| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "av1/common/enums.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| // This function will determine whether or not to create a warped |
| // prediction. |
| int av1_allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int ref, |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| int build_for_obmc, const struct scale_factors *const sf, |
| WarpedMotionParams *final_warp_params) { |
| // Note: As per the spec, we must test the fixed point scales here, which are |
| // at a higher precision (1 << 14) than the xs and ys in subpel_params (that |
| // have 1 << 10 precision). |
| if (av1_is_scaled(sf)) return 0; |
| |
| if (final_warp_params != NULL) *final_warp_params = default_warp_params; |
| |
| if (build_for_obmc) return 0; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params[ref], |
| sizeof(*final_warp_params)); |
| return 1; |
| #else |
| if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params)); |
| return 1; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| } else if (warp_types->global_warp_allowed && !gm_params->invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, |
| int block_height, int pix_row, int pix_col, |
| int subsampling_x, int subsampling_y, int bit_depth, |
| int is_intrabc, const struct scale_factors *sf, |
| const struct buf_2d *ref_buf, |
| InterpFilter interp_filter) { |
| inter_pred_params->block_width = block_width; |
| inter_pred_params->block_height = block_height; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->orig_block_width = block_width; |
| inter_pred_params->orig_block_height = block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->pix_row = pix_row; |
| inter_pred_params->pix_col = pix_col; |
| inter_pred_params->subsampling_x = subsampling_x; |
| inter_pred_params->subsampling_y = subsampling_y; |
| inter_pred_params->bit_depth = bit_depth; |
| inter_pred_params->is_intrabc = is_intrabc; |
| inter_pred_params->scale_factors = sf; |
| inter_pred_params->ref_frame_buf = *ref_buf; |
| inter_pred_params->mode = TRANSLATION_PRED; |
| inter_pred_params->comp_mode = UNIFORM_SINGLE; |
| |
| if (is_intrabc) { |
| inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; |
| inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; |
| } else { |
| inter_pred_params->interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_width); |
| inter_pred_params->interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_height); |
| } |
| } |
| |
| void av1_init_comp_mode(InterPredParams *inter_pred_params) { |
| inter_pred_params->comp_mode = UNIFORM_COMP; |
| } |
| |
| void av1_init_warp_params(InterPredParams *inter_pred_params, |
| const WarpTypesAllowed *warp_types, int ref, |
| const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { |
| if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8) |
| return; |
| |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(mi->ref_frame[ref])) return; |
| #endif // CONFIG_TIP |
| |
| if (xd->cur_frame_force_integer_mv) return; |
| |
| if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| ref, |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| 0, inter_pred_params->scale_factors, |
| &inter_pred_params->warp_params)) |
| inter_pred_params->mode = WARP_PRED; |
| } |
| |
| void av1_make_inter_predictor(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| assert(IMPLIES(inter_pred_params->conv_params.is_compound, |
| inter_pred_params->conv_params.dst != NULL)); |
| |
| // TODO(jingning): av1_warp_plane() can be further cleaned up. |
| if (inter_pred_params->mode == WARP_PRED) { |
| av1_warp_plane( |
| &inter_pred_params->warp_params, inter_pred_params->bit_depth, |
| inter_pred_params->ref_frame_buf.buf0, |
| inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, |
| inter_pred_params->ref_frame_buf.stride, dst, |
| inter_pred_params->pix_col, inter_pred_params->pix_row, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| dst_stride, inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y, &inter_pred_params->conv_params); |
| } else if (inter_pred_params->mode == TRANSLATION_PRED) { |
| highbd_inter_predictor( |
| src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params, inter_pred_params->bit_depth); |
| } |
| } |
| |
| #if !CONFIG_WEDGE_MOD_EXT |
| static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, |
| 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, |
| 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, |
| 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| #else |
| /* clang-format off */ |
| static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 8, 8, 8, 4, 4, |
| // 8, 10, 12, 14, 15, |
| 0, -4, -4, -8, -8, |
| // 16, 17, 18, 20, 22, |
| -8, -8, -8, -4, -4, |
| // 24, 26, 28, 30, 31 |
| 0, 4, 4, 8, 8 |
| }; |
| static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 0, -2, -4, -4, -8, |
| // 8, 10, 12, 14, 15, |
| -8, -8, -4, -4, -2, |
| // 16, 17, 18, 20, 22, |
| 0, 2, 4, 4, 8, |
| // 24, 26, 28, 30, 31 |
| 8, 8, 4, 4, 2 |
| }; |
| /* clang-format on */ |
| #endif // !CONFIG_WEDGE_MOD_EXT |
| |
| #if !CONFIG_WEDGE_MOD_EXT |
| static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift, |
| int width) { |
| if (shift >= 0) { |
| memcpy(dst + shift, src, width - shift); |
| memset(dst, src[0], shift); |
| } else { |
| shift = -shift; |
| memcpy(dst, src + shift, width - shift); |
| memset(dst + width - shift, src[width - 1], shift); |
| } |
| } |
| |
| /* clang-format off */ |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| }; |
| /* clang-format on */ |
| #endif // !CONFIG_WEDGE_MOD_EXT |
| |
| // [negative][direction] |
| #if CONFIG_WEDGE_MOD_EXT |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #else |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| #if CONFIG_WEDGE_MOD_EXT |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| DECLARE_ALIGNED(16, static uint8_t, |
| smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] |
| [MAX_WEDGE_SQUARE]); |
| |
| static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = { |
| { WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 }, |
| { WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 }, |
| { WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 }, |
| { WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 }, |
| { WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 }, |
| { WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 }, |
| { WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 }, |
| { WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 }, |
| { WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 }, |
| { WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 }, |
| { WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 }, |
| { WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 }, |
| { WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 }, |
| { WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 }, |
| { WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 }, |
| { WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 }, |
| { WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 }, |
| { WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 }, |
| { WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 }, |
| { WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 }, |
| { WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 }, |
| { WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 }, |
| { WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 }, |
| }; |
| #else |
| static const wedge_code_type wedge_codebook_16_hgtw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_hltw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_heqw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16] }, |
| }; |
| #else |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], |
| wedge_masks[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], |
| wedge_masks[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], |
| wedge_masks[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], |
| wedge_masks[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], |
| wedge_masks[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], |
| wedge_masks[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], |
| wedge_masks[BLOCK_32X32] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], |
| wedge_masks[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], |
| wedge_masks[BLOCK_32X8] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| }; |
| #endif |
| |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| av1_wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| #if !CONFIG_WEDGE_MOD_EXT |
| const uint8_t wsignflip = |
| av1_wedge_params_lookup[sb_type].signflip[wedge_index]; |
| #endif |
| |
| assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| #if CONFIG_WEDGE_MOD_EXT |
| master = wedge_master_mask[neg][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| #else |
| master = wedge_mask_obl[neg ^ wsignflip][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| #endif // CONFIG_WEDGE_MOD_EXT |
| return master; |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| assert(is_masked_compound_type(comp_data->type)); |
| (void)sb_type; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| case COMPOUND_DIFFWTD: return comp_data->seg_mask; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static AOM_INLINE void diffwtd_mask_d16( |
| uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| int round = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); |
| diff = ROUND_POWER_OF_TWO(diff, round); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_d16_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void diffwtd_mask_highbd( |
| uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| const unsigned int bd) { |
| assert(bd >= 8); |
| if (bd == 8) { |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } else { |
| const unsigned int bd_shift = bd - 8; |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_highbd_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_INLINE void init_wedge_master_masks() { |
| #if CONFIG_WEDGE_MOD_EXT |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| for (int angle = 0; angle < WEDGE_ANGLES; angle++) { |
| int idx = 0; |
| // printf("angle: %d\n", angle); |
| for (int n = 0; n < h; n++) { |
| int y = ((n << 1) - h + 1) * wedge_sin_lut[angle]; |
| for (int m = 0; m < w; m++, idx++) { |
| int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y; |
| wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64); |
| wedge_master_mask[1][angle][idx] = |
| 64 - wedge_master_mask[0][angle][idx]; |
| } |
| } |
| } |
| #else |
| int i, j; |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| const int stride = MASK_MASTER_STRIDE; |
| |
| // Note: index [0] stores the masters, and [1] its complement. |
| // Generate prototype by shifting the masters |
| int shift = h / 4; |
| for (i = 0; i < h; i += 2) { |
| shift_copy(wedge_master_oblique_even, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, |
| MASK_MASTER_SIZE); |
| shift--; |
| shift_copy(wedge_master_oblique_odd, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, |
| MASK_MASTER_SIZE); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| } |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; |
| wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; |
| const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; |
| wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - mskx; |
| } |
| } |
| #endif |
| } |
| |
| static AOM_INLINE void init_wedge_masks() { |
| uint8_t *dst = wedge_mask_buf; |
| BLOCK_SIZE bsize; |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; |
| const int wtypes = wedge_params->wedge_types; |
| if (wtypes == 0) continue; |
| const uint8_t *mask; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int w; |
| for (w = 0; w < wtypes; ++w) { |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| dst += bw * bh; |
| } |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| } |
| } |
| |
| /* clang-format off */ |
| static const uint8_t ii_weights1d[MAX_SB_SIZE] = { |
| 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, |
| 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, |
| 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, |
| 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| }; |
| static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| 8, 8, 4, 4, 2, 2 |
| }; |
| /* clang-format on */ |
| |
| static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, |
| INTERINTRA_MODE mode) { |
| int i, j; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_SMOOTH_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) |
| mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, 32, bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| } |
| } |
| |
| static AOM_INLINE void init_smooth_interintra_masks() { |
| for (int m = 0; m < INTERINTRA_MODES; ++m) { |
| for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { |
| const int bw = block_size_wide[bs]; |
| const int bh = block_size_high[bs]; |
| if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; |
| build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, |
| m); |
| } |
| } |
| } |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity |
| // in hardware. |
| #define OPFL_CLAMP_MV_DELTA 1 |
| #define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS) |
| |
| static INLINE int opfl_get_subblock_size(int bw, int bh, int plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ) { |
| #if CONFIG_OPTFLOW_ON_TIP |
| return ((plane || (bh <= 8 && bw <= 8)) && use_4x4) ? OF_MIN_BSIZE : OF_BSIZE; |
| #else |
| return (plane || (bh <= 8 && bw <= 8)) ? OF_MIN_BSIZE : OF_BSIZE; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| } |
| |
| void av1_opfl_build_inter_predictor( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst) { |
| assert(cm->seq_params.order_hint_info.enable_order_hint); |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| #if CONFIG_OPTFLOW_ON_TIP |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| // Do references one at a time |
| const int is_compound = 0; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype), |
| is_warp_mode(mi->motion_mode) }; |
| #if CONFIG_OPTFLOW_ON_TIP |
| const struct scale_factors *const sf = |
| is_tip |
| ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]); |
| #else |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; |
| const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| #if CONFIG_OPTFLOW_ON_TIP |
| const struct buf_2d *const pre_buf = |
| is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref] |
| : (is_intrabc ? dst_buf : &pd->pre[ref]); |
| #else |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| |
| #if CONFIG_TIP |
| const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); |
| const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); |
| inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(pre_y); |
| inter_pred_params->dist_to_bottom_edge = GET_MV_SUBPEL(height - bh - pre_y); |
| inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(pre_x); |
| inter_pred_params->dist_to_right_edge = GET_MV_SUBPEL(width - bw - pre_x); |
| #endif |
| |
| inter_pred_params->conv_params = get_conv_params_no_round( |
| 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi); |
| if (inter_pred_params->mode == WARP_PRED) return; |
| |
| assert(mi->interinter_comp.type == COMPOUND_AVERAGE); |
| av1_build_one_inter_predictor(pred_dst, bw, &mi->mv[ref].as_mv, |
| inter_pred_params, xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| |
| // Note: grad_prec_bits param returned correspond to the precision |
| // of the gradient information in bits assuming gradient |
| // computed at unit pixel step normalization is 0 scale. |
| // Negative values indicate gradient returned at reduced precision, and |
| // positive values indicate gradient returned at higher precision. |
| void av1_compute_subpel_gradients_mc_highbd( |
| MACROBLOCKD *xd, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y, |
| uint16_t **mc_buf, InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, int *grad_prec_bits, |
| int16_t *x_grad, int16_t *y_grad) { |
| *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; |
| |
| // Original predictor |
| const MV mv_orig = mi->mv[ref].as_mv; |
| MV mv_modified = mv_orig; |
| uint16_t tmp_buf1[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 }; |
| uint16_t tmp_buf2[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 }; |
| // X gradient |
| // Get predictor to the left |
| mv_modified.col = mv_orig.col - (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| mv_modified.row = mv_orig.row; |
| av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Get predictor to the right |
| mv_modified.col = mv_orig.col + (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| mv_modified.row = mv_orig.row; |
| av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Compute difference. |
| // Note since the deltas are at +2^g/8 and -2^g/8 subpel locations |
| // (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is |
| // 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned |
| // is at reduced precision by 2-g bits. That explains the grad_prec_bits |
| // return value of g-2 at the end of this function. |
| |
| aom_highbd_subtract_block(bh, bw, x_grad, bw, tmp_buf2, bw, tmp_buf1, bw, |
| xd->bd); |
| |
| // Y gradient |
| // Get predictor below |
| mv_modified.col = mv_orig.col; |
| mv_modified.row = mv_orig.row - (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Get predictor above |
| mv_modified.col = mv_orig.col; |
| mv_modified.row = mv_orig.row + (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Compute difference. |
| // Note since the deltas are at +2^g/8 and -2^g/8 subpel locations |
| // (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is |
| // 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned |
| // is at reduced precision by 2-g bits. That explains the grad_prec_bits |
| // return value of g-2 at the end of this function. |
| |
| aom_highbd_subtract_block(bh, bw, y_grad, bw, tmp_buf2, bw, tmp_buf1, bw, |
| xd->bd); |
| } |
| |
| void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src, |
| int16_t *x_grad, int16_t *y_grad, |
| const int bw, const int bh) { |
| #if OPFL_BICUBIC_GRAD |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| int id_prev, id_prev2, id_next, id_next2, is_boundary; |
| int32_t temp = 0; |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_prev = AOMMAX(j - 1, 0); |
| id_prev2 = AOMMAX(j - 2, 0); |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_next2 = AOMMIN(j + 2, bw - 1); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next] - |
| pred_src[i * bw + id_prev]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next2] - |
| pred_src[i * bw + id_prev2]); |
| x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| INT16_MIN, INT16_MAX); |
| |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_prev = AOMMAX(i - 1, 0); |
| id_prev2 = AOMMAX(i - 2, 0); |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_next2 = AOMMIN(i + 2, bh - 1); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[id_next * bw + j] - |
| pred_src[id_prev * bw + j]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[id_next2 * bw + j] - |
| pred_src[id_prev2 * bw + j]); |
| y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| INT16_MIN, INT16_MAX); |
| } |
| } |
| #else |
| (void)pred_src; |
| (void)x_grad; |
| (void)y_grad; |
| (void)bw; |
| (void)bh; |
| #endif // OPFL_BICUBIC_GRAD |
| } |
| |
| #if OPFL_BILINEAR_GRAD |
| void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad, |
| int16_t *y_grad, const int bw, |
| const int bh) { |
| int id_next, id_prev, is_boundary; |
| int32_t temp = 0; |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_prev = AOMMAX(j - 1, 0); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]); |
| x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| INT16_MIN, INT16_MAX); |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_prev = AOMMAX(i - 1, 0); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]); |
| y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| INT16_MIN, INT16_MAX); |
| } |
| } |
| } |
| #endif // OPFL_BILINEAR_GRAD |
| |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh, |
| int *grad_prec_bits, int16_t *x_grad, |
| int16_t *y_grad) { |
| // Reuse pixels in pred_dst to compute gradients |
| #if OPFL_BILINEAR_GRAD |
| (void)is_hbd; |
| av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh); |
| #else |
| av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh); |
| #endif // OPFL_BILINEAR_GRAD |
| *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; |
| } |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| |
| // Optical flow based mv refinement computation function: |
| // |
| // p0, pstride0: predictor 0 and its stride |
| // p1, pstride1: predictor 1 and its stride |
| // gx0, gy0: x and y gradients for p0 |
| // gx1, gy1: x and y gradients for p1 |
| // gstride: stride for all the gradients assumed to be the same |
| // bw, bh: block dimensions |
| // d0: distances of p0 to current frame, where positive value refers to p0 |
| // before the current frame. |
| // d1: distances of p1 to current frame, where positive value refers to p1 |
| // before the current frame. |
| // max_prec_bits: maximum offset in bits |
| // vx0, vy0: output high resolution mv offset for p0 |
| // vx1, vy1: output high resolution mv offset for p1 |
| void av1_opfl_mv_refinement_highbd(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1, |
| int grad_prec_bits, int mv_prec_bits, |
| int *vx0, int *vy0, int *vx1, int *vy1) { |
| assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0)); |
| int64_t su2 = 0; |
| int64_t suv = 0; |
| int64_t sv2 = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| const int64_t u = d0 * gx0[i * gstride + j] - d1 * gx1[i * gstride + j]; |
| const int64_t v = d0 * gy0[i * gstride + j] - d1 * gy1[i * gstride + j]; |
| const int64_t w = d0 * (p0[i * pstride0 + j] - p1[i * pstride1 + j]); |
| su2 += (u * u); |
| suv += (u * v); |
| sv2 += (v * v); |
| suw += (u * w); |
| svw += (v * w); |
| } |
| } |
| const int bits = mv_prec_bits + grad_prec_bits; |
| #if OPFL_REGULARIZED_LS |
| const int rls_alpha = (bw * bh >> 4) << OPFL_RLS_PARAM_BITS; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| #endif |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = (int64_t)clamp((int)su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| sv2 = (int64_t)clamp((int)sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suv = (int64_t)clamp((int)suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suw = (int64_t)clamp((int)suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| svw = (int64_t)clamp((int)svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det == 0) return; |
| const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits); |
| const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits); |
| |
| *vx0 = (int)divide_and_round_signed(det_x, det); |
| *vy0 = (int)divide_and_round_signed(det_y, det); |
| const int tx1 = (*vx0) * d1; |
| const int ty1 = (*vy0) * d1; |
| *vx1 = (int)divide_and_round_signed(tx1, d0); |
| *vy1 = (int)divide_and_round_signed(ty1, d0); |
| } |
| |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| // Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of |
| // d0 * P0 - d1 * P1. |
| void av1_opfl_mv_refinement_interp_grad(const int16_t *pdiff, int pstride0, |
| const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int d0, |
| int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, |
| int *vx1, int *vy1) { |
| assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0)); |
| int64_t su2 = 0; |
| int64_t suv = 0; |
| int64_t sv2 = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| const int u = gx[i * gstride + j]; |
| const int v = gy[i * gstride + j]; |
| const int w = pdiff[i * pstride0 + j]; |
| su2 += (u * u); |
| suv += (u * v); |
| sv2 += (v * v); |
| suw += (u * w); |
| svw += (v * w); |
| } |
| } |
| const int bits = mv_prec_bits + grad_prec_bits; |
| #if OPFL_REGULARIZED_LS |
| const int rls_alpha = (bw * bh >> 4) << OPFL_RLS_PARAM_BITS; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| #endif |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = (int64_t)clamp((int)su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| sv2 = (int64_t)clamp((int)sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suv = (int64_t)clamp((int)suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suw = (int64_t)clamp((int)suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| svw = (int64_t)clamp((int)svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det == 0) return; |
| const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits); |
| const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits); |
| |
| *vx0 = (int)divide_and_round_signed(det_x, det); |
| *vy0 = (int)divide_and_round_signed(det_y, det); |
| const int tx1 = (*vx0) * d1; |
| const int ty1 = (*vy0) * d1; |
| *vx1 = (int)divide_and_round_signed(tx1, d0); |
| *vy1 = (int)divide_and_round_signed(ty1, d0); |
| } |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| |
| int av1_opfl_mv_refinement_nxn_interp_grad_c( |
| const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int n, int d0, int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, int *vx1, int *vy1) { |
| assert(bw % n == 0 && bh % n == 0); |
| int n_blocks = 0; |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| for (int i = 0; i < bh; i += n) { |
| for (int j = 0; j < bw; j += n) { |
| av1_opfl_mv_refinement_interp_grad( |
| pdiff + (i * pstride + j), pstride, gx + (i * gstride + j), |
| gy + (i * gstride + j), gstride, n, n, d0, d1, grad_prec_bits, |
| mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, vx1 + n_blocks, |
| vy1 + n_blocks); |
| n_blocks++; |
| } |
| } |
| #else |
| (void)pdiff; |
| (void)pstride; |
| (void)gx; |
| (void)gy; |
| (void)gstride; |
| (void)bw; |
| (void)bh; |
| (void)n; |
| (void)d0; |
| (void)d1; |
| (void)grad_prec_bits; |
| (void)mv_prec_bits; |
| (void)vx0; |
| (void)vy0; |
| (void)vx1; |
| (void)vy1; |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| return n_blocks; |
| } |
| |
| // Function to compute optical flow offsets in nxn blocks |
| int av1_opfl_mv_refinement_nxn_highbd_c(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int n, |
| int d0, int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, |
| int *vx1, int *vy1) { |
| assert(bw % n == 0 && bh % n == 0); |
| int n_blocks = 0; |
| for (int i = 0; i < bh; i += n) { |
| for (int j = 0; j < bw; j += n) { |
| av1_opfl_mv_refinement_highbd( |
| p0 + (i * pstride0 + j), pstride0, p1 + (i * pstride1 + j), pstride1, |
| gx0 + (i * gstride + j), gy0 + (i * gstride + j), |
| gx1 + (i * gstride + j), gy1 + (i * gstride + j), gstride, n, n, d0, |
| d1, grad_prec_bits, mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, |
| vx1 + n_blocks, vy1 + n_blocks); |
| n_blocks++; |
| } |
| } |
| return n_blocks; |
| } |
| |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd( |
| const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2, |
| int bw, int bh, int d0, int d1) { |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| // To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1. |
| int32_t tmp_dst = |
| d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j]; |
| dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); |
| tmp_dst = d0 * ((int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j]); |
| dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); |
| } |
| } |
| } |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| |
| void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2, |
| int16_t *dst1, int16_t *dst2, int bw, int bh, |
| int d0, int d1) { |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1); |
| #else |
| (void)src2; |
| (void)dst2; |
| (void)d0; |
| (void)d1; |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) dst1[i * bw + j] = (int16_t)src1[i * bw + j]; |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| #else |
| (void)src1; |
| (void)dst1; |
| (void)src2; |
| (void)dst2; |
| (void)d0; |
| (void)d1; |
| (void)bw; |
| (void)bh; |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| } |
| |
| int av1_get_optflow_based_mv_highbd( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi, |
| int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0, |
| int16_t *gx1, int16_t *gy1, int *vx0, int *vy0, int *vx1, int *vy1, |
| uint16_t *dst0, uint16_t *dst1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int do_pred, int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ) { |
| const int target_prec = MV_REFINE_PREC_BITS; |
| // Convert output MV to 1/16th pel |
| assert(MV_REFINE_PREC_BITS >= 3); |
| #if CONFIG_OPTFLOW_ON_TIP |
| const int num_mv = (mbmi->ref_frame[0] == TIP_FRAME) ? 4 : N_OF_OFFSETS; |
| #else |
| const int num_mv = N_OF_OFFSETS; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| for (int mvi = 0; mvi < num_mv; mvi++) { |
| mv_refined[mvi * 2].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3); |
| mv_refined[mvi * 2].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3); |
| mv_refined[mvi * 2 + 1].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3); |
| mv_refined[mvi * 2 + 1].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3); |
| } |
| |
| // Obtain d0 and d1 |
| int d0, d1; |
| #if CONFIG_OPTFLOW_ON_TIP |
| if (mbmi->ref_frame[0] == TIP_FRAME) { |
| d0 = cm->tip_ref.ref_offset[0]; |
| d1 = cm->tip_ref.ref_offset[1]; |
| } else { |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| const RefCntBuffer *const r0_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const r1_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| d0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->order_hint, r0_buf->order_hint); |
| d1 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->order_hint, r1_buf->order_hint); |
| #if CONFIG_OPTFLOW_ON_TIP |
| } |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| if (d0 == 0 || d1 == 0) return target_prec; |
| |
| #if CONFIG_OPTFLOW_ON_TIP |
| if (do_pred) { |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| // Obrain P0 and P1 |
| InterPredParams params0, params1; |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms0, calc_subpel_params_func, 0, |
| dst0); |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms1, calc_subpel_params_func, 1, |
| dst1); |
| #if CONFIG_OPTFLOW_ON_TIP |
| } |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| int n_blocks = 1; |
| int grad_prec_bits; |
| int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| // Compute gradients of P0 and P1 with interpolation |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| (void)gx1; |
| (void)gy1; |
| |
| // Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| const int tmp_w = (mbmi->ref_frame[0] == TIP_FRAME) ? bw : MAX_SB_SIZE; |
| const int tmp_h = (mbmi->ref_frame[0] == TIP_FRAME) ? bh : MAX_SB_SIZE; |
| int16_t *tmp0 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); |
| int16_t *tmp1 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); |
| #else |
| int16_t *tmp0 = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| int16_t *tmp1 = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1); |
| // Buffers gx0 and gy0 are used to store the gradients of tmp0 |
| av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0); |
| |
| n_blocks = av1_opfl_mv_refinement_nxn_interp_grad( |
| tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec, |
| vx0, vy0, vx1, vy1); |
| |
| aom_free(tmp0); |
| aom_free(tmp1); |
| #else |
| int16_t *tmp = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| av1_copy_pred_array_highbd(dst0, NULL, tmp, NULL, bw, bh, d0, d1); |
| av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx0, gy0); |
| |
| av1_copy_pred_array_highbd(dst1, NULL, tmp, NULL, bw, bh, d0, d1); |
| av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx1, gy1); |
| |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| |
| aom_free(tmp); |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| #else |
| // Compute gradients of P0 and P1 with MC |
| av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf, |
| ¶ms0, calc_subpel_params_func, 0, |
| &grad_prec_bits, gx0, gy0); |
| av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf, |
| ¶ms1, calc_subpel_params_func, 1, |
| &grad_prec_bits, gx1, gy1); |
| |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| |
| for (int i = 0; i < n_blocks; i++) { |
| #if OPFL_CLAMP_MV_DELTA |
| mv_refined[i * 2].as_mv.row += |
| clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| mv_refined[i * 2].as_mv.col += |
| clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| mv_refined[i * 2 + 1].as_mv.row += |
| clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| mv_refined[i * 2 + 1].as_mv.col += |
| clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| #else |
| mv_refined[i * 2].as_mv.row += vy0[i]; |
| mv_refined[i * 2].as_mv.col += vx0[i]; |
| mv_refined[i * 2 + 1].as_mv.row += vy1[i]; |
| mv_refined[i * 2 + 1].as_mv.col += vx1[i]; |
| #endif |
| } |
| |
| return target_prec; |
| } |
| |
| // Makes the interpredictor for the region by dividing it up into nxn blocks |
| // and running the interpredictor code on each one. |
| void make_inter_pred_of_nxn(uint16_t *dst, int dst_stride, |
| int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, |
| int mi_x, int mi_y, int ref, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, int n, |
| SubpelParams *subpel_params) { |
| int n_blocks = 0; |
| int w = inter_pred_params->orig_block_width; |
| int h = inter_pred_params->orig_block_height; |
| assert(w % n == 0); |
| assert(h % n == 0); |
| CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst; |
| inter_pred_params->block_width = n; |
| inter_pred_params->block_height = n; |
| |
| uint16_t *pre; |
| int src_stride = 0; |
| |
| // Process whole nxn blocks. |
| for (int j = 0; j <= h - n; j += n) { |
| for (int i = 0; i <= w - n; i += n) { |
| calc_subpel_params_func(&(mv_refined[n_blocks * 2 + ref].as_mv), |
| inter_pred_params, xd, mi_x + i, mi_y + j, ref, 1, |
| mc_buf, &pre, subpel_params, &src_stride); |
| av1_make_inter_predictor(pre, src_stride, dst, dst_stride, |
| inter_pred_params, subpel_params); |
| n_blocks++; |
| dst += n; |
| inter_pred_params->conv_params.dst += n; |
| inter_pred_params->pix_col += n; |
| } |
| dst -= w; |
| inter_pred_params->conv_params.dst -= w; |
| inter_pred_params->pix_col -= w; |
| |
| dst += n * dst_stride; |
| inter_pred_params->conv_params.dst += |
| n * inter_pred_params->conv_params.dst_stride; |
| inter_pred_params->pix_row += n; |
| } |
| |
| inter_pred_params->conv_params.dst = orig_conv_dst; |
| } |
| |
| // Use a second pass of motion compensation to rebuild inter predictor |
| void av1_opfl_rebuild_inter_predictor( |
| uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ) { |
| SubpelParams subpel_params; |
| int w = inter_pred_params->block_width; |
| int h = inter_pred_params->block_height; |
| int n = opfl_get_subblock_size(w, h, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| make_inter_pred_of_nxn(dst, dst_stride, mv_refined, inter_pred_params, xd, |
| mi_x, mi_y, ref, mc_buf, calc_subpel_params_func, n, |
| &subpel_params); |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| init_wedge_master_masks(); |
| init_wedge_masks(); |
| init_smooth_interintra_masks(); |
| } |
| |
| static AOM_INLINE void build_masked_compound_no_round( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, InterPredParams *inter_pred_params) { |
| const int ssy = inter_pred_params->subsampling_y; |
| const int ssx = inter_pred_params->subsampling_x; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| const int mask_stride = block_size_wide[sb_type]; |
| aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, ssy, |
| &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| |
| static void make_masked_inter_predictor(const uint16_t *pre, int pre_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; |
| BLOCK_SIZE sb_type = inter_pred_params->sb_type; |
| |
| // We're going to call av1_make_inter_predictor to generate a prediction into |
| // a temporary buffer, then will blend that temporary buffer with that from |
| // the other reference. |
| DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]); |
| |
| const int tmp_buf_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; |
| int org_dst_stride = inter_pred_params->conv_params.dst_stride; |
| CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; |
| inter_pred_params->conv_params.dst = tmp_buf16; |
| inter_pred_params->conv_params.dst_stride = tmp_buf_stride; |
| assert(inter_pred_params->conv_params.do_average == 0); |
| |
| // This will generate a prediction in tmp_buf for the second reference |
| av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE, |
| inter_pred_params, subpel_params); |
| |
| if (!inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_DIFFWTD) { |
| av1_build_compound_diffwtd_mask_d16( |
| comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, |
| inter_pred_params->block_width, &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| build_masked_compound_no_round( |
| dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, |
| comp_data, sb_type, inter_pred_params->block_height, |
| inter_pred_params->block_width, inter_pred_params); |
| } |
| |
| void av1_build_one_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } |
| } |
| |
| #if CONFIG_BAWP |
| // Derive the scaling factor and offset of block adaptive weighted prediction |
| // mode. One row from the top boundary and one column from the left boundary |
| // are used in the less square error process. |
| void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top, |
| uint16_t *recon_left, int rec_stride, |
| uint16_t *ref_top, uint16_t *ref_left, |
| int ref_stride, int ref, int plane, int bw, |
| int bh) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(mbmi->bawp_flag == 1); |
| // only integer position of reference, may need to consider |
| // fractional position of ref samples |
| int count = 0; |
| int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; |
| |
| if (xd->up_available) { |
| for (int i = 0; i < bw; ++i) { |
| sum_x += ref_top[i]; |
| sum_y += recon_top[i]; |
| sum_xy += ref_top[i] * recon_top[i]; |
| sum_xx += ref_top[i] * ref_top[i]; |
| } |
| count += bw; |
| } |
| |
| if (xd->left_available) { |
| for (int i = 0; i < bh; ++i) { |
| sum_x += ref_left[0]; |
| sum_y += recon_left[0]; |
| sum_xy += ref_left[0] * recon_left[0]; |
| sum_xx += ref_left[0] * ref_left[0]; |
| |
| recon_left += rec_stride; |
| ref_left += ref_stride; |
| } |
| count += bh; |
| } |
| |
| const int16_t shift = 8; // maybe a smaller value can be used |
| if (count > 0) { |
| int32_t der = sum_xx - (int32_t)((int64_t)sum_x * sum_x / count); |
| int32_t nor = sum_xy - (int32_t)((int64_t)sum_x * sum_y / count); |
| // Add a small portion to both self-correlation and cross-correlation to |
| // keep mode stable and have scaling factor leaning to value 1.0 |
| // Temporal design, to be further updated |
| nor += der / 16; |
| der += der / 16; |
| |
| if (nor && der) |
| mbmi->bawp_alpha[plane][ref] = resolve_divisor_32_CfL(nor, der, shift); |
| else |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = |
| ((sum_y << shift) - sum_x * mbmi->bawp_alpha[plane][ref]) / count; |
| } else { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } |
| } |
| |
| // generate inter prediction of a block coded in bwap mode enabled |
| void av1_build_one_bawp_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd, |
| const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref, |
| int plane, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| assert(inter_pred_params->comp_mode == UNIFORM_SINGLE); |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } |
| |
| int shift = 8; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| int x_off = mbmi->mv[ref].as_mv.col >> 3; |
| int y_off = mbmi->mv[ref].as_mv.row >> 3; |
| |
| int ref_w = bw; |
| if (mi_x + bw >= cm->width) ref_w = cm->width - mi_x; |
| int ref_h = bh; |
| if (mi_y + bh >= cm->height) ref_h = cm->height - mi_y; |
| |
| if (mi_x + x_off - BAWP_REF_LINES < 0 || mi_y + y_off - BAWP_REF_LINES < 0 || |
| mi_x + ref_w + x_off >= cm->width || mi_y + ref_h + y_off >= cm->height) { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } else { |
| uint16_t *recon_buf = xd->plane[plane].dst.buf; |
| int recon_stride = xd->plane[plane].dst.stride; |
| |
| if (dst_orig != NULL) { |
| recon_buf = dst_orig->plane[plane]; |
| recon_stride = dst_orig->stride[plane]; |
| } |
| uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride; |
| uint16_t *recon_left = recon_buf - BAWP_REF_LINES; |
| |
| // the picture boundary limitation to be checked. |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ref_stride = pd->pre[ref].stride; |
| uint16_t *ref_buf = pd->pre[ref].buf + y_off * ref_stride + x_off; |
| uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride; |
| uint16_t *ref_left = ref_buf - BAWP_REF_LINES; |
| |
| derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top, |
| ref_left, ref_stride, ref, plane, ref_w, ref_h); |
| } |
| |
| int16_t alpha = mbmi->bawp_alpha[plane][ref]; |
| int32_t beta = mbmi->bawp_beta[plane][ref]; |
| for (int j = 0; j < ref_h; ++j) { |
| for (int i = 0; i < ref_w; ++i) { |
| dst[j * dst_stride + i] = clip_pixel_highbd( |
| (dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd); |
| } |
| } |
| } |
| #endif // CONFIG_BAWP |
| |
| // True if the following hold: |
| // 1. Not intrabc and not build_for_obmc |
| // 2. At least one dimension is size 4 with subsampling |
| // 3. If sub-sampled, none of the previous blocks around the sub-sample |
| // are intrabc or inter-blocks |
| static bool is_sub8x8_inter(const MACROBLOCKD *xd, const MB_MODE_INFO *mi, |
| int plane, int is_intrabc, int build_for_obmc) { |
| if (is_intrabc || build_for_obmc) { |
| return false; |
| } |
| |
| if (!(plane && |
| (mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base))) |
| return false; |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int row_start = |
| plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0; |
| const int col_start = |
| plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0; |
| |
| for (int row = row_start; row <= 0; ++row) { |
| for (int col = col_start; col <= 0; ++col) { |
| const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| if (!is_inter_block(this_mbmi, xd->tree_type)) return false; |
| if (is_intrabc_block(this_mbmi, xd->tree_type)) return false; |
| } |
| } |
| return true; |
| } |
| |
| static void build_inter_predictors_sub8x8( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool ss_x = pd->subsampling_x; |
| const bool ss_y = pd->subsampling_y; |
| const int b4_w = block_size_wide[bsize] >> ss_x; |
| const int b4_h = block_size_high[bsize] >> ss_y; |
| const BLOCK_SIZE plane_bsize = plane ? mi->chroma_ref_info.bsize_base : bsize; |
| const int b8_w = block_size_wide[plane_bsize] >> ss_x; |
| const int b8_h = block_size_high[plane_bsize] >> ss_y; |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int row_start = |
| plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0; |
| const int col_start = |
| plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| int row = row_start; |
| for (int y = 0; y < b8_h; y += b4_h) { |
| int col = col_start; |
| for (int x = 0; x < b8_w; x += b4_w) { |
| MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // TODO(yuec): enabling compound prediction in none sub8x8 mbs in the |
| // group |
| bool is_compound = 0; |
| #else |
| bool is_compound = has_second_ref(this_mbmi); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint16_t *dst = dst_buf->buf + dst_buf->stride * y + x; |
| int ref = 0; |
| const RefCntBuffer *ref_buf = |
| get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *const sf = ref_scale_factors; |
| const struct buf_2d pre_buf = { |
| NULL, |
| (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_stride, |
| }; |
| |
| const MV mv = this_mbmi->mv[ref].as_mv; |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y, |
| pre_x + x, pd->subsampling_x, pd->subsampling_y, |
| xd->bd, mi->use_intrabc[0], sf, &pre_buf, |
| this_mbmi->interp_fltr); |
| inter_pred_params.conv_params = |
| get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd); |
| |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, |
| &inter_pred_params, xd, mi_x + x, mi_y + y, |
| ref, mc_buf, calc_subpel_params_func); |
| |
| col += mi_size_wide[bsize]; |
| } |
| row += mi_size_high[bsize]; |
| } |
| } |
| |
| static void build_inter_predictors_8x8_and_bigger( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| #if CONFIG_BAWP |
| const BUFFER_SET *dst_orig, |
| #endif // CONFIG_BAWP |
| int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| const int is_compound = has_second_ref(mi); |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| assert(IMPLIES(is_intrabc, !is_compound)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint16_t *const dst = dst_buf->buf; |
| |
| int is_global[2] = { 0, 0 }; |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| #if CONFIG_TIP |
| if (!is_tip_ref_frame(mi->ref_frame[ref])) { |
| #endif // CONFIG_TIP |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| #if CONFIG_TIP |
| } |
| #endif // CONFIG_TIP |
| } |
| |
| int row_start = 0; |
| int col_start = 0; |
| if (!build_for_obmc) { |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| } |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int_mv mv_refined[2 * N_OF_OFFSETS]; |
| const int use_optflow_refinement = |
| (mi->mode >= NEAR_NEARMV_OPTFLOW || |
| (cm->features.opfl_refine_type == REFINE_ALL && |
| mi->mode != GLOBAL_GLOBALMV && |
| mi->interinter_comp.type == COMPOUND_AVERAGE)) && |
| is_compound && is_opfl_refine_allowed(cm, mi); |
| assert(IMPLIES(use_optflow_refinement, |
| cm->features.opfl_refine_type == REFINE_SWITCHABLE)); |
| assert(IMPLIES(use_optflow_refinement, !build_for_obmc)); |
| |
| // Optical flow refinement with masked comp types or with non-sharp |
| // interpolation filter should only exist in REFINE_ALL. |
| assert(IMPLIES( |
| use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| |
| // Arrays to hold optical flow offsets. |
| int vx0[N_OF_OFFSETS] = { 0 }; |
| int vx1[N_OF_OFFSETS] = { 0 }; |
| int vy0[N_OF_OFFSETS] = { 0 }; |
| int vy1[N_OF_OFFSETS] = { 0 }; |
| |
| // Pointers to gradient and dst buffers |
| int16_t *gx0, *gy0, *gx1, *gy1; |
| uint16_t *dst0 = NULL, *dst1 = NULL; |
| |
| if (use_optflow_refinement && plane == 0) { |
| // Allocate gradient and dst buffers |
| gx0 = aom_memalign(32, 2 * MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*gx0)); |
| gx1 = aom_memalign(32, 2 * MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*gx1)); |
| gy0 = gx0 + (MAX_SB_SIZE * MAX_SB_SIZE); |
| gy1 = gx1 + (MAX_SB_SIZE * MAX_SB_SIZE); |
| |
| // Initialize refined mv |
| const MV mv0 = mi->mv[0].as_mv; |
| const MV mv1 = mi->mv[1].as_mv; |
| for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) { |
| mv_refined[mvi * 2].as_mv = mv0; |
| mv_refined[mvi * 2 + 1].as_mv = mv1; |
| } |
| // Refine MV using optical flow. The final output MV will be in 1/16 |
| // precision. |
| dst0 = aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint16_t)); |
| dst1 = aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint16_t)); |
| av1_get_optflow_based_mv_highbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x, |
| mi_y, mc_buf, calc_subpel_params_func, gx0, |
| gy0, gx1, gy1, vx0, vy0, vx1, vy1, dst0, |
| dst1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1, 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| aom_free(dst0); |
| aom_free(dst1); |
| aom_free(gx0); |
| aom_free(gx1); |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| const MV mv = mi->mv[ref].as_mv; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| is_warp_mode(mi->motion_mode) }; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| if (!build_for_obmc) |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| |
| if (is_masked_compound_type(mi->interinter_comp.type)) { |
| inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| if (ref == 1) { |
| inter_pred_params.conv_params.do_average = 0; |
| inter_pred_params.comp_mode = MASK_COMP; |
| } |
| // Assign physical buffer. |
| inter_pred_params.mask_comp.seg_mask = xd->seg_mask; |
| } |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (use_optflow_refinement && plane == 0) { |
| int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| inter_pred_params.interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| inter_pred_params.interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| av1_opfl_rebuild_inter_predictor(dst, dst_buf->stride, plane, mv_refined, |
| &inter_pred_params, xd, mi_x, mi_y, ref, |
| mc_buf, calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| continue; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_BAWP |
| if (mi->bawp_flag == 1 && plane == 0 && !build_for_obmc) { |
| av1_build_one_bawp_inter_predictor( |
| dst, dst_buf->stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, |
| bh, mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func); |
| continue; |
| } |
| #endif // CONFIG_BAWP |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| #if CONFIG_PEF |
| enhance_prediction(cm, xd, plane, dst, dst_buf->stride, bw, bh |
| #if CONFIG_OPTFLOW_REFINEMENT |
| , |
| mv_refined, use_optflow_refinement |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| ); |
| #endif // CONFIG_PEF |
| } |
| |
| void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, |
| #if CONFIG_BAWP |
| const BUFFER_SET *dst_orig, |
| #endif |
| int build_for_obmc, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| #if CONFIG_WARPMV |
| // just for debugging purpose |
| // Can be removed later on |
| if (mi->mode == WARPMV) { |
| assert(mi->ref_mv_idx == 0); |
| assert(mi->motion_mode == WARP_DELTA || |
| warped_causal_idx_map(mi->motion_mode)); |
| } |
| #endif // CONFIG_WARPMV |
| if (is_sub8x8_inter(xd, mi, plane, is_intrabc_block(mi, xd->tree_type), |
| build_for_obmc)) { |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(bw < 8 || bh < 8); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func); |
| } else { |
| build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, |
| #if CONFIG_BAWP |
| dst_orig, |
| #endif |
| build_for_obmc, bw, bh, mi_x, mi_y, |
| mc_buf, calc_subpel_params_func); |
| } |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| if (src != NULL) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, sf, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| } |
| } |
| } |
| |
| // obmc_mask_N[overlap_position] |
| static const uint8_t obmc_mask_1[1] = { 64 }; |
| DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 }; |
| |
| DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 }; |
| |
| static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; |
| |
| static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, |
| 56, 58, 60, 61, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, |
| 45, 47, 48, 50, 51, 52, 53, 55, |
| 56, 57, 58, 59, 60, 60, 61, 62, |
| 64, 64, 64, 64, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_64[64] = { |
| 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, |
| 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, |
| 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, |
| 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| const uint8_t *av1_get_obmc_mask(int length) { |
| switch (length) { |
| case 1: return obmc_mask_1; |
| case 2: return obmc_mask_2; |
| case 4: return obmc_mask_4; |
| case 8: return obmc_mask_8; |
| case 16: return obmc_mask_16; |
| case 32: return obmc_mask_32; |
| case 64: return obmc_mask_64; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static INLINE void increment_uint8_t_ptr(MACROBLOCKD *xd, int rel_mi_row, |
| int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)xd; |
| (void)rel_mi_row; |
| (void)rel_mi_col; |
| (void)op_mi_size; |
| (void)dir; |
| (void)mi; |
| ++*(uint8_t *)fun_ctxt; |
| (void)num_planes; |
| } |
| |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| mbmi->overlappable_neighbors[0] = 0; |
| mbmi->overlappable_neighbors[1] = 0; |
| if (!is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y], |
| xd->mi_row, xd->mi_col)) |
| return; |
| |
| foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_uint8_t_ptr, |
| &mbmi->overlappable_neighbors[0]); |
| if (mbmi->overlappable_neighbors[0]) return; |
| foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_uint8_t_ptr, |
| &mbmi->overlappable_neighbors[1]); |
| } |
| |
| // HW does not support < 4x4 prediction. To limit the bandwidth requirement, if |
| // block-size of current plane is smaller than 8x8, always only blend with the |
| // left neighbor(s) (skip blending with the above side). |
| #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable |
| |
| int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, |
| const struct macroblockd_plane *pd, int dir) { |
| const BLOCK_SIZE bsize_plane = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| switch (bsize_plane) { |
| #if DISABLE_CHROMA_U8X8_OBMC |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return 1; break; |
| #else |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return dir == 0; break; |
| #endif |
| default: return 0; |
| } |
| } |
| |
| void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| |
| return; |
| } |
| |
| struct obmc_inter_pred_ctxt { |
| uint16_t **adjacent; |
| int *adjacent_stride; |
| }; |
| |
| static INLINE void build_obmc_inter_pred_above( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) { |
| (void)above_mi; |
| (void)rel_mi_row; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint16_t *const dst = &pd->dst.buf[plane_col]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint16_t *const tmp = &ctxt->adjacent[plane][plane_col]; |
| const uint8_t *const mask = av1_get_obmc_mask(bh); |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| } |
| } |
| |
| static INLINE void build_obmc_inter_pred_left( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) { |
| (void)left_mi; |
| (void)rel_mi_col; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y; |
| const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint16_t *const dst = &pd->dst.buf[plane_row * dst_stride]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint16_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; |
| const uint8_t *const mask = av1_get_obmc_mask(bw); |
| |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| } |
| } |
| |
| // This function combines motion compensated predictions that are generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint16_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| |
| // handle above row |
| struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; |
| foreach_overlappable_nb_above(cm, xd, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| build_obmc_inter_pred_above, &ctxt_above); |
| |
| // handle left column |
| struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; |
| foreach_overlappable_nb_left(cm, xd, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| build_obmc_inter_pred_left, &ctxt_left); |
| } |
| |
| void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint16_t **dst_buf1, |
| uint16_t **dst_buf2) { |
| dst_buf1[0] = xd->tmp_obmc_bufs[0]; |
| dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; |
| dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = xd->tmp_obmc_bufs[1]; |
| dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; |
| dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; |
| } |
| |
| void av1_setup_build_prediction_by_above_pred( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, |
| MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const int above_mi_col = xd->mi_col + rel_mi_col; |
| |
| av1_modify_neighbor_predictor_for_obmc(above_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, |
| NULL, pd->subsampling_x, pd->subsampling_y, NULL); |
| } |
| |
| const int num_refs = 1 + has_second_ref(above_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| xd->block_ref_scale_factors[ref] = sf; |
| if ((!av1_is_valid_scale(sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf, |
| num_planes, NULL); |
| } |
| |
| xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); |
| xd->mb_to_right_edge = |
| ctxt->mb_to_far_edge + |
| (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8; |
| } |
| |
| void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, |
| uint8_t left_mi_height, |
| MB_MODE_INFO *left_mbmi, |
| struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const int left_mi_row = xd->mi_row + rel_mi_row; |
| |
| av1_modify_neighbor_predictor_for_obmc(left_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, |
| NULL, pd->subsampling_x, pd->subsampling_y, NULL); |
| } |
| |
| const int num_refs = 1 + has_second_ref(left_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| |
| xd->block_ref_scale_factors[ref] = ref_scale_factors; |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col, |
| ref_scale_factors, num_planes, NULL); |
| } |
| |
| xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row)); |
| xd->mb_to_bottom_edge = |
| ctxt->mb_to_far_edge + |
| GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE); |
| } |
| |
|