tree: 67263d2a03ce8bcf01db80317788fc6788d956f7 [path history] [tgz]
  1. avm_stats/
  2. examples/
  3. img/
  4. tests/
  5. .gitignore
  6. pyproject.toml
  7. README.md
  8. requirements.txt
tools/py_stats/README.md

AVM Stats Python API

This is a Python wrapper library around the protobuf frames dumped by extract_proto.

Setup

  1. Install the protobuf compiler, e.g.:
apt install libprotobuf-dev protobuf-compiler

For full compatibility with the Python bindings, protobuf-compiler version 3.19.0 or newer is strongly recommended; your package manager may have an outdated version. Refer to protoc-installation for more details.

If installing a newer version is not an option, a workaround is to set this environment variable:

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

This will allow older versions of protoc to work, but will result in much slower parsing, and potential protobuf decoding errors.

  1. You may also need to initialize the git submodules for the Abseil dependency:
git submodule update --init
  1. Build avm with extract_proto enabled. For convenience, first define a few environment variables for paths that will be used repeatedly:
export AOM_ROOT=/path/to/avm/git/root
export AOM_BUILD_DIR=/path/to/avm/build/dir
export LIBAOM_TEST_DATA_PATH=/path/to/avm/testdata

Then build:

cmake -B ${AOM_BUILD_DIR} -S ${AOM_ROOT} -DCONFIG_ACCOUNTING=1 -DCONFIG_INSPECTION=1 -DCONFIG_EXTRACT_PROTO=1 -DENABLE_TESTDATA=1
make -C ${AOM_BUILD_DIR} -j all testdata

Note that CONFIG_EXTRACT_PROTO depends on both CONFIG_INSPECTION and CONFIG_ACCOUNTING.

  1. (Optional) Create and activate a Python virtual environment, e.g.:
python3 -m venv /tmp/my_venv/
source /tmp/my_venv/bin/activate
  1. Generate the Python bindings for the protobuf:
protoc --python_out=${AOM_ROOT}/tools/py_stats/avm_stats --proto_path=${AOM_ROOT}/tools/extract_proto avm_frame.proto
  1. Install the avm_stats library and dependencies:
pip install -r ${AOM_ROOT}/tools/py_stats/requirements.txt
pip install ${AOM_ROOT}/tools/py_stats

Unit Tests

  1. Generate pytest test data. Note that this depends on AVM being built with -DENABLE_TESTDATA=1, and assumes make -j testdata has already been run.

Note that by default, make -j testdata will place the downloaded test data into ${AOM_BUILD_DIR}, but it is recommended to set LIBAOM_TEST_DATA_PATH to explicitly set the test data path. See the testing section in the root level README file for more details.

${AOM_ROOT}/tools/py_stats/tests/generate_testdata.sh ${AOM_ROOT} ${AOM_BUILD_DIR} ${LIBAOM_TEST_DATA_PATH}
  1. Run unit tests:
cd ${AOM_ROOT}/tools/py_stats && python3 -m pytest

Examples

The examples folder contains multiple scripts that show some sample visualizations that can be built with this library. All of the examples have two required arguments: --stream and --extract_proto_bin:

python3 ${AOM_ROOT}/tools/py_stats/examples/${script_name}.py --stream /path/to/some/stream --extract_proto_bin /path/to/extract_proto/bin

Some of the examples may also optionally take a --source argument, which should be the path to the source file (i.e. pre-encoding) if available. Note that both .yuv and .y4m files are supported. For a .yuv file, it is not necessary to provide an explicit width and height, since the AVM stream itself has that info.

All following example commands will assume that:

  • The extract_proto binary is available in ${AOM_BUILD_DIR}
  • The test stream “park_joy_90_8_420.ivf” and its original YUV “park_joy_90_8_420.y4m” are available in ${LIBAOM_TEST_DATA_PATH}

If you get an error like “UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown” when trying to run an example script, you may also need to install pyqt5:

pip install PyQt5

Pixel pipeline

This example shows the state of the pixels are various stages in the codec pipeline, including the original (source) pixels, the prediction, the residual, the reconstruction before and after filtering, and the distortion.

python3 ${AOM_ROOT}/tools/py_stats/examples/pixel_pipeline.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --source ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.y4m \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 0 \
    --plane y

If --source is omitted, the visualizations that require the original pixels (e.g. distortion) will not be shown. Note that --frame and --plane are optional and will default to the first frame and luma (Y) if unspecified.

Partition tree

This example shows the partition tree with the following annotations:

  • Superblock boundaries (in blue)
  • Coding unit boundaries (in red)
  • Transform unit boundaries, for blocks with TX split (in green)
  • Prediction mode names
  • Motion vectors, for inter frames
python3 ${AOM_ROOT}/tools/py_stats/examples/partition_tree.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 0 \
    --plane y

To see motion vectors as well, use --frame 1 to visualize an inter frame:

python3 ${AOM_ROOT}/tools/py_stats/examples/partition_tree.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 1 \
    --plane y

Prediction modes

This example plots a pie chart showing the distribution of prediction mode decisions in the given frame.

python3 ${AOM_ROOT}/tools/py_stats/examples/prediction_modes.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 0 \
    --plane y

Bit distribution heatmap

This example plots a heatmap showing where bits are spent in each frame.

python3 ${AOM_ROOT}/tools/py_stats/examples/bits_heatmap.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 0 \
    --plane y

This script takes an optional --filter argument to filter out only a specific type of bitstream symbols. Filtering is applied based on the name of the C function each particular symbol is read in. For example, to see where bits are spent on the intra luma prediction mode:

python3 ${AOM_ROOT}/tools/py_stats/examples/bits_heatmap.py \
    --stream ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.ivf \
    --source ${LIBAOM_TEST_DATA_PATH}/park_joy_90p_8_420.y4m \
    --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
    --frame 0 \
    --plane y \
    --filter read_intra_luma_mode

To see available symbol types, refer to the stdout of the script, e.g.:

Available symbol functions:
av1_read_cctx_type
av1_read_coeffs_txb
av1_read_coeffs_txb_skip
av1_read_sec_tx_type
av1_read_sig_txtype
av1_read_tx_type
decode_eob
read_ccso
read_cdef
read_cfl_alphas
read_cfl_index
read_coeff_hidden
read_coeffs_forward_2d
read_coeffs_reverse
read_coeffs_reverse_2d
read_filter_intra_mode_info
read_fsc_mode
read_intra_luma_mode
read_intra_uv_mode
read_mh_dir
read_mrl_index
read_partition
read_secondary_tx_set
read_tx_partition

Note that the script will also display the proportion of total bits used for the selected symbol type. In this particular example, about 10% of the bits in the frame are used to code read_intra_luma_mode:

Bits for read_intra_luma_mode: 760.7987823486328 (9.55%)

Statistics aggregation

All previous examples focused on visualizing a single frame from a single stream. The following examples show how to compute aggregated stats across an arbitrary number of AVM streams. A typical use case might be to compare how bits are spent in CTC frames under different test conditions.

Each of the following examples uses the aggregate_from_extractor.py script to plot different types of data from the streams, in addition to dumping that data as a .csv file.

Block size distribution (A5, QP=235, 10 frames); Plot Intra vs Inter

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/LowDelay/*_QP_235.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "partition_type" \
  --group_by block_size,partition_type,is_intra_frame \
  --output_csv /tmp/aggregate_block_sizes.csv \
  --plot 'title:"Intra Block Sizes", field:block_size, filter:"is_intra_frame"' \
  --plot 'title:"Inter Block Sizes", field:block_size, filter:"not is_intra_frame"'

Prediction mode distribution (A5, QP=235, 10 frames); Plot Intra vs Inter

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/LowDelay/*_QP_235.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "prediction_mode" \
  --group_by mode,is_intra_frame \
  --output_csv /tmp/prediction_modes.csv \
  --plot 'title:"Intra Prediction Modes", field:mode, filter:"is_intra_frame"' \
  --plot 'title:"Inter Prediction Modes", field:mode, filter:"not is_intra_frame"'

Prediction modes weighted by bits used (A5, QP=235, 10 frames); Plot Intra vs Inter

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/LowDelay/*_QP_235.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "prediction_mode" \
  --aggregated_field mode_bits \
  --group_by mode,is_intra_frame \
  --output_csv /tmp/prediction_mode_bits.csv \
  --plot 'title:"Intra Prediction Modes by bits", field:mode, filter:"is_intra_frame"' \
  --plot 'title:"Inter Prediction Modes by bits", field:mode, filter:"not is_intra_frame"'

TX types (A5, QP=235, 10 frames); Plot Intra vs Inter

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/LowDelay/*_QP_235.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "tx_type" \
  --group_by tx_type,is_intra_frame \
  --output_csv /tmp/aggregate_tx_types.csv \
  --plot 'title:"Intra TX Types", field:tx_type, filter:"is_intra_frame"' \
  --plot 'title:"Inter TX Types", field:tx_type, filter:"not is_intra_frame"'

Intra partition types (A5, QP=210, 10 frames); Block sizes 64x64 vs 32x32

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/AllIntra/*_QP_210.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "partition_type" \
  --group_by partition_type,block_size \
  --output_csv /tmp/aggregate_partition_types.csv \
  --plot 'title:"Partition types (64x64)", field:partition_type, filter:block_size=="64x64"' \
  --plot 'title:"Partition types (32x32)", field:partition_type, filter:block_size=="32x32"'

Top 10 symbols types weighted by bits used (A5, QP=235, 10 frames); Intra vs Inter frames

python3 ${AOM_ROOT}/tools/py_stats/examples/aggregate_from_extractor.py \
  --extract_proto_bin ${AOM_BUILD_DIR}/extract_proto \
  --stream_glob "${CTC_STREAMS}/A5_Natural_270p/LowDelay/*_QP_210.bin" \
  --threads 32 \
  --frame_limit 10 \
  --extractor "symbol_bits" \
  --aggregated_field bits \
  --group_by symbol_name,is_intra_frame \
  --output_csv /tmp/aggregate_symbols.csv \
  --plot 'title:"Symbols (Intra frames)", field:symbol_name, filter:"is_intra_frame", limit:10' \
  --plot 'title:"Symbols (Inter frames)", field:symbol_name, filter:"not is_intra_frame", limit:10'

Launch an example Jupyter notebook

This demonstrates many of the same visualizations listed above, but in a single Jupyter notebook. Before launching, ensure the AOM_BUILD_DIR and LIBAOM_TEST_DATA_PATH environment variables are set.

jupyter lab ${AOM_ROOT}/tools/py_stats/examples/frame_vis.ipynb

You can also optionally set JUPYTER_WORKING_DIR to change where temporary files get stored. By default, the notebook will use /tmp/frame_vis_notebook.