New experiment: Perceptual Vector Quantization from Daala
PVQ replaces the scalar quantizer and coefficient coding with a new
design originally developed in Daala. It currently depends on the
Daala entropy coder although it could be adapted to work with another
entropy coder if needed:
./configure --enable-experimental --enable-daala_ec --enable-pvq
The version of PVQ in this commit is adapted from the following
revision of Daala:
https://github.com/xiph/daala/commit/fb51c1ade6a31b668a0157d89de8f0a4493162a8
More information about PVQ:
- https://people.xiph.org/~jm/daala/pvq_demo/
- https://jmvalin.ca/papers/spie_pvq.pdf
The following files are copied as-is from Daala with minimal
adaptations, therefore we disable clang-format on those files
to make it easier to synchronize the AV1 and Daala codebases in the future:
av1/common/generic_code.c
av1/common/generic_code.h
av1/common/laplace_tables.c
av1/common/partition.c
av1/common/partition.h
av1/common/pvq.c
av1/common/pvq.h
av1/common/state.c
av1/common/state.h
av1/common/zigzag.h
av1/common/zigzag16.c
av1/common/zigzag32.c
av1/common/zigzag4.c
av1/common/zigzag64.c
av1/common/zigzag8.c
av1/decoder/decint.h
av1/decoder/generic_decoder.c
av1/decoder/laplace_decoder.c
av1/decoder/pvq_decoder.c
av1/decoder/pvq_decoder.h
av1/encoder/daala_compat_enc.c
av1/encoder/encint.h
av1/encoder/generic_encoder.c
av1/encoder/laplace_encoder.c
av1/encoder/pvq_encoder.c
av1/encoder/pvq_encoder.h
Known issues:
- Lossless mode is not supported, '--lossless=1' will give the same result as
'--end-usage=q --cq-level=1'.
- High bit depth is not supported by PVQ.
Change-Id: I1ae0d6517b87f4c1ccea944b2e12dc906979f25e
diff --git a/av1/common/generic_code.c b/av1/common/generic_code.c
new file mode 100644
index 0000000..4022cf1
--- /dev/null
+++ b/av1/common/generic_code.c
@@ -0,0 +1,145 @@
+/*
+ * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+/* clang-format off */
+
+#ifdef HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include "generic_code.h"
+
+void od_cdf_init(uint16_t *cdf, int ncdfs, int nsyms, int val, int first) {
+ int i;
+ int j;
+ for (i = 0; i < ncdfs; i++) {
+ for (j = 0; j < nsyms; j++) {
+ cdf[i*nsyms + j] = val*j + first;
+ }
+ }
+}
+
+/** Adapts a Q15 cdf after encoding/decoding a symbol. */
+void od_cdf_adapt_q15(int val, uint16_t *cdf, int n, int *count, int rate) {
+ int i;
+ *count = OD_MINI(*count + 1, 1 << rate);
+ OD_ASSERT(cdf[n - 1] == 32768);
+ if (*count >= 1 << rate) {
+ /* Steady-state adaptation based on a simple IIR with dyadic rate. */
+ for (i = 0; i < n; i++) {
+ int tmp;
+ /* When (i < val), we want the adjustment ((cdf[i] - tmp) >> rate) to be
+ positive so long as (cdf[i] > i + 1), and 0 when (cdf[i] == i + 1),
+ to ensure we don't drive any probabilities to 0. Replacing cdf[i] with
+ (i + 2) and solving ((i + 2 - tmp) >> rate == 1) for tmp produces
+ tmp == i + 2 - (1 << rate). Using this value of tmp with
+ cdf[i] == i + 1 instead gives an adjustment of 0 as desired.
+
+ When (i >= val), we want ((cdf[i] - tmp) >> rate) to be negative so
+ long as cdf[i] < 32768 - (n - 1 - i), and 0 when
+ cdf[i] == 32768 - (n - 1 - i), again to ensure we don't drive any
+ probabilities to 0. Since right-shifting any negative value is still
+ negative, we can solve (32768 - (n - 1 - i) - tmp == 0) for tmp,
+ producing tmp = 32769 - n + i. Using this value of tmp with smaller
+ values of cdf[i] instead gives negative adjustments, as desired.
+
+ Combining the two cases gives the expression below. These could be
+ stored in a lookup table indexed by n and rate to avoid the
+ arithmetic. */
+ tmp = 2 - (1<<rate) + i + (32767 + (1<<rate) - n)*(i >= val);
+ cdf[i] -= (cdf[i] - tmp) >> rate;
+ }
+ }
+ else {
+ int alpha;
+ /* Initial adaptation for the first symbols. The adaptation rate is
+ computed to be equivalent to what od_{en,de}code_cdf_adapt() does
+ when the initial cdf is set to increment/4. */
+ alpha = 4*32768/(n + 4**count);
+ for (i = 0; i < n; i++) {
+ int tmp;
+ tmp = (32768 - n)*(i >= val) + i + 1;
+ cdf[i] -= ((cdf[i] - tmp)*alpha) >> 15;
+ }
+ }
+ OD_ASSERT(cdf[n - 1] == 32768);
+}
+
+/** Initializes the cdfs and freq counts for a model.
+ *
+ * @param [out] model model being initialized
+ */
+void generic_model_init(generic_encoder *model) {
+ int i;
+ int j;
+ model->increment = 64;
+ for (i = 0; i < GENERIC_TABLES; i++) {
+ for (j = 0; j < 16; j++) {
+ /* Do flat initialization equivalent to a single symbol in each bin. */
+ model->cdf[i][j] = (j + 1) * model->increment;
+ }
+ }
+}
+
+/** Takes the base-2 log of E(x) in Q1.
+ *
+ * @param [in] ExQ16 expectation of x in Q16
+ *
+ * @retval 2*log2(ExQ16/2^16)
+ */
+int log_ex(int ex_q16) {
+ int lg;
+ int lg_q1;
+ int odd;
+ lg = OD_ILOG(ex_q16);
+ if (lg < 15) {
+ odd = ex_q16*ex_q16 > 2 << 2*lg;
+ }
+ else {
+ int tmp;
+ tmp = ex_q16 >> (lg - 8);
+ odd = tmp*tmp > (1 << 15);
+ }
+ lg_q1 = OD_MAXI(0, 2*lg - 33 + odd);
+ return lg_q1;
+}
+
+/** Updates the probability model based on the encoded/decoded value
+ *
+ * @param [in,out] model generic prob model
+ * @param [in,out] ExQ16 expectation of x
+ * @param [in] x variable encoded/decoded (used for ExQ16)
+ * @param [in] xs variable x after shift (used for the model)
+ * @param [in] id id of the icdf to adapt
+ * @param [in] integration integration period of ExQ16 (leaky average over
+ * 1<<integration samples)
+ */
+void generic_model_update(generic_encoder *model, int *ex_q16, int x, int xs,
+ int id, int integration) {
+ int i;
+ int xenc;
+ uint16_t *cdf;
+ cdf = model->cdf[id];
+ /* Renormalize if we cannot add increment */
+ if (cdf[15] + model->increment > 32767) {
+ for (i = 0; i < 16; i++) {
+ /* Second term ensures that the pdf is non-null */
+ cdf[i] = (cdf[i] >> 1) + i + 1;
+ }
+ }
+ /* Update freq count */
+ xenc = OD_MINI(15, xs);
+ /* This can be easily vectorized */
+ for (i = xenc; i < 16; i++) cdf[i] += model->increment;
+ /* We could have saturated ExQ16 directly, but this is safe and simpler */
+ x = OD_MINI(x, 32767);
+ OD_IIR_DIADIC(*ex_q16, x << 16, integration);
+}