blob: 9d93c75275c6b8dbd43f47fc91420a92dc1b6bf0 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "vpx_ports/mem.h"
#include "./vpx_dsp_rtcd.h"
#include "./vp10_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vp10/common/enums.h"
#include "test/array_utils.h"
#include "test/assertion_helpers.h"
#include "test/function_equivalence_test.h"
#include "test/randomise.h"
#include "test/register_state_check.h"
#include "test/snapshot.h"
#define WEDGE_WEIGHT_BITS 6
#define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS))
using std::tr1::make_tuple;
using libvpx_test::FunctionEquivalenceTest;
using libvpx_test::Snapshot;
using libvpx_test::Randomise;
using libvpx_test::array_utils::arraySet;
using libvpx_test::assertion_helpers::ArraysEq;
using libvpx_test::assertion_helpers::ArraysEqWithin;
namespace {
static const int16_t int13_max = (1<<12) - 1;
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sse_from_residuals - functionality
//////////////////////////////////////////////////////////////////////////////
class WedgeUtilsSSEFuncTest : public testing::Test {
protected:
Snapshot snapshot;
Randomise randomise;
};
static void equiv_blend_residuals(int16_t *r,
const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int16_t R = m0 * r0[i] + m1 * r1[i];
// Note that this rounding is designed to match the result
// you would get when actually blending the 2 predictors and computing
// the residuals.
r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
}
}
static uint64_t equiv_sse_from_residuals(const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
uint64_t acc = 0;
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int16_t R = m0 * r0[i] + m1 * r1[i];
const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
acc += r * r;
}
return acc;
}
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) {
for (int i = 0 ; i < 1000 && !HasFatalFailure(); i++) {
uint8_t s[MAX_SB_SQUARE];
uint8_t p0[MAX_SB_SQUARE];
uint8_t p1[MAX_SB_SQUARE];
uint8_t p[MAX_SB_SQUARE];
int16_t r0[MAX_SB_SQUARE];
int16_t r1[MAX_SB_SQUARE];
int16_t r_ref[MAX_SB_SQUARE];
int16_t r_tst[MAX_SB_SQUARE];
uint8_t m[MAX_SB_SQUARE];
randomise(s);
randomise(m, 0, MAX_MASK_VALUE + 1);
const int w = 1 << randomise.uniform<uint32_t>(3, MAX_SB_SIZE_LOG2);
const int h = 1 << randomise.uniform<uint32_t>(3, MAX_SB_SIZE_LOG2);
const int N = w * h;
for (int j = 0 ; j < N ; j++) {
p0[j] = clamp(s[j] + randomise.uniform<int>(-16, 17), 0, UINT8_MAX);
p1[j] = clamp(s[j] + randomise.uniform<int>(-16, 17), 0, UINT8_MAX);
}
vpx_blend_mask6(p, w, p0, w, p1, w, m, w, h, w, 0, 0);
vpx_subtract_block(h, w, r0, w, s, w, p0, w);
vpx_subtract_block(h, w, r1, w, s, w, p1, w);
vpx_subtract_block(h, w, r_ref, w, s, w, p, w);
equiv_blend_residuals(r_tst, r0, r1, m, N);
ASSERT_TRUE(ArraysEqWithin(r_ref, r_tst, 0, N));
uint64_t ref_sse = vpx_sum_squares_i16(r_ref, N);
uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N);
ASSERT_EQ(ref_sse, tst_sse);
}
}
static uint64_t sse_from_residuals(const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
uint64_t acc = 0;
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int32_t r = m0 * r0[i] + m1 * r1[i];
acc += r * r;
}
return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS);
}
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) {
for (int i = 0 ; i < 1000 && !HasFatalFailure(); i++) {
int16_t r0[MAX_SB_SQUARE];
int16_t r1[MAX_SB_SQUARE];
int16_t d[MAX_SB_SQUARE];
uint8_t m[MAX_SB_SQUARE];
randomise(r1, 2 * INT8_MIN, 2 * INT8_MAX + 1);
randomise(d, 2 * INT8_MIN, 2 * INT8_MAX + 1);
randomise(m, 0, MAX_MASK_VALUE + 1);
const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
for (int j = 0 ; j < N ; j++)
r0[j] = r1[j] + d[j];
uint64_t ref_res, tst_res;
ref_res = sse_from_residuals(r0, r1, m, N);
tst_res = vp10_wedge_sse_from_residuals(r1, d, m, N);
ASSERT_EQ(ref_res, tst_res);
}
}
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sse_from_residuals - optimizations
//////////////////////////////////////////////////////////////////////////////
typedef uint64_t (*FSSE)(const int16_t *r1,
const int16_t *d,
const uint8_t *m,
int N);
class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> {
protected:
void Common() {
const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
snapshot(r1);
snapshot(d);
snapshot(m);
uint64_t ref_res, tst_res;
ref_res = ref_func_(r1, d, m, N);
ASM_REGISTER_STATE_CHECK(tst_res = tst_func_(r1, d, m, N));
ASSERT_EQ(ref_res, tst_res);
ASSERT_TRUE(ArraysEq(snapshot.get(r1), r1));
ASSERT_TRUE(ArraysEq(snapshot.get(d), d));
ASSERT_TRUE(ArraysEq(snapshot.get(m), m));
}
Snapshot snapshot;
Randomise randomise;
DECLARE_ALIGNED(16, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, d[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, m[MAX_SB_SQUARE]);
};
TEST_P(WedgeUtilsSSEOptTest, RandomValues) {
for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
randomise(r1, -int13_max, int13_max + 1);
randomise(d, -int13_max, int13_max + 1);
randomise(m, 0, 65);
Common();
}
}
TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) {
for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
if (randomise.uniform<bool>())
arraySet(r1, int13_max);
else
arraySet(r1, -int13_max);
if (randomise.uniform<bool>())
arraySet(d, int13_max);
else
arraySet(d, -int13_max);
arraySet(m, MAX_MASK_VALUE);
Common();
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsSSEOptTest,
::testing::Values(
make_tuple(&vp10_wedge_sse_from_residuals_c,
&vp10_wedge_sse_from_residuals_sse2)
)
);
#endif // HAVE_SSE2
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sign_from_residuals
//////////////////////////////////////////////////////////////////////////////
typedef int (*FSign)(const int16_t *ds,
const uint8_t *m,
int N,
int64_t limit);
class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> {
protected:
static const int maxSize = 8196; // Size limited by SIMD implementation.
void Common() {
const int maxN = VPXMIN(maxSize, MAX_SB_SQUARE);
const int N = 64 * randomise.uniform<uint32_t>(1, maxN/64);
int64_t limit;
limit = (int64_t)vpx_sum_squares_i16(r0, N);
limit -= (int64_t)vpx_sum_squares_i16(r1, N);
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
for (int i = 0 ; i < N ; i++)
ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX);
snapshot(r0);
snapshot(r1);
snapshot(ds);
snapshot(m);
int ref_res, tst_res;
ref_res = ref_func_(ds, m, N, limit);
ASM_REGISTER_STATE_CHECK(tst_res = tst_func_(ds, m, N, limit));
ASSERT_EQ(ref_res, tst_res);
ASSERT_TRUE(ArraysEq(snapshot.get(r0), r0));
ASSERT_TRUE(ArraysEq(snapshot.get(r1), r1));
ASSERT_TRUE(ArraysEq(snapshot.get(ds), ds));
ASSERT_TRUE(ArraysEq(snapshot.get(m), m));
}
Snapshot snapshot;
Randomise randomise;
DECLARE_ALIGNED(16, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, ds[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, m[MAX_SB_SQUARE]);
};
TEST_P(WedgeUtilsSignOptTest, RandomValues) {
for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
randomise(r0, -int13_max, int13_max+1);
randomise(r1, -int13_max, int13_max+1);
randomise(m, 0, MAX_MASK_VALUE + 1);
Common();
}
}
TEST_P(WedgeUtilsSignOptTest, ExtremeValues) {
for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
switch (randomise.uniform<int>(4)) {
case 0:
arraySet(r0, 0);
arraySet(r1, int13_max);
break;
case 1:
arraySet(r0, int13_max);
arraySet(r1, 0);
break;
case 2:
arraySet(r0, 0);
arraySet(r1, -int13_max);
break;
default:
arraySet(r0, -int13_max);
arraySet(r1, 0);
break;
}
arraySet(m, MAX_MASK_VALUE);
Common();
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsSignOptTest,
::testing::Values(
make_tuple(&vp10_wedge_sign_from_residuals_c,
&vp10_wedge_sign_from_residuals_sse2)
)
);
#endif // HAVE_SSE2
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_compute_delta_squares
//////////////////////////////////////////////////////////////////////////////
typedef void (*FDS)(int16_t *d,
const int16_t *a,
const int16_t *b,
int N);
class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> {
protected:
void Common() {
const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
randomise(d_ref);
randomise(d_tst);
snapshot(a);
snapshot(b);
ref_func_(d_ref, a, b, N);
ASM_REGISTER_STATE_CHECK(tst_func_(d_tst, a, b, N));
ASSERT_TRUE(ArraysEqWithin(d_ref, d_tst, 0, N));
ASSERT_TRUE(ArraysEq(snapshot.get(a), a));
ASSERT_TRUE(ArraysEq(snapshot.get(b), b));
}
Snapshot snapshot;
Randomise randomise;
DECLARE_ALIGNED(16, int16_t, a[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, b[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, d_ref[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int16_t, d_tst[MAX_SB_SQUARE]);
};
TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) {
for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
randomise(a);
randomise(b, -INT16_MAX, INT16_MAX + 1);
Common();
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsDeltaSquaresOptTest,
::testing::Values(
make_tuple(&vp10_wedge_compute_delta_squares_c,
&vp10_wedge_compute_delta_squares_sse2)
)
);
#endif // HAVE_SSE2
} // namespace