref) return x; |
| if (ref >= (max - 1)) return -x + max - 1; |
| if (2 * ref < max) { |
| if (abs(diff) <= ref) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return x; |
| } else { |
| if (abs(diff) < (max - ref)) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return (max - x) - 1; |
| } |
| } |
| |
| static AOM_INLINE void write_segment_id(AV1_COMP *cpi, |
| const MB_MODE_INFO *const mbmi, |
| aom_writer *w, |
| const struct segmentation *seg, |
| struct segmentation_probs *segp, |
| int skip_txfm) { |
| if (!seg->enabled || !seg->update_map) return; |
| |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int cdf_num; |
| const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| if (skip_txfm) { |
| // Still need to transmit tx size for intra blocks even if skip_txfm is |
| // true. Changing segment_id may make the tx size become invalid, e.g |
| // changing from lossless to lossy. |
| assert(is_inter_block(mbmi, xd->tree_type) || |
| !cpi->enc_seg.has_lossless_segment); |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, pred); |
| set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, pred); |
| /* mbmi is read only but we need to update segment_id */ |
| ((MB_MODE_INFO *)mbmi)->segment_id = pred; |
| return; |
| } |
| |
| const int coded_id = |
| av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); |
| aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; |
| aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, mbmi->segment_id); |
| } |
| |
| #if CONFIG_NEW_REF_SIGNALING |
| static AOM_INLINE void write_single_ref( |
| const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MV_REFERENCE_FRAME ref = mbmi->ref_frame[0]; |
| const int n_refs = ref_frames_info->num_total_refs; |
| assert(ref < n_refs); |
| for (int i = 0; i < n_refs - 1; i++) { |
| const int bit = ref == i; |
| aom_write_symbol(w, bit, av1_get_pred_cdf_single_ref(xd, i, n_refs), 2); |
| if (bit) return; |
| } |
| assert(ref == (n_refs - 1)); |
| } |
| |
| static AOM_INLINE void write_compound_ref( |
| const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| const int n_refs = ref_frames_info->num_total_refs; |
| assert(n_refs >= 2); |
| assert(ref0 < ref1); |
| int n_bits = 0; |
| for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) { |
| const int bit = ref0 == i || ref1 == i; |
| // bit_type: -1 for ref0, 0 for opposite sided ref1, 1 for same sided ref1 |
| const int bit_type = |
| n_bits == 0 ? -1 |
| : av1_get_compound_ref_bit_type(ref_frames_info, ref0, i); |
| // Implicitly signal a 1 when ref0 = RANK_REF0_TO_PRUNE - 1 |
| if (n_bits > 0 || i < RANKED_REF0_TO_PRUNE - 1) { |
| aom_write_symbol( |
| w, bit, |
| av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), 2); |
| } |
| n_bits += bit; |
| } |
| assert(IMPLIES(n_bits < 2, AOMMAX(ref0, ref1) == n_refs - 1)); |
| assert(IMPLIES(n_bits < 1, AOMMIN(ref0, ref1) == n_refs - 2)); |
| } |
| #else |
| #define WRITE_REF_BIT(bname, pname) \ |
| aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) |
| #endif // CONFIG_NEW_REF_SIGNALING |
| |
| // This function encodes the reference frame |
| static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_compound = has_second_ref(mbmi); |
| const int segment_id = mbmi->segment_id; |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| #if CONFIG_NEW_REF_SIGNALING |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(mbmi->ref_frame[0] == get_closest_pastcur_ref_index(cm)); |
| #else |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| assert(!is_compound); |
| assert(mbmi->ref_frame[0] == |
| get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); |
| } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(mbmi->ref_frame[0] == LAST_FRAME); |
| #endif // CONFIG_NEW_REF_SIGNALING |
| assert(!is_compound); |
| } else { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| if (is_comp_ref_allowed(mbmi->sb_type[PLANE_TYPE_Y])) |
| aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2); |
| } else { |
| assert((!is_compound) == |
| (cm->current_frame.reference_mode == SINGLE_REFERENCE)); |
| } |
| |
| if (is_compound) { |
| #if CONFIG_NEW_REF_SIGNALING |
| write_compound_ref(xd, &cm->ref_frames_info, w); |
| #else |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), |
| 2); |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; |
| WRITE_REF_BIT(bit, uni_comp_ref_p); |
| |
| if (!bit) { |
| assert(mbmi->ref_frame[0] == LAST_FRAME); |
| const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || |
| mbmi->ref_frame[1] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit1, uni_comp_ref_p1); |
| if (bit1) { |
| const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit2, uni_comp_ref_p2); |
| } |
| } else { |
| assert(mbmi->ref_frame[1] == ALTREF_FRAME); |
| } |
| |
| return; |
| } |
| |
| assert(comp_ref_type == BIDIR_COMP_REFERENCE); |
| |
| const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME); |
| WRITE_REF_BIT(bit, comp_ref_p); |
| |
| if (!bit) { |
| const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; |
| WRITE_REF_BIT(bit1, comp_ref_p1); |
| } else { |
| const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit2, comp_ref_p2); |
| } |
| |
| const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; |
| WRITE_REF_BIT(bit_bwd, comp_bwdref_p); |
| |
| if (!bit_bwd) { |
| WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); |
| } |
| #endif // CONFIG_NEW_REF_SIGNALING |
| |
| } else { |
| #if CONFIG_NEW_REF_SIGNALING |
| write_single_ref(xd, &cm->ref_frames_info, w); |
| #else |
| const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && |
| mbmi->ref_frame[0] >= BWDREF_FRAME); |
| WRITE_REF_BIT(bit0, single_ref_p1); |
| |
| if (bit0) { |
| const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; |
| WRITE_REF_BIT(bit1, single_ref_p2); |
| |
| if (!bit1) { |
| WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); |
| } |
| } else { |
| const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[0] == GOLDEN_FRAME); |
| WRITE_REF_BIT(bit2, single_ref_p3); |
| |
| if (!bit2) { |
| const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; |
| WRITE_REF_BIT(bit3, single_ref_p4); |
| } else { |
| const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; |
| WRITE_REF_BIT(bit4, single_ref_p5); |
| } |
| } |
| #endif // CONFIG_NEW_REF_SIGNALING |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_filter_intra_mode_info( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| aom_writer *w) { |
| if (av1_filter_intra_allowed(cm, mbmi) && xd->tree_type != CHROMA_PART) { |
| aom_write_symbol( |
| w, mbmi->filter_intra_mode_info.use_filter_intra, |
| xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], 2); |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| const FILTER_INTRA_MODE mode = |
| mbmi->filter_intra_mode_info.filter_intra_mode; |
| aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| } |
| } |
| } |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta, |
| aom_cdf_prob *cdf) { |
| aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| #endif // !CONFIG_AIMC |
| |
| static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm, |
| const MACROBLOCKD *xd, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!av1_is_interp_needed(cm, xd)) { |
| #if CONFIG_DEBUG |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Sharp filter is always used whenever optical flow refinement is applied. |
| int mb_interp_filter = |
| (mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi)) |
| ? MULTITAP_SHARP |
| : cm->features.interp_filter; |
| #else |
| int mb_interp_filter = cm->features.interp_filter; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| assert(mbmi->interp_fltr == av1_unswitchable_filter(mb_interp_filter)); |
| (void)mb_interp_filter; |
| #endif // CONFIG_DEBUG |
| return; |
| } |
| if (cm->features.interp_filter == SWITCHABLE) { |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi)) { |
| assert(IMPLIES( |
| mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi), |
| mbmi->interp_fltr == MULTITAP_SHARP)); |
| return; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| const int ctx = av1_get_pred_context_switchable_interp(xd, 0); |
| const InterpFilter filter = mbmi->interp_fltr; |
| aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], |
| SWITCHABLE_FILTERS); |
| ++cm->cur_frame->interp_filter_selected[filter]; |
| } |
| } |
| |
| // Transmit color values with delta encoding. Write the first value as |
| // literal, and the deltas between each value and the previous one. "min_val" is |
| // the smallest possible value of the deltas. |
| static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num, |
| int bit_depth, int min_val, |
| aom_writer *w) { |
| if (num <= 0) return; |
| assert(colors[0] < (1 << bit_depth)); |
| aom_write_literal(w, colors[0], bit_depth); |
| if (num == 1) return; |
| int max_delta = 0; |
| int deltas[PALETTE_MAX_SIZE]; |
| memset(deltas, 0, sizeof(deltas)); |
| for (int i = 1; i < num; ++i) { |
| assert(colors[i] < (1 << bit_depth)); |
| const int delta = colors[i] - colors[i - 1]; |
| deltas[i - 1] = delta; |
| assert(delta >= min_val); |
| if (delta > max_delta) max_delta = delta; |
| } |
| const int min_bits = bit_depth - 3; |
| int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); |
| assert(bits <= bit_depth); |
| int range = (1 << bit_depth) - colors[0] - min_val; |
| aom_write_literal(w, bits - min_bits, 2); |
| for (int i = 0; i < num - 1; ++i) { |
| aom_write_literal(w, deltas[i] - min_val, bits); |
| range -= deltas[i]; |
| bits = AOMMIN(bits, av1_ceil_log2(range)); |
| } |
| } |
| |
| // Transmit luma palette color values. First signal if each color in the color |
| // cache is used. Those colors that are not in the cache are transmitted with |
| // delta encoding. |
| static AOM_INLINE void write_palette_colors_y( |
| const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[0]; |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = |
| av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, |
| cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| assert(n_in_cache + n_out_cache == n); |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); |
| } |
| |
| // Write chroma palette color values. U channel is handled similarly to the luma |
| // channel. For v channel, either use delta encoding or transmit raw values |
| // directly, whichever costs less. |
| static AOM_INLINE void write_palette_colors_uv( |
| const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[1]; |
| const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; |
| const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; |
| // U channel colors. |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = av1_index_color_cache( |
| color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); |
| |
| // V channel colors. Don't use color cache as the colors are not sorted. |
| const int max_val = 1 << bit_depth; |
| int zero_count = 0, min_bits_v = 0; |
| int bits_v = |
| av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); |
| const int rate_using_delta = |
| 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; |
| const int rate_using_raw = bit_depth * n; |
| if (rate_using_delta < rate_using_raw) { // delta encoding |
| assert(colors_v[0] < (1 << bit_depth)); |
| aom_write_bit(w, 1); |
| aom_write_literal(w, bits_v - min_bits_v, 2); |
| aom_write_literal(w, colors_v[0], bit_depth); |
| for (int i = 1; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. |
| aom_write_literal(w, 0, bits_v); |
| continue; |
| } |
| const int delta = abs((int)colors_v[i] - colors_v[i - 1]); |
| const int sign_bit = colors_v[i] < colors_v[i - 1]; |
| if (delta <= max_val - delta) { |
| aom_write_literal(w, delta, bits_v); |
| aom_write_bit(w, sign_bit); |
| } else { |
| aom_write_literal(w, max_val - delta, bits_v); |
| aom_write_bit(w, !sign_bit); |
| } |
| } |
| } else { // Transmit raw values. |
| aom_write_bit(w, 0); |
| for (int i = 0; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| aom_write_literal(w, colors_v[i], bit_depth); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, |
| aom_writer *w) { |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize)); |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) { |
| const int n = pmi->palette_size[0]; |
| const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); |
| aom_write_symbol( |
| w, n > 0, |
| xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_y_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| |
| const int uv_dc_pred = num_planes > 1 && xd->tree_type != LUMA_PART && |
| mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref; |
| if (uv_dc_pred) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| aom_write_symbol(w, n > 0, |
| xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| } |
| |
| void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const FeatureFlags *const features = &cm->features; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && |
| ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| const TxSetType tx_set_type = av1_get_ext_tx_set_type( |
| tx_size, is_inter, features->reduced_tx_set_used); |
| const int eset = |
| get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used); |
| // eset == 0 should correspond to a set with only DCT_DCT and there |
| // is no need to send the tx_type |
| assert(eset > 0); |
| #if CONFIG_IST |
| assert(av1_ext_tx_used[tx_set_type][get_primary_tx_type(tx_type)]); |
| #else |
| assert(av1_ext_tx_used[tx_set_type][tx_type]); |
| #endif |
| if (is_inter) { |
| aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], |
| ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], |
| av1_num_ext_tx_set[tx_set_type]); |
| } else { |
| #if CONFIG_FORWARDSKIP |
| if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) { |
| return; |
| } |
| #endif // CONFIG_FORWARDSKIP |
| PREDICTION_MODE intra_dir; |
| if (mbmi->filter_intra_mode_info.use_filter_intra) |
| intra_dir = |
| fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| else |
| intra_dir = mbmi->mode; |
| #if CONFIG_IST |
| aom_write_symbol( |
| #if CONFIG_FORWARDSKIP |
| w, av1_ext_tx_ind_intra[tx_set_type][get_primary_tx_type(tx_type)], |
| ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], |
| av1_num_ext_tx_set_intra[tx_set_type]); |
| #else |
| w, av1_ext_tx_ind[tx_set_type][get_primary_tx_type(tx_type)], |
| ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], |
| av1_num_ext_tx_set[tx_set_type]); |
| #endif // CONFIG_FORWARDSKIP |
| #else |
| #if CONFIG_FORWARDSKIP |
| aom_write_symbol( |
| w, av1_ext_tx_ind_intra[tx_set_type][tx_type], |
| ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], |
| av1_num_ext_tx_set_intra[tx_set_type]); |
| #else |
| aom_write_symbol( |
| w, av1_ext_tx_ind[tx_set_type][tx_type], |
| ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], |
| av1_num_ext_tx_set[tx_set_type]); |
| #endif // CONFIG_FORWARDSKIP |
| #endif |
| } |
| } |
| } |
| |
| #if CONFIG_IST |
| void av1_write_sec_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| TX_TYPE tx_type, TX_SIZE tx_size, uint16_t eob, |
| aom_writer *w) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const FeatureFlags *const features = &cm->features; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && |
| ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| if (!is_inter) { |
| TX_TYPE stx_flag = get_secondary_tx_type(tx_type); |
| assert(stx_flag <= STX_TYPES - 1); |
| if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { |
| aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[square_tx_size], |
| STX_TYPES); |
| } |
| } |
| } else if (!is_inter && !xd->lossless[mbmi->segment_id]) { |
| TX_TYPE stx_flag = get_secondary_tx_type(tx_type); |
| assert(stx_flag <= STX_TYPES - 1); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { |
| aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[square_tx_size], STX_TYPES); |
| } |
| } |
| } |
| #endif |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, |
| BLOCK_SIZE bsize, |
| PREDICTION_MODE mode, |
| aom_writer *w) { |
| aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], |
| INTRA_MODES); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_mrl_index(FRAME_CONTEXT *ec_ctx, uint8_t mrl_index, |
| aom_writer *w) { |
| aom_write_symbol(w, mrl_index, ec_ctx->mrl_index_cdf, MRL_LINE_NUMBER); |
| } |
| |
| #if CONFIG_FORWARDSKIP |
| static AOM_INLINE void write_fsc_mode(uint8_t fsc_mode, aom_writer *w, |
| aom_cdf_prob *fsc_cdf) { |
| aom_write_symbol(w, fsc_mode, fsc_cdf, FSC_MODES); |
| } |
| #endif // CONFIG_FORWARDSKIP |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, |
| UV_PREDICTION_MODE uv_mode, |
| PREDICTION_MODE y_mode, |
| CFL_ALLOWED_TYPE cfl_allowed, |
| aom_writer *w) { |
| aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, |
| uint8_t idx, int8_t joint_sign, |
| aom_writer *w) { |
| aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| // Magnitudes are only signaled for nonzero codes. |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); |
| } |
| } |
| |
| static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| aom_writer *w, int skip) { |
| if (cm->features.coded_lossless || is_global_intrabc_allowed(cm)) return; |
| // At the start of a superblock, mark that we haven't yet written CDEF |
| // strengths for any of the CDEF units contained in this superblock. |
| const int sb_mask = (cm->seq_params.mib_size - 1); |
| const int mi_row_in_sb = (xd->mi_row & sb_mask); |
| const int mi_col_in_sb = (xd->mi_col & sb_mask); |
| if (mi_row_in_sb == 0 && mi_col_in_sb == 0) { |
| xd->cdef_transmitted[0] = xd->cdef_transmitted[1] = |
| xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false; |
| } |
| |
| // CDEF unit size is 64x64 irrespective of the superblock size. |
| const int cdef_size = 1 << (6 - MI_SIZE_LOG2); |
| |
| // Find index of this CDEF unit in this superblock. |
| const int index_mask = cdef_size; |
| const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0); |
| const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0); |
| const int index = (cm->seq_params.sb_size == BLOCK_128X128) |
| ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb |
| : 0; |
| |
| // Write CDEF strength to the first non-skip coding block in this CDEF unit. |
| if (!xd->cdef_transmitted[index] && !skip) { |
| // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO |
| // of the 1st block in this CDEF unit. |
| const int first_block_mask = ~(cdef_size - 1); |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int grid_idx = |
| get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask, |
| xd->mi_col & first_block_mask); |
| const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx]; |
| aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits); |
| xd->cdef_transmitted[index] = true; |
| } |
| } |
| |
| #if CONFIG_CCSO |
| static AOM_INLINE void write_ccso(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| aom_writer *w) { |
| if (cm->features.coded_lossless) return; |
| if (is_global_intrabc_allowed(cm)) return; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const int blk_size_y = |
| (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1; |
| const int blk_size_x = |
| (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1; |
| const MB_MODE_INFO *mbmi = |
| mi_params->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride + |
| (mi_col & ~blk_size_x)]; |
| |
| #if CONFIG_CCSO_EXT |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| cm->ccso_info.ccso_enable[0]) { |
| aom_write_symbol(w, mbmi->ccso_blk_y == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[0], 2); |
| xd->ccso_blk_y = mbmi->ccso_blk_y; |
| } |
| #endif |
| |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| #if CONFIG_CCSO_EXT |
| cm->ccso_info.ccso_enable[1]) { |
| aom_write_symbol(w, mbmi->ccso_blk_u == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[1], 2); |
| #else |
| cm->ccso_info.ccso_enable[0]) { |
| aom_write_bit(w, mbmi->ccso_blk_u == 0 ? 0 : 1); |
| #endif |
| xd->ccso_blk_u = mbmi->ccso_blk_u; |
| } |
| |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| #if CONFIG_CCSO_EXT |
| cm->ccso_info.ccso_enable[2]) { |
| aom_write_symbol(w, mbmi->ccso_blk_v == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[2], 2); |
| #else |
| cm->ccso_info.ccso_enable[1]) { |
| aom_write_bit(w, mbmi->ccso_blk_v == 0 ? 0 : 1); |
| #endif |
| xd->ccso_blk_v = mbmi->ccso_blk_v; |
| } |
| } |
| #endif |
| |
| static AOM_INLINE void write_inter_segment_id( |
| AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg, |
| struct segmentation_probs *const segp, int skip, int preskip) { |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| AV1_COMMON *const cm = &cpi->common; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| if (seg->update_map) { |
| if (preskip) { |
| if (!seg->segid_preskip) return; |
| } else { |
| if (seg->segid_preskip) return; |
| if (skip) { |
| write_segment_id(cpi, mbmi, w, seg, segp, 1); |
| if (seg->temporal_update) mbmi->seg_id_predicted = 0; |
| return; |
| } |
| } |
| if (seg->temporal_update) { |
| const int pred_flag = mbmi->seg_id_predicted; |
| aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); |
| aom_write_symbol(w, pred_flag, pred_cdf, 2); |
| if (!pred_flag) { |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| } |
| if (pred_flag) { |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[PLANE_TYPE_Y], mi_row, mi_col, |
| mbmi->segment_id); |
| } |
| } else { |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| } |
| } |
| } |
| |
| // If delta q is present, writes delta_q index. |
| // Also writes delta_q loop filter levels, if present. |
| static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, int skip, |
| aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| |
| if (delta_q_info->delta_q_present_flag) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| const int super_block_upper_left = |
| ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| |
| if ((bsize != cm->seq_params.sb_size || skip == 0) && |
| super_block_upper_left) { |
| assert(mbmi->current_qindex > 0); |
| const int reduced_delta_qindex = |
| (mbmi->current_qindex - xd->current_base_qindex) / |
| delta_q_info->delta_q_res; |
| write_delta_qindex(xd, reduced_delta_qindex, w); |
| xd->current_base_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_AIMC |
| // write mode set index and mode index in set for y component |
| static AOM_INLINE void write_intra_luma_mode(MACROBLOCKD *const xd, |
| aom_writer *w) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int mode_idx = mbmi->y_mode_idx; |
| assert(mode_idx >= 0 && mode_idx < LUMA_MODE_COUNT); |
| assert(mbmi->joint_y_mode_delta_angle >= 0 && |
| mbmi->joint_y_mode_delta_angle < LUMA_MODE_COUNT); |
| if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) |
| assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); |
| const int context = get_y_mode_idx_ctx(xd); |
| int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1; |
| mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT); |
| aom_write_symbol(w, mode_set_index, ec_ctx->y_mode_set_cdf, INTRA_MODE_SETS); |
| if (mode_set_index == 0) { |
| aom_write_symbol(w, mode_idx, ec_ctx->y_mode_idx_cdf_0[context], |
| FIRST_MODE_COUNT); |
| } else { |
| aom_write_symbol( |
| w, |
| mode_idx - FIRST_MODE_COUNT - (mode_set_index - 1) * SECOND_MODE_COUNT, |
| ec_ctx->y_mode_idx_cdf_1[context], SECOND_MODE_COUNT); |
| } |
| if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) |
| assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); |
| } |
| |
| // write mode mode index for uv component |
| static AOM_INLINE void write_intra_uv_mode(MACROBLOCKD *const xd, |
| CFL_ALLOWED_TYPE cfl_allowed, |
| aom_writer *w) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int uv_mode_idx = mbmi->uv_mode_idx; |
| assert(uv_mode_idx >= 0 && uv_mode_idx < UV_INTRA_MODES); |
| const int context = av1_is_directional_mode(mbmi->mode) ? 1 : 0; |
| aom_write_symbol(w, uv_mode_idx, ec_ctx->uv_mode_cdf[cfl_allowed][context], |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| #endif // CONFIG_AIMC |
| |
| static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi, |
| #if !CONFIG_AIMC || CONFIG_FORWARDSKIP |
| int is_keyframe, |
| #endif // !CONFIG_AIMC |
| aom_writer *w) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const PREDICTION_MODE mode = mbmi->mode; |
| #if CONFIG_FORWARDSKIP |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| #endif // CONFIG_FORWARDSKIP |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| #if !CONFIG_AIMC |
| const int use_angle_delta = av1_use_angle_delta(bsize); |
| #endif // !CONFIG_AIMC |
| |
| // Y mode. |
| if (xd->tree_type != CHROMA_PART) { |
| #if CONFIG_AIMC |
| write_intra_luma_mode(xd, w); |
| #if CONFIG_FORWARDSKIP |
| if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) { |
| aom_cdf_prob *fsc_cdf = |
| get_fsc_mode_cdf(ec_ctx, above_mi, left_mi, bsize, is_keyframe); |
| write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); |
| } |
| #endif // CONFIG_FORWARDSKIP |
| #else |
| if (is_keyframe) { |
| #if !CONFIG_FORWARDSKIP |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| #endif // CONFIG_FORWARDSKIP |
| write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w); |
| } else { |
| write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); |
| } |
| |
| #if CONFIG_FORWARDSKIP |
| if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) { |
| aom_cdf_prob *fsc_cdf = |
| get_fsc_mode_cdf(ec_ctx, above_mi, left_mi, bsize, is_keyframe); |
| write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); |
| } |
| #endif // CONFIG_FORWARDSKIP |
| // Y angle delta. |
| if (use_angle_delta && av1_is_directional_mode(mode)) { |
| write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mode - V_PRED]); |
| } |
| #endif // CONFIG_AIMC |
| // Encoding reference line index |
| if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) { |
| write_mrl_index(ec_ctx, mbmi->mrl_index, w); |
| } |
| } |
| |
| // UV mode and UV angle delta. |
| if (!cm->seq_params.monochrome && xd->is_chroma_ref && |
| xd->tree_type != LUMA_PART) { |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| #if CONFIG_AIMC |
| write_intra_uv_mode(xd, is_cfl_allowed(xd), w); |
| #else |
| write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); |
| if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { |
| if (cm->seq_params.enable_sdp) { |
| write_angle_delta( |
| w, mbmi->angle_delta[PLANE_TYPE_UV], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_UV][uv_mode - V_PRED]); |
| } else { |
| write_angle_delta( |
| w, mbmi->angle_delta[PLANE_TYPE_UV], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][uv_mode - V_PRED]); |
| } |
| } |
| #endif // CONFIG_AIMC |
| if (uv_mode == UV_CFL_PRED) |
| write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); |
| } |
| |
| // Palette. |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| write_palette_mode_info(cm, xd, mbmi, w); |
| } |
| |
| // Filter intra. |
| write_filter_intra_mode_info(cm, xd, mbmi, w); |
| } |
| |
| static INLINE int16_t mode_context_analyzer( |
| const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) { |
| if (!is_inter_ref_frame(rf[1])) return mode_context; |
| |
| const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK; |
| const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| |
| const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN( |
| newmv_ctx, COMP_NEWMV_CTXS - 1)]; |
| return comp_ctx; |
| } |
| |
| static INLINE int_mv get_ref_mv_from_stack( |
| int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) { |
| const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack; |
| |
| if (is_inter_ref_frame(ref_frame[1])) { |
| assert(ref_idx == 0 || ref_idx == 1); |
| return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv |
| : curr_ref_mv_stack[ref_mv_idx].this_mv; |
| } |
| |
| assert(ref_idx == 0); |
| #if CONFIG_TIP |
| if (ref_mv_idx < mbmi_ext_frame->ref_mv_count) { |
| return curr_ref_mv_stack[ref_mv_idx].this_mv; |
| } else if (is_tip_ref_frame(ref_frame_type)) { |
| int_mv zero_mv; |
| zero_mv.as_int = 0; |
| return zero_mv; |
| } else { |
| return mbmi_ext_frame->global_mvs[ref_frame_type]; |
| } |
| #else |
| return ref_mv_idx < mbmi_ext_frame->ref_mv_count |
| ? curr_ref_mv_stack[ref_mv_idx].this_mv |
| : mbmi_ext_frame->global_mvs[ref_frame_type]; |
| #endif // CONFIG_TIP |
| } |
| |
| static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int ref_mv_idx = mbmi->ref_mv_idx; |
| assert(IMPLIES(have_nearmv_newmv_in_inter_mode(mbmi->mode), |
| has_second_ref(mbmi))); |
| return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, |
| x->mbmi_ext_frame); |
| } |
| |
| static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int segment_id = mbmi->segment_id; |
| const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; |
| const int allow_hp = cm->features.allow_high_precision_mv; |
| #if CONFIG_IBC_SR_EXT |
| const int is_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type) && !is_intrabc; |
| #else |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| #endif // CONFIG_IBC_SR_EXT |
| const int is_compound = has_second_ref(mbmi); |
| int ref; |
| |
| write_inter_segment_id(cpi, w, seg, segp, 0, 1); |
| |
| write_skip_mode(cm, xd, segment_id, mbmi, w); |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| const int skip = write_skip(cm, xd, segment_id, mbmi, w); |
| #else |
| assert( |
| IMPLIES(mbmi->skip_mode, mbmi->skip_txfm[xd->tree_type == CHROMA_PART])); |
| const int skip = |
| mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); |
| #endif // !CONFIG_SKIP_MODE_ENHANCEMENT |
| write_inter_segment_id(cpi, w, seg, segp, skip, 0); |
| |
| write_cdef(cm, xd, w, skip); |
| |
| #if CONFIG_CCSO |
| if (cm->seq_params.enable_ccso) write_ccso(cm, xd, w); |
| #endif |
| |
| write_delta_q_params(cpi, skip, w); |
| |
| if (!mbmi->skip_mode) |
| write_is_inter(cm, xd, mbmi->segment_id, w, is_inter |
| #if CONFIG_CONTEXT_DERIVATION |
| , |
| skip |
| #endif // CONFIG_CONTEXT_DERIVATION |
| ); |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode) { |
| av1_collect_neighbors_ref_counts(xd); |
| write_drl_idx(cm->features.max_drl_bits, mbmi_ext_frame->mode_context, |
| ec_ctx, mbmi, mbmi_ext_frame, w); |
| return; |
| } |
| #else |
| if (mbmi->skip_mode) return; |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| |
| #if CONFIG_IBC_SR_EXT |
| if (!is_inter && av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { |
| write_intrabc_info(xd, mbmi_ext_frame, w); |
| if (is_intrabc_block(mbmi, xd->tree_type)) return; |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| if (!is_inter) { |
| #if CONFIG_AIMC && !CONFIG_FORWARDSKIP |
| write_intra_prediction_modes(cpi, w); |
| #else |
| write_intra_prediction_modes(cpi, 0, w); |
| #endif // CONFIG_AIMC |
| } else { |
| int16_t mode_ctx; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| #if CONFIG_TIP |
| if (cm->features.tip_frame_mode && is_tip_allowed_bsize(bsize)) { |
| const int tip_ctx = get_tip_ctx(xd); |
| aom_write_symbol(w, is_tip_ref_frame(mbmi->ref_frame[0]), |
| ec_ctx->tip_cdf[tip_ctx], 2); |
| } |
| |
| if (!is_tip_ref_frame(mbmi->ref_frame[0])) write_ref_frames(cm, xd, w); |
| #else |
| write_ref_frames(cm, xd, w); |
| #endif // CONFIG_TIP |
| |
| mode_ctx = |
| mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame); |
| |
| #if CONFIG_JOINT_MVD |
| const int jmvd_base_ref_list = get_joint_mvd_base_ref_list(cm, mbmi); |
| #endif // CONFIG_JOINT_MVD |
| |
| // If segment skip is not enabled code the mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (is_inter_compound_mode(mode)) |
| write_inter_compound_mode(xd, w, mode, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| cm, mbmi, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mode_ctx); |
| else if (is_inter_singleref_mode(mode)) |
| write_inter_mode(w, mode, ec_ctx, mode_ctx); |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| if (cm->seq_params.enable_adaptive_mvd) |
| write_adaptive_mvd_flag(xd, w, mbmi); |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD |
| int max_drl_bits = cm->features.max_drl_bits; |
| if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1); |
| #endif // IMPROVED_AMVD |
| |
| if (have_drl_index(mode)) |
| write_drl_idx( |
| #if IMPROVED_AMVD |
| max_drl_bits, |
| #else |
| cm->features.max_drl_bits, |
| #endif // IMPROVED_AMVD |
| mbmi_ext_frame->mode_context, ec_ctx, mbmi, mbmi_ext_frame, w); |
| else |
| assert(mbmi->ref_mv_idx == 0); |
| } |
| |
| if (have_newmv_in_each_reference(mode)) { |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = get_ref_mv(x, ref); |
| av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, |
| allow_hp); |
| } |
| } else if (mode == NEAR_NEWMV |
| #if CONFIG_OPTFLOW_REFINEMENT |
| || mode == NEAR_NEWMV_OPTFLOW |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_JOINT_MVD |
| || (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 1) |
| #endif // CONFIG_JOINT_MVD |
| ) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = get_ref_mv(x, 1); |
| av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp); |
| } else if (mode == NEW_NEARMV |
| #if CONFIG_OPTFLOW_REFINEMENT |
| || mode == NEW_NEARMV_OPTFLOW |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_JOINT_MVD |
| || (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 0) |
| #endif // CONFIG_JOINT_MVD |
| ) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = get_ref_mv(x, 0); |
| av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp); |
| } |
| |
| if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE && |
| cpi->common.seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; |
| const int bsize_group = size_group_lookup[bsize]; |
| aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); |
| if (interintra) { |
| aom_write_symbol(w, mbmi->interintra_mode, |
| ec_ctx->interintra_mode_cdf[bsize_group], |
| INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| aom_write_symbol(w, mbmi->use_wedge_interintra, |
| ec_ctx->wedge_interintra_cdf[bsize], 2); |
| if (mbmi->use_wedge_interintra) { |
| aom_write_symbol(w, mbmi->interintra_wedge_index, |
| ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); |
| } |
| } |
| } |
| } |
| |
| if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w); |
| |
| // First write idx to indicate current compound inter prediction mode |
| // group Group A (0): dist_wtd_comp, compound_average Group B (1): |
| // interintra, compound_diffwtd, wedge |
| |
| if (has_second_ref(mbmi) |
| #if CONFIG_OPTFLOW_REFINEMENT |
| && mbmi->mode < NEAR_NEARMV_OPTFLOW |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| && !is_joint_amvd_coding_mode(mbmi->adaptive_mvd_flag) |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| ) { |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| |
| if (masked_compound_used) { |
| const int ctx_comp_group_idx = get_comp_group_idx_context(cm, xd); |
| aom_write_symbol(w, mbmi->comp_group_idx, |
| ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); |
| } else { |
| assert(mbmi->comp_group_idx == 0); |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); |
| } else { |
| assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| assert(masked_compound_used); |
| // compound_diffwtd, wedge |
| assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || |
| mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) |
| aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| ec_ctx->compound_type_cdf[bsize], |
| MASKED_COMPOUND_TYPES); |
| |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); |
| aom_write_symbol(w, mbmi->interinter_comp.wedge_index, |
| ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); |
| aom_write_bit(w, mbmi->interinter_comp.wedge_sign); |
| } else { |
| assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| aom_write_literal(w, mbmi->interinter_comp.mask_type, |
| MAX_DIFFWTD_MASK_BITS); |
| } |
| } |
| } |
| write_mb_interp_filter(cm, xd, w); |
| } |
| } |
| |
| #if CONFIG_BVP_IMPROVEMENT |
| static void write_intrabc_drl_idx(int max_ref_bv_num, FRAME_CONTEXT *ec_ctx, |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| assert(!mbmi->skip_mode); |
| assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count); |
| assert(mbmi->intrabc_drl_idx < max_ref_bv_num); |
| (void)mbmi_ext_frame; |
| |
| int bit_cnt = 0; |
| for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) { |
| aom_write_symbol(w, mbmi->intrabc_drl_idx != idx, |
| ec_ctx->intrabc_drl_idx_cdf[bit_cnt], 2); |
| if (mbmi->intrabc_drl_idx == idx) break; |
| ++bit_cnt; |
| } |
| } |
| #endif // CONFIG_BVP_IMPROVEMENT |
| |
| static AOM_INLINE void write_intrabc_info( |
| MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); |
| if (use_intrabc) { |
| assert(mbmi->mode == DC_PRED); |
| assert(mbmi->motion_mode == SIMPLE_TRANSLATION); |
| int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv; |
| |
| #if CONFIG_BVP_IMPROVEMENT |
| aom_write_symbol(w, mbmi->intrabc_mode, ec_ctx->intrabc_mode_cdf, 2); |
| write_intrabc_drl_idx(MAX_REF_BV_STACK_SIZE, ec_ctx, mbmi, mbmi_ext_frame, |
| w); |
| |
| if (!mbmi->intrabc_mode) |
| av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); |
| #else |
| av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); |
| #endif // CONFIG_BVP_IMPROVEMENT |
| } |
| } |
| |
| static AOM_INLINE void write_mb_modes_kf( |
| AV1_COMP *cpi, MACROBLOCKD *xd, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| if (seg->segid_preskip && seg->update_map) |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| |
| const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); |
| |
| if (!seg->segid_preskip && seg->update_map) |
| write_segment_id(cpi, mbmi, w, seg, segp, skip); |
| |
| if (xd->tree_type != CHROMA_PART) write_cdef(cm, xd, w, skip); |
| |
| #if CONFIG_CCSO |
| if (cm->seq_params.enable_ccso |
| #if CONFIG_CCSO_EXT |
| && xd->tree_type != CHROMA_PART |
| #else |
| && xd->tree_type != LUMA_PART |
| #endif |
| ) |
| write_ccso(cm, xd, w); |
| #endif |
| |
| write_delta_q_params(cpi, skip, w); |
| |
| if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { |
| write_intrabc_info(xd, mbmi_ext_frame, w); |
| if (is_intrabc_block(mbmi, xd->tree_type)) return; |
| } |
| |
| #if CONFIG_AIMC && !CONFIG_FORWARDSKIP |
| write_intra_prediction_modes(cpi, w); |
| #else |
| write_intra_prediction_modes(cpi, 1, w); |
| #endif // CONFIG_AIMC |
| } |
| |
| #if CONFIG_RD_DEBUG |
| static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) { |
| printf("\nmi->mi_row == %d\n", mi->mi_row); |
| printf("&& mi->mi_col == %d\n", mi->mi_col); |
| printf("&& mi->sb_type[0] == %d\n", mi->sb_type[0]); |
| printf("&& mi->sb_type[1] == %d\n", mi->sb_type[1]); |
| printf("&& mi->tx_size == %d\n", mi->tx_size); |
| printf("&& mi->mode == %d\n", mi->mode); |
| } |
| |
| static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, |
| int plane) { |
| if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { |
| int r, c; |
| printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", |
| plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); |
| printf("rd txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); |
| } |
| printf("\n"); |
| } |
| |
| printf("pack txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", token_stats->txb_coeff_cost_map[r][c]); |
| } |
| printf("\n"); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| #if ENC_MISMATCH_DEBUG |
| static AOM_INLINE void enc_dump_logs( |
| const AV1_COMMON *const cm, |
| const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) { |
| const MB_MODE_INFO *const mbmi = *( |
| cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col)); |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = |
| mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col, |
| cm->mi_params.mi_alloc_bsize, |
| mbmi_ext_info->stride); |
| if (is_inter_block(mbmi, SHARED_PART)) { |
| #define FRAME_TO_CHECK 11 |
| if (cm->current_frame.frame_number == FRAME_TO_CHECK && |
| cm->show_frame == 1) { |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| int_mv mv[2] = { 0 }; |
| const int is_comp_ref = has_second_ref(mbmi); |
| |
| for (int ref = 0; ref < 1 + is_comp_ref; ++ref) |
| mv[ref].as_mv = mbmi->mv[ref].as_mv; |
| |
| if (!is_comp_ref) { |
| mv[1].as_int = 0; |
| } |
| |
| const int16_t mode_ctx = |
| is_comp_ref ? 0 |
| : mode_context_analyzer(mbmi_ext_frame->mode_context, |
| mbmi->ref_frame); |
| |
| const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; |
| int16_t zeromv_ctx = -1; |
| int16_t refmv_ctx = -1; |
| |
| if (mbmi->mode != NEWMV) { |
| zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mbmi->mode != GLOBALMV) |
| refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| } |
| |
| printf( |
| "=== ENCODER ===: " |
| "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " |
| "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " |
| "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " |
| "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", |
| cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode, |
| mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, |
| mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], |
| mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, |
| zeromv_ctx, refmv_ctx, mbmi->tx_size); |
| } |
| } |
| } |
| #endif // ENC_MISMATCH_DEBUG |
| |
| static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MB_MODE_INFO *m = xd->mi[0]; |
| |
| if (frame_is_intra_only(cm)) { |
| write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, w); |
| } else { |
| // has_subpel_mv_component needs the ref frame buffers set up to look |
| // up if they are scaled. has_subpel_mv_component is in turn needed by |
| // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. |
| set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); |
| |
| #if ENC_MISMATCH_DEBUG |
| enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col); |
| #endif // ENC_MISMATCH_DEBUG |
| |
| pack_inter_mode_mvs(cpi, w); |
| } |
| } |
| |
| static AOM_INLINE void write_inter_txb_coeff( |
| AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi, |
| aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end, |
| TOKEN_STATS *token_stats, const int row, const int col, int *block, |
| const int plane) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); |
| const int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| const int bkw = tx_size_wide_unit[max_tx_size]; |
| const int bkh = tx_size_high_unit[max_tx_size]; |
| const BLOCK_SIZE max_unit_bsize = |
| get_plane_block_size(BLOCK_64X64, ss_x, ss_y); |
| const int num_4x4_w = mi_size_wide[plane_bsize]; |
| const int num_4x4_h = mi_size_high[plane_bsize]; |
| const int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| const int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h); |
| const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w); |
| for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) { |
| for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) { |
| pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, |
| cm->seq_params.bit_depth, *block, blk_row, blk_col, |
| max_tx_size, token_stats); |
| *block += step; |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w, |
| const TokenExtra **tok, |
| const TokenExtra *const tok_end) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| assert(!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| |
| if (!is_inter) { |
| av1_write_intra_coeffs_mb(cm, x, w, bsize); |
| } else { |
| int block[MAX_MB_PLANE] = { 0 }; |
| assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| TOKEN_STATS token_stats; |
| init_token_stats(&token_stats); |
| |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64, |
| xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); |
| |
| for (int row = 0; row < num_4x4_h; row += mu_blocks_high) { |
| for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) { |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row, |
| col, &block[plane], plane); |
| } |
| } |
| } |
| #if CONFIG_RD_DEBUG |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (mbmi->sb_type[xd->tree_type == CHROMA_PART] >= BLOCK_8X8 && |
| rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { |
| dump_mode_info(mbmi); |
| assert(0); |
| } |
| } |
| #endif // CONFIG_RD_DEBUG |
| } |
| } |
| |
| static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, |
| aom_writer *w, const TokenExtra **tok, |
| const TokenExtra *const tok_end, |
| int mi_row, int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| const int grid_idx = mi_row * mi_params->mi_stride + mi_col; |
| xd->mi = mi_params->mi_grid_base + grid_idx; |
| cpi->td.mb.mbmi_ext_frame = |
| cpi->mbmi_ext_info.frame_base + |
| get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize, |
| cpi->mbmi_ext_info.stride); |
| xd->tx_type_map = mi_params->tx_type_map + grid_idx; |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| if (xd->tree_type == SHARED_PART) |
| assert(mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV]); |
| assert(bsize <= cm->seq_params.sb_size || |
| (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL)); |
| |
| const int bh = mi_size_high[bsize]; |
| const int bw = mi_size_wide[bsize]; |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols); |
| |
| xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| write_mbmi_b(cpi, w); |
| |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, AOMMIN(2, av1_num_planes(cm))); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| const uint8_t palette_size_plane = |
| mbmi->palette_mode_info.palette_size[plane]; |
| assert(!mbmi->skip_mode || !palette_size_plane); |
| if (palette_size_plane > 0) { |
| assert(mbmi->use_intrabc[plane] == 0); |
| assert(av1_allow_palette(cm->features.allow_screen_content_tools, |
| mbmi->sb_type[plane])); |
| assert(!plane || xd->is_chroma_ref); |
| int rows, cols; |
| av1_get_block_dimensions(mbmi->sb_type[plane], plane, xd, NULL, NULL, |
| &rows, &cols); |
| assert(*tok < tok_end); |
| #if CONFIG_NEW_COLOR_MAP_CODING |
| pack_map_tokens(w, tok, palette_size_plane, cols, rows); |
| #else |
| pack_map_tokens(w, tok, palette_size_plane, rows * cols); |
| #endif // CONFIG_NEW_COLOR_MAP_CODING |
| } |
| } |
| |
| const int is_inter_tx = is_inter_block(mbmi, xd->tree_type); |
| const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART]; |
| const int segment_id = mbmi->segment_id; |
| if (xd->tree_type != CHROMA_PART) { |
| if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && |
| !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) { |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); |
| if (is_inter_tx) { // This implies skip flag is 0. |
| const int txbh = tx_size_high_unit[max_tx_size]; |
| const int txbw = tx_size_wide_unit[max_tx_size]; |
| const int width = mi_size_wide[bsize]; |
| const int height = mi_size_high[bsize]; |
| for (int idy = 0; idy < height; idy += txbh) { |
| for (int idx = 0; idx < width; idx += txbw) { |
| #if CONFIG_NEW_TX_PARTITION |
| write_tx_partition(xd, mbmi, max_tx_size, idy, idx, w); |
| #else |
| write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| write_tx_partition(xd, mbmi, max_tx_size, 0, 0, w); |
| #else |
| write_selected_tx_size(xd, w); |
| #endif |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd); |
| } |
| } else { |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, |
| skip_txfm && is_inter_tx, xd); |
| } |
| } |
| |
| if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { |
| write_tokens_b(cpi, w, tok, tok_end); |
| } |
| #if CONFIG_IBC_SR_EXT |
| av1_mark_block_as_coded(xd, mi_row, mi_col, bsize, cm->seq_params.sb_size); |
| #endif // CONFIG_IBC_SR_EXT |
| } |
| |
| static AOM_INLINE void write_partition(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, int hbs, |
| int mi_row, int mi_col, PARTITION_TYPE p, |
| BLOCK_SIZE bsize, aom_writer *w) { |
| const int is_partition_point = bsize >= BLOCK_8X8; |
| |
| if (!is_partition_point) return; |
| |
| const int plane = xd->tree_type == CHROMA_PART; |
| if (bsize == BLOCK_8X8 && plane > 0) return; |
| |
| const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols; |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!has_rows && !has_cols) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| |
| int parent_block_width = block_size_wide[bsize]; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) { |
| int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); |
| // if luma blocks uses smaller blocks, then chroma will also split |
| if (luma_split_flag > 3) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| } |
| |
| if (has_rows && has_cols) { |
| aom_write_symbol(w, p, ec_ctx->partition_cdf[plane][ctx], |
| partition_cdf_length(bsize)); |
| } else if (!has_rows && has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } else { |
| assert(has_rows && !has_cols); |
| assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } |
| } |
| |
| static AOM_INLINE void write_modes_sb( |
| AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w, |
| const TokenExtra **tok, const TokenExtra *const tok_end, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| const PARTITION_TYPE partition = |
| get_partition(cm, xd->tree_type == CHROMA_PART, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| int rcol0, rcol1, rrow0, rrow1; |
| if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, |
| &rcol0, &rcol1, &rrow0, &rrow1)) { |
| const int rstride = cm->rst_info[plane].horz_units_per_tile; |
| for (int rrow = rrow0; rrow < rrow1; ++rrow) { |
| for (int rcol = rcol0; rcol < rcol1; ++rcol) { |
| const int runit_idx = rcol + rrow * rstride; |
| const RestorationUnitInfo *rui = |
| &cm->rst_info[plane].unit_info[runit_idx]; |
| loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, |
| cpi->td.counts); |
| } |
| } |
| } |
| } |
| |
| write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_row + hbs < mi_params->mi_rows) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_col + hbs < mi_params->mi_cols) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| break; |
| case PARTITION_SPLIT: |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, |
| subsize); |
| break; |
| case PARTITION_HORZ_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| break; |
| case PARTITION_HORZ_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); |
| break; |
| case PARTITION_VERT_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| break; |
| case PARTITION_VERT_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| |
| write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); |
| } |
| break; |
| default: assert(0); |
| } |
| |
| // update partition context |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static AOM_INLINE void write_modes(AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| aom_writer *const w, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int mi_row_start = tile->mi_row_start; |
| const int mi_row_end = tile->mi_row_end; |
| const int mi_col_start = tile->mi_col_start; |
| const int mi_col_end = tile->mi_col_end; |
| const int num_planes = av1_num_planes(cm); |
| |
| av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); |
| av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd); |
| |
| if (cpi->common.delta_q_info.delta_q_present_flag) { |
| xd->current_base_qindex = cpi->common.quant_params.base_qindex; |
| if (cpi->common.delta_q_info.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, num_planes); |
| } |
| } |
| |
| for (int mi_row = mi_row_start; mi_row < mi_row_end; |
| mi_row += cm->seq_params.mib_size) { |
| const int sb_row_in_tile = |
| (mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2; |
| const TokenExtra *tok = |
| cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start; |
| const TokenExtra *tok_end = |
| tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count; |
| |
| av1_zero_left_context(xd); |
| |
| for (int mi_col = mi_col_start; mi_col < mi_col_end; |
| mi_col += cm->seq_params.mib_size) { |
| #if CONFIG_IBC_SR_EXT |
| av1_reset_is_mi_coded_map(xd, cm->seq_params.mib_size); |
| #endif // CONFIG_IBC_SR_EXT |
| cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); |
| const int total_loop_num = |
| (frame_is_intra_only(cm) && !cm->seq_params.monochrome && |
| cm->seq_params.enable_sdp) |
| ? 2 |
| : 1; |
| xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART); |
| write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col, |
| cm->seq_params.sb_size); |
| if (total_loop_num == 2) { |
| xd->tree_type = CHROMA_PART; |
| write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col, |
| cm->seq_params.sb_size); |
| xd->tree_type = SHARED_PART; |
| } |
| } |
| assert(tok == tok_end); |
| } |
| } |
| |
| static AOM_INLINE void encode_restoration_mode( |
| AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { |
| assert(!cm->features.all_lossless); |
| if (!cm->seq_params.enable_restoration) return; |
| if (is_global_intrabc_allowed(cm)) return; |
| const int num_planes = av1_num_planes(cm); |
| int all_none = 1, chroma_none = 1; |
| for (int p = 0; p < num_planes; ++p) { |
| RestorationInfo *rsi = &cm->rst_info[p]; |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| all_none = 0; |
| chroma_none &= p == 0; |
| } |
| switch (rsi->frame_restoration_type) { |
| case RESTORE_NONE: |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, 0); |
| break; |
| case RESTORE_WIENER: |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_bit(wb, 0); |
| break; |
| case RESTORE_SGRPROJ: |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_bit(wb, 1); |
| break; |
| case RESTORE_SWITCHABLE: |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, 1); |
| break; |
| default: assert(0); |
| } |
| } |
| if (!all_none) { |
| assert(cm->seq_params.sb_size == BLOCK_64X64 || |
| cm->seq_params.sb_size == BLOCK_128X128); |
| const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; |
| |
| RestorationInfo *rsi = &cm->rst_info[0]; |
| |
| assert(rsi->restoration_unit_size >= sb_size); |
| assert(RESTORATION_UNITSIZE_MAX == 256); |
| |
| if (sb_size == 64) { |
| aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); |
| } |
| if (rsi->restoration_unit_size > 64) { |
| aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); |
| } |
| } |
| |
| if (num_planes > 1) { |
| int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); |
| if (s && !chroma_none) { |
| aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != |
| cm->rst_info[0].restoration_unit_size); |
| assert(cm->rst_info[1].restoration_unit_size == |
| cm->rst_info[0].restoration_unit_size || |
| cm->rst_info[1].restoration_unit_size == |
| (cm->rst_info[0].restoration_unit_size >> s)); |
| assert(cm->rst_info[2].restoration_unit_size == |
| cm->rst_info[1].restoration_unit_size); |
| } else if (!s) { |
| assert(cm->rst_info[1].restoration_unit_size == |
| cm->rst_info[0].restoration_unit_size); |
| assert(cm->rst_info[2].restoration_unit_size == |
| cm->rst_info[1].restoration_unit_size); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_wiener_filter(int wiener_win, |
| const WienerInfo *wiener_info, |
| WienerInfo *ref_wiener_info, |
| aom_writer *wb) { |
| if (wiener_win == WIENER_WIN) |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
| else |
| assert(wiener_info->vfilter[0] == 0 &&
|