| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "limits.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "segmentation.h" |
| #include "vp8/common/pred_common.h" |
| |
| void vp8_update_gf_useage_maps(VP8_COMP *cpi, VP8_COMMON *cm, MACROBLOCK *x) |
| { |
| int mb_row, mb_col; |
| |
| MODE_INFO *this_mb_mode_info = cm->mi; |
| |
| x->gf_active_ptr = (signed char *)cpi->gf_active_flags; |
| |
| if ((cm->frame_type == KEY_FRAME) || (cm->refresh_golden_frame)) |
| { |
| // Reset Gf useage monitors |
| vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); |
| cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
| } |
| else |
| { |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| |
| // If using golden then set GF active flag if not already set. |
| // If using last frame 0,0 mode then leave flag as it is |
| // else if using non 0,0 motion or intra modes then clear |
| // flag if it is currently set |
| if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) || |
| (this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) |
| { |
| if (*(x->gf_active_ptr) == 0) |
| { |
| *(x->gf_active_ptr) = 1; |
| cpi->gf_active_count ++; |
| } |
| } |
| else if ((this_mb_mode_info->mbmi.mode != ZEROMV) && |
| *(x->gf_active_ptr)) |
| { |
| *(x->gf_active_ptr) = 0; |
| cpi->gf_active_count--; |
| } |
| |
| x->gf_active_ptr++; // Step onto next entry |
| this_mb_mode_info++; // skip to next mb |
| |
| } |
| |
| // this is to account for the border |
| this_mb_mode_info++; |
| } |
| } |
| } |
| |
| void vp8_enable_segmentation(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Set the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| void vp8_disable_segmentation(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Clear the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 0; |
| } |
| |
| void vp8_set_segmentation_map(VP8_PTR ptr, |
| unsigned char *segmentation_map) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Copy in the new segmentation map |
| vpx_memcpy( cpi->segmentation_map, segmentation_map, |
| (cpi->common.mb_rows * cpi->common.mb_cols) ); |
| |
| // Signal that the map should be updated. |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| void vp8_set_segment_data(VP8_PTR ptr, |
| signed char *feature_data, |
| unsigned char abs_delta) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta; |
| |
| vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data, |
| sizeof(cpi->mb.e_mbd.segment_feature_data)); |
| |
| // TBD ?? Set the feature mask |
| // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, |
| // sizeof(cpi->mb.e_mbd.segment_feature_mask)); |
| } |
| |
| // Based on set of segment counts calculate a probability tree |
| static void calc_segtree_probs( MACROBLOCKD * xd, |
| int * segcounts, |
| vp8_prob * segment_tree_probs ) |
| { |
| int count1,count2; |
| int tot_count; |
| int i; |
| |
| // Blank the strtucture to start with |
| vpx_memset(segment_tree_probs, 0, sizeof(segment_tree_probs)); |
| |
| // Total count for all segments |
| count1 = segcounts[0] + segcounts[1]; |
| count2 = segcounts[2] + segcounts[3]; |
| tot_count = count1 + count2; |
| |
| // Work out probabilities of each segment |
| if (tot_count) |
| segment_tree_probs[0] = (count1 * 255) / tot_count; |
| if (count1 > 0) |
| segment_tree_probs[1] = (segcounts[0] * 255) / count1; |
| if (count2 > 0) |
| segment_tree_probs[2] = (segcounts[2] * 255) / count2; |
| |
| // Clamp probabilities to minimum allowed value |
| for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) |
| { |
| if (segment_tree_probs[i] == 0) |
| segment_tree_probs[i] = 1; |
| } |
| } |
| |
| // Based on set of segment counts and probabilities calculate a cost estimate |
| static int cost_segmap( MACROBLOCKD * xd, |
| int * segcounts, |
| vp8_prob * probs ) |
| { |
| int cost; |
| int count1,count2; |
| |
| // Cost the top node of the tree |
| count1 = segcounts[0] + segcounts[1]; |
| count2 = segcounts[2] + segcounts[3]; |
| cost = count1 * vp8_cost_zero(probs[0]) + |
| count2 * vp8_cost_one(probs[0]); |
| |
| // Now add the cost of each individual segment branch |
| if (count1 > 0) |
| cost += segcounts[0] * vp8_cost_zero(probs[1]) + |
| segcounts[1] * vp8_cost_one(probs[1]); |
| |
| if (count2 > 0) |
| cost += segcounts[2] * vp8_cost_zero(probs[2]) + |
| segcounts[3] * vp8_cost_one(probs[2]) ; |
| |
| return cost; |
| |
| } |
| |
| void choose_segmap_coding_method( VP8_COMP *cpi ) |
| { |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & cpi->mb.e_mbd; |
| |
| int i; |
| int tot_count; |
| int no_pred_cost; |
| int t_pred_cost = INT_MAX; |
| int pred_context; |
| |
| int mb_row, mb_col; |
| int segmap_index = 0; |
| unsigned char segment_id; |
| |
| int temporal_predictor_count[PREDICTION_PROBS][2]; |
| int no_pred_segcounts[MAX_MB_SEGMENTS]; |
| int t_unpred_seg_counts[MAX_MB_SEGMENTS]; |
| |
| vp8_prob no_pred_tree[MB_FEATURE_TREE_PROBS]; |
| vp8_prob t_pred_tree[MB_FEATURE_TREE_PROBS]; |
| vp8_prob t_nopred_prob[PREDICTION_PROBS]; |
| |
| // Set default state for the segment tree probabilities and the |
| // temporal coding probabilities |
| vpx_memset(xd->mb_segment_tree_probs, 255, |
| sizeof(xd->mb_segment_tree_probs)); |
| vpx_memset(cm->segment_pred_probs, 255, |
| sizeof(cm->segment_pred_probs)); |
| |
| vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); |
| vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); |
| vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); |
| |
| // First of all generate stats regarding how well the last segment map |
| // predicts this one |
| |
| // Initialize macroblock decoder mode info context for the first mb |
| // in the frame |
| xd->mode_info_context = cm->mi; |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| segment_id = xd->mode_info_context->mbmi.segment_id; |
| |
| // Count the number of hits on each segment with no prediction |
| no_pred_segcounts[segment_id]++; |
| |
| // Temporal prediction not allowed on key frames |
| if (cm->frame_type != KEY_FRAME) |
| { |
| // Test to see if the segment id matches the predicted value. |
| int seg_predicted = |
| (segment_id == get_pred_mb_segid( cm, segmap_index )); |
| |
| // Get the segment id prediction context |
| pred_context = |
| get_pred_context( cm, xd, PRED_SEG_ID ); |
| |
| // Store the prediction status for this mb and update counts |
| // as appropriate |
| set_pred_flag( xd, PRED_SEG_ID, seg_predicted ); |
| temporal_predictor_count[pred_context][seg_predicted]++; |
| |
| if ( !seg_predicted ) |
| // Update the "unpredicted" segment count |
| t_unpred_seg_counts[segment_id]++; |
| } |
| |
| // Step on to the next mb |
| xd->mode_info_context++; |
| |
| // Step on to the next entry in the segment maps |
| segmap_index++; |
| } |
| |
| // this is to account for the border in mode_info_context |
| xd->mode_info_context++; |
| } |
| |
| // Work out probability tree for coding segments without prediction |
| // and the cost. |
| calc_segtree_probs( xd, no_pred_segcounts, no_pred_tree ); |
| no_pred_cost = cost_segmap( xd, no_pred_segcounts, no_pred_tree ); |
| |
| // Key frames cannot use temporal prediction |
| if (cm->frame_type != KEY_FRAME) |
| { |
| // Work out probability tree for coding those segments not |
| // predicted using the temporal method and the cost. |
| calc_segtree_probs( xd, t_unpred_seg_counts, t_pred_tree ); |
| t_pred_cost = cost_segmap( xd, t_unpred_seg_counts, t_pred_tree ); |
| |
| // Add in the cost of the signalling for each prediction context |
| for ( i = 0; i < PREDICTION_PROBS; i++ ) |
| { |
| tot_count = temporal_predictor_count[i][0] + |
| temporal_predictor_count[i][1]; |
| |
| // Work out the context probabilities for the segment |
| // prediction flag |
| if ( tot_count ) |
| { |
| t_nopred_prob[i] = ( temporal_predictor_count[i][0] * 255 ) / |
| tot_count; |
| |
| // Clamp to minimum allowed value |
| if ( t_nopred_prob[i] < 1 ) |
| t_nopred_prob[i] = 1; |
| } |
| else |
| t_nopred_prob[i] = 1; |
| |
| // Add in the predictor signaling cost |
| t_pred_cost += ( temporal_predictor_count[i][0] * |
| vp8_cost_zero(t_nopred_prob[i]) ) + |
| ( temporal_predictor_count[i][1] * |
| vp8_cost_one(t_nopred_prob[i]) ); |
| } |
| } |
| |
| // Now choose which coding method to use. |
| if ( t_pred_cost < no_pred_cost ) |
| { |
| cm->temporal_update = 1; |
| vpx_memcpy( xd->mb_segment_tree_probs, |
| t_pred_tree, sizeof(t_pred_tree) ); |
| vpx_memcpy( &cm->segment_pred_probs, |
| t_nopred_prob, sizeof(t_nopred_prob) ); |
| } |
| else |
| { |
| cm->temporal_update = 0; |
| vpx_memcpy( xd->mb_segment_tree_probs, |
| no_pred_tree, sizeof(no_pred_tree) ); |
| } |
| } |