Port folder renaming changes from AOM

Manually cherry-picked commits:
ceef058 libvpx->libaom part2
3d26d91 libvpx -> libaom
cfea7dd vp10/ -> av1/
3a8eff7 Fix a build issue for a test
bf4202e Rename vpx to aom

Change-Id: I1b0eb5a40796e3aaf41c58984b4229a439a597dc
diff --git a/av1/common/loopfilter.c b/av1/common/loopfilter.c
new file mode 100644
index 0000000..e4636a5
--- /dev/null
+++ b/av1/common/loopfilter.c
@@ -0,0 +1,1697 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+#include "av1/common/loopfilter.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/restoration.h"
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/seg_common.h"
+
+// 64 bit masks for left transform size. Each 1 represents a position where
+// we should apply a loop filter across the left border of an 8x8 block
+// boundary.
+//
+// In the case of TX_16X16->  ( in low order byte first we end up with
+// a mask that looks like this
+//
+//    10101010
+//    10101010
+//    10101010
+//    10101010
+//    10101010
+//    10101010
+//    10101010
+//    10101010
+//
+// A loopfilter should be applied to every other 8x8 horizontally.
+static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
+  0xffffffffffffffffULL,  // TX_4X4
+  0xffffffffffffffffULL,  // TX_8x8
+  0x5555555555555555ULL,  // TX_16x16
+  0x1111111111111111ULL,  // TX_32x32
+};
+
+// 64 bit masks for above transform size. Each 1 represents a position where
+// we should apply a loop filter across the top border of an 8x8 block
+// boundary.
+//
+// In the case of TX_32x32 ->  ( in low order byte first we end up with
+// a mask that looks like this
+//
+//    11111111
+//    00000000
+//    00000000
+//    00000000
+//    11111111
+//    00000000
+//    00000000
+//    00000000
+//
+// A loopfilter should be applied to every other 4 the row vertically.
+static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
+  0xffffffffffffffffULL,  // TX_4X4
+  0xffffffffffffffffULL,  // TX_8x8
+  0x00ff00ff00ff00ffULL,  // TX_16x16
+  0x000000ff000000ffULL,  // TX_32x32
+};
+
+// 64 bit masks for prediction sizes (left). Each 1 represents a position
+// where left border of an 8x8 block. These are aligned to the right most
+// appropriate bit, and then shifted into place.
+//
+// In the case of TX_16x32 ->  ( low order byte first ) we end up with
+// a mask that looks like this :
+//
+//  10000000
+//  10000000
+//  10000000
+//  10000000
+//  00000000
+//  00000000
+//  00000000
+//  00000000
+static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
+  0x0000000000000001ULL,  // BLOCK_4X4,
+  0x0000000000000001ULL,  // BLOCK_4X8,
+  0x0000000000000001ULL,  // BLOCK_8X4,
+  0x0000000000000001ULL,  // BLOCK_8X8,
+  0x0000000000000101ULL,  // BLOCK_8X16,
+  0x0000000000000001ULL,  // BLOCK_16X8,
+  0x0000000000000101ULL,  // BLOCK_16X16,
+  0x0000000001010101ULL,  // BLOCK_16X32,
+  0x0000000000000101ULL,  // BLOCK_32X16,
+  0x0000000001010101ULL,  // BLOCK_32X32,
+  0x0101010101010101ULL,  // BLOCK_32X64,
+  0x0000000001010101ULL,  // BLOCK_64X32,
+  0x0101010101010101ULL,  // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each prediction size.
+static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
+  0x0000000000000001ULL,  // BLOCK_4X4
+  0x0000000000000001ULL,  // BLOCK_4X8
+  0x0000000000000001ULL,  // BLOCK_8X4
+  0x0000000000000001ULL,  // BLOCK_8X8
+  0x0000000000000001ULL,  // BLOCK_8X16,
+  0x0000000000000003ULL,  // BLOCK_16X8
+  0x0000000000000003ULL,  // BLOCK_16X16
+  0x0000000000000003ULL,  // BLOCK_16X32,
+  0x000000000000000fULL,  // BLOCK_32X16,
+  0x000000000000000fULL,  // BLOCK_32X32,
+  0x000000000000000fULL,  // BLOCK_32X64,
+  0x00000000000000ffULL,  // BLOCK_64X32,
+  0x00000000000000ffULL,  // BLOCK_64X64
+};
+// 64 bit mask to shift and set for each prediction size. A bit is set for
+// each 8x8 block that would be in the left most block of the given block
+// size in the 64x64 block.
+static const uint64_t size_mask[BLOCK_SIZES] = {
+  0x0000000000000001ULL,  // BLOCK_4X4
+  0x0000000000000001ULL,  // BLOCK_4X8
+  0x0000000000000001ULL,  // BLOCK_8X4
+  0x0000000000000001ULL,  // BLOCK_8X8
+  0x0000000000000101ULL,  // BLOCK_8X16,
+  0x0000000000000003ULL,  // BLOCK_16X8
+  0x0000000000000303ULL,  // BLOCK_16X16
+  0x0000000003030303ULL,  // BLOCK_16X32,
+  0x0000000000000f0fULL,  // BLOCK_32X16,
+  0x000000000f0f0f0fULL,  // BLOCK_32X32,
+  0x0f0f0f0f0f0f0f0fULL,  // BLOCK_32X64,
+  0x00000000ffffffffULL,  // BLOCK_64X32,
+  0xffffffffffffffffULL,  // BLOCK_64X64
+};
+
+// These are used for masking the left and above borders.
+static const uint64_t left_border = 0x1111111111111111ULL;
+static const uint64_t above_border = 0x000000ff000000ffULL;
+
+// 16 bit masks for uv transform sizes.
+static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
+  0xffff,  // TX_4X4
+  0xffff,  // TX_8x8
+  0x5555,  // TX_16x16
+  0x1111,  // TX_32x32
+};
+
+static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
+  0xffff,  // TX_4X4
+  0xffff,  // TX_8x8
+  0x0f0f,  // TX_16x16
+  0x000f,  // TX_32x32
+};
+
+// 16 bit left mask to shift and set for each uv prediction size.
+static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
+  0x0001,  // BLOCK_4X4,
+  0x0001,  // BLOCK_4X8,
+  0x0001,  // BLOCK_8X4,
+  0x0001,  // BLOCK_8X8,
+  0x0001,  // BLOCK_8X16,
+  0x0001,  // BLOCK_16X8,
+  0x0001,  // BLOCK_16X16,
+  0x0011,  // BLOCK_16X32,
+  0x0001,  // BLOCK_32X16,
+  0x0011,  // BLOCK_32X32,
+  0x1111,  // BLOCK_32X64
+  0x0011,  // BLOCK_64X32,
+  0x1111,  // BLOCK_64X64
+};
+// 16 bit above mask to shift and set for uv each prediction size.
+static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
+  0x0001,  // BLOCK_4X4
+  0x0001,  // BLOCK_4X8
+  0x0001,  // BLOCK_8X4
+  0x0001,  // BLOCK_8X8
+  0x0001,  // BLOCK_8X16,
+  0x0001,  // BLOCK_16X8
+  0x0001,  // BLOCK_16X16
+  0x0001,  // BLOCK_16X32,
+  0x0003,  // BLOCK_32X16,
+  0x0003,  // BLOCK_32X32,
+  0x0003,  // BLOCK_32X64,
+  0x000f,  // BLOCK_64X32,
+  0x000f,  // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each uv prediction size
+static const uint16_t size_mask_uv[BLOCK_SIZES] = {
+  0x0001,  // BLOCK_4X4
+  0x0001,  // BLOCK_4X8
+  0x0001,  // BLOCK_8X4
+  0x0001,  // BLOCK_8X8
+  0x0001,  // BLOCK_8X16,
+  0x0001,  // BLOCK_16X8
+  0x0001,  // BLOCK_16X16
+  0x0011,  // BLOCK_16X32,
+  0x0003,  // BLOCK_32X16,
+  0x0033,  // BLOCK_32X32,
+  0x3333,  // BLOCK_32X64,
+  0x00ff,  // BLOCK_64X32,
+  0xffff,  // BLOCK_64X64
+};
+static const uint16_t left_border_uv = 0x1111;
+static const uint16_t above_border_uv = 0x000f;
+
+static const int mode_lf_lut[MB_MODE_COUNT] = {
+  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // INTRA_MODES
+  1, 1, 0, 1                     // INTER_MODES (ZEROMV == 0)
+#if CONFIG_EXT_INTER
+  ,
+  1,                            // NEWFROMNEARMV mode
+  1, 1, 1, 1, 1, 1, 1, 1, 0, 1  // INTER_COMPOUND_MODES (ZERO_ZEROMV == 0)
+#endif                          // CONFIG_EXT_INTER
+};
+
+static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
+  int lvl;
+
+  // For each possible value for the loop filter fill out limits
+  for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
+    // Set loop filter parameters that control sharpness.
+    int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
+
+    if (sharpness_lvl > 0) {
+      if (block_inside_limit > (9 - sharpness_lvl))
+        block_inside_limit = (9 - sharpness_lvl);
+    }
+
+    if (block_inside_limit < 1) block_inside_limit = 1;
+
+    memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
+    memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
+           SIMD_WIDTH);
+  }
+}
+
+static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
+                                const MB_MODE_INFO *mbmi) {
+#if CONFIG_SUPERTX
+  const int segment_id = VPXMIN(mbmi->segment_id, mbmi->segment_id_supertx);
+  assert(
+      IMPLIES(supertx_enabled(mbmi), mbmi->segment_id_supertx != MAX_SEGMENTS));
+  assert(IMPLIES(supertx_enabled(mbmi),
+                 mbmi->segment_id_supertx <= mbmi->segment_id));
+#else
+  const int segment_id = mbmi->segment_id;
+#endif  // CONFIG_SUPERTX
+  return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]];
+}
+
+void vp10_loop_filter_init(VP10_COMMON *cm) {
+  loop_filter_info_n *lfi = &cm->lf_info;
+  struct loopfilter *lf = &cm->lf;
+  int lvl;
+
+  // init limits for given sharpness
+  update_sharpness(lfi, lf->sharpness_level);
+  lf->last_sharpness_level = lf->sharpness_level;
+
+  // init hev threshold const vectors
+  for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
+    memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
+}
+
+void vp10_loop_filter_frame_init(VP10_COMMON *cm, int default_filt_lvl) {
+  int seg_id;
+  // n_shift is the multiplier for lf_deltas
+  // the multiplier is 1 for when filter_lvl is between 0 and 31;
+  // 2 when filter_lvl is between 32 and 63
+  const int scale = 1 << (default_filt_lvl >> 5);
+  loop_filter_info_n *const lfi = &cm->lf_info;
+  struct loopfilter *const lf = &cm->lf;
+  const struct segmentation *const seg = &cm->seg;
+
+  // update limits if sharpness has changed
+  if (lf->last_sharpness_level != lf->sharpness_level) {
+    update_sharpness(lfi, lf->sharpness_level);
+    lf->last_sharpness_level = lf->sharpness_level;
+  }
+
+  for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
+    int lvl_seg = default_filt_lvl;
+    if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
+      const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
+      lvl_seg = clamp(
+          seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0,
+          MAX_LOOP_FILTER);
+    }
+
+    if (!lf->mode_ref_delta_enabled) {
+      // we could get rid of this if we assume that deltas are set to
+      // zero when not in use; encoder always uses deltas
+      memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
+    } else {
+      int ref, mode;
+      const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
+      lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
+
+      for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) {
+        for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
+          const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
+                                lf->mode_deltas[mode] * scale;
+          lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
+        }
+      }
+    }
+  }
+}
+
+static void filter_selectively_vert_row2(int subsampling_factor, uint8_t *s,
+                                         int pitch, unsigned int mask_16x16_l,
+                                         unsigned int mask_8x8_l,
+                                         unsigned int mask_4x4_l,
+                                         unsigned int mask_4x4_int_l,
+                                         const loop_filter_info_n *lfi_n,
+                                         const uint8_t *lfl) {
+  const int mask_shift = subsampling_factor ? 4 : 8;
+  const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
+  const int lfl_forward = subsampling_factor ? 4 : 8;
+
+  unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
+  unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
+  unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
+  unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
+  unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
+  unsigned int mask;
+
+  for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
+              mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
+       mask; mask >>= 1) {
+    const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
+    const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
+
+    if (mask & 1) {
+      if ((mask_16x16_0 | mask_16x16_1) & 1) {
+        if ((mask_16x16_0 & mask_16x16_1) & 1) {
+          vpx_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                   lfi0->hev_thr);
+        } else if (mask_16x16_0 & 1) {
+          vpx_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
+        } else {
+          vpx_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
+                              lfi1->hev_thr);
+        }
+      }
+
+      if ((mask_8x8_0 | mask_8x8_1) & 1) {
+        if ((mask_8x8_0 & mask_8x8_1) & 1) {
+          vpx_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                  lfi1->hev_thr);
+        } else if (mask_8x8_0 & 1) {
+          vpx_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
+        } else {
+          vpx_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
+                             lfi1->hev_thr);
+        }
+      }
+
+      if ((mask_4x4_0 | mask_4x4_1) & 1) {
+        if ((mask_4x4_0 & mask_4x4_1) & 1) {
+          vpx_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                  lfi1->hev_thr);
+        } else if (mask_4x4_0 & 1) {
+          vpx_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
+        } else {
+          vpx_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
+                             lfi1->hev_thr);
+        }
+      }
+
+      if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
+        if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
+          vpx_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
+                                  lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                  lfi1->hev_thr);
+        } else if (mask_4x4_int_0 & 1) {
+          vpx_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
+                             lfi0->hev_thr);
+        } else {
+          vpx_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim,
+                             lfi1->hev_thr);
+        }
+      }
+    }
+
+    s += 8;
+    lfl += 1;
+    mask_16x16_0 >>= 1;
+    mask_8x8_0 >>= 1;
+    mask_4x4_0 >>= 1;
+    mask_4x4_int_0 >>= 1;
+    mask_16x16_1 >>= 1;
+    mask_8x8_1 >>= 1;
+    mask_4x4_1 >>= 1;
+    mask_4x4_int_1 >>= 1;
+  }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_filter_selectively_vert_row2(
+    int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16_l,
+    unsigned int mask_8x8_l, unsigned int mask_4x4_l,
+    unsigned int mask_4x4_int_l, const loop_filter_info_n *lfi_n,
+    const uint8_t *lfl, int bd) {
+  const int mask_shift = subsampling_factor ? 4 : 8;
+  const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
+  const int lfl_forward = subsampling_factor ? 4 : 8;
+
+  unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
+  unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
+  unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
+  unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
+  unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
+  unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
+  unsigned int mask;
+
+  for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
+              mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
+       mask; mask >>= 1) {
+    const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
+    const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
+
+    if (mask & 1) {
+      if ((mask_16x16_0 | mask_16x16_1) & 1) {
+        if ((mask_16x16_0 & mask_16x16_1) & 1) {
+          vpx_highbd_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                          lfi0->hev_thr, bd);
+        } else if (mask_16x16_0 & 1) {
+          vpx_highbd_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
+                                     lfi0->hev_thr, bd);
+        } else {
+          vpx_highbd_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim,
+                                     lfi1->lim, lfi1->hev_thr, bd);
+        }
+      }
+
+      if ((mask_8x8_0 | mask_8x8_1) & 1) {
+        if ((mask_8x8_0 & mask_8x8_1) & 1) {
+          vpx_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                         lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                         lfi1->hev_thr, bd);
+        } else if (mask_8x8_0 & 1) {
+          vpx_highbd_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim,
+                                    lfi0->hev_thr, bd);
+        } else {
+          vpx_highbd_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim,
+                                    lfi1->lim, lfi1->hev_thr, bd);
+        }
+      }
+
+      if ((mask_4x4_0 | mask_4x4_1) & 1) {
+        if ((mask_4x4_0 & mask_4x4_1) & 1) {
+          vpx_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
+                                         lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                         lfi1->hev_thr, bd);
+        } else if (mask_4x4_0 & 1) {
+          vpx_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim,
+                                    lfi0->hev_thr, bd);
+        } else {
+          vpx_highbd_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim,
+                                    lfi1->lim, lfi1->hev_thr, bd);
+        }
+      }
+
+      if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
+        if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
+          vpx_highbd_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
+                                         lfi0->hev_thr, lfi1->mblim, lfi1->lim,
+                                         lfi1->hev_thr, bd);
+        } else if (mask_4x4_int_0 & 1) {
+          vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
+                                    lfi0->hev_thr, bd);
+        } else {
+          vpx_highbd_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim,
+                                    lfi1->lim, lfi1->hev_thr, bd);
+        }
+      }
+    }
+
+    s += 8;
+    lfl += 1;
+    mask_16x16_0 >>= 1;
+    mask_8x8_0 >>= 1;
+    mask_4x4_0 >>= 1;
+    mask_4x4_int_0 >>= 1;
+    mask_16x16_1 >>= 1;
+    mask_8x8_1 >>= 1;
+    mask_4x4_1 >>= 1;
+    mask_4x4_int_1 >>= 1;
+  }
+}
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+static void filter_selectively_horiz(
+    uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
+    unsigned int mask_4x4, unsigned int mask_4x4_int,
+    const loop_filter_info_n *lfi_n, const uint8_t *lfl) {
+  unsigned int mask;
+  int count;
+
+  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
+       mask >>= count) {
+    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
+
+    count = 1;
+    if (mask & 1) {
+      if (mask_16x16 & 1) {
+        if ((mask_16x16 & 3) == 3) {
+          vpx_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim,
+                                     lfi->hev_thr);
+          count = 2;
+        } else {
+          vpx_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim,
+                                    lfi->hev_thr);
+        }
+      } else if (mask_8x8 & 1) {
+        if ((mask_8x8 & 3) == 3) {
+          // Next block's thresholds.
+          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
+
+          vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
+                                    lfi->hev_thr, lfin->mblim, lfin->lim,
+                                    lfin->hev_thr);
+
+          if ((mask_4x4_int & 3) == 3) {
+            vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
+                                      lfi->lim, lfi->hev_thr, lfin->mblim,
+                                      lfin->lim, lfin->hev_thr);
+          } else {
+            if (mask_4x4_int & 1)
+              vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                                   lfi->hev_thr);
+            else if (mask_4x4_int & 2)
+              vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
+                                   lfin->lim, lfin->hev_thr);
+          }
+          count = 2;
+        } else {
+          vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+
+          if (mask_4x4_int & 1)
+            vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                                 lfi->hev_thr);
+        }
+      } else if (mask_4x4 & 1) {
+        if ((mask_4x4 & 3) == 3) {
+          // Next block's thresholds.
+          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
+
+          vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
+                                    lfi->hev_thr, lfin->mblim, lfin->lim,
+                                    lfin->hev_thr);
+          if ((mask_4x4_int & 3) == 3) {
+            vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
+                                      lfi->lim, lfi->hev_thr, lfin->mblim,
+                                      lfin->lim, lfin->hev_thr);
+          } else {
+            if (mask_4x4_int & 1)
+              vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                                   lfi->hev_thr);
+            else if (mask_4x4_int & 2)
+              vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
+                                   lfin->lim, lfin->hev_thr);
+          }
+          count = 2;
+        } else {
+          vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+
+          if (mask_4x4_int & 1)
+            vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                                 lfi->hev_thr);
+        }
+      } else if (mask_4x4_int & 1) {
+        vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                             lfi->hev_thr);
+      }
+    }
+    s += 8 * count;
+    lfl += count;
+    mask_16x16 >>= count;
+    mask_8x8 >>= count;
+    mask_4x4 >>= count;
+    mask_4x4_int >>= count;
+  }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_filter_selectively_horiz(
+    uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
+    unsigned int mask_4x4, unsigned int mask_4x4_int,
+    const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) {
+  unsigned int mask;
+  int count;
+
+  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
+       mask >>= count) {
+    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
+
+    count = 1;
+    if (mask & 1) {
+      if (mask_16x16 & 1) {
+        if ((mask_16x16 & 3) == 3) {
+          vpx_highbd_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim,
+                                            lfi->hev_thr, bd);
+          count = 2;
+        } else {
+          vpx_highbd_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim,
+                                           lfi->hev_thr, bd);
+        }
+      } else if (mask_8x8 & 1) {
+        if ((mask_8x8 & 3) == 3) {
+          // Next block's thresholds.
+          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
+
+          vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
+                                           lfi->hev_thr, lfin->mblim, lfin->lim,
+                                           lfin->hev_thr, bd);
+
+          if ((mask_4x4_int & 3) == 3) {
+            vpx_highbd_lpf_horizontal_4_dual(
+                s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
+                lfin->mblim, lfin->lim, lfin->hev_thr, bd);
+          } else {
+            if (mask_4x4_int & 1) {
+              vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
+                                          lfi->lim, lfi->hev_thr, bd);
+            } else if (mask_4x4_int & 2) {
+              vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
+                                          lfin->lim, lfin->hev_thr, bd);
+            }
+          }
+          count = 2;
+        } else {
+          vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
+                                      lfi->hev_thr, bd);
+
+          if (mask_4x4_int & 1) {
+            vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
+                                        lfi->lim, lfi->hev_thr, bd);
+          }
+        }
+      } else if (mask_4x4 & 1) {
+        if ((mask_4x4 & 3) == 3) {
+          // Next block's thresholds.
+          const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
+
+          vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
+                                           lfi->hev_thr, lfin->mblim, lfin->lim,
+                                           lfin->hev_thr, bd);
+          if ((mask_4x4_int & 3) == 3) {
+            vpx_highbd_lpf_horizontal_4_dual(
+                s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
+                lfin->mblim, lfin->lim, lfin->hev_thr, bd);
+          } else {
+            if (mask_4x4_int & 1) {
+              vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
+                                          lfi->lim, lfi->hev_thr, bd);
+            } else if (mask_4x4_int & 2) {
+              vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
+                                          lfin->lim, lfin->hev_thr, bd);
+            }
+          }
+          count = 2;
+        } else {
+          vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
+                                      lfi->hev_thr, bd);
+
+          if (mask_4x4_int & 1) {
+            vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
+                                        lfi->lim, lfi->hev_thr, bd);
+          }
+        }
+      } else if (mask_4x4_int & 1) {
+        vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
+                                    lfi->hev_thr, bd);
+      }
+    }
+    s += 8 * count;
+    lfl += count;
+    mask_16x16 >>= count;
+    mask_8x8 >>= count;
+    mask_4x4 >>= count;
+    mask_4x4_int >>= count;
+  }
+}
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+// This function ors into the current lfm structure, where to do loop
+// filters for the specific mi we are looking at. It uses information
+// including the block_size_type (32x16, 32x32, etc.), the transform size,
+// whether there were any coefficients encoded, and the loop filter strength
+// block we are currently looking at. Shift is used to position the
+// 1's we produce.
+// TODO(JBB) Need another function for different resolution color..
+static void build_masks(const loop_filter_info_n *const lfi_n,
+                        const MODE_INFO *mi, const int shift_y,
+                        const int shift_uv, LOOP_FILTER_MASK *lfm) {
+  const MB_MODE_INFO *mbmi = &mi->mbmi;
+  const BLOCK_SIZE block_size = mbmi->sb_type;
+  // TODO(debargha): Check if masks can be setup correctly when
+  // rectangular transfroms are used with the EXT_TX expt.
+  const TX_SIZE tx_size_y = txsize_sqr_up_map[mbmi->tx_size];
+  const TX_SIZE tx_size_uv =
+      get_uv_tx_size_impl(mbmi->tx_size, block_size, 1, 1);
+  const int filter_level = get_filter_level(lfi_n, mbmi);
+  uint64_t *const left_y = &lfm->left_y[tx_size_y];
+  uint64_t *const above_y = &lfm->above_y[tx_size_y];
+  uint64_t *const int_4x4_y = &lfm->int_4x4_y;
+  uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
+  uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
+  uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv;
+  int i;
+
+  // If filter level is 0 we don't loop filter.
+  if (!filter_level) {
+    return;
+  } else {
+    const int w = num_8x8_blocks_wide_lookup[block_size];
+    const int h = num_8x8_blocks_high_lookup[block_size];
+    const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
+    const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
+
+    for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
+  }
+
+  // These set 1 in the current block size for the block size edges.
+  // For instance if the block size is 32x16, we'll set:
+  //    above =   1111
+  //              0000
+  //    and
+  //    left  =   1000
+  //          =   1000
+  // NOTE : In this example the low bit is left most ( 1000 ) is stored as
+  //        1,  not 8...
+  //
+  // U and V set things on a 16 bit scale.
+  //
+  *above_y |= above_prediction_mask[block_size] << shift_y;
+  *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
+  *left_y |= left_prediction_mask[block_size] << shift_y;
+  *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
+
+  // If the block has no coefficients and is not intra we skip applying
+  // the loop filter on block edges.
+  if ((mbmi->skip || mbmi->has_no_coeffs) && is_inter_block(mbmi)) return;
+
+  // Here we are adding a mask for the transform size. The transform
+  // size mask is set to be correct for a 64x64 prediction block size. We
+  // mask to match the size of the block we are working on and then shift it
+  // into place..
+  *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
+              << shift_y;
+  *above_uv |=
+      (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
+      << shift_uv;
+
+  *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
+             << shift_y;
+  *left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
+              << shift_uv;
+
+  // Here we are trying to determine what to do with the internal 4x4 block
+  // boundaries.  These differ from the 4x4 boundaries on the outside edge of
+  // an 8x8 in that the internal ones can be skipped and don't depend on
+  // the prediction block size.
+  if (tx_size_y == TX_4X4)
+    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
+
+  if (tx_size_uv == TX_4X4)
+    *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
+}
+
+// This function does the same thing as the one above with the exception that
+// it only affects the y masks. It exists because for blocks < 16x16 in size,
+// we only update u and v masks on the first block.
+static void build_y_mask(const loop_filter_info_n *const lfi_n,
+                         const MODE_INFO *mi, const int shift_y,
+#if CONFIG_SUPERTX
+                         int supertx_enabled,
+#endif  // CONFIG_SUPERTX
+                         LOOP_FILTER_MASK *lfm) {
+  const MB_MODE_INFO *mbmi = &mi->mbmi;
+  const TX_SIZE tx_size_y = txsize_sqr_up_map[mbmi->tx_size];
+#if CONFIG_SUPERTX
+  const BLOCK_SIZE block_size =
+      supertx_enabled ? (BLOCK_SIZE)(3 * tx_size_y) : mbmi->sb_type;
+#else
+  const BLOCK_SIZE block_size = mbmi->sb_type;
+#endif
+  const int filter_level = get_filter_level(lfi_n, mbmi);
+  uint64_t *const left_y = &lfm->left_y[tx_size_y];
+  uint64_t *const above_y = &lfm->above_y[tx_size_y];
+  uint64_t *const int_4x4_y = &lfm->int_4x4_y;
+  int i;
+
+  if (!filter_level) {
+    return;
+  } else {
+    const int w = num_8x8_blocks_wide_lookup[block_size];
+    const int h = num_8x8_blocks_high_lookup[block_size];
+    const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
+    const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
+
+    for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
+  }
+
+  *above_y |= above_prediction_mask[block_size] << shift_y;
+  *left_y |= left_prediction_mask[block_size] << shift_y;
+
+  if ((mbmi->skip || mbmi->has_no_coeffs) && is_inter_block(mbmi)) return;
+
+  *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
+              << shift_y;
+
+  *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
+             << shift_y;
+
+  if (tx_size_y == TX_4X4)
+    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
+}
+
+// This function sets up the bit masks for the entire 64x64 region represented
+// by mi_row, mi_col.
+// TODO(JBB): This function only works for yv12.
+void vp10_setup_mask(VP10_COMMON *const cm, const int mi_row, const int mi_col,
+                     MODE_INFO **mi, const int mode_info_stride,
+                     LOOP_FILTER_MASK *lfm) {
+  int idx_32, idx_16, idx_8;
+  const loop_filter_info_n *const lfi_n = &cm->lf_info;
+  MODE_INFO **mip = mi;
+  MODE_INFO **mip2 = mi;
+
+  // These are offsets to the next mi in the 64x64 block. It is what gets
+  // added to the mi ptr as we go through each loop. It helps us to avoid
+  // setting up special row and column counters for each index. The last step
+  // brings us out back to the starting position.
+  const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
+                            -(mode_info_stride << 2) - 4 };
+  const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
+                            -(mode_info_stride << 1) - 2 };
+  const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
+
+  // Following variables represent shifts to position the current block
+  // mask over the appropriate block. A shift of 36 to the left will move
+  // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
+  // 4 rows to the appropriate spot.
+  const int shift_32_y[] = { 0, 4, 32, 36 };
+  const int shift_16_y[] = { 0, 2, 16, 18 };
+  const int shift_8_y[] = { 0, 1, 8, 9 };
+  const int shift_32_uv[] = { 0, 2, 8, 10 };
+  const int shift_16_uv[] = { 0, 1, 4, 5 };
+  int i;
+  const int max_rows = VPXMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE);
+  const int max_cols = VPXMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE);
+#if CONFIG_EXT_PARTITION
+  assert(0 && "Not yet updated");
+#endif  // CONFIG_EXT_PARTITION
+
+  vp10_zero(*lfm);
+  assert(mip[0] != NULL);
+
+  // TODO(jimbankoski): Try moving most of the following code into decode
+  // loop and storing lfm in the mbmi structure so that we don't have to go
+  // through the recursive loop structure multiple times.
+  switch (mip[0]->mbmi.sb_type) {
+    case BLOCK_64X64: build_masks(lfi_n, mip[0], 0, 0, lfm); break;
+    case BLOCK_64X32:
+      build_masks(lfi_n, mip[0], 0, 0, lfm);
+      mip2 = mip + mode_info_stride * 4;
+      if (4 >= max_rows) break;
+      build_masks(lfi_n, mip2[0], 32, 8, lfm);
+      break;
+    case BLOCK_32X64:
+      build_masks(lfi_n, mip[0], 0, 0, lfm);
+      mip2 = mip + 4;
+      if (4 >= max_cols) break;
+      build_masks(lfi_n, mip2[0], 4, 2, lfm);
+      break;
+    default:
+      for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
+        const int shift_y = shift_32_y[idx_32];
+        const int shift_uv = shift_32_uv[idx_32];
+        const int mi_32_col_offset = ((idx_32 & 1) << 2);
+        const int mi_32_row_offset = ((idx_32 >> 1) << 2);
+        if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
+          continue;
+        switch (mip[0]->mbmi.sb_type) {
+          case BLOCK_32X32:
+            build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+            break;
+          case BLOCK_32X16: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+#if CONFIG_SUPERTX
+            if (supertx_enabled(&mip[0]->mbmi)) break;
+#endif
+            if (mi_32_row_offset + 2 >= max_rows) continue;
+            mip2 = mip + mode_info_stride * 2;
+            build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
+            break;
+          case BLOCK_16X32: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+#if CONFIG_SUPERTX
+            if (supertx_enabled(&mip[0]->mbmi)) break;
+#endif
+            if (mi_32_col_offset + 2 >= max_cols) continue;
+            mip2 = mip + 2;
+            build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
+            break;
+          default:
+#if CONFIG_SUPERTX
+            if (mip[0]->mbmi.tx_size == TX_32X32) {
+              build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+              break;
+            }
+#endif
+            for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
+              const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
+              const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
+              const int mi_16_col_offset =
+                  mi_32_col_offset + ((idx_16 & 1) << 1);
+              const int mi_16_row_offset =
+                  mi_32_row_offset + ((idx_16 >> 1) << 1);
+
+              if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
+                continue;
+
+              switch (mip[0]->mbmi.sb_type) {
+                case BLOCK_16X16:
+                  build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+                  break;
+                case BLOCK_16X8:
+#if CONFIG_SUPERTX
+                  if (supertx_enabled(&mip[0]->mbmi)) break;
+#endif
+                  build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+                  if (mi_16_row_offset + 1 >= max_rows) continue;
+                  mip2 = mip + mode_info_stride;
+                  build_y_mask(lfi_n, mip2[0], shift_y + 8,
+#if CONFIG_SUPERTX
+                               0,
+#endif
+                               lfm);
+                  break;
+                case BLOCK_8X16:
+#if CONFIG_SUPERTX
+                  if (supertx_enabled(&mip[0]->mbmi)) break;
+#endif
+                  build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+                  if (mi_16_col_offset + 1 >= max_cols) continue;
+                  mip2 = mip + 1;
+                  build_y_mask(lfi_n, mip2[0], shift_y + 1,
+#if CONFIG_SUPERTX
+                               0,
+#endif
+                               lfm);
+                  break;
+                default: {
+                  const int shift_y =
+                      shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[0];
+#if CONFIG_SUPERTX
+                  if (mip[0]->mbmi.tx_size == TX_16X16) {
+                    build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+                    break;
+                  }
+#endif
+                  build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
+                  mip += offset[0];
+                  for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
+                    const int shift_y = shift_32_y[idx_32] +
+                                        shift_16_y[idx_16] + shift_8_y[idx_8];
+                    const int mi_8_col_offset =
+                        mi_16_col_offset + ((idx_8 & 1));
+                    const int mi_8_row_offset =
+                        mi_16_row_offset + ((idx_8 >> 1));
+
+                    if (mi_8_col_offset >= max_cols ||
+                        mi_8_row_offset >= max_rows)
+                      continue;
+                    build_y_mask(lfi_n, mip[0], shift_y,
+#if CONFIG_SUPERTX
+                                 supertx_enabled(&mip[0]->mbmi),
+#endif
+                                 lfm);
+                  }
+                  break;
+                }
+              }
+            }
+            break;
+        }
+      }
+      break;
+  }
+  // The largest loopfilter we have is 16x16 so we use the 16x16 mask
+  // for 32x32 transforms also.
+  lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
+  lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
+  lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
+  lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
+
+  // We do at least 8 tap filter on every 32x32 even if the transform size
+  // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
+  // remove it from the 4x4.
+  lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
+  lfm->left_y[TX_4X4] &= ~left_border;
+  lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
+  lfm->above_y[TX_4X4] &= ~above_border;
+  lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
+  lfm->left_uv[TX_4X4] &= ~left_border_uv;
+  lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
+  lfm->above_uv[TX_4X4] &= ~above_border_uv;
+
+  // We do some special edge handling.
+  if (mi_row + MAX_MIB_SIZE > cm->mi_rows) {
+    const uint64_t rows = cm->mi_rows - mi_row;
+
+    // Each pixel inside the border gets a 1,
+    const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1);
+    const uint16_t mask_uv =
+        (((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1);
+
+    // Remove values completely outside our border.
+    for (i = 0; i < TX_32X32; i++) {
+      lfm->left_y[i] &= mask_y;
+      lfm->above_y[i] &= mask_y;
+      lfm->left_uv[i] &= mask_uv;
+      lfm->above_uv[i] &= mask_uv;
+    }
+    lfm->int_4x4_y &= mask_y;
+    lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv;
+
+    // We don't apply a wide loop filter on the last uv block row. If set
+    // apply the shorter one instead.
+    if (rows == 1) {
+      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
+      lfm->above_uv[TX_16X16] = 0;
+    }
+    if (rows == 5) {
+      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
+      lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
+    }
+  }
+
+  if (mi_col + MAX_MIB_SIZE > cm->mi_cols) {
+    const uint64_t columns = cm->mi_cols - mi_col;
+
+    // Each pixel inside the border gets a 1, the multiply copies the border
+    // to where we need it.
+    const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
+    const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
+
+    // Internal edges are not applied on the last column of the image so
+    // we mask 1 more for the internal edges
+    const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
+
+    // Remove the bits outside the image edge.
+    for (i = 0; i < TX_32X32; i++) {
+      lfm->left_y[i] &= mask_y;
+      lfm->above_y[i] &= mask_y;
+      lfm->left_uv[i] &= mask_uv;
+      lfm->above_uv[i] &= mask_uv;
+    }
+    lfm->int_4x4_y &= mask_y;
+    lfm->left_int_4x4_uv &= mask_uv_int;
+
+    // We don't apply a wide loop filter on the last uv column. If set
+    // apply the shorter one instead.
+    if (columns == 1) {
+      lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
+      lfm->left_uv[TX_16X16] = 0;
+    }
+    if (columns == 5) {
+      lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
+      lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
+    }
+  }
+  // We don't apply a loop filter on the first column in the image, mask that
+  // out.
+  if (mi_col == 0) {
+    for (i = 0; i < TX_32X32; i++) {
+      lfm->left_y[i] &= 0xfefefefefefefefeULL;
+      lfm->left_uv[i] &= 0xeeee;
+    }
+  }
+
+  // Assert if we try to apply 2 different loop filters at the same position.
+  assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
+  assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
+  assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
+  assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
+  assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
+  assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
+  assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
+  assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16]));
+  assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
+  assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
+  assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
+  assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
+  assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
+  assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
+  assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
+  assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16]));
+}
+
+static void filter_selectively_vert(
+    uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
+    unsigned int mask_4x4, unsigned int mask_4x4_int,
+    const loop_filter_info_n *lfi_n, const uint8_t *lfl) {
+  unsigned int mask;
+
+  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
+       mask >>= 1) {
+    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
+
+    if (mask & 1) {
+      if (mask_16x16 & 1) {
+        vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+      } else if (mask_8x8 & 1) {
+        vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+      } else if (mask_4x4 & 1) {
+        vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+      }
+    }
+    if (mask_4x4_int & 1)
+      vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
+    s += 8;
+    lfl += 1;
+    mask_16x16 >>= 1;
+    mask_8x8 >>= 1;
+    mask_4x4 >>= 1;
+    mask_4x4_int >>= 1;
+  }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_filter_selectively_vert(
+    uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
+    unsigned int mask_4x4, unsigned int mask_4x4_int,
+    const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) {
+  unsigned int mask;
+
+  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
+       mask >>= 1) {
+    const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
+
+    if (mask & 1) {
+      if (mask_16x16 & 1) {
+        vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
+                                   bd);
+      } else if (mask_8x8 & 1) {
+        vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
+                                  bd);
+      } else if (mask_4x4 & 1) {
+        vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
+                                  bd);
+      }
+    }
+    if (mask_4x4_int & 1)
+      vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
+                                lfi->hev_thr, bd);
+    s += 8;
+    lfl += 1;
+    mask_16x16 >>= 1;
+    mask_8x8 >>= 1;
+    mask_4x4 >>= 1;
+    mask_4x4_int >>= 1;
+  }
+}
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+void vp10_filter_block_plane_non420(VP10_COMMON *cm,
+                                    struct macroblockd_plane *plane,
+                                    MODE_INFO **mib, int mi_row, int mi_col) {
+  const int ss_x = plane->subsampling_x;
+  const int ss_y = plane->subsampling_y;
+  const int row_step = 1 << ss_y;
+  const int col_step = 1 << ss_x;
+  struct buf_2d *const dst = &plane->dst;
+  uint8_t *const dst0 = dst->buf;
+  unsigned int mask_16x16[MAX_MIB_SIZE] = { 0 };
+  unsigned int mask_8x8[MAX_MIB_SIZE] = { 0 };
+  unsigned int mask_4x4[MAX_MIB_SIZE] = { 0 };
+  unsigned int mask_4x4_int[MAX_MIB_SIZE] = { 0 };
+  uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE];
+  int r, c;
+
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += row_step) {
+    unsigned int mask_16x16_c = 0;
+    unsigned int mask_8x8_c = 0;
+    unsigned int mask_4x4_c = 0;
+    unsigned int border_mask;
+
+    // Determine the vertical edges that need filtering
+    for (c = 0; c < cm->mib_size && mi_col + c < cm->mi_cols; c += col_step) {
+      const MODE_INFO *mi = mib[c];
+      const MB_MODE_INFO *mbmi = &mi[0].mbmi;
+      const BLOCK_SIZE sb_type = mbmi->sb_type;
+      const int skip_this = mbmi->skip && is_inter_block(mbmi);
+      const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1);
+      const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1);
+
+      // left edge of current unit is block/partition edge -> no skip
+      const int block_edge_left =
+          (num_4x4_blocks_wide_lookup[sb_type] > 1) ? !blk_col : 1;
+      const int skip_this_c = skip_this && !block_edge_left;
+      // top edge of current unit is block/partition edge -> no skip
+      const int block_edge_above =
+          (num_4x4_blocks_high_lookup[sb_type] > 1) ? !blk_row : 1;
+      const int skip_this_r = skip_this && !block_edge_above;
+
+#if CONFIG_VAR_TX
+      TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
+                            ? get_uv_tx_size(mbmi, plane)
+                            : mbmi->tx_size;
+#else
+      const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
+                                  ? get_uv_tx_size(mbmi, plane)
+                                  : mbmi->tx_size;
+#endif
+
+      const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
+      const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
+
+      TX_SIZE tx_size_c = num_4x4_blocks_wide_txsize_log2_lookup[tx_size];
+      TX_SIZE tx_size_r = num_4x4_blocks_high_txsize_log2_lookup[tx_size];
+
+      int tx_size_mask = 0;
+      // Filter level can vary per MI
+      if (!(lfl[r][c >> ss_x] = get_filter_level(&cm->lf_info, mbmi))) continue;
+
+      if (tx_size == TX_32X32)
+        tx_size_mask = 3;
+      else if (tx_size == TX_16X16)
+        tx_size_mask = 1;
+      else
+        tx_size_mask = 0;
+
+#if CONFIG_VAR_TX
+      if (is_inter_block(mbmi) && !mbmi->skip)
+        tx_size =
+            (plane->plane_type == PLANE_TYPE_UV)
+                ? get_uv_tx_size_impl(mbmi->inter_tx_size[blk_row][blk_col],
+                                      sb_type, ss_x, ss_y)
+                : mbmi->inter_tx_size[blk_row][blk_col];
+
+#if CONFIG_EXT_TX && CONFIG_RECT_TX
+      tx_size_r =
+          VPXMIN(txsize_horz_map[tx_size], cm->above_txfm_context[mi_col + c]);
+      tx_size_c = VPXMIN(txsize_vert_map[tx_size],
+                         cm->left_txfm_context[(mi_row + r) & MAX_MIB_MASK]);
+
+      cm->above_txfm_context[mi_col + c] = txsize_horz_map[tx_size];
+      cm->left_txfm_context[(mi_row + r) & MAX_MIB_MASK] =
+          txsize_vert_map[tx_size];
+#else
+      tx_size_r = VPXMIN(tx_size, cm->above_txfm_context[mi_col + c]);
+      tx_size_c =
+          VPXMIN(tx_size, cm->left_txfm_context[(mi_row + r) & MAX_MIB_MASK]);
+
+      cm->above_txfm_context[mi_col + c] = tx_size;
+      cm->left_txfm_context[(mi_row + r) & MAX_MIB_MASK] = tx_size;
+#endif
+#endif
+
+      // Build masks based on the transform size of each block
+      // handle vertical mask
+      if (tx_size_c == TX_32X32) {
+        if (!skip_this_c && ((c >> ss_x) & tx_size_mask) == 0) {
+          if (!skip_border_4x4_c)
+            mask_16x16_c |= 1 << (c >> ss_x);
+          else
+            mask_8x8_c |= 1 << (c >> ss_x);
+        }
+      } else if (tx_size_c == TX_16X16) {
+        if (!skip_this_c && ((c >> ss_x) & tx_size_mask) == 0) {
+          if (!skip_border_4x4_c)
+            mask_16x16_c |= 1 << (c >> ss_x);
+          else
+            mask_8x8_c |= 1 << (c >> ss_x);
+        }
+      } else {
+        // force 8x8 filtering on 32x32 boundaries
+        if (!skip_this_c && ((c >> ss_x) & tx_size_mask) == 0) {
+          if (tx_size_c == TX_8X8 || ((c >> ss_x) & 3) == 0)
+            mask_8x8_c |= 1 << (c >> ss_x);
+          else
+            mask_4x4_c |= 1 << (c >> ss_x);
+        }
+
+        if (!skip_this && tx_size_c < TX_8X8 && !skip_border_4x4_c &&
+            ((c >> ss_x) & tx_size_mask) == 0)
+          mask_4x4_int[r] |= 1 << (c >> ss_x);
+      }
+
+      // set horizontal mask
+      if (tx_size_r == TX_32X32) {
+        if (!skip_this_r && ((r >> ss_y) & tx_size_mask) == 0) {
+          if (!skip_border_4x4_r)
+            mask_16x16[r] |= 1 << (c >> ss_x);
+          else
+            mask_8x8[r] |= 1 << (c >> ss_x);
+        }
+      } else if (tx_size_r == TX_16X16) {
+        if (!skip_this_r && ((r >> ss_y) & tx_size_mask) == 0) {
+          if (!skip_border_4x4_r)
+            mask_16x16[r] |= 1 << (c >> ss_x);
+          else
+            mask_8x8[r] |= 1 << (c >> ss_x);
+        }
+      } else {
+        // force 8x8 filtering on 32x32 boundaries
+        if (!skip_this_r && ((r >> ss_y) & tx_size_mask) == 0) {
+          if (tx_size_r == TX_8X8 || ((r >> ss_y) & 3) == 0)
+            mask_8x8[r] |= 1 << (c >> ss_x);
+          else
+            mask_4x4[r] |= 1 << (c >> ss_x);
+        }
+
+        if (!skip_this && tx_size_r < TX_8X8 && !skip_border_4x4_c &&
+            ((r >> ss_y) & tx_size_mask) == 0)
+          mask_4x4_int[r] |= 1 << (c >> ss_x);
+      }
+    }
+
+    // Disable filtering on the leftmost column
+    border_mask = ~(mi_col == 0);
+#if CONFIG_VP9_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      highbd_filter_selectively_vert(
+          CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
+          mask_16x16_c & border_mask, mask_8x8_c & border_mask,
+          mask_4x4_c & border_mask, mask_4x4_int[r], &cm->lf_info, &lfl[r][0],
+          (int)cm->bit_depth);
+    } else {
+      filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask,
+                              mask_8x8_c & border_mask,
+                              mask_4x4_c & border_mask, mask_4x4_int[r],
+                              &cm->lf_info, &lfl[r][0]);
+    }
+#else
+    filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask,
+                            mask_8x8_c & border_mask, mask_4x4_c & border_mask,
+                            mask_4x4_int[r], &cm->lf_info, &lfl[r][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+    dst->buf += MI_SIZE * dst->stride;
+    mib += row_step * cm->mi_stride;
+  }
+
+  // Now do horizontal pass
+  dst->buf = dst0;
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += row_step) {
+    const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
+    const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
+
+    unsigned int mask_16x16_r;
+    unsigned int mask_8x8_r;
+    unsigned int mask_4x4_r;
+
+    if (mi_row + r == 0) {
+      mask_16x16_r = 0;
+      mask_8x8_r = 0;
+      mask_4x4_r = 0;
+    } else {
+      mask_16x16_r = mask_16x16[r];
+      mask_8x8_r = mask_8x8[r];
+      mask_4x4_r = mask_4x4[r];
+    }
+#if CONFIG_VP9_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf),
+                                      dst->stride, mask_16x16_r, mask_8x8_r,
+                                      mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
+                                      &lfl[r][0], (int)cm->bit_depth);
+    } else {
+      filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                               mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
+                               &lfl[r][0]);
+    }
+#else
+    filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                             mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
+                             &lfl[r][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+    dst->buf += MI_SIZE * dst->stride;
+  }
+}
+
+void vp10_filter_block_plane_ss00(VP10_COMMON *const cm,
+                                  struct macroblockd_plane *const plane,
+                                  int mi_row, LOOP_FILTER_MASK *lfm) {
+  struct buf_2d *const dst = &plane->dst;
+  uint8_t *const dst0 = dst->buf;
+  int r;
+  uint64_t mask_16x16 = lfm->left_y[TX_16X16];
+  uint64_t mask_8x8 = lfm->left_y[TX_8X8];
+  uint64_t mask_4x4 = lfm->left_y[TX_4X4];
+  uint64_t mask_4x4_int = lfm->int_4x4_y;
+
+  assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
+
+  // Vertical pass: do 2 rows at one time
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) {
+    unsigned int mask_16x16_l = mask_16x16 & 0xffff;
+    unsigned int mask_8x8_l = mask_8x8 & 0xffff;
+    unsigned int mask_4x4_l = mask_4x4 & 0xffff;
+    unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff;
+
+// Disable filtering on the leftmost column.
+#if CONFIG_VP9_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      highbd_filter_selectively_vert_row2(
+          plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
+          mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
+          &lfm->lfl_y[r][0], (int)cm->bit_depth);
+    } else {
+      filter_selectively_vert_row2(
+          plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
+          mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0]);
+    }
+#else
+    filter_selectively_vert_row2(
+        plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
+        mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+    dst->buf += 2 * MI_SIZE * dst->stride;
+    mask_16x16 >>= 2 * MI_SIZE;
+    mask_8x8 >>= 2 * MI_SIZE;
+    mask_4x4 >>= 2 * MI_SIZE;
+    mask_4x4_int >>= 2 * MI_SIZE;
+  }
+
+  // Horizontal pass
+  dst->buf = dst0;
+  mask_16x16 = lfm->above_y[TX_16X16];
+  mask_8x8 = lfm->above_y[TX_8X8];
+  mask_4x4 = lfm->above_y[TX_4X4];
+  mask_4x4_int = lfm->int_4x4_y;
+
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r++) {
+    unsigned int mask_16x16_r;
+    unsigned int mask_8x8_r;
+    unsigned int mask_4x4_r;
+
+    if (mi_row + r == 0) {
+      mask_16x16_r = 0;
+      mask_8x8_r = 0;
+      mask_4x4_r = 0;
+    } else {
+      mask_16x16_r = mask_16x16 & 0xff;
+      mask_8x8_r = mask_8x8 & 0xff;
+      mask_4x4_r = mask_4x4 & 0xff;
+    }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      highbd_filter_selectively_horiz(
+          CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
+          mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r][0],
+          (int)cm->bit_depth);
+    } else {
+      filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                               mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info,
+                               &lfm->lfl_y[r][0]);
+    }
+#else
+    filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                             mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info,
+                             &lfm->lfl_y[r][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+    dst->buf += MI_SIZE * dst->stride;
+    mask_16x16 >>= MI_SIZE;
+    mask_8x8 >>= MI_SIZE;
+    mask_4x4 >>= MI_SIZE;
+    mask_4x4_int >>= MI_SIZE;
+  }
+}
+
+void vp10_filter_block_plane_ss11(VP10_COMMON *const cm,
+                                  struct macroblockd_plane *const plane,
+                                  int mi_row, LOOP_FILTER_MASK *lfm) {
+  struct buf_2d *const dst = &plane->dst;
+  uint8_t *const dst0 = dst->buf;
+  int r, c;
+
+  uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
+  uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
+  uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
+  uint16_t mask_4x4_int = lfm->left_int_4x4_uv;
+
+  assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
+  assert(plane->plane_type == PLANE_TYPE_UV);
+
+  // Vertical pass: do 2 rows at one time
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) {
+    for (c = 0; c < (cm->mib_size >> 1); c++) {
+      lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1];
+      lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1];
+    }
+
+    {
+      unsigned int mask_16x16_l = mask_16x16 & 0xff;
+      unsigned int mask_8x8_l = mask_8x8 & 0xff;
+      unsigned int mask_4x4_l = mask_4x4 & 0xff;
+      unsigned int mask_4x4_int_l = mask_4x4_int & 0xff;
+
+// Disable filtering on the leftmost column.
+#if CONFIG_VP9_HIGHBITDEPTH
+      if (cm->use_highbitdepth) {
+        highbd_filter_selectively_vert_row2(
+            plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
+            mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
+            &lfm->lfl_uv[r >> 1][0], (int)cm->bit_depth);
+      } else {
+        filter_selectively_vert_row2(plane->subsampling_x, dst->buf,
+                                     dst->stride, mask_16x16_l, mask_8x8_l,
+                                     mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
+                                     &lfm->lfl_uv[r >> 1][0]);
+      }
+#else
+      filter_selectively_vert_row2(
+          plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
+          mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_uv[r >> 1][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+      dst->buf += 2 * MI_SIZE * dst->stride;
+      mask_16x16 >>= MI_SIZE;
+      mask_8x8 >>= MI_SIZE;
+      mask_4x4 >>= MI_SIZE;
+      mask_4x4_int >>= MI_SIZE;
+    }
+  }
+
+  // Horizontal pass
+  dst->buf = dst0;
+  mask_16x16 = lfm->above_uv[TX_16X16];
+  mask_8x8 = lfm->above_uv[TX_8X8];
+  mask_4x4 = lfm->above_uv[TX_4X4];
+  mask_4x4_int = lfm->above_int_4x4_uv;
+
+  for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) {
+    const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
+    const unsigned int mask_4x4_int_r =
+        skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
+    unsigned int mask_16x16_r;
+    unsigned int mask_8x8_r;
+    unsigned int mask_4x4_r;
+
+    if (mi_row + r == 0) {
+      mask_16x16_r = 0;
+      mask_8x8_r = 0;
+      mask_4x4_r = 0;
+    } else {
+      mask_16x16_r = mask_16x16 & 0xf;
+      mask_8x8_r = mask_8x8 & 0xf;
+      mask_4x4_r = mask_4x4 & 0xf;
+    }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      highbd_filter_selectively_horiz(
+          CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
+          mask_4x4_r, mask_4x4_int_r, &cm->lf_info, &lfm->lfl_uv[r >> 1][0],
+          (int)cm->bit_depth);
+    } else {
+      filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                               mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
+                               &lfm->lfl_uv[r >> 1][0]);
+    }
+#else
+    filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
+                             mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
+                             &lfm->lfl_uv[r >> 1][0]);
+#endif  // CONFIG_VP9_HIGHBITDEPTH
+
+    dst->buf += MI_SIZE * dst->stride;
+    mask_16x16 >>= MI_SIZE / 2;
+    mask_8x8 >>= MI_SIZE / 2;
+    mask_4x4 >>= MI_SIZE / 2;
+    mask_4x4_int >>= MI_SIZE / 2;
+  }
+}
+
+void vp10_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP10_COMMON *cm,
+                           struct macroblockd_plane planes[MAX_MB_PLANE],
+                           int start, int stop, int y_only) {
+#if CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_EXT_PARTITION_TYPES
+  const int num_planes = y_only ? 1 : MAX_MB_PLANE;
+  int mi_row, mi_col;
+
+#if CONFIG_VAR_TX
+  memset(cm->above_txfm_context, TX_SIZES, cm->mi_cols);
+#endif  // CONFIG_VAR_TX
+  for (mi_row = start; mi_row < stop; mi_row += cm->mib_size) {
+    MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
+#if CONFIG_VAR_TX
+    memset(cm->left_txfm_context, TX_SIZES, MAX_MIB_SIZE);
+#endif  // CONFIG_VAR_TX
+    for (mi_col = 0; mi_col < cm->mi_cols; mi_col += cm->mib_size) {
+      int plane;
+
+      vp10_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
+
+      for (plane = 0; plane < num_planes; ++plane)
+        vp10_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, mi_row,
+                                       mi_col);
+    }
+  }
+#else
+  const int num_planes = y_only ? 1 : MAX_MB_PLANE;
+  int mi_row, mi_col;
+  enum lf_path path;
+  LOOP_FILTER_MASK lfm;
+
+  if (y_only)
+    path = LF_PATH_444;
+  else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
+    path = LF_PATH_420;
+  else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
+    path = LF_PATH_444;
+  else
+    path = LF_PATH_SLOW;
+
+  for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
+    MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
+    for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
+      int plane;
+
+      vp10_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
+
+      // TODO(JBB): Make setup_mask work for non 420.
+      vp10_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, &lfm);
+
+      vp10_filter_block_plane_ss00(cm, &planes[0], mi_row, &lfm);
+      for (plane = 1; plane < num_planes; ++plane) {
+        switch (path) {
+          case LF_PATH_420:
+            vp10_filter_block_plane_ss11(cm, &planes[plane], mi_row, &lfm);
+            break;
+          case LF_PATH_444:
+            vp10_filter_block_plane_ss00(cm, &planes[plane], mi_row, &lfm);
+            break;
+          case LF_PATH_SLOW:
+            vp10_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
+                                           mi_row, mi_col);
+            break;
+        }
+      }
+    }
+  }
+#endif  // CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_EXT_PARTITION_TYPES
+}
+
+void vp10_loop_filter_frame(YV12_BUFFER_CONFIG *frame, VP10_COMMON *cm,
+                            MACROBLOCKD *xd, int frame_filter_level, int y_only,
+                            int partial_frame) {
+  int start_mi_row, end_mi_row, mi_rows_to_filter;
+  if (!frame_filter_level) return;
+  start_mi_row = 0;
+  mi_rows_to_filter = cm->mi_rows;
+  if (partial_frame && cm->mi_rows > 8) {
+    start_mi_row = cm->mi_rows >> 1;
+    start_mi_row &= 0xfffffff8;
+    mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
+  }
+  end_mi_row = start_mi_row + mi_rows_to_filter;
+  vp10_loop_filter_frame_init(cm, frame_filter_level);
+  vp10_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
+}
+
+void vp10_loop_filter_data_reset(
+    LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer,
+    struct VP10Common *cm,
+    const struct macroblockd_plane planes[MAX_MB_PLANE]) {
+  lf_data->frame_buffer = frame_buffer;
+  lf_data->cm = cm;
+  lf_data->start = 0;
+  lf_data->stop = 0;
+  lf_data->y_only = 0;
+  memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
+}
+
+int vp10_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
+  (void)unused;
+  vp10_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
+                        lf_data->start, lf_data->stop, lf_data->y_only);
+  return 1;
+}