vp10/ -> av1/

Change-Id: Ia055d03656ad1580447eced8687949583fdf4089
diff --git a/av1/encoder/aq_complexity.c b/av1/encoder/aq_complexity.c
new file mode 100644
index 0000000..14e3da1
--- /dev/null
+++ b/av1/encoder/aq_complexity.c
@@ -0,0 +1,163 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "av1/encoder/aq_complexity.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/common/seg_common.h"
+#include "av1/encoder/segmentation.h"
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_ports/system_state.h"
+
+#define AQ_C_SEGMENTS 5
+#define DEFAULT_AQ2_SEG 3  // Neutral Q segment
+#define AQ_C_STRENGTHS 3
+static const double aq_c_q_adj_factor[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = {
+  { 1.75, 1.25, 1.05, 1.00, 0.90 },
+  { 2.00, 1.50, 1.15, 1.00, 0.85 },
+  { 2.50, 1.75, 1.25, 1.00, 0.80 }
+};
+static const double aq_c_transitions[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = {
+  { 0.15, 0.30, 0.55, 2.00, 100.0 },
+  { 0.20, 0.40, 0.65, 2.00, 100.0 },
+  { 0.25, 0.50, 0.75, 2.00, 100.0 }
+};
+static const double aq_c_var_thresholds[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = {
+  { -4.0, -3.0, -2.0, 100.00, 100.0 },
+  { -3.5, -2.5, -1.5, 100.00, 100.0 },
+  { -3.0, -2.0, -1.0, 100.00, 100.0 }
+};
+
+#define DEFAULT_COMPLEXITY 64
+
+static int get_aq_c_strength(int q_index, vpx_bit_depth_t bit_depth) {
+  // Approximate base quatizer (truncated to int)
+  const int base_quant = vp10_ac_quant(q_index, 0, bit_depth) / 4;
+  return (base_quant > 10) + (base_quant > 25);
+}
+
+void vp10_setup_in_frame_q_adj(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  struct segmentation *const seg = &cm->seg;
+
+  // Make SURE use of floating point in this function is safe.
+  vpx_clear_system_state();
+
+  if (frame_is_intra_only(cm) || cm->error_resilient_mode ||
+      cpi->refresh_alt_ref_frame ||
+      (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+    int segment;
+    const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth);
+
+    // Clear down the segment map.
+    memset(cpi->segmentation_map, DEFAULT_AQ2_SEG, cm->mi_rows * cm->mi_cols);
+
+    vp10_clearall_segfeatures(seg);
+
+    // Segmentation only makes sense if the target bits per SB is above a
+    // threshold. Below this the overheads will usually outweigh any benefit.
+    if (cpi->rc.sb64_target_rate < 256) {
+      vp10_disable_segmentation(seg);
+      return;
+    }
+
+    vp10_enable_segmentation(seg);
+
+    // Select delta coding method.
+    seg->abs_delta = SEGMENT_DELTADATA;
+
+    // Default segment "Q" feature is disabled so it defaults to the baseline Q.
+    vp10_disable_segfeature(seg, DEFAULT_AQ2_SEG, SEG_LVL_ALT_Q);
+
+    // Use some of the segments for in frame Q adjustment.
+    for (segment = 0; segment < AQ_C_SEGMENTS; ++segment) {
+      int qindex_delta;
+
+      if (segment == DEFAULT_AQ2_SEG) continue;
+
+      qindex_delta = vp10_compute_qdelta_by_rate(
+          &cpi->rc, cm->frame_type, cm->base_qindex,
+          aq_c_q_adj_factor[aq_strength][segment], cm->bit_depth);
+
+      // For AQ complexity mode, we dont allow Q0 in a segment if the base
+      // Q is not 0. Q0 (lossless) implies 4x4 only and in AQ mode 2 a segment
+      // Q delta is sometimes applied without going back around the rd loop.
+      // This could lead to an illegal combination of partition size and q.
+      if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) {
+        qindex_delta = -cm->base_qindex + 1;
+      }
+      if ((cm->base_qindex + qindex_delta) > 0) {
+        vp10_enable_segfeature(seg, segment, SEG_LVL_ALT_Q);
+        vp10_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta);
+      }
+    }
+  }
+}
+
+#define DEFAULT_LV_THRESH 10.0
+#define MIN_DEFAULT_LV_THRESH 8.0
+#define VAR_STRENGTH_STEP 0.25
+// Select a segment for the current block.
+// The choice of segment for a block depends on the ratio of the projected
+// bits for the block vs a target average and its spatial complexity.
+void vp10_caq_select_segment(VP10_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
+                             int mi_row, int mi_col, int projected_rate) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  const int mi_offset = mi_row * cm->mi_cols + mi_col;
+  const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
+  const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
+  const int xmis = VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
+  const int ymis = VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
+  int x, y;
+  int i;
+  unsigned char segment;
+
+  if (0) {
+    segment = DEFAULT_AQ2_SEG;
+  } else {
+    // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh).
+    // It is converted to bits * 256 units.
+    const int target_rate =
+        (cpi->rc.sb64_target_rate * xmis * ymis * 256) / (bw * bh);
+    double logvar;
+    double low_var_thresh;
+    const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth);
+
+    vpx_clear_system_state();
+    low_var_thresh = (cpi->oxcf.pass == 2) ? VPXMAX(cpi->twopass.mb_av_energy,
+                                                    MIN_DEFAULT_LV_THRESH)
+                                           : DEFAULT_LV_THRESH;
+
+    vp10_setup_src_planes(mb, cpi->Source, mi_row, mi_col);
+    logvar = vp10_log_block_var(cpi, mb, bs);
+
+    segment = AQ_C_SEGMENTS - 1;  // Just in case no break out below.
+    for (i = 0; i < AQ_C_SEGMENTS; ++i) {
+      // Test rate against a threshold value and variance against a threshold.
+      // Increasing segment number (higher variance and complexity) = higher Q.
+      if ((projected_rate < target_rate * aq_c_transitions[aq_strength][i]) &&
+          (logvar < (low_var_thresh + aq_c_var_thresholds[aq_strength][i]))) {
+        segment = i;
+        break;
+      }
+    }
+  }
+
+  // Fill in the entires in the segment map corresponding to this SB64.
+  for (y = 0; y < ymis; y++) {
+    for (x = 0; x < xmis; x++) {
+      cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment;
+    }
+  }
+}
diff --git a/av1/encoder/aq_complexity.h b/av1/encoder/aq_complexity.h
new file mode 100644
index 0000000..db85406
--- /dev/null
+++ b/av1/encoder/aq_complexity.h
@@ -0,0 +1,36 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_AQ_COMPLEXITY_H_
+#define VP10_ENCODER_AQ_COMPLEXITY_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "av1/common/enums.h"
+
+struct VP10_COMP;
+struct macroblock;
+
+// Select a segment for the current Block.
+void vp10_caq_select_segment(struct VP10_COMP *cpi, struct macroblock *,
+                             BLOCK_SIZE bs, int mi_row, int mi_col,
+                             int projected_rate);
+
+// This function sets up a set of segments with delta Q values around
+// the baseline frame quantizer.
+void vp10_setup_in_frame_q_adj(struct VP10_COMP *cpi);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_AQ_COMPLEXITY_H_
diff --git a/av1/encoder/aq_cyclicrefresh.c b/av1/encoder/aq_cyclicrefresh.c
new file mode 100644
index 0000000..40391cb
--- /dev/null
+++ b/av1/encoder/aq_cyclicrefresh.c
@@ -0,0 +1,567 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "av1/common/seg_common.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/segmentation.h"
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_ports/system_state.h"
+
+struct CYCLIC_REFRESH {
+  // Percentage of blocks per frame that are targeted as candidates
+  // for cyclic refresh.
+  int percent_refresh;
+  // Maximum q-delta as percentage of base q.
+  int max_qdelta_perc;
+  // Superblock starting index for cycling through the frame.
+  int sb_index;
+  // Controls how long block will need to wait to be refreshed again, in
+  // excess of the cycle time, i.e., in the case of all zero motion, block
+  // will be refreshed every (100/percent_refresh + time_for_refresh) frames.
+  int time_for_refresh;
+  // Target number of (8x8) blocks that are set for delta-q.
+  int target_num_seg_blocks;
+  // Actual number of (8x8) blocks that were applied delta-q.
+  int actual_num_seg1_blocks;
+  int actual_num_seg2_blocks;
+  // RD mult. parameters for segment 1.
+  int rdmult;
+  // Cyclic refresh map.
+  signed char *map;
+  // Map of the last q a block was coded at.
+  uint8_t *last_coded_q_map;
+  // Thresholds applied to the projected rate/distortion of the coding block,
+  // when deciding whether block should be refreshed.
+  int64_t thresh_rate_sb;
+  int64_t thresh_dist_sb;
+  // Threshold applied to the motion vector (in units of 1/8 pel) of the
+  // coding block, when deciding whether block should be refreshed.
+  int16_t motion_thresh;
+  // Rate target ratio to set q delta.
+  double rate_ratio_qdelta;
+  // Boost factor for rate target ratio, for segment CR_SEGMENT_ID_BOOST2.
+  int rate_boost_fac;
+  double low_content_avg;
+  int qindex_delta[3];
+};
+
+CYCLIC_REFRESH *vp10_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
+  size_t last_coded_q_map_size;
+  CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
+  if (cr == NULL) return NULL;
+
+  cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
+  if (cr->map == NULL) {
+    vpx_free(cr);
+    return NULL;
+  }
+  last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map);
+  cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size);
+  if (cr->last_coded_q_map == NULL) {
+    vpx_free(cr);
+    return NULL;
+  }
+  assert(MAXQ <= 255);
+  memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size);
+
+  return cr;
+}
+
+void vp10_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
+  vpx_free(cr->map);
+  vpx_free(cr->last_coded_q_map);
+  vpx_free(cr);
+}
+
+// Check if we should turn off cyclic refresh based on bitrate condition.
+static int apply_cyclic_refresh_bitrate(const VP10_COMMON *cm,
+                                        const RATE_CONTROL *rc) {
+  // Turn off cyclic refresh if bits available per frame is not sufficiently
+  // larger than bit cost of segmentation. Segment map bit cost should scale
+  // with number of seg blocks, so compare available bits to number of blocks.
+  // Average bits available per frame = avg_frame_bandwidth
+  // Number of (8x8) blocks in frame = mi_rows * mi_cols;
+  const float factor = 0.25;
+  const int number_blocks = cm->mi_rows * cm->mi_cols;
+  // The condition below corresponds to turning off at target bitrates:
+  // (at 30fps), ~12kbps for CIF, 36kbps for VGA, 100kps for HD/720p.
+  // Also turn off at very small frame sizes, to avoid too large fraction of
+  // superblocks to be refreshed per frame. Threshold below is less than QCIF.
+  if (rc->avg_frame_bandwidth < factor * number_blocks ||
+      number_blocks / 64 < 5)
+    return 0;
+  else
+    return 1;
+}
+
+// Check if this coding block, of size bsize, should be considered for refresh
+// (lower-qp coding). Decision can be based on various factors, such as
+// size of the coding block (i.e., below min_block size rejected), coding
+// mode, and rate/distortion.
+static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
+                                const MB_MODE_INFO *mbmi, int64_t rate,
+                                int64_t dist, int bsize) {
+  MV mv = mbmi->mv[0].as_mv;
+  // Reject the block for lower-qp coding if projected distortion
+  // is above the threshold, and any of the following is true:
+  // 1) mode uses large mv
+  // 2) mode is an intra-mode
+  // Otherwise accept for refresh.
+  if (dist > cr->thresh_dist_sb &&
+      (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
+       mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
+       !is_inter_block(mbmi)))
+    return CR_SEGMENT_ID_BASE;
+  else if (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb &&
+           is_inter_block(mbmi) && mbmi->mv[0].as_int == 0 &&
+           cr->rate_boost_fac > 10)
+    // More aggressive delta-q for bigger blocks with zero motion.
+    return CR_SEGMENT_ID_BOOST2;
+  else
+    return CR_SEGMENT_ID_BOOST1;
+}
+
+// Compute delta-q for the segment.
+static int compute_deltaq(const VP10_COMP *cpi, int q, double rate_factor) {
+  const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  int deltaq = vp10_compute_qdelta_by_rate(rc, cpi->common.frame_type, q,
+                                           rate_factor, cpi->common.bit_depth);
+  if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
+    deltaq = -cr->max_qdelta_perc * q / 100;
+  }
+  return deltaq;
+}
+
+// For the just encoded frame, estimate the bits, incorporating the delta-q
+// from non-base segment. For now ignore effect of multiple segments
+// (with different delta-q). Note this function is called in the postencode
+// (called from rc_update_rate_correction_factors()).
+int vp10_cyclic_refresh_estimate_bits_at_q(const VP10_COMP *cpi,
+                                           double correction_factor) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  int estimated_bits;
+  int mbs = cm->MBs;
+  int num8x8bl = mbs << 2;
+  // Weight for non-base segments: use actual number of blocks refreshed in
+  // previous/just encoded frame. Note number of blocks here is in 8x8 units.
+  double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl;
+  double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl;
+  // Take segment weighted average for estimated bits.
+  estimated_bits =
+      (int)((1.0 - weight_segment1 - weight_segment2) *
+                vp10_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs,
+                                        correction_factor, cm->bit_depth) +
+            weight_segment1 *
+                vp10_estimate_bits_at_q(cm->frame_type,
+                                        cm->base_qindex + cr->qindex_delta[1],
+                                        mbs, correction_factor, cm->bit_depth) +
+            weight_segment2 *
+                vp10_estimate_bits_at_q(cm->frame_type,
+                                        cm->base_qindex + cr->qindex_delta[2],
+                                        mbs, correction_factor, cm->bit_depth));
+  return estimated_bits;
+}
+
+// Prior to encoding the frame, estimate the bits per mb, for a given q = i and
+// a corresponding delta-q (for segment 1). This function is called in the
+// rc_regulate_q() to set the base qp index.
+// Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or
+// to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding.
+int vp10_cyclic_refresh_rc_bits_per_mb(const VP10_COMP *cpi, int i,
+                                       double correction_factor) {
+  const VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  int bits_per_mb;
+  int num8x8bl = cm->MBs << 2;
+  // Weight for segment prior to encoding: take the average of the target
+  // number for the frame to be encoded and the actual from the previous frame.
+  double weight_segment =
+      (double)((cr->target_num_seg_blocks + cr->actual_num_seg1_blocks +
+                cr->actual_num_seg2_blocks) >>
+               1) /
+      num8x8bl;
+  // Compute delta-q corresponding to qindex i.
+  int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
+  // Take segment weighted average for bits per mb.
+  bits_per_mb =
+      (int)((1.0 - weight_segment) * vp10_rc_bits_per_mb(cm->frame_type, i,
+                                                         correction_factor,
+                                                         cm->bit_depth) +
+            weight_segment * vp10_rc_bits_per_mb(cm->frame_type, i + deltaq,
+                                                 correction_factor,
+                                                 cm->bit_depth));
+  return bits_per_mb;
+}
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp10_cyclic_refresh_update_segment(VP10_COMP *const cpi,
+                                        MB_MODE_INFO *const mbmi, int mi_row,
+                                        int mi_col, BLOCK_SIZE bsize,
+                                        int64_t rate, int64_t dist, int skip) {
+  const VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  const int bw = num_8x8_blocks_wide_lookup[bsize];
+  const int bh = num_8x8_blocks_high_lookup[bsize];
+  const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
+  const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
+  const int block_index = mi_row * cm->mi_cols + mi_col;
+  const int refresh_this_block =
+      candidate_refresh_aq(cr, mbmi, rate, dist, bsize);
+  // Default is to not update the refresh map.
+  int new_map_value = cr->map[block_index];
+  int x = 0;
+  int y = 0;
+
+  // If this block is labeled for refresh, check if we should reset the
+  // segment_id.
+  if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
+    mbmi->segment_id = refresh_this_block;
+    // Reset segment_id if will be skipped.
+    if (skip) mbmi->segment_id = CR_SEGMENT_ID_BASE;
+  }
+
+  // Update the cyclic refresh map, to be used for setting segmentation map
+  // for the next frame. If the block  will be refreshed this frame, mark it
+  // as clean. The magnitude of the -ve influences how long before we consider
+  // it for refresh again.
+  if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
+    new_map_value = -cr->time_for_refresh;
+  } else if (refresh_this_block) {
+    // Else if it is accepted as candidate for refresh, and has not already
+    // been refreshed (marked as 1) then mark it as a candidate for cleanup
+    // for future time (marked as 0), otherwise don't update it.
+    if (cr->map[block_index] == 1) new_map_value = 0;
+  } else {
+    // Leave it marked as block that is not candidate for refresh.
+    new_map_value = 1;
+  }
+
+  // Update entries in the cyclic refresh map with new_map_value, and
+  // copy mbmi->segment_id into global segmentation map.
+  for (y = 0; y < ymis; y++)
+    for (x = 0; x < xmis; x++) {
+      int map_offset = block_index + y * cm->mi_cols + x;
+      cr->map[map_offset] = new_map_value;
+      cpi->segmentation_map[map_offset] = mbmi->segment_id;
+      // Inter skip blocks were clearly not coded at the current qindex, so
+      // don't update the map for them. For cases where motion is non-zero or
+      // the reference frame isn't the previous frame, the previous value in
+      // the map for this spatial location is not entirely correct.
+      if ((!is_inter_block(mbmi) || !skip) &&
+          mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) {
+        cr->last_coded_q_map[map_offset] = clamp(
+            cm->base_qindex + cr->qindex_delta[mbmi->segment_id], 0, MAXQ);
+      } else if (is_inter_block(mbmi) && skip &&
+                 mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) {
+        cr->last_coded_q_map[map_offset] =
+            VPXMIN(clamp(cm->base_qindex + cr->qindex_delta[mbmi->segment_id],
+                         0, MAXQ),
+                   cr->last_coded_q_map[map_offset]);
+      }
+    }
+}
+
+// Update the actual number of blocks that were applied the segment delta q.
+void vp10_cyclic_refresh_postencode(VP10_COMP *const cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  unsigned char *const seg_map = cpi->segmentation_map;
+  int mi_row, mi_col;
+  cr->actual_num_seg1_blocks = 0;
+  cr->actual_num_seg2_blocks = 0;
+  for (mi_row = 0; mi_row < cm->mi_rows; mi_row++)
+    for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
+      if (cyclic_refresh_segment_id(seg_map[mi_row * cm->mi_cols + mi_col]) ==
+          CR_SEGMENT_ID_BOOST1)
+        cr->actual_num_seg1_blocks++;
+      else if (cyclic_refresh_segment_id(
+                   seg_map[mi_row * cm->mi_cols + mi_col]) ==
+               CR_SEGMENT_ID_BOOST2)
+        cr->actual_num_seg2_blocks++;
+    }
+}
+
+// Set golden frame update interval, for 1 pass CBR mode.
+void vp10_cyclic_refresh_set_golden_update(VP10_COMP *const cpi) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  // Set minimum gf_interval for GF update to a multiple (== 2) of refresh
+  // period. Depending on past encoding stats, GF flag may be reset and update
+  // may not occur until next baseline_gf_interval.
+  if (cr->percent_refresh > 0)
+    rc->baseline_gf_interval = 4 * (100 / cr->percent_refresh);
+  else
+    rc->baseline_gf_interval = 40;
+}
+
+// Update some encoding stats (from the just encoded frame). If this frame's
+// background has high motion, refresh the golden frame. Otherwise, if the
+// golden reference is to be updated check if we should NOT update the golden
+// ref.
+void vp10_cyclic_refresh_check_golden_update(VP10_COMP *const cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  int mi_row, mi_col;
+  double fraction_low = 0.0;
+  int low_content_frame = 0;
+
+  MODE_INFO **mi = cm->mi_grid_visible;
+  RATE_CONTROL *const rc = &cpi->rc;
+  const int rows = cm->mi_rows, cols = cm->mi_cols;
+  int cnt1 = 0, cnt2 = 0;
+  int force_gf_refresh = 0;
+
+  for (mi_row = 0; mi_row < rows; mi_row++) {
+    for (mi_col = 0; mi_col < cols; mi_col++) {
+      int16_t abs_mvr = mi[0]->mbmi.mv[0].as_mv.row >= 0
+                            ? mi[0]->mbmi.mv[0].as_mv.row
+                            : -1 * mi[0]->mbmi.mv[0].as_mv.row;
+      int16_t abs_mvc = mi[0]->mbmi.mv[0].as_mv.col >= 0
+                            ? mi[0]->mbmi.mv[0].as_mv.col
+                            : -1 * mi[0]->mbmi.mv[0].as_mv.col;
+
+      // Calculate the motion of the background.
+      if (abs_mvr <= 16 && abs_mvc <= 16) {
+        cnt1++;
+        if (abs_mvr == 0 && abs_mvc == 0) cnt2++;
+      }
+      mi++;
+
+      // Accumulate low_content_frame.
+      if (cr->map[mi_row * cols + mi_col] < 1) low_content_frame++;
+    }
+    mi += 8;
+  }
+
+  // For video conference clips, if the background has high motion in current
+  // frame because of the camera movement, set this frame as the golden frame.
+  // Use 70% and 5% as the thresholds for golden frame refreshing.
+  // Also, force this frame as a golden update frame if this frame will change
+  // the resolution (resize_pending != 0).
+  if (cpi->resize_pending != 0 ||
+      (cnt1 * 10 > (70 * rows * cols) && cnt2 * 20 < cnt1)) {
+    vp10_cyclic_refresh_set_golden_update(cpi);
+    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+    if (rc->frames_till_gf_update_due > rc->frames_to_key)
+      rc->frames_till_gf_update_due = rc->frames_to_key;
+    cpi->refresh_golden_frame = 1;
+    force_gf_refresh = 1;
+  }
+
+  fraction_low = (double)low_content_frame / (rows * cols);
+  // Update average.
+  cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4;
+  if (!force_gf_refresh && cpi->refresh_golden_frame == 1) {
+    // Don't update golden reference if the amount of low_content for the
+    // current encoded frame is small, or if the recursive average of the
+    // low_content over the update interval window falls below threshold.
+    if (fraction_low < 0.8 || cr->low_content_avg < 0.7)
+      cpi->refresh_golden_frame = 0;
+    // Reset for next internal.
+    cr->low_content_avg = fraction_low;
+  }
+}
+
+// Update the segmentation map, and related quantities: cyclic refresh map,
+// refresh sb_index, and target number of blocks to be refreshed.
+// The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
+// 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
+// Blocks labeled as BOOST1 may later get set to BOOST2 (during the
+// encoding of the superblock).
+static void cyclic_refresh_update_map(VP10_COMP *const cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  unsigned char *const seg_map = cpi->segmentation_map;
+  int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
+  int xmis, ymis, x, y;
+  memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols);
+  sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+  sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+  sbs_in_frame = sb_cols * sb_rows;
+  // Number of target blocks to get the q delta (segment 1).
+  block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
+  // Set the segmentation map: cycle through the superblocks, starting at
+  // cr->mb_index, and stopping when either block_count blocks have been found
+  // to be refreshed, or we have passed through whole frame.
+  assert(cr->sb_index < sbs_in_frame);
+  i = cr->sb_index;
+  cr->target_num_seg_blocks = 0;
+  do {
+    int sum_map = 0;
+    // Get the mi_row/mi_col corresponding to superblock index i.
+    int sb_row_index = (i / sb_cols);
+    int sb_col_index = i - sb_row_index * sb_cols;
+    int mi_row = sb_row_index * MI_BLOCK_SIZE;
+    int mi_col = sb_col_index * MI_BLOCK_SIZE;
+    int qindex_thresh =
+        cpi->oxcf.content == VPX_CONTENT_SCREEN
+            ? vp10_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex)
+            : 0;
+    assert(mi_row >= 0 && mi_row < cm->mi_rows);
+    assert(mi_col >= 0 && mi_col < cm->mi_cols);
+    bl_index = mi_row * cm->mi_cols + mi_col;
+    // Loop through all 8x8 blocks in superblock and update map.
+    xmis =
+        VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]);
+    ymis =
+        VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]);
+    for (y = 0; y < ymis; y++) {
+      for (x = 0; x < xmis; x++) {
+        const int bl_index2 = bl_index + y * cm->mi_cols + x;
+        // If the block is as a candidate for clean up then mark it
+        // for possible boost/refresh (segment 1). The segment id may get
+        // reset to 0 later if block gets coded anything other than ZEROMV.
+        if (cr->map[bl_index2] == 0) {
+          if (cr->last_coded_q_map[bl_index2] > qindex_thresh) sum_map++;
+        } else if (cr->map[bl_index2] < 0) {
+          cr->map[bl_index2]++;
+        }
+      }
+    }
+    // Enforce constant segment over superblock.
+    // If segment is at least half of superblock, set to 1.
+    if (sum_map >= xmis * ymis / 2) {
+      for (y = 0; y < ymis; y++)
+        for (x = 0; x < xmis; x++) {
+          seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
+        }
+      cr->target_num_seg_blocks += xmis * ymis;
+    }
+    i++;
+    if (i == sbs_in_frame) {
+      i = 0;
+    }
+  } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
+  cr->sb_index = i;
+}
+
+// Set cyclic refresh parameters.
+void vp10_cyclic_refresh_update_parameters(VP10_COMP *const cpi) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  cr->percent_refresh = 10;
+  cr->max_qdelta_perc = 50;
+  cr->time_for_refresh = 0;
+  // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
+  // periods of the refresh cycle, after a key frame.
+  if (rc->frames_since_key < 4 * cr->percent_refresh)
+    cr->rate_ratio_qdelta = 3.0;
+  else
+    cr->rate_ratio_qdelta = 2.0;
+  // Adjust some parameters for low resolutions at low bitrates.
+  if (cm->width <= 352 && cm->height <= 288 && rc->avg_frame_bandwidth < 3400) {
+    cr->motion_thresh = 4;
+    cr->rate_boost_fac = 10;
+  } else {
+    cr->motion_thresh = 32;
+    cr->rate_boost_fac = 17;
+  }
+}
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp10_cyclic_refresh_setup(VP10_COMP *const cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  struct segmentation *const seg = &cm->seg;
+  const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc);
+  if (cm->current_video_frame == 0) cr->low_content_avg = 0.0;
+  // Don't apply refresh on key frame or enhancement layer frames.
+  if (!apply_cyclic_refresh || cm->frame_type == KEY_FRAME) {
+    // Set segmentation map to 0 and disable.
+    unsigned char *const seg_map = cpi->segmentation_map;
+    memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
+    vp10_disable_segmentation(&cm->seg);
+    if (cm->frame_type == KEY_FRAME) {
+      memset(cr->last_coded_q_map, MAXQ,
+             cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map));
+      cr->sb_index = 0;
+    }
+    return;
+  } else {
+    int qindex_delta = 0;
+    int qindex2;
+    const double q = vp10_convert_qindex_to_q(cm->base_qindex, cm->bit_depth);
+    vpx_clear_system_state();
+    // Set rate threshold to some multiple (set to 2 for now) of the target
+    // rate (target is given by sb64_target_rate and scaled by 256).
+    cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
+    // Distortion threshold, quadratic in Q, scale factor to be adjusted.
+    // q will not exceed 457, so (q * q) is within 32bit; see:
+    // vp10_convert_qindex_to_q(), vp10_ac_quant(), ac_qlookup*[].
+    cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
+
+    // Set up segmentation.
+    // Clear down the segment map.
+    vp10_enable_segmentation(&cm->seg);
+    vp10_clearall_segfeatures(seg);
+    // Select delta coding method.
+    seg->abs_delta = SEGMENT_DELTADATA;
+
+    // Note: setting temporal_update has no effect, as the seg-map coding method
+    // (temporal or spatial) is determined in
+    // vp10_choose_segmap_coding_method(),
+    // based on the coding cost of each method. For error_resilient mode on the
+    // last_frame_seg_map is set to 0, so if temporal coding is used, it is
+    // relative to 0 previous map.
+    // seg->temporal_update = 0;
+
+    // Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
+    vp10_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
+    // Use segment BOOST1 for in-frame Q adjustment.
+    vp10_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
+    // Use segment BOOST2 for more aggressive in-frame Q adjustment.
+    vp10_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
+
+    // Set the q delta for segment BOOST1.
+    qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta);
+    cr->qindex_delta[1] = qindex_delta;
+
+    // Compute rd-mult for segment BOOST1.
+    qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
+
+    cr->rdmult = vp10_compute_rd_mult(cpi, qindex2);
+
+    vp10_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
+
+    // Set a more aggressive (higher) q delta for segment BOOST2.
+    qindex_delta = compute_deltaq(
+        cpi, cm->base_qindex,
+        VPXMIN(CR_MAX_RATE_TARGET_RATIO,
+               0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
+    cr->qindex_delta[2] = qindex_delta;
+    vp10_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
+
+    // Update the segmentation and refresh map.
+    cyclic_refresh_update_map(cpi);
+  }
+}
+
+int vp10_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
+  return cr->rdmult;
+}
+
+void vp10_cyclic_refresh_reset_resize(VP10_COMP *const cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+  memset(cr->map, 0, cm->mi_rows * cm->mi_cols);
+  cr->sb_index = 0;
+  cpi->refresh_golden_frame = 1;
+}
diff --git a/av1/encoder/aq_cyclicrefresh.h b/av1/encoder/aq_cyclicrefresh.h
new file mode 100644
index 0000000..24491fc
--- /dev/null
+++ b/av1/encoder/aq_cyclicrefresh.h
@@ -0,0 +1,97 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_AQ_CYCLICREFRESH_H_
+#define VP10_ENCODER_AQ_CYCLICREFRESH_H_
+
+#include "av1/common/blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// The segment ids used in cyclic refresh: from base (no boost) to increasing
+// boost (higher delta-qp).
+#define CR_SEGMENT_ID_BASE 0
+#define CR_SEGMENT_ID_BOOST1 1
+#define CR_SEGMENT_ID_BOOST2 2
+
+// Maximum rate target ratio for setting segment delta-qp.
+#define CR_MAX_RATE_TARGET_RATIO 4.0
+
+struct VP10_COMP;
+
+struct CYCLIC_REFRESH;
+typedef struct CYCLIC_REFRESH CYCLIC_REFRESH;
+
+CYCLIC_REFRESH *vp10_cyclic_refresh_alloc(int mi_rows, int mi_cols);
+
+void vp10_cyclic_refresh_free(CYCLIC_REFRESH *cr);
+
+// Estimate the bits, incorporating the delta-q from segment 1, after encoding
+// the frame.
+int vp10_cyclic_refresh_estimate_bits_at_q(const struct VP10_COMP *cpi,
+                                           double correction_factor);
+
+// Estimate the bits per mb, for a given q = i and a corresponding delta-q
+// (for segment 1), prior to encoding the frame.
+int vp10_cyclic_refresh_rc_bits_per_mb(const struct VP10_COMP *cpi, int i,
+                                       double correction_factor);
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp10_cyclic_refresh_update_segment(struct VP10_COMP *const cpi,
+                                        MB_MODE_INFO *const mbmi, int mi_row,
+                                        int mi_col, BLOCK_SIZE bsize,
+                                        int64_t rate, int64_t dist, int skip);
+
+// Update the segmentation map, and related quantities: cyclic refresh map,
+// refresh sb_index, and target number of blocks to be refreshed.
+void vp10_cyclic_refresh_update__map(struct VP10_COMP *const cpi);
+
+// Update the actual number of blocks that were applied the segment delta q.
+void vp10_cyclic_refresh_postencode(struct VP10_COMP *const cpi);
+
+// Set golden frame update interval, for 1 pass CBR mode.
+void vp10_cyclic_refresh_set_golden_update(struct VP10_COMP *const cpi);
+
+// Check if we should not update golden reference, based on past refresh stats.
+void vp10_cyclic_refresh_check_golden_update(struct VP10_COMP *const cpi);
+
+// Set/update global/frame level refresh parameters.
+void vp10_cyclic_refresh_update_parameters(struct VP10_COMP *const cpi);
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp10_cyclic_refresh_setup(struct VP10_COMP *const cpi);
+
+int vp10_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr);
+
+void vp10_cyclic_refresh_reset_resize(struct VP10_COMP *const cpi);
+
+static INLINE int cyclic_refresh_segment_id_boosted(int segment_id) {
+  return segment_id == CR_SEGMENT_ID_BOOST1 ||
+         segment_id == CR_SEGMENT_ID_BOOST2;
+}
+
+static INLINE int cyclic_refresh_segment_id(int segment_id) {
+  if (segment_id == CR_SEGMENT_ID_BOOST1)
+    return CR_SEGMENT_ID_BOOST1;
+  else if (segment_id == CR_SEGMENT_ID_BOOST2)
+    return CR_SEGMENT_ID_BOOST2;
+  else
+    return CR_SEGMENT_ID_BASE;
+}
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_AQ_CYCLICREFRESH_H_
diff --git a/av1/encoder/aq_variance.c b/av1/encoder/aq_variance.c
new file mode 100644
index 0000000..85a43db
--- /dev/null
+++ b/av1/encoder/aq_variance.c
@@ -0,0 +1,203 @@
+/*
+ *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "aom_ports/mem.h"
+
+#include "av1/encoder/aq_variance.h"
+
+#include "av1/common/seg_common.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/segmentation.h"
+#include "aom_ports/system_state.h"
+
+#define ENERGY_MIN (-4)
+#define ENERGY_MAX (1)
+#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1)
+#define ENERGY_IN_BOUNDS(energy) \
+  assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX)
+
+static const double rate_ratio[MAX_SEGMENTS] = { 2.5,  2.0, 1.5, 1.0,
+                                                 0.75, 1.0, 1.0, 1.0 };
+static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 };
+
+#define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN]
+
+DECLARE_ALIGNED(16, static const uint8_t, vp10_64_zeros[64]) = { 0 };
+#if CONFIG_VPX_HIGHBITDEPTH
+DECLARE_ALIGNED(16, static const uint16_t, vp10_highbd_64_zeros[64]) = { 0 };
+#endif
+
+unsigned int vp10_vaq_segment_id(int energy) {
+  ENERGY_IN_BOUNDS(energy);
+  return SEGMENT_ID(energy);
+}
+
+void vp10_vaq_frame_setup(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+  struct segmentation *seg = &cm->seg;
+  int i;
+
+  if (frame_is_intra_only(cm) || cm->error_resilient_mode ||
+      cpi->refresh_alt_ref_frame ||
+      (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+    vp10_enable_segmentation(seg);
+    vp10_clearall_segfeatures(seg);
+
+    seg->abs_delta = SEGMENT_DELTADATA;
+
+    vpx_clear_system_state();
+
+    for (i = 0; i < MAX_SEGMENTS; ++i) {
+      int qindex_delta =
+          vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex,
+                                      rate_ratio[i], cm->bit_depth);
+
+      // We don't allow qindex 0 in a segment if the base value is not 0.
+      // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment
+      // Q delta is sometimes applied without going back around the rd loop.
+      // This could lead to an illegal combination of partition size and q.
+      if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) {
+        qindex_delta = -cm->base_qindex + 1;
+      }
+
+      // No need to enable SEG_LVL_ALT_Q for this segment.
+      if (rate_ratio[i] == 1.0) {
+        continue;
+      }
+
+      vp10_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta);
+      vp10_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
+    }
+  }
+}
+
+/* TODO(agrange, paulwilkins): The block_variance calls the unoptimized versions
+ * of variance() and highbd_8_variance(). It should not.
+ */
+static void aq_variance(const uint8_t *a, int a_stride, const uint8_t *b,
+                        int b_stride, int w, int h, unsigned int *sse,
+                        int *sum) {
+  int i, j;
+
+  *sum = 0;
+  *sse = 0;
+
+  for (i = 0; i < h; i++) {
+    for (j = 0; j < w; j++) {
+      const int diff = a[j] - b[j];
+      *sum += diff;
+      *sse += diff * diff;
+    }
+
+    a += a_stride;
+    b += b_stride;
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void aq_highbd_variance64(const uint8_t *a8, int a_stride,
+                                 const uint8_t *b8, int b_stride, int w, int h,
+                                 uint64_t *sse, uint64_t *sum) {
+  int i, j;
+
+  uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+  uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+  *sum = 0;
+  *sse = 0;
+
+  for (i = 0; i < h; i++) {
+    for (j = 0; j < w; j++) {
+      const int diff = a[j] - b[j];
+      *sum += diff;
+      *sse += diff * diff;
+    }
+    a += a_stride;
+    b += b_stride;
+  }
+}
+
+static void aq_highbd_8_variance(const uint8_t *a8, int a_stride,
+                                 const uint8_t *b8, int b_stride, int w, int h,
+                                 unsigned int *sse, int *sum) {
+  uint64_t sse_long = 0;
+  uint64_t sum_long = 0;
+  aq_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
+  *sse = (unsigned int)sse_long;
+  *sum = (int)sum_long;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static unsigned int block_variance(VP10_COMP *cpi, MACROBLOCK *x,
+                                   BLOCK_SIZE bs) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  unsigned int var, sse;
+  int right_overflow =
+      (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
+  int bottom_overflow =
+      (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
+
+  if (right_overflow || bottom_overflow) {
+    const int bw = 8 * num_8x8_blocks_wide_lookup[bs] - right_overflow;
+    const int bh = 8 * num_8x8_blocks_high_lookup[bs] - bottom_overflow;
+    int avg;
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      aq_highbd_8_variance(x->plane[0].src.buf, x->plane[0].src.stride,
+                           CONVERT_TO_BYTEPTR(vp10_highbd_64_zeros), 0, bw, bh,
+                           &sse, &avg);
+      sse >>= 2 * (xd->bd - 8);
+      avg >>= (xd->bd - 8);
+    } else {
+      aq_variance(x->plane[0].src.buf, x->plane[0].src.stride, vp10_64_zeros, 0,
+                  bw, bh, &sse, &avg);
+    }
+#else
+    aq_variance(x->plane[0].src.buf, x->plane[0].src.stride, vp10_64_zeros, 0,
+                bw, bh, &sse, &avg);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+    var = sse - (((int64_t)avg * avg) / (bw * bh));
+    return (256 * var) / (bw * bh);
+  } else {
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      var =
+          cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride,
+                             CONVERT_TO_BYTEPTR(vp10_highbd_64_zeros), 0, &sse);
+    } else {
+      var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride,
+                               vp10_64_zeros, 0, &sse);
+    }
+#else
+    var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride,
+                             vp10_64_zeros, 0, &sse);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+    return (256 * var) >> num_pels_log2_lookup[bs];
+  }
+}
+
+double vp10_log_block_var(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
+  unsigned int var = block_variance(cpi, x, bs);
+  vpx_clear_system_state();
+  return log(var + 1.0);
+}
+
+#define DEFAULT_E_MIDPOINT 10.0
+int vp10_block_energy(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
+  double energy;
+  double energy_midpoint;
+  vpx_clear_system_state();
+  energy_midpoint =
+      (cpi->oxcf.pass == 2) ? cpi->twopass.mb_av_energy : DEFAULT_E_MIDPOINT;
+  energy = vp10_log_block_var(cpi, x, bs) - energy_midpoint;
+  return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX);
+}
diff --git a/av1/encoder/aq_variance.h b/av1/encoder/aq_variance.h
new file mode 100644
index 0000000..a30a449
--- /dev/null
+++ b/av1/encoder/aq_variance.h
@@ -0,0 +1,30 @@
+/*
+ *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_AQ_VARIANCE_H_
+#define VP10_ENCODER_AQ_VARIANCE_H_
+
+#include "av1/encoder/encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+unsigned int vp10_vaq_segment_id(int energy);
+void vp10_vaq_frame_setup(VP10_COMP *cpi);
+
+int vp10_block_energy(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs);
+double vp10_log_block_var(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_AQ_VARIANCE_H_
diff --git a/av1/encoder/arm/neon/dct_neon.c b/av1/encoder/arm/neon/dct_neon.c
new file mode 100644
index 0000000..f9b9cb8
--- /dev/null
+++ b/av1/encoder/arm/neon/dct_neon.c
@@ -0,0 +1,33 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+
+#include "./vp10_rtcd.h"
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "av1/common/blockd.h"
+#include "aom_dsp/txfm_common.h"
+
+void vp10_fdct8x8_quant_neon(
+    const int16_t* input, int stride, int16_t* coeff_ptr, intptr_t n_coeffs,
+    int skip_block, const int16_t* zbin_ptr, const int16_t* round_ptr,
+    const int16_t* quant_ptr, const int16_t* quant_shift_ptr,
+    int16_t* qcoeff_ptr, int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+    uint16_t* eob_ptr, const int16_t* scan_ptr, const int16_t* iscan_ptr) {
+  int16_t temp_buffer[64];
+  (void)coeff_ptr;
+
+  vpx_fdct8x8_neon(input, temp_buffer, stride);
+  vp10_quantize_fp_neon(temp_buffer, n_coeffs, skip_block, zbin_ptr, round_ptr,
+                        quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
+                        dequant_ptr, eob_ptr, scan_ptr, iscan_ptr);
+}
diff --git a/av1/encoder/arm/neon/error_neon.c b/av1/encoder/arm/neon/error_neon.c
new file mode 100644
index 0000000..34805d3
--- /dev/null
+++ b/av1/encoder/arm/neon/error_neon.c
@@ -0,0 +1,41 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include <assert.h>
+
+#include "./vp10_rtcd.h"
+
+int64_t vp10_block_error_fp_neon(const int16_t *coeff, const int16_t *dqcoeff,
+                                 int block_size) {
+  int64x2_t error = vdupq_n_s64(0);
+
+  assert(block_size >= 8);
+  assert((block_size % 8) == 0);
+
+  do {
+    const int16x8_t c = vld1q_s16(coeff);
+    const int16x8_t d = vld1q_s16(dqcoeff);
+    const int16x8_t diff = vsubq_s16(c, d);
+    const int16x4_t diff_lo = vget_low_s16(diff);
+    const int16x4_t diff_hi = vget_high_s16(diff);
+    // diff is 15-bits, the squares 30, so we can store 2 in 31-bits before
+    // accumulating them in 64-bits.
+    const int32x4_t err0 = vmull_s16(diff_lo, diff_lo);
+    const int32x4_t err1 = vmlal_s16(err0, diff_hi, diff_hi);
+    const int64x2_t err2 = vaddl_s32(vget_low_s32(err1), vget_high_s32(err1));
+    error = vaddq_s64(error, err2);
+    coeff += 8;
+    dqcoeff += 8;
+    block_size -= 8;
+  } while (block_size != 0);
+
+  return vgetq_lane_s64(error, 0) + vgetq_lane_s64(error, 1);
+}
diff --git a/av1/encoder/arm/neon/quantize_neon.c b/av1/encoder/arm/neon/quantize_neon.c
new file mode 100644
index 0000000..db85b4d
--- /dev/null
+++ b/av1/encoder/arm/neon/quantize_neon.c
@@ -0,0 +1,117 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+
+#include <math.h>
+
+#include "aom_mem/vpx_mem.h"
+
+#include "av1/common/quant_common.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/rd.h"
+
+void vp10_quantize_fp_neon(const int16_t *coeff_ptr, intptr_t count,
+                           int skip_block, const int16_t *zbin_ptr,
+                           const int16_t *round_ptr, const int16_t *quant_ptr,
+                           const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr,
+                           int16_t *dqcoeff_ptr, const int16_t *dequant_ptr,
+                           uint16_t *eob_ptr, const int16_t *scan,
+                           const int16_t *iscan) {
+  // TODO(jingning) Decide the need of these arguments after the
+  // quantization process is completed.
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)scan;
+
+  if (!skip_block) {
+    // Quantization pass: All coefficients with index >= zero_flag are
+    // skippable. Note: zero_flag can be zero.
+    int i;
+    const int16x8_t v_zero = vdupq_n_s16(0);
+    const int16x8_t v_one = vdupq_n_s16(1);
+    int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1);
+    int16x8_t v_round = vmovq_n_s16(round_ptr[1]);
+    int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]);
+    int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]);
+    // adjust for dc
+    v_round = vsetq_lane_s16(round_ptr[0], v_round, 0);
+    v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0);
+    v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0);
+    // process dc and the first seven ac coeffs
+    {
+      const int16x8_t v_iscan = vld1q_s16(&iscan[0]);
+      const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[0]);
+      const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
+      const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
+      const int32x4_t v_tmp_lo =
+          vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant));
+      const int32x4_t v_tmp_hi =
+          vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant));
+      const int16x8_t v_tmp2 =
+          vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16));
+      const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
+      const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
+      const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
+      const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
+      const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
+      const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
+      v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
+      vst1q_s16(&qcoeff_ptr[0], v_qcoeff);
+      vst1q_s16(&dqcoeff_ptr[0], v_dqcoeff);
+      v_round = vmovq_n_s16(round_ptr[1]);
+      v_quant = vmovq_n_s16(quant_ptr[1]);
+      v_dequant = vmovq_n_s16(dequant_ptr[1]);
+    }
+    // now process the rest of the ac coeffs
+    for (i = 8; i < count; i += 8) {
+      const int16x8_t v_iscan = vld1q_s16(&iscan[i]);
+      const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[i]);
+      const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
+      const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
+      const int32x4_t v_tmp_lo =
+          vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant));
+      const int32x4_t v_tmp_hi =
+          vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant));
+      const int16x8_t v_tmp2 =
+          vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16));
+      const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
+      const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
+      const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
+      const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
+      const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
+      const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
+      v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
+      vst1q_s16(&qcoeff_ptr[i], v_qcoeff);
+      vst1q_s16(&dqcoeff_ptr[i], v_dqcoeff);
+    }
+    {
+      const int16x4_t v_eobmax_3210 = vmax_s16(
+          vget_low_s16(v_eobmax_76543210), vget_high_s16(v_eobmax_76543210));
+      const int64x1_t v_eobmax_xx32 =
+          vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32);
+      const int16x4_t v_eobmax_tmp =
+          vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32));
+      const int64x1_t v_eobmax_xxx3 =
+          vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16);
+      const int16x4_t v_eobmax_final =
+          vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3));
+
+      *eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0);
+    }
+  } else {
+    memset(qcoeff_ptr, 0, count * sizeof(int16_t));
+    memset(dqcoeff_ptr, 0, count * sizeof(int16_t));
+    *eob_ptr = 0;
+  }
+}
diff --git a/av1/encoder/bitstream.c b/av1/encoder/bitstream.c
new file mode 100644
index 0000000..49ba305
--- /dev/null
+++ b/av1/encoder/bitstream.c
@@ -0,0 +1,1561 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "aom/vpx_encoder.h"
+#include "aom_dsp/bitwriter_buffer.h"
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem_ops.h"
+#include "aom_ports/system_state.h"
+
+#if CONFIG_CLPF
+#include "av1/common/clpf.h"
+#endif
+#if CONFIG_DERING
+#include "av1/common/dering.h"
+#endif  // CONFIG_DERING
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/bitstream.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/subexp.h"
+#include "av1/encoder/tokenize.h"
+
+static const struct vp10_token intra_mode_encodings[INTRA_MODES] = {
+  { 0, 1 },  { 6, 3 },   { 28, 5 },  { 30, 5 }, { 58, 6 },
+  { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 }
+};
+static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
+    { { 0, 1 }, { 2, 2 }, { 3, 2 } };
+static const struct vp10_token partition_encodings[PARTITION_TYPES] = {
+  { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
+};
+static const struct vp10_token inter_mode_encodings[INTER_MODES] = {
+  { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 }
+};
+
+static struct vp10_token ext_tx_encodings[TX_TYPES];
+
+void vp10_encode_token_init() {
+  vp10_tokens_from_tree(ext_tx_encodings, vp10_ext_tx_tree);
+}
+
+static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
+                             const vpx_prob *probs) {
+  vp10_write_token(w, vp10_intra_mode_tree, probs, &intra_mode_encodings[mode]);
+}
+
+static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
+                             const vpx_prob *probs) {
+  assert(is_inter_mode(mode));
+  vp10_write_token(w, vp10_inter_mode_tree, probs,
+                   &inter_mode_encodings[INTER_OFFSET(mode)]);
+}
+
+static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data,
+                                int max) {
+  vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
+}
+
+static void prob_diff_update(const vpx_tree_index *tree,
+                             vpx_prob probs[/*n - 1*/],
+                             const unsigned int counts[/*n - 1*/], int n,
+                             vpx_writer *w) {
+  int i;
+  unsigned int branch_ct[32][2];
+
+  // Assuming max number of probabilities <= 32
+  assert(n <= 32);
+
+  vp10_tree_probs_from_distribution(tree, branch_ct, counts);
+  for (i = 0; i < n - 1; ++i)
+    vp10_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
+}
+
+static int prob_diff_update_savings(const vpx_tree_index *tree,
+                                    vpx_prob probs[/*n - 1*/],
+                                    const unsigned int counts[/*n - 1*/],
+                                    int n) {
+  int i;
+  unsigned int branch_ct[32][2];
+  int savings = 0;
+
+  // Assuming max number of probabilities <= 32
+  assert(n <= 32);
+  vp10_tree_probs_from_distribution(tree, branch_ct, counts);
+  for (i = 0; i < n - 1; ++i) {
+    savings += vp10_cond_prob_diff_update_savings(&probs[i], branch_ct[i]);
+  }
+  return savings;
+}
+
+static void write_selected_tx_size(const VP10_COMMON *cm, const MACROBLOCKD *xd,
+                                   vpx_writer *w) {
+  TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
+  BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+  const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
+  const vpx_prob *const tx_probs =
+      get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
+  vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
+  if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
+    vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
+    if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
+      vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
+  }
+}
+
+static int write_skip(const VP10_COMMON *cm, const MACROBLOCKD *xd,
+                      int segment_id, const MODE_INFO *mi, vpx_writer *w) {
+  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+    return 1;
+  } else {
+    const int skip = mi->mbmi.skip;
+    vpx_write(w, skip, vp10_get_skip_prob(cm, xd));
+    return skip;
+  }
+}
+
+static void update_skip_probs(VP10_COMMON *cm, vpx_writer *w,
+                              FRAME_COUNTS *counts) {
+  int k;
+
+  for (k = 0; k < SKIP_CONTEXTS; ++k)
+    vp10_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
+}
+
+static void update_switchable_interp_probs(VP10_COMMON *cm, vpx_writer *w,
+                                           FRAME_COUNTS *counts) {
+  int j;
+  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+    prob_diff_update(vp10_switchable_interp_tree,
+                     cm->fc->switchable_interp_prob[j],
+                     counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
+}
+
+static void update_ext_tx_probs(VP10_COMMON *cm, vpx_writer *w) {
+  const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) -
+                             vp10_cost_zero(GROUP_DIFF_UPDATE_PROB);
+  int i, j;
+
+  int savings = 0;
+  int do_update = 0;
+  for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+    for (j = 0; j < TX_TYPES; ++j)
+      savings += prob_diff_update_savings(
+          vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
+          cm->counts.intra_ext_tx[i][j], TX_TYPES);
+  }
+  do_update = savings > savings_thresh;
+  vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
+  if (do_update) {
+    for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+      for (j = 0; j < TX_TYPES; ++j)
+        prob_diff_update(vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
+                         cm->counts.intra_ext_tx[i][j], TX_TYPES, w);
+    }
+  }
+  savings = 0;
+  for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+    savings +=
+        prob_diff_update_savings(vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
+                                 cm->counts.inter_ext_tx[i], TX_TYPES);
+  }
+  do_update = savings > savings_thresh;
+  vpx_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
+  if (do_update) {
+    for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+      prob_diff_update(vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
+                       cm->counts.inter_ext_tx[i], TX_TYPES, w);
+    }
+  }
+}
+
+static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp,
+                           const TOKENEXTRA *const stop,
+                           vpx_bit_depth_t bit_depth, const TX_SIZE tx) {
+  TOKENEXTRA *p = *tp;
+#if !CONFIG_MISC_FIXES
+  (void)tx;
+#endif
+
+  while (p < stop && p->token != EOSB_TOKEN) {
+    const int t = p->token;
+    const struct vp10_token *const a = &vp10_coef_encodings[t];
+    int i = 0;
+    int v = a->value;
+    int n = a->len;
+#if CONFIG_VPX_HIGHBITDEPTH
+    const vp10_extra_bit *b;
+    if (bit_depth == VPX_BITS_12)
+      b = &vp10_extra_bits_high12[t];
+    else if (bit_depth == VPX_BITS_10)
+      b = &vp10_extra_bits_high10[t];
+    else
+      b = &vp10_extra_bits[t];
+#else
+    const vp10_extra_bit *const b = &vp10_extra_bits[t];
+    (void)bit_depth;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+    /* skip one or two nodes */
+    if (p->skip_eob_node) {
+      n -= p->skip_eob_node;
+      i = 2 * p->skip_eob_node;
+    }
+
+    // TODO(jbb): expanding this can lead to big gains.  It allows
+    // much better branch prediction and would enable us to avoid numerous
+    // lookups and compares.
+
+    // If we have a token that's in the constrained set, the coefficient tree
+    // is split into two treed writes.  The first treed write takes care of the
+    // unconstrained nodes.  The second treed write takes care of the
+    // constrained nodes.
+    if (t >= TWO_TOKEN && t < EOB_TOKEN) {
+      int len = UNCONSTRAINED_NODES - p->skip_eob_node;
+      int bits = v >> (n - len);
+      vp10_write_tree(w, vp10_coef_tree, p->context_tree, bits, len, i);
+      vp10_write_tree(w, vp10_coef_con_tree,
+                      vp10_pareto8_full[p->context_tree[PIVOT_NODE] - 1], v,
+                      n - len, 0);
+    } else {
+      vp10_write_tree(w, vp10_coef_tree, p->context_tree, v, n, i);
+    }
+
+    if (b->base_val) {
+      const int e = p->extra, l = b->len;
+#if CONFIG_MISC_FIXES
+      int skip_bits = (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0;
+#else
+      int skip_bits = 0;
+#endif
+
+      if (l) {
+        const unsigned char *pb = b->prob;
+        int v = e >> 1;
+        int n = l; /* number of bits in v, assumed nonzero */
+        int i = 0;
+
+        do {
+          const int bb = (v >> --n) & 1;
+          if (skip_bits) {
+            skip_bits--;
+            assert(!bb);
+          } else {
+            vpx_write(w, bb, pb[i >> 1]);
+          }
+          i = b->tree[i + bb];
+        } while (n);
+      }
+
+      vpx_write_bit(w, e & 1);
+    }
+    ++p;
+  }
+
+  *tp = p;
+}
+
+static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
+                             const struct segmentation_probs *segp,
+                             int segment_id) {
+  if (seg->enabled && seg->update_map)
+    vp10_write_tree(w, vp10_segment_tree, segp->tree_probs, segment_id, 3, 0);
+}
+
+// This function encodes the reference frame
+static void write_ref_frames(const VP10_COMMON *cm, const MACROBLOCKD *xd,
+                             vpx_writer *w) {
+  const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  const int is_compound = has_second_ref(mbmi);
+  const int segment_id = mbmi->segment_id;
+
+  // If segment level coding of this signal is disabled...
+  // or the segment allows multiple reference frame options
+  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+    assert(!is_compound);
+    assert(mbmi->ref_frame[0] ==
+           get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
+  } else {
+    // does the feature use compound prediction or not
+    // (if not specified at the frame/segment level)
+    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+      vpx_write(w, is_compound, vp10_get_reference_mode_prob(cm, xd));
+    } else {
+      assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
+    }
+
+    if (is_compound) {
+      vpx_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
+                vp10_get_pred_prob_comp_ref_p(cm, xd));
+    } else {
+      const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
+      vpx_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd));
+      if (bit0) {
+        const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
+        vpx_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd));
+      }
+    }
+  }
+}
+
+static void pack_inter_mode_mvs(VP10_COMP *cpi, const MODE_INFO *mi,
+                                vpx_writer *w) {
+  VP10_COMMON *const cm = &cpi->common;
+  const nmv_context *nmvc = &cm->fc->nmvc;
+  const MACROBLOCK *const x = &cpi->td.mb;
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct segmentation *const seg = &cm->seg;
+#if CONFIG_MISC_FIXES
+  const struct segmentation_probs *const segp = &cm->fc->seg;
+#else
+  const struct segmentation_probs *const segp = &cm->segp;
+#endif
+  const MB_MODE_INFO *const mbmi = &mi->mbmi;
+  const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+  const PREDICTION_MODE mode = mbmi->mode;
+  const int segment_id = mbmi->segment_id;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+  const int allow_hp = cm->allow_high_precision_mv;
+  const int is_inter = is_inter_block(mbmi);
+  const int is_compound = has_second_ref(mbmi);
+  int skip, ref;
+
+  if (seg->update_map) {
+    if (seg->temporal_update) {
+      const int pred_flag = mbmi->seg_id_predicted;
+      vpx_prob pred_prob = vp10_get_pred_prob_seg_id(segp, xd);
+      vpx_write(w, pred_flag, pred_prob);
+      if (!pred_flag) write_segment_id(w, seg, segp, segment_id);
+    } else {
+      write_segment_id(w, seg, segp, segment_id);
+    }
+  }
+
+  skip = write_skip(cm, xd, segment_id, mi, w);
+
+  if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+    vpx_write(w, is_inter, vp10_get_intra_inter_prob(cm, xd));
+
+  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
+      !(is_inter && skip) && !xd->lossless[segment_id]) {
+    write_selected_tx_size(cm, xd, w);
+  }
+
+  if (!is_inter) {
+    if (bsize >= BLOCK_8X8) {
+      write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
+    } else {
+      int idx, idy;
+      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+      for (idy = 0; idy < 2; idy += num_4x4_h) {
+        for (idx = 0; idx < 2; idx += num_4x4_w) {
+          const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
+          write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
+        }
+      }
+    }
+    write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
+  } else {
+    const int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
+    const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
+    write_ref_frames(cm, xd, w);
+
+    // If segment skip is not enabled code the mode.
+    if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
+      if (bsize >= BLOCK_8X8) {
+        write_inter_mode(w, mode, inter_probs);
+      }
+    }
+
+    if (cm->interp_filter == SWITCHABLE) {
+      const int ctx = vp10_get_pred_context_switchable_interp(xd);
+      vp10_write_token(w, vp10_switchable_interp_tree,
+                       cm->fc->switchable_interp_prob[ctx],
+                       &switchable_interp_encodings[mbmi->interp_filter]);
+      ++cpi->interp_filter_selected[0][mbmi->interp_filter];
+    } else {
+      assert(mbmi->interp_filter == cm->interp_filter);
+    }
+
+    if (bsize < BLOCK_8X8) {
+      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+      int idx, idy;
+      for (idy = 0; idy < 2; idy += num_4x4_h) {
+        for (idx = 0; idx < 2; idx += num_4x4_w) {
+          const int j = idy * 2 + idx;
+          const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+          write_inter_mode(w, b_mode, inter_probs);
+          if (b_mode == NEWMV) {
+            for (ref = 0; ref < 1 + is_compound; ++ref)
+              vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
+                             &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
+                             nmvc, allow_hp);
+          }
+        }
+      }
+    } else {
+      if (mode == NEWMV) {
+        for (ref = 0; ref < 1 + is_compound; ++ref)
+          vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
+                         &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
+                         nmvc, allow_hp);
+      }
+    }
+  }
+  if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
+      !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+    if (is_inter) {
+      vp10_write_token(w, vp10_ext_tx_tree,
+                       cm->fc->inter_ext_tx_prob[mbmi->tx_size],
+                       &ext_tx_encodings[mbmi->tx_type]);
+    } else {
+      vp10_write_token(
+          w, vp10_ext_tx_tree,
+          cm->fc->intra_ext_tx_prob[mbmi->tx_size]
+                                   [intra_mode_to_tx_type_context[mbmi->mode]],
+          &ext_tx_encodings[mbmi->tx_type]);
+    }
+  } else {
+    if (!mbmi->skip) assert(mbmi->tx_type == DCT_DCT);
+  }
+}
+
+static void write_mb_modes_kf(const VP10_COMMON *cm, const MACROBLOCKD *xd,
+                              MODE_INFO **mi_8x8, vpx_writer *w) {
+  const struct segmentation *const seg = &cm->seg;
+#if CONFIG_MISC_FIXES
+  const struct segmentation_probs *const segp = &cm->fc->seg;
+#else
+  const struct segmentation_probs *const segp = &cm->segp;
+#endif
+  const MODE_INFO *const mi = mi_8x8[0];
+  const MODE_INFO *const above_mi = xd->above_mi;
+  const MODE_INFO *const left_mi = xd->left_mi;
+  const MB_MODE_INFO *const mbmi = &mi->mbmi;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+
+  if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id);
+
+  write_skip(cm, xd, mbmi->segment_id, mi, w);
+
+  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
+      !xd->lossless[mbmi->segment_id])
+    write_selected_tx_size(cm, xd, w);
+
+  if (bsize >= BLOCK_8X8) {
+    write_intra_mode(w, mbmi->mode,
+                     get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
+  } else {
+    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+    int idx, idy;
+
+    for (idy = 0; idy < 2; idy += num_4x4_h) {
+      for (idx = 0; idx < 2; idx += num_4x4_w) {
+        const int block = idy * 2 + idx;
+        write_intra_mode(w, mi->bmi[block].as_mode,
+                         get_y_mode_probs(cm, mi, above_mi, left_mi, block));
+      }
+    }
+  }
+
+  write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]);
+
+  if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
+      !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+    vp10_write_token(
+        w, vp10_ext_tx_tree,
+        cm->fc->intra_ext_tx_prob[mbmi->tx_size]
+                                 [intra_mode_to_tx_type_context[mbmi->mode]],
+        &ext_tx_encodings[mbmi->tx_type]);
+  }
+}
+
+static void write_modes_b(VP10_COMP *cpi, const TileInfo *const tile,
+                          vpx_writer *w, TOKENEXTRA **tok,
+                          const TOKENEXTRA *const tok_end, int mi_row,
+                          int mi_col) {
+  const VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+  MODE_INFO *m;
+  int plane;
+
+  xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
+  m = xd->mi[0];
+
+  cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
+
+  set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
+                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
+                 cm->mi_rows, cm->mi_cols);
+  if (frame_is_intra_only(cm)) {
+    write_mb_modes_kf(cm, xd, xd->mi, w);
+  } else {
+    pack_inter_mode_mvs(cpi, m, w);
+  }
+
+  if (!m->mbmi.skip) {
+    assert(*tok < tok_end);
+    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+      TX_SIZE tx =
+          plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size;
+      pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx);
+      assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
+      (*tok)++;
+    }
+  }
+}
+
+static void write_partition(const VP10_COMMON *const cm,
+                            const MACROBLOCKD *const xd, int hbs, int mi_row,
+                            int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
+                            vpx_writer *w) {
+  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+  const vpx_prob *const probs = cm->fc->partition_prob[ctx];
+  const int has_rows = (mi_row + hbs) < cm->mi_rows;
+  const int has_cols = (mi_col + hbs) < cm->mi_cols;
+
+  if (has_rows && has_cols) {
+    vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]);
+  } else if (!has_rows && has_cols) {
+    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
+    vpx_write(w, p == PARTITION_SPLIT, probs[1]);
+  } else if (has_rows && !has_cols) {
+    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
+    vpx_write(w, p == PARTITION_SPLIT, probs[2]);
+  } else {
+    assert(p == PARTITION_SPLIT);
+  }
+}
+
+static void write_modes_sb(VP10_COMP *cpi, const TileInfo *const tile,
+                           vpx_writer *w, TOKENEXTRA **tok,
+                           const TOKENEXTRA *const tok_end, int mi_row,
+                           int mi_col, BLOCK_SIZE bsize) {
+  const VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+  const int bsl = b_width_log2_lookup[bsize];
+  const int bs = (1 << bsl) / 4;
+  PARTITION_TYPE partition;
+  BLOCK_SIZE subsize;
+  const MODE_INFO *m = NULL;
+
+  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+  m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
+
+  partition = partition_lookup[bsl][m->mbmi.sb_type];
+  write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
+  subsize = get_subsize(bsize, partition);
+  if (subsize < BLOCK_8X8) {
+    write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+  } else {
+    switch (partition) {
+      case PARTITION_NONE:
+        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+        break;
+      case PARTITION_HORZ:
+        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+        if (mi_row + bs < cm->mi_rows)
+          write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
+        break;
+      case PARTITION_VERT:
+        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+        if (mi_col + bs < cm->mi_cols)
+          write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
+        break;
+      case PARTITION_SPLIT:
+        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
+        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
+                       subsize);
+        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
+                       subsize);
+        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
+                       subsize);
+        break;
+      default: assert(0);
+    }
+  }
+
+  // update partition context
+  if (bsize >= BLOCK_8X8 &&
+      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
+    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+
+#if DERING_REFINEMENT
+  if (bsize == BLOCK_64X64 && cm->dering_level != 0 &&
+      !sb_all_skip(cm, mi_row, mi_col)) {
+    vpx_write_literal(
+        w, cm->mi_grid_visible[mi_row*cm->mi_stride + mi_col]->mbmi.dering_gain,
+        DERING_REFINEMENT_BITS);
+  }
+#endif
+}
+
+static void write_modes(VP10_COMP *cpi, const TileInfo *const tile,
+                        vpx_writer *w, TOKENEXTRA **tok,
+                        const TOKENEXTRA *const tok_end) {
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+  int mi_row, mi_col;
+
+  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
+       mi_row += MI_BLOCK_SIZE) {
+    vp10_zero(xd->left_seg_context);
+    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
+         mi_col += MI_BLOCK_SIZE)
+      write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
+  }
+}
+
+static void build_tree_distribution(VP10_COMP *cpi, TX_SIZE tx_size,
+                                    vp10_coeff_stats *coef_branch_ct,
+                                    vp10_coeff_probs_model *coef_probs) {
+  vp10_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
+  unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
+      cpi->common.counts.eob_branch[tx_size];
+  int i, j, k, l, m;
+
+  for (i = 0; i < PLANE_TYPES; ++i) {
+    for (j = 0; j < REF_TYPES; ++j) {
+      for (k = 0; k < COEF_BANDS; ++k) {
+        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+          vp10_tree_probs_from_distribution(vp10_coef_tree,
+                                            coef_branch_ct[i][j][k][l],
+                                            coef_counts[i][j][k][l]);
+          coef_branch_ct[i][j][k][l][0][1] =
+              eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
+          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
+            coef_probs[i][j][k][l][m] =
+                get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
+                                coef_branch_ct[i][j][k][l][m][1]);
+        }
+      }
+    }
+  }
+}
+
+static void update_coef_probs_common(vpx_writer *const bc, VP10_COMP *cpi,
+                                     TX_SIZE tx_size,
+                                     vp10_coeff_stats *frame_branch_ct,
+                                     vp10_coeff_probs_model *new_coef_probs) {
+  vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
+  const vpx_prob upd = DIFF_UPDATE_PROB;
+  const int entropy_nodes_update = UNCONSTRAINED_NODES;
+  int i, j, k, l, t;
+  int stepsize = cpi->sf.coeff_prob_appx_step;
+
+  switch (cpi->sf.use_fast_coef_updates) {
+    case TWO_LOOP: {
+      /* dry run to see if there is any update at all needed */
+      int savings = 0;
+      int update[2] = { 0, 0 };
+      for (i = 0; i < PLANE_TYPES; ++i) {
+        for (j = 0; j < REF_TYPES; ++j) {
+          for (k = 0; k < COEF_BANDS; ++k) {
+            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+              for (t = 0; t < entropy_nodes_update; ++t) {
+                vpx_prob newp = new_coef_probs[i][j][k][l][t];
+                const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
+                int s;
+                int u = 0;
+                if (t == PIVOT_NODE)
+                  s = vp10_prob_diff_update_savings_search_model(
+                      frame_branch_ct[i][j][k][l][0],
+                      old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+                else
+                  s = vp10_prob_diff_update_savings_search(
+                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
+                if (s > 0 && newp != oldp) u = 1;
+                if (u)
+                  savings += s - (int)(vp10_cost_zero(upd));
+                else
+                  savings -= (int)(vp10_cost_zero(upd));
+                update[u]++;
+              }
+            }
+          }
+        }
+      }
+
+      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
+      /* Is coef updated at all */
+      if (update[1] == 0 || savings < 0) {
+        vpx_write_bit(bc, 0);
+        return;
+      }
+      vpx_write_bit(bc, 1);
+      for (i = 0; i < PLANE_TYPES; ++i) {
+        for (j = 0; j < REF_TYPES; ++j) {
+          for (k = 0; k < COEF_BANDS; ++k) {
+            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+              // calc probs and branch cts for this frame only
+              for (t = 0; t < entropy_nodes_update; ++t) {
+                vpx_prob newp = new_coef_probs[i][j][k][l][t];
+                vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
+                const vpx_prob upd = DIFF_UPDATE_PROB;
+                int s;
+                int u = 0;
+                if (t == PIVOT_NODE)
+                  s = vp10_prob_diff_update_savings_search_model(
+                      frame_branch_ct[i][j][k][l][0],
+                      old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+                else
+                  s = vp10_prob_diff_update_savings_search(
+                      frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
+                if (s > 0 && newp != *oldp) u = 1;
+                vpx_write(bc, u, upd);
+                if (u) {
+                  /* send/use new probability */
+                  vp10_write_prob_diff_update(bc, newp, *oldp);
+                  *oldp = newp;
+                }
+              }
+            }
+          }
+        }
+      }
+      return;
+    }
+
+    case ONE_LOOP_REDUCED: {
+      int updates = 0;
+      int noupdates_before_first = 0;
+      for (i = 0; i < PLANE_TYPES; ++i) {
+        for (j = 0; j < REF_TYPES; ++j) {
+          for (k = 0; k < COEF_BANDS; ++k) {
+            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+              // calc probs and branch cts for this frame only
+              for (t = 0; t < entropy_nodes_update; ++t) {
+                vpx_prob newp = new_coef_probs[i][j][k][l][t];
+                vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
+                int s;
+                int u = 0;
+
+                if (t == PIVOT_NODE) {
+                  s = vp10_prob_diff_update_savings_search_model(
+                      frame_branch_ct[i][j][k][l][0],
+                      old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+                } else {
+                  s = vp10_prob_diff_update_savings_search(
+                      frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
+                }
+
+                if (s > 0 && newp != *oldp) u = 1;
+                updates += u;
+                if (u == 0 && updates == 0) {
+                  noupdates_before_first++;
+                  continue;
+                }
+                if (u == 1 && updates == 1) {
+                  int v;
+                  // first update
+                  vpx_write_bit(bc, 1);
+                  for (v = 0; v < noupdates_before_first; ++v)
+                    vpx_write(bc, 0, upd);
+                }
+                vpx_write(bc, u, upd);
+                if (u) {
+                  /* send/use new probability */
+                  vp10_write_prob_diff_update(bc, newp, *oldp);
+                  *oldp = newp;
+                }
+              }
+            }
+          }
+        }
+      }
+      if (updates == 0) {
+        vpx_write_bit(bc, 0);  // no updates
+      }
+      return;
+    }
+    default: assert(0);
+  }
+}
+
+static void update_coef_probs(VP10_COMP *cpi, vpx_writer *w) {
+  const TX_MODE tx_mode = cpi->common.tx_mode;
+  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+  TX_SIZE tx_size;
+  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
+    vp10_coeff_stats frame_branch_ct[PLANE_TYPES];
+    vp10_coeff_probs_model frame_coef_probs[PLANE_TYPES];
+    if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
+        (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
+      vpx_write_bit(w, 0);
+    } else {
+      build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
+      update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
+                               frame_coef_probs);
+    }
+  }
+}
+
+static void encode_loopfilter(struct loopfilter *lf,
+                              struct vpx_write_bit_buffer *wb) {
+  int i;
+
+  // Encode the loop filter level and type
+  vpx_wb_write_literal(wb, lf->filter_level, 6);
+  vpx_wb_write_literal(wb, lf->sharpness_level, 3);
+
+  // Write out loop filter deltas applied at the MB level based on mode or
+  // ref frame (if they are enabled).
+  vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
+
+  if (lf->mode_ref_delta_enabled) {
+    vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
+    if (lf->mode_ref_delta_update) {
+      for (i = 0; i < MAX_REF_FRAMES; i++) {
+        const int delta = lf->ref_deltas[i];
+        const int changed = delta != lf->last_ref_deltas[i];
+        vpx_wb_write_bit(wb, changed);
+        if (changed) {
+          lf->last_ref_deltas[i] = delta;
+          vpx_wb_write_inv_signed_literal(wb, delta, 6);
+        }
+      }
+
+      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
+        const int delta = lf->mode_deltas[i];
+        const int changed = delta != lf->last_mode_deltas[i];
+        vpx_wb_write_bit(wb, changed);
+        if (changed) {
+          lf->last_mode_deltas[i] = delta;
+          vpx_wb_write_inv_signed_literal(wb, delta, 6);
+        }
+      }
+    }
+  }
+}
+
+#if CONFIG_CLPF
+static void encode_clpf(const VP10_COMMON *cm,
+                        struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_literal(wb, cm->clpf, 1);
+}
+#endif
+
+#if CONFIG_DERING
+static void encode_dering(int level, struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_literal(wb, level, DERING_LEVEL_BITS);
+}
+#endif  // CONFIG_DERING
+
+static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
+  if (delta_q != 0) {
+    vpx_wb_write_bit(wb, 1);
+    vpx_wb_write_inv_signed_literal(wb, delta_q, CONFIG_MISC_FIXES ? 6 : 4);
+  } else {
+    vpx_wb_write_bit(wb, 0);
+  }
+}
+
+static void encode_quantization(const VP10_COMMON *const cm,
+                                struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
+  write_delta_q(wb, cm->y_dc_delta_q);
+  write_delta_q(wb, cm->uv_dc_delta_q);
+  write_delta_q(wb, cm->uv_ac_delta_q);
+#if CONFIG_AOM_QM
+  vpx_wb_write_bit(wb, cm->using_qmatrix);
+  if (cm->using_qmatrix) {
+    vpx_wb_write_literal(wb, cm->min_qmlevel, QM_LEVEL_BITS);
+    vpx_wb_write_literal(wb, cm->max_qmlevel, QM_LEVEL_BITS);
+  }
+#endif
+}
+
+static void encode_segmentation(VP10_COMMON *cm, MACROBLOCKD *xd,
+                                struct vpx_write_bit_buffer *wb) {
+  int i, j;
+
+  const struct segmentation *seg = &cm->seg;
+#if !CONFIG_MISC_FIXES
+  const struct segmentation_probs *segp = &cm->segp;
+#endif
+
+  vpx_wb_write_bit(wb, seg->enabled);
+  if (!seg->enabled) return;
+
+  // Segmentation map
+  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
+    vpx_wb_write_bit(wb, seg->update_map);
+  } else {
+    assert(seg->update_map == 1);
+  }
+  if (seg->update_map) {
+    // Select the coding strategy (temporal or spatial)
+    vp10_choose_segmap_coding_method(cm, xd);
+#if !CONFIG_MISC_FIXES
+    // Write out probabilities used to decode unpredicted  macro-block segments
+    for (i = 0; i < SEG_TREE_PROBS; i++) {
+      const int prob = segp->tree_probs[i];
+      const int update = prob != MAX_PROB;
+      vpx_wb_write_bit(wb, update);
+      if (update) vpx_wb_write_literal(wb, prob, 8);
+    }
+#endif
+
+    // Write out the chosen coding method.
+    if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
+      vpx_wb_write_bit(wb, seg->temporal_update);
+    } else {
+      assert(seg->temporal_update == 0);
+    }
+
+#if !CONFIG_MISC_FIXES
+    if (seg->temporal_update) {
+      for (i = 0; i < PREDICTION_PROBS; i++) {
+        const int prob = segp->pred_probs[i];
+        const int update = prob != MAX_PROB;
+        vpx_wb_write_bit(wb, update);
+        if (update) vpx_wb_write_literal(wb, prob, 8);
+      }
+    }
+#endif
+  }
+
+  // Segmentation data
+  vpx_wb_write_bit(wb, seg->update_data);
+  if (seg->update_data) {
+    vpx_wb_write_bit(wb, seg->abs_delta);
+
+    for (i = 0; i < MAX_SEGMENTS; i++) {
+      for (j = 0; j < SEG_LVL_MAX; j++) {
+        const int active = segfeature_active(seg, i, j);
+        vpx_wb_write_bit(wb, active);
+        if (active) {
+          const int data = get_segdata(seg, i, j);
+          const int data_max = vp10_seg_feature_data_max(j);
+
+          if (vp10_is_segfeature_signed(j)) {
+            encode_unsigned_max(wb, abs(data), data_max);
+            vpx_wb_write_bit(wb, data < 0);
+          } else {
+            encode_unsigned_max(wb, data, data_max);
+          }
+        }
+      }
+    }
+  }
+}
+
+#if CONFIG_MISC_FIXES
+static void update_seg_probs(VP10_COMP *cpi, vpx_writer *w) {
+  VP10_COMMON *cm = &cpi->common;
+
+  if (!cpi->common.seg.enabled) return;
+
+  if (cpi->common.seg.temporal_update) {
+    int i;
+
+    for (i = 0; i < PREDICTION_PROBS; i++)
+      vp10_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i],
+                                 cm->counts.seg.pred[i]);
+
+    prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs,
+                     cm->counts.seg.tree_mispred, MAX_SEGMENTS, w);
+  } else {
+    prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs,
+                     cm->counts.seg.tree_total, MAX_SEGMENTS, w);
+  }
+}
+
+static void write_txfm_mode(TX_MODE mode, struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_bit(wb, mode == TX_MODE_SELECT);
+  if (mode != TX_MODE_SELECT) vpx_wb_write_literal(wb, mode, 2);
+}
+#else
+static void write_txfm_mode(TX_MODE mode, struct vpx_writer *wb) {
+  vpx_write_literal(wb, VPXMIN(mode, ALLOW_32X32), 2);
+  if (mode >= ALLOW_32X32) vpx_write_bit(wb, mode == TX_MODE_SELECT);
+}
+#endif
+
+static void update_txfm_probs(VP10_COMMON *cm, vpx_writer *w,
+                              FRAME_COUNTS *counts) {
+  if (cm->tx_mode == TX_MODE_SELECT) {
+    int i, j;
+    unsigned int ct_8x8p[TX_SIZES - 3][2];
+    unsigned int ct_16x16p[TX_SIZES - 2][2];
+    unsigned int ct_32x32p[TX_SIZES - 1][2];
+
+    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+      vp10_tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
+      for (j = 0; j < TX_SIZES - 3; j++)
+        vp10_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
+    }
+
+    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+      vp10_tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
+      for (j = 0; j < TX_SIZES - 2; j++)
+        vp10_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
+                                   ct_16x16p[j]);
+    }
+
+    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+      vp10_tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
+      for (j = 0; j < TX_SIZES - 1; j++)
+        vp10_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
+                                   ct_32x32p[j]);
+    }
+  }
+}
+
+static void write_interp_filter(INTERP_FILTER filter,
+                                struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_bit(wb, filter == SWITCHABLE);
+  if (filter != SWITCHABLE) vpx_wb_write_literal(wb, filter, 2);
+}
+
+static void fix_interp_filter(VP10_COMMON *cm, FRAME_COUNTS *counts) {
+  if (cm->interp_filter == SWITCHABLE) {
+    // Check to see if only one of the filters is actually used
+    int count[SWITCHABLE_FILTERS];
+    int i, j, c = 0;
+    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+      count[i] = 0;
+      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+        count[i] += counts->switchable_interp[j][i];
+      c += (count[i] > 0);
+    }
+    if (c == 1) {
+      // Only one filter is used. So set the filter at frame level
+      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+        if (count[i]) {
+          cm->interp_filter = i;
+          break;
+        }
+      }
+    }
+  }
+}
+
+static void write_tile_info(const VP10_COMMON *const cm,
+                            struct vpx_write_bit_buffer *wb) {
+  int min_log2_tile_cols, max_log2_tile_cols, ones;
+  vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+  // columns
+  ones = cm->log2_tile_cols - min_log2_tile_cols;
+  while (ones--) vpx_wb_write_bit(wb, 1);
+
+  if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0);
+
+  // rows
+  vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
+  if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
+}
+
+static int get_refresh_mask(VP10_COMP *cpi) {
+  if (vp10_preserve_existing_gf(cpi)) {
+    // We have decided to preserve the previously existing golden frame as our
+    // new ARF frame. However, in the short term we leave it in the GF slot and,
+    // if we're updating the GF with the current decoded frame, we save it
+    // instead to the ARF slot.
+    // Later, in the function vp10_encoder.c:vp10_update_reference_frames() we
+    // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
+    // there so that it can be done outside of the recode loop.
+    // Note: This is highly specific to the use of ARF as a forward reference,
+    // and this needs to be generalized as other uses are implemented
+    // (like RTC/temporal scalability).
+    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+           (cpi->refresh_golden_frame << cpi->alt_fb_idx);
+  } else {
+    int arf_idx = cpi->alt_fb_idx;
+    if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+      const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+      arf_idx = gf_group->arf_update_idx[gf_group->index];
+    }
+    return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+           (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
+           (cpi->refresh_alt_ref_frame << arf_idx);
+  }
+}
+
+static size_t encode_tiles(VP10_COMP *cpi, uint8_t *data_ptr,
+                           unsigned int *max_tile_sz) {
+  VP10_COMMON *const cm = &cpi->common;
+  vpx_writer residual_bc;
+  int tile_row, tile_col;
+  TOKENEXTRA *tok_end;
+  size_t total_size = 0;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  const int tile_rows = 1 << cm->log2_tile_rows;
+  unsigned int max_tile = 0;
+
+  memset(cm->above_seg_context, 0,
+         sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
+
+  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+      int tile_idx = tile_row * tile_cols + tile_col;
+      TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
+
+      tok_end = cpi->tile_tok[tile_row][tile_col] +
+                cpi->tok_count[tile_row][tile_col];
+
+      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
+        vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
+      else
+        vpx_start_encode(&residual_bc, data_ptr + total_size);
+
+      write_modes(cpi, &cpi->tile_data[tile_idx].tile_info, &residual_bc, &tok,
+                  tok_end);
+      assert(tok == tok_end);
+      vpx_stop_encode(&residual_bc);
+      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
+        unsigned int tile_sz;
+
+        // size of this tile
+        assert(residual_bc.pos > 0);
+        tile_sz = residual_bc.pos - CONFIG_MISC_FIXES;
+        mem_put_le32(data_ptr + total_size, tile_sz);
+        max_tile = max_tile > tile_sz ? max_tile : tile_sz;
+        total_size += 4;
+      }
+
+      total_size += residual_bc.pos;
+    }
+  }
+  *max_tile_sz = max_tile;
+
+  return total_size;
+}
+
+static void write_render_size(const VP10_COMMON *cm,
+                              struct vpx_write_bit_buffer *wb) {
+  const int scaling_active =
+      cm->width != cm->render_width || cm->height != cm->render_height;
+  vpx_wb_write_bit(wb, scaling_active);
+  if (scaling_active) {
+    vpx_wb_write_literal(wb, cm->render_width - 1, 16);
+    vpx_wb_write_literal(wb, cm->render_height - 1, 16);
+  }
+}
+
+static void write_frame_size(const VP10_COMMON *cm,
+                             struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_literal(wb, cm->width - 1, 16);
+  vpx_wb_write_literal(wb, cm->height - 1, 16);
+
+  write_render_size(cm, wb);
+}
+
+static void write_frame_size_with_refs(VP10_COMP *cpi,
+                                       struct vpx_write_bit_buffer *wb) {
+  VP10_COMMON *const cm = &cpi->common;
+  int found = 0;
+
+  MV_REFERENCE_FRAME ref_frame;
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
+
+    if (cfg != NULL) {
+      found =
+          cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
+#if CONFIG_MISC_FIXES
+      found &= cm->render_width == cfg->render_width &&
+               cm->render_height == cfg->render_height;
+#endif
+    }
+    vpx_wb_write_bit(wb, found);
+    if (found) {
+      break;
+    }
+  }
+
+  if (!found) {
+    vpx_wb_write_literal(wb, cm->width - 1, 16);
+    vpx_wb_write_literal(wb, cm->height - 1, 16);
+
+#if CONFIG_MISC_FIXES
+    write_render_size(cm, wb);
+#endif
+  }
+
+#if !CONFIG_MISC_FIXES
+  write_render_size(cm, wb);
+#endif
+}
+
+static void write_sync_code(struct vpx_write_bit_buffer *wb) {
+  vpx_wb_write_literal(wb, VP10_SYNC_CODE_0, 8);
+  vpx_wb_write_literal(wb, VP10_SYNC_CODE_1, 8);
+  vpx_wb_write_literal(wb, VP10_SYNC_CODE_2, 8);
+}
+
+static void write_profile(BITSTREAM_PROFILE profile,
+                          struct vpx_write_bit_buffer *wb) {
+  switch (profile) {
+    case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break;
+    case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break;
+    case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break;
+    case PROFILE_3: vpx_wb_write_literal(wb, 6, 3); break;
+    default: assert(0);
+  }
+}
+
+static void write_bitdepth_colorspace_sampling(
+    VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
+  if (cm->profile >= PROFILE_2) {
+    assert(cm->bit_depth > VPX_BITS_8);
+    vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
+  }
+  vpx_wb_write_literal(wb, cm->color_space, 3);
+  if (cm->color_space != VPX_CS_SRGB) {
+    // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
+    vpx_wb_write_bit(wb, cm->color_range);
+    if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
+      assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
+      vpx_wb_write_bit(wb, cm->subsampling_x);
+      vpx_wb_write_bit(wb, cm->subsampling_y);
+      vpx_wb_write_bit(wb, 0);  // unused
+    } else {
+      assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
+    }
+  } else {
+    assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
+    vpx_wb_write_bit(wb, 0);  // unused
+  }
+}
+
+static void write_uncompressed_header(VP10_COMP *cpi,
+                                      struct vpx_write_bit_buffer *wb) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+  vpx_wb_write_literal(wb, VPX_FRAME_MARKER, 2);
+
+  write_profile(cm->profile, wb);
+
+  vpx_wb_write_bit(wb, 0);  // show_existing_frame
+  vpx_wb_write_bit(wb, cm->frame_type);
+  vpx_wb_write_bit(wb, cm->show_frame);
+  vpx_wb_write_bit(wb, cm->error_resilient_mode);
+
+  if (cm->frame_type == KEY_FRAME) {
+    write_sync_code(wb);
+    write_bitdepth_colorspace_sampling(cm, wb);
+    write_frame_size(cm, wb);
+  } else {
+    if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only);
+
+    if (!cm->error_resilient_mode) {
+#if CONFIG_MISC_FIXES
+      if (cm->intra_only) {
+        vpx_wb_write_bit(wb,
+                         cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
+      } else {
+        vpx_wb_write_bit(wb,
+                         cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE);
+        if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE)
+          vpx_wb_write_bit(wb,
+                           cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
+      }
+#else
+      static const int reset_frame_context_conv_tbl[3] = { 0, 2, 3 };
+
+      vpx_wb_write_literal(
+          wb, reset_frame_context_conv_tbl[cm->reset_frame_context], 2);
+#endif
+    }
+
+    if (cm->intra_only) {
+      write_sync_code(wb);
+
+#if CONFIG_MISC_FIXES
+      write_bitdepth_colorspace_sampling(cm, wb);
+#else
+      // Note for profile 0, 420 8bpp is assumed.
+      if (cm->profile > PROFILE_0) {
+        write_bitdepth_colorspace_sampling(cm, wb);
+      }
+#endif
+
+      vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+      write_frame_size(cm, wb);
+    } else {
+      MV_REFERENCE_FRAME ref_frame;
+      vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+        assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
+        vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
+                             REF_FRAMES_LOG2);
+        vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
+      }
+
+      write_frame_size_with_refs(cpi, wb);
+
+      vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
+
+      fix_interp_filter(cm, cpi->td.counts);
+      write_interp_filter(cm->interp_filter, wb);
+    }
+  }
+
+  if (!cm->error_resilient_mode) {
+    vpx_wb_write_bit(wb,
+                     cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF);
+#if CONFIG_MISC_FIXES
+    if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF)
+#endif
+      vpx_wb_write_bit(
+          wb, cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD);
+  }
+
+  vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
+
+  encode_loopfilter(&cm->lf, wb);
+#if CONFIG_CLPF
+  encode_clpf(cm, wb);
+#endif
+#if CONFIG_DERING
+  encode_dering(cm->dering_level, wb);
+#endif  // CONFIG_DERING
+  encode_quantization(cm, wb);
+  encode_segmentation(cm, xd, wb);
+#if CONFIG_MISC_FIXES
+  if (!cm->seg.enabled && xd->lossless[0])
+    cm->tx_mode = TX_4X4;
+  else
+    write_txfm_mode(cm->tx_mode, wb);
+  if (cpi->allow_comp_inter_inter) {
+    const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
+    const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
+
+    vpx_wb_write_bit(wb, use_hybrid_pred);
+    if (!use_hybrid_pred) vpx_wb_write_bit(wb, use_compound_pred);
+  }
+#endif
+
+  write_tile_info(cm, wb);
+}
+
+static size_t write_compressed_header(VP10_COMP *cpi, uint8_t *data) {
+  VP10_COMMON *const cm = &cpi->common;
+  FRAME_CONTEXT *const fc = cm->fc;
+  FRAME_COUNTS *counts = cpi->td.counts;
+  vpx_writer header_bc;
+  int i;
+#if CONFIG_MISC_FIXES
+  int j;
+#endif
+
+  vpx_start_encode(&header_bc, data);
+
+#if !CONFIG_MISC_FIXES
+  if (cpi->td.mb.e_mbd.lossless[0]) {
+    cm->tx_mode = TX_4X4;
+  } else {
+    write_txfm_mode(cm->tx_mode, &header_bc);
+    update_txfm_probs(cm, &header_bc, counts);
+  }
+#else
+  update_txfm_probs(cm, &header_bc, counts);
+#endif
+  update_coef_probs(cpi, &header_bc);
+  update_skip_probs(cm, &header_bc, counts);
+#if CONFIG_MISC_FIXES
+  update_seg_probs(cpi, &header_bc);
+
+  for (i = 0; i < INTRA_MODES; ++i)
+    prob_diff_update(vp10_intra_mode_tree, fc->uv_mode_prob[i],
+                     counts->uv_mode[i], INTRA_MODES, &header_bc);
+
+  for (i = 0; i < PARTITION_CONTEXTS; ++i)
+    prob_diff_update(vp10_partition_tree, fc->partition_prob[i],
+                     counts->partition[i], PARTITION_TYPES, &header_bc);
+#endif
+
+  if (frame_is_intra_only(cm)) {
+    vp10_copy(cm->kf_y_prob, vp10_kf_y_mode_prob);
+#if CONFIG_MISC_FIXES
+    for (i = 0; i < INTRA_MODES; ++i)
+      for (j = 0; j < INTRA_MODES; ++j)
+        prob_diff_update(vp10_intra_mode_tree, cm->kf_y_prob[i][j],
+                         counts->kf_y_mode[i][j], INTRA_MODES, &header_bc);
+#endif
+  } else {
+    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+      prob_diff_update(vp10_inter_mode_tree, cm->fc->inter_mode_probs[i],
+                       counts->inter_mode[i], INTER_MODES, &header_bc);
+
+    if (cm->interp_filter == SWITCHABLE)
+      update_switchable_interp_probs(cm, &header_bc, counts);
+
+    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
+      vp10_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
+                                 counts->intra_inter[i]);
+
+    if (cpi->allow_comp_inter_inter) {
+      const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
+#if !CONFIG_MISC_FIXES
+      const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
+
+      vpx_write_bit(&header_bc, use_compound_pred);
+      if (use_compound_pred) {
+        vpx_write_bit(&header_bc, use_hybrid_pred);
+        if (use_hybrid_pred)
+          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
+            vp10_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
+                                       counts->comp_inter[i]);
+      }
+#else
+      if (use_hybrid_pred)
+        for (i = 0; i < COMP_INTER_CONTEXTS; i++)
+          vp10_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
+                                     counts->comp_inter[i]);
+#endif
+    }
+
+    if (cm->reference_mode != COMPOUND_REFERENCE) {
+      for (i = 0; i < REF_CONTEXTS; i++) {
+        vp10_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
+                                   counts->single_ref[i][0]);
+        vp10_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
+                                   counts->single_ref[i][1]);
+      }
+    }
+
+    if (cm->reference_mode != SINGLE_REFERENCE)
+      for (i = 0; i < REF_CONTEXTS; i++)
+        vp10_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
+                                   counts->comp_ref[i]);
+
+    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
+      prob_diff_update(vp10_intra_mode_tree, cm->fc->y_mode_prob[i],
+                       counts->y_mode[i], INTRA_MODES, &header_bc);
+
+#if !CONFIG_MISC_FIXES
+    for (i = 0; i < PARTITION_CONTEXTS; ++i)
+      prob_diff_update(vp10_partition_tree, fc->partition_prob[i],
+                       counts->partition[i], PARTITION_TYPES, &header_bc);
+#endif
+
+    vp10_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
+                         &counts->mv);
+    update_ext_tx_probs(cm, &header_bc);
+  }
+
+  vpx_stop_encode(&header_bc);
+  assert(header_bc.pos <= 0xffff);
+
+  return header_bc.pos;
+}
+
+#if CONFIG_MISC_FIXES
+static int remux_tiles(uint8_t *dest, const int sz, const int n_tiles,
+                       const int mag) {
+  int rpos = 0, wpos = 0, n;
+
+  for (n = 0; n < n_tiles; n++) {
+    int tile_sz;
+
+    if (n == n_tiles - 1) {
+      tile_sz = sz - rpos;
+    } else {
+      tile_sz = mem_get_le32(&dest[rpos]) + 1;
+      rpos += 4;
+      switch (mag) {
+        case 0: dest[wpos] = tile_sz - 1; break;
+        case 1: mem_put_le16(&dest[wpos], tile_sz - 1); break;
+        case 2: mem_put_le24(&dest[wpos], tile_sz - 1); break;
+        case 3:  // remuxing should only happen if mag < 3
+        default: assert("Invalid value for tile size magnitude" && 0);
+      }
+      wpos += mag + 1;
+    }
+
+    memmove(&dest[wpos], &dest[rpos], tile_sz);
+    wpos += tile_sz;
+    rpos += tile_sz;
+  }
+
+  assert(rpos > wpos);
+  assert(rpos == sz);
+
+  return wpos;
+}
+#endif
+
+void vp10_pack_bitstream(VP10_COMP *const cpi, uint8_t *dest, size_t *size) {
+  uint8_t *data = dest;
+  size_t first_part_size, uncompressed_hdr_size, data_sz;
+  struct vpx_write_bit_buffer wb = { data, 0 };
+  struct vpx_write_bit_buffer saved_wb;
+  unsigned int max_tile;
+#if CONFIG_MISC_FIXES
+  VP10_COMMON *const cm = &cpi->common;
+  const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
+  const int have_tiles = n_log2_tiles > 0;
+#else
+  const int have_tiles = 0;  // we have tiles, but we don't want to write a
+                             // tile size marker in the header
+#endif
+
+  write_uncompressed_header(cpi, &wb);
+  saved_wb = wb;
+  // don't know in advance first part. size
+  vpx_wb_write_literal(&wb, 0, 16 + have_tiles * 2);
+
+  uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
+  data += uncompressed_hdr_size;
+
+  vpx_clear_system_state();
+
+  first_part_size = write_compressed_header(cpi, data);
+  data += first_part_size;
+
+  data_sz = encode_tiles(cpi, data, &max_tile);
+#if CONFIG_MISC_FIXES
+  if (max_tile > 0) {
+    int mag;
+    unsigned int mask;
+
+    // Choose the (tile size) magnitude
+    for (mag = 0, mask = 0xff; mag < 4; mag++) {
+      if (max_tile <= mask) break;
+      mask <<= 8;
+      mask |= 0xff;
+    }
+    assert(n_log2_tiles > 0);
+    vpx_wb_write_literal(&saved_wb, mag, 2);
+    if (mag < 3)
+      data_sz = remux_tiles(data, (int)data_sz, 1 << n_log2_tiles, mag);
+  } else {
+    assert(n_log2_tiles == 0);
+  }
+#endif
+  data += data_sz;
+
+  // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
+  vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
+
+  *size = data - dest;
+}
diff --git a/av1/encoder/bitstream.h b/av1/encoder/bitstream.h
new file mode 100644
index 0000000..4d50071
--- /dev/null
+++ b/av1/encoder/bitstream.h
@@ -0,0 +1,32 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_BITSTREAM_H_
+#define VP10_ENCODER_BITSTREAM_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "av1/encoder/encoder.h"
+
+void vp10_encode_token_init();
+void vp10_pack_bitstream(VP10_COMP *const cpi, uint8_t *dest, size_t *size);
+
+static INLINE int vp10_preserve_existing_gf(VP10_COMP *cpi) {
+  return !cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
+         cpi->rc.is_src_frame_alt_ref;
+}
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_BITSTREAM_H_
diff --git a/av1/encoder/block.h b/av1/encoder/block.h
new file mode 100644
index 0000000..53b7b80
--- /dev/null
+++ b/av1/encoder/block.h
@@ -0,0 +1,149 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_BLOCK_H_
+#define VP10_ENCODER_BLOCK_H_
+
+#include "av1/common/entropymv.h"
+#include "av1/common/entropy.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+  unsigned int sse;
+  int sum;
+  unsigned int var;
+} diff;
+
+struct macroblock_plane {
+  DECLARE_ALIGNED(16, int16_t, src_diff[64 * 64]);
+  tran_low_t *qcoeff;
+  tran_low_t *coeff;
+  uint16_t *eobs;
+  struct buf_2d src;
+
+  // Quantizer setings
+  int16_t *quant_fp;
+  int16_t *round_fp;
+  int16_t *quant;
+  int16_t *quant_shift;
+  int16_t *zbin;
+  int16_t *round;
+
+  int64_t quant_thred[2];
+};
+
+/* The [2] dimension is for whether we skip the EOB node (i.e. if previous
+ * coefficient in this block was zero) or not. */
+typedef unsigned int vp10_coeff_cost[PLANE_TYPES][REF_TYPES][COEF_BANDS][2]
+                                    [COEFF_CONTEXTS][ENTROPY_TOKENS];
+
+typedef struct {
+  int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
+  uint8_t mode_context[MAX_REF_FRAMES];
+} MB_MODE_INFO_EXT;
+
+typedef struct macroblock MACROBLOCK;
+struct macroblock {
+  struct macroblock_plane plane[MAX_MB_PLANE];
+
+  MACROBLOCKD e_mbd;
+  MB_MODE_INFO_EXT *mbmi_ext;
+  int skip_block;
+  int select_tx_size;
+  int skip_recode;
+  int skip_optimize;
+  int q_index;
+
+  // The equivalent error at the current rdmult of one whole bit (not one
+  // bitcost unit).
+  int errorperbit;
+  // The equivalend SAD error of one (whole) bit at the current quantizer
+  // for large blocks.
+  int sadperbit16;
+  // The equivalend SAD error of one (whole) bit at the current quantizer
+  // for sub-8x8 blocks.
+  int sadperbit4;
+  int rddiv;
+  int rdmult;
+  int mb_energy;
+  int *m_search_count_ptr;
+  int *ex_search_count_ptr;
+
+  // These are set to their default values at the beginning, and then adjusted
+  // further in the encoding process.
+  BLOCK_SIZE min_partition_size;
+  BLOCK_SIZE max_partition_size;
+
+  int mv_best_ref_index[MAX_REF_FRAMES];
+  unsigned int max_mv_context[MAX_REF_FRAMES];
+  unsigned int source_variance;
+  unsigned int pred_sse[MAX_REF_FRAMES];
+  int pred_mv_sad[MAX_REF_FRAMES];
+
+  int nmvjointcost[MV_JOINTS];
+  int *nmvcost[2];
+  int *nmvcost_hp[2];
+  int **mvcost;
+
+  int nmvjointsadcost[MV_JOINTS];
+  int *nmvsadcost[2];
+  int *nmvsadcost_hp[2];
+  int **mvsadcost;
+
+  // These define limits to motion vector components to prevent them
+  // from extending outside the UMV borders
+  int mv_col_min;
+  int mv_col_max;
+  int mv_row_min;
+  int mv_row_max;
+
+  // Notes transform blocks where no coefficents are coded.
+  // Set during mode selection. Read during block encoding.
+  uint8_t zcoeff_blk[TX_SIZES][256];
+
+  int skip;
+
+  int encode_breakout;
+
+  // note that token_costs is the cost when eob node is skipped
+  vp10_coeff_cost token_costs[TX_SIZES];
+
+  int optimize;
+
+  // indicate if it is in the rd search loop or encoding process
+  int use_lp32x32fdct;
+
+  // use fast quantization process
+  int quant_fp;
+
+  // skip forward transform and quantization
+  uint8_t skip_txfm[MAX_MB_PLANE << 2];
+#define SKIP_TXFM_NONE 0
+#define SKIP_TXFM_AC_DC 1
+#define SKIP_TXFM_AC_ONLY 2
+
+  int64_t bsse[MAX_MB_PLANE << 2];
+
+  // Used to store sub partition's choices.
+  MV pred_mv[MAX_REF_FRAMES];
+
+  // Strong color activity detection. Used in RTC coding mode to enhance
+  // the visual quality at the boundary of moving color objects.
+  uint8_t color_sensitivity[2];
+};
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_BLOCK_H_
diff --git a/av1/encoder/blockiness.c b/av1/encoder/blockiness.c
new file mode 100644
index 0000000..97e201a
--- /dev/null
+++ b/av1/encoder/blockiness.c
@@ -0,0 +1,141 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp10_rtcd.h"
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+#include "av1/common/common.h"
+#include "av1/common/filter.h"
+#include "aom/vpx_integer.h"
+#include "aom_dsp/vpx_convolve.h"
+#include "aom_dsp/vpx_filter.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+static int horizontal_filter(const uint8_t *s) {
+  return (s[1] - s[-2]) * 2 + (s[-1] - s[0]) * 6;
+}
+
+static int vertical_filter(const uint8_t *s, int p) {
+  return (s[p] - s[-2 * p]) * 2 + (s[-p] - s[0]) * 6;
+}
+
+static int variance(int sum, int sum_squared, int size) {
+  return sum_squared / size - (sum / size) * (sum / size);
+}
+// Calculate a blockiness level for a vertical block edge.
+// This function returns a new blockiness metric that's defined as
+
+//              p0 p1 p2 p3
+//              q0 q1 q2 q3
+// block edge ->
+//              r0 r1 r2 r3
+//              s0 s1 s2 s3
+
+// blockiness =  p0*-2+q0*6+r0*-6+s0*2 +
+//               p1*-2+q1*6+r1*-6+s1*2 +
+//               p2*-2+q2*6+r2*-6+s2*2 +
+//               p3*-2+q3*6+r3*-6+s3*2 ;
+
+// reconstructed_blockiness = abs(blockiness from reconstructed buffer -
+//                                blockiness from source buffer,0)
+//
+// I make the assumption that flat blocks are much more visible than high
+// contrast blocks. As such, I scale the result of the blockiness calc
+// by dividing the blockiness by the variance of the pixels on either side
+// of the edge as follows:
+// var_0 = (q0^2+q1^2+q2^2+q3^2) - ((q0 + q1 + q2 + q3) / 4 )^2
+// var_1 = (r0^2+r1^2+r2^2+r3^2) - ((r0 + r1 + r2 + r3) / 4 )^2
+// The returned blockiness is the scaled value
+// Reconstructed blockiness / ( 1 + var_0 + var_1 ) ;
+static int blockiness_vertical(const uint8_t *s, int sp, const uint8_t *r,
+                               int rp, int size) {
+  int s_blockiness = 0;
+  int r_blockiness = 0;
+  int sum_0 = 0;
+  int sum_sq_0 = 0;
+  int sum_1 = 0;
+  int sum_sq_1 = 0;
+  int i;
+  int var_0;
+  int var_1;
+  for (i = 0; i < size; ++i, s += sp, r += rp) {
+    s_blockiness += horizontal_filter(s);
+    r_blockiness += horizontal_filter(r);
+    sum_0 += s[0];
+    sum_sq_0 += s[0] * s[0];
+    sum_1 += s[-1];
+    sum_sq_1 += s[-1] * s[-1];
+  }
+  var_0 = variance(sum_0, sum_sq_0, size);
+  var_1 = variance(sum_1, sum_sq_1, size);
+  r_blockiness = abs(r_blockiness);
+  s_blockiness = abs(s_blockiness);
+
+  if (r_blockiness > s_blockiness)
+    return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
+  else
+    return 0;
+}
+
+// Calculate a blockiness level for a horizontal block edge
+// same as above.
+static int blockiness_horizontal(const uint8_t *s, int sp, const uint8_t *r,
+                                 int rp, int size) {
+  int s_blockiness = 0;
+  int r_blockiness = 0;
+  int sum_0 = 0;
+  int sum_sq_0 = 0;
+  int sum_1 = 0;
+  int sum_sq_1 = 0;
+  int i;
+  int var_0;
+  int var_1;
+  for (i = 0; i < size; ++i, ++s, ++r) {
+    s_blockiness += vertical_filter(s, sp);
+    r_blockiness += vertical_filter(r, rp);
+    sum_0 += s[0];
+    sum_sq_0 += s[0] * s[0];
+    sum_1 += s[-sp];
+    sum_sq_1 += s[-sp] * s[-sp];
+  }
+  var_0 = variance(sum_0, sum_sq_0, size);
+  var_1 = variance(sum_1, sum_sq_1, size);
+  r_blockiness = abs(r_blockiness);
+  s_blockiness = abs(s_blockiness);
+
+  if (r_blockiness > s_blockiness)
+    return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
+  else
+    return 0;
+}
+
+// This function returns the blockiness for the entire frame currently by
+// looking at all borders in steps of 4.
+double vp10_get_blockiness(const unsigned char *img1, int img1_pitch,
+                           const unsigned char *img2, int img2_pitch, int width,
+                           int height) {
+  double blockiness = 0;
+  int i, j;
+  vpx_clear_system_state();
+  for (i = 0; i < height;
+       i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
+    for (j = 0; j < width; j += 4) {
+      if (i > 0 && i < height && j > 0 && j < width) {
+        blockiness +=
+            blockiness_vertical(img1 + j, img1_pitch, img2 + j, img2_pitch, 4);
+        blockiness += blockiness_horizontal(img1 + j, img1_pitch, img2 + j,
+                                            img2_pitch, 4);
+      }
+    }
+  }
+  blockiness /= width * height / 16;
+  return blockiness;
+}
diff --git a/av1/encoder/context_tree.c b/av1/encoder/context_tree.c
new file mode 100644
index 0000000..5b762f1
--- /dev/null
+++ b/av1/encoder/context_tree.c
@@ -0,0 +1,157 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "av1/encoder/context_tree.h"
+#include "av1/encoder/encoder.h"
+
+static const BLOCK_SIZE square[] = {
+  BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
+};
+
+static void alloc_mode_context(VP10_COMMON *cm, int num_4x4_blk,
+                               PICK_MODE_CONTEXT *ctx) {
+  const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk);
+  const int num_pix = num_blk << 4;
+  int i, k;
+  ctx->num_4x4_blk = num_blk;
+
+  CHECK_MEM_ERROR(cm, ctx->zcoeff_blk, vpx_calloc(num_blk, sizeof(uint8_t)));
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    for (k = 0; k < 3; ++k) {
+      CHECK_MEM_ERROR(cm, ctx->coeff[i][k],
+                      vpx_memalign(32, num_pix * sizeof(*ctx->coeff[i][k])));
+      CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k],
+                      vpx_memalign(32, num_pix * sizeof(*ctx->qcoeff[i][k])));
+      CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k],
+                      vpx_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i][k])));
+      CHECK_MEM_ERROR(cm, ctx->eobs[i][k],
+                      vpx_memalign(32, num_blk * sizeof(*ctx->eobs[i][k])));
+      ctx->coeff_pbuf[i][k] = ctx->coeff[i][k];
+      ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k];
+      ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k];
+      ctx->eobs_pbuf[i][k] = ctx->eobs[i][k];
+    }
+  }
+}
+
+static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
+  int i, k;
+  vpx_free(ctx->zcoeff_blk);
+  ctx->zcoeff_blk = 0;
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    for (k = 0; k < 3; ++k) {
+      vpx_free(ctx->coeff[i][k]);
+      ctx->coeff[i][k] = 0;
+      vpx_free(ctx->qcoeff[i][k]);
+      ctx->qcoeff[i][k] = 0;
+      vpx_free(ctx->dqcoeff[i][k]);
+      ctx->dqcoeff[i][k] = 0;
+      vpx_free(ctx->eobs[i][k]);
+      ctx->eobs[i][k] = 0;
+    }
+  }
+
+  for (i = 0; i < 2; ++i) {
+    vpx_free(ctx->color_index_map[i]);
+    ctx->color_index_map[i] = 0;
+  }
+}
+
+static void alloc_tree_contexts(VP10_COMMON *cm, PC_TREE *tree,
+                                int num_4x4_blk) {
+  alloc_mode_context(cm, num_4x4_blk, &tree->none);
+  alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[0]);
+  alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[0]);
+
+  if (num_4x4_blk > 4) {
+    alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[1]);
+    alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[1]);
+  } else {
+    memset(&tree->horizontal[1], 0, sizeof(tree->horizontal[1]));
+    memset(&tree->vertical[1], 0, sizeof(tree->vertical[1]));
+  }
+}
+
+static void free_tree_contexts(PC_TREE *tree) {
+  free_mode_context(&tree->none);
+  free_mode_context(&tree->horizontal[0]);
+  free_mode_context(&tree->horizontal[1]);
+  free_mode_context(&tree->vertical[0]);
+  free_mode_context(&tree->vertical[1]);
+}
+
+// This function sets up a tree of contexts such that at each square
+// partition level. There are contexts for none, horizontal, vertical, and
+// split.  Along with a block_size value and a selected block_size which
+// represents the state of our search.
+void vp10_setup_pc_tree(VP10_COMMON *cm, ThreadData *td) {
+  int i, j;
+  const int leaf_nodes = 64;
+  const int tree_nodes = 64 + 16 + 4 + 1;
+  int pc_tree_index = 0;
+  PC_TREE *this_pc;
+  PICK_MODE_CONTEXT *this_leaf;
+  int square_index = 1;
+  int nodes;
+
+  vpx_free(td->leaf_tree);
+  CHECK_MEM_ERROR(cm, td->leaf_tree,
+                  vpx_calloc(leaf_nodes, sizeof(*td->leaf_tree)));
+  vpx_free(td->pc_tree);
+  CHECK_MEM_ERROR(cm, td->pc_tree,
+                  vpx_calloc(tree_nodes, sizeof(*td->pc_tree)));
+
+  this_pc = &td->pc_tree[0];
+  this_leaf = &td->leaf_tree[0];
+
+  // 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same
+  // context so we only need to allocate 1 for each 8x8 block.
+  for (i = 0; i < leaf_nodes; ++i) alloc_mode_context(cm, 1, &td->leaf_tree[i]);
+
+  // Sets up all the leaf nodes in the tree.
+  for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
+    PC_TREE *const tree = &td->pc_tree[pc_tree_index];
+    tree->block_size = square[0];
+    alloc_tree_contexts(cm, tree, 4);
+    tree->leaf_split[0] = this_leaf++;
+    for (j = 1; j < 4; j++) tree->leaf_split[j] = tree->leaf_split[0];
+  }
+
+  // Each node has 4 leaf nodes, fill each block_size level of the tree
+  // from leafs to the root.
+  for (nodes = 16; nodes > 0; nodes >>= 2) {
+    for (i = 0; i < nodes; ++i) {
+      PC_TREE *const tree = &td->pc_tree[pc_tree_index];
+      alloc_tree_contexts(cm, tree, 4 << (2 * square_index));
+      tree->block_size = square[square_index];
+      for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
+      ++pc_tree_index;
+    }
+    ++square_index;
+  }
+  td->pc_root = &td->pc_tree[tree_nodes - 1];
+  td->pc_root[0].none.best_mode_index = 2;
+}
+
+void vp10_free_pc_tree(ThreadData *td) {
+  const int tree_nodes = 64 + 16 + 4 + 1;
+  int i;
+
+  // Set up all 4x4 mode contexts
+  for (i = 0; i < 64; ++i) free_mode_context(&td->leaf_tree[i]);
+
+  // Sets up all the leaf nodes in the tree.
+  for (i = 0; i < tree_nodes; ++i) free_tree_contexts(&td->pc_tree[i]);
+
+  vpx_free(td->pc_tree);
+  td->pc_tree = NULL;
+  vpx_free(td->leaf_tree);
+  td->leaf_tree = NULL;
+}
diff --git a/av1/encoder/context_tree.h b/av1/encoder/context_tree.h
new file mode 100644
index 0000000..5e74a0a
--- /dev/null
+++ b/av1/encoder/context_tree.h
@@ -0,0 +1,87 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_CONTEXT_TREE_H_
+#define VP10_ENCODER_CONTEXT_TREE_H_
+
+#include "av1/common/blockd.h"
+#include "av1/encoder/block.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP10_COMP;
+struct VP10Common;
+struct ThreadData;
+
+// Structure to hold snapshot of coding context during the mode picking process
+typedef struct {
+  MODE_INFO mic;
+  MB_MODE_INFO_EXT mbmi_ext;
+  uint8_t *zcoeff_blk;
+  uint8_t *color_index_map[2];
+  tran_low_t *coeff[MAX_MB_PLANE][3];
+  tran_low_t *qcoeff[MAX_MB_PLANE][3];
+  tran_low_t *dqcoeff[MAX_MB_PLANE][3];
+  uint16_t *eobs[MAX_MB_PLANE][3];
+
+  // dual buffer pointers, 0: in use, 1: best in store
+  tran_low_t *coeff_pbuf[MAX_MB_PLANE][3];
+  tran_low_t *qcoeff_pbuf[MAX_MB_PLANE][3];
+  tran_low_t *dqcoeff_pbuf[MAX_MB_PLANE][3];
+  uint16_t *eobs_pbuf[MAX_MB_PLANE][3];
+
+  int is_coded;
+  int num_4x4_blk;
+  int skip;
+  int pred_pixel_ready;
+  // For current partition, only if all Y, U, and V transform blocks'
+  // coefficients are quantized to 0, skippable is set to 0.
+  int skippable;
+  uint8_t skip_txfm[MAX_MB_PLANE << 2];
+  int best_mode_index;
+  int hybrid_pred_diff;
+  int comp_pred_diff;
+  int single_pred_diff;
+  int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+
+  // TODO(jingning) Use RD_COST struct here instead. This involves a boarder
+  // scope of refactoring.
+  int rate;
+  int64_t dist;
+
+  // motion vector cache for adaptive motion search control in partition
+  // search loop
+  MV pred_mv[MAX_REF_FRAMES];
+  INTERP_FILTER pred_interp_filter;
+} PICK_MODE_CONTEXT;
+
+typedef struct PC_TREE {
+  int index;
+  PARTITION_TYPE partitioning;
+  BLOCK_SIZE block_size;
+  PICK_MODE_CONTEXT none;
+  PICK_MODE_CONTEXT horizontal[2];
+  PICK_MODE_CONTEXT vertical[2];
+  union {
+    struct PC_TREE *split[4];
+    PICK_MODE_CONTEXT *leaf_split[4];
+  };
+} PC_TREE;
+
+void vp10_setup_pc_tree(struct VP10Common *cm, struct ThreadData *td);
+void vp10_free_pc_tree(struct ThreadData *td);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif /* VP10_ENCODER_CONTEXT_TREE_H_ */
diff --git a/av1/encoder/cost.c b/av1/encoder/cost.c
new file mode 100644
index 0000000..e934a73
--- /dev/null
+++ b/av1/encoder/cost.c
@@ -0,0 +1,65 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+#include <assert.h>
+
+#include "av1/encoder/cost.h"
+
+/* round(-log2(i/256.) * (1 << VP9_PROB_COST_SHIFT))
+   Begins and ends with a bogus entry to satisfy use of prob=0 in the firstpass.
+   https://code.google.com/p/webm/issues/detail?id=1089 */
+const uint16_t vp10_prob_cost[257] = {
+  4096, 4096, 3584, 3284, 3072, 2907, 2772, 2659, 2560, 2473, 2395, 2325, 2260,
+  2201, 2147, 2096, 2048, 2003, 1961, 1921, 1883, 1847, 1813, 1780, 1748, 1718,
+  1689, 1661, 1635, 1609, 1584, 1559, 1536, 1513, 1491, 1470, 1449, 1429, 1409,
+  1390, 1371, 1353, 1335, 1318, 1301, 1284, 1268, 1252, 1236, 1221, 1206, 1192,
+  1177, 1163, 1149, 1136, 1123, 1110, 1097, 1084, 1072, 1059, 1047, 1036, 1024,
+  1013, 1001, 990,  979,  968,  958,  947,  937,  927,  917,  907,  897,  887,
+  878,  868,  859,  850,  841,  832,  823,  814,  806,  797,  789,  780,  772,
+  764,  756,  748,  740,  732,  724,  717,  709,  702,  694,  687,  680,  673,
+  665,  658,  651,  644,  637,  631,  624,  617,  611,  604,  598,  591,  585,
+  578,  572,  566,  560,  554,  547,  541,  535,  530,  524,  518,  512,  506,
+  501,  495,  489,  484,  478,  473,  467,  462,  456,  451,  446,  441,  435,
+  430,  425,  420,  415,  410,  405,  400,  395,  390,  385,  380,  375,  371,
+  366,  361,  356,  352,  347,  343,  338,  333,  329,  324,  320,  316,  311,
+  307,  302,  298,  294,  289,  285,  281,  277,  273,  268,  264,  260,  256,
+  252,  248,  244,  240,  236,  232,  228,  224,  220,  216,  212,  209,  205,
+  201,  197,  194,  190,  186,  182,  179,  175,  171,  168,  164,  161,  157,
+  153,  150,  146,  143,  139,  136,  132,  129,  125,  122,  119,  115,  112,
+  109,  105,  102,  99,   95,   92,   89,   86,   82,   79,   76,   73,   70,
+  66,   63,   60,   57,   54,   51,   48,   45,   42,   38,   35,   32,   29,
+  26,   23,   20,   18,   15,   12,   9,    6,    3,    3
+};
+
+static void cost(int *costs, vpx_tree tree, const vpx_prob *probs, int i,
+                 int c) {
+  const vpx_prob prob = probs[i / 2];
+  int b;
+
+  for (b = 0; b <= 1; ++b) {
+    const int cc = c + vp10_cost_bit(prob, b);
+    const vpx_tree_index ii = tree[i + b];
+
+    if (ii <= 0)
+      costs[-ii] = cc;
+    else
+      cost(costs, tree, probs, ii, cc);
+  }
+}
+
+void vp10_cost_tokens(int *costs, const vpx_prob *probs, vpx_tree tree) {
+  cost(costs, tree, probs, 0, 0);
+}
+
+void vp10_cost_tokens_skip(int *costs, const vpx_prob *probs, vpx_tree tree) {
+  assert(tree[0] <= 0 && tree[1] > 0);
+
+  costs[-tree[0]] = vp10_cost_bit(probs[0], 0);
+  cost(costs, tree, probs, 2, 0);
+}
diff --git a/av1/encoder/cost.h b/av1/encoder/cost.h
new file mode 100644
index 0000000..e8f0e63
--- /dev/null
+++ b/av1/encoder/cost.h
@@ -0,0 +1,58 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_COST_H_
+#define VP10_ENCODER_COST_H_
+
+#include "aom_dsp/prob.h"
+#include "aom/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern const uint16_t vp10_prob_cost[257];
+
+// The factor to scale from cost in bits to cost in vp10_prob_cost units.
+#define VP9_PROB_COST_SHIFT 9
+
+#define vp10_cost_zero(prob) (vp10_prob_cost[prob])
+
+#define vp10_cost_one(prob) vp10_cost_zero(256 - (prob))
+
+#define vp10_cost_bit(prob, bit) vp10_cost_zero((bit) ? 256 - (prob) : (prob))
+
+static INLINE unsigned int cost_branch256(const unsigned int ct[2],
+                                          vpx_prob p) {
+  return ct[0] * vp10_cost_zero(p) + ct[1] * vp10_cost_one(p);
+}
+
+static INLINE int treed_cost(vpx_tree tree, const vpx_prob *probs, int bits,
+                             int len) {
+  int cost = 0;
+  vpx_tree_index i = 0;
+
+  do {
+    const int bit = (bits >> --len) & 1;
+    cost += vp10_cost_bit(probs[i >> 1], bit);
+    i = tree[i + bit];
+  } while (len);
+
+  return cost;
+}
+
+void vp10_cost_tokens(int *costs, const vpx_prob *probs, vpx_tree tree);
+void vp10_cost_tokens_skip(int *costs, const vpx_prob *probs, vpx_tree tree);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_COST_H_
diff --git a/av1/encoder/dct.c b/av1/encoder/dct.c
new file mode 100644
index 0000000..0302291
--- /dev/null
+++ b/av1/encoder/dct.c
@@ -0,0 +1,1273 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "./vp10_rtcd.h"
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "av1/common/blockd.h"
+#include "av1/common/idct.h"
+#include "aom_dsp/fwd_txfm.h"
+#include "aom_ports/mem.h"
+
+static INLINE void range_check(const tran_low_t *input, const int size,
+                               const int bit) {
+#if 0  // CONFIG_COEFFICIENT_RANGE_CHECKING
+// TODO(angiebird): the range_check is not used because the bit range
+// in fdct# is not correct. Since we are going to merge in a new version
+// of fdct# from nextgenv2, we won't fix the incorrect bit range now.
+  int i;
+  for (i = 0; i < size; ++i) {
+    assert(abs(input[i]) < (1 << bit));
+  }
+#else
+  (void)input;
+  (void)size;
+  (void)bit;
+#endif
+}
+
+static void fdct4(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t temp;
+  tran_low_t step[4];
+
+  // stage 0
+  range_check(input, 4, 14);
+
+  // stage 1
+  output[0] = input[0] + input[3];
+  output[1] = input[1] + input[2];
+  output[2] = input[1] - input[2];
+  output[3] = input[0] - input[3];
+
+  range_check(output, 4, 15);
+
+  // stage 2
+  temp = output[0] * cospi_16_64 + output[1] * cospi_16_64;
+  step[0] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64;
+  step[1] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[2] * cospi_24_64 + output[3] * cospi_8_64;
+  step[2] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64;
+  step[3] = (tran_low_t)fdct_round_shift(temp);
+
+  range_check(step, 4, 16);
+
+  // stage 3
+  output[0] = step[0];
+  output[1] = step[2];
+  output[2] = step[1];
+  output[3] = step[3];
+
+  range_check(output, 4, 16);
+}
+
+static void fdct8(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t temp;
+  tran_low_t step[8];
+
+  // stage 0
+  range_check(input, 8, 13);
+
+  // stage 1
+  output[0] = input[0] + input[7];
+  output[1] = input[1] + input[6];
+  output[2] = input[2] + input[5];
+  output[3] = input[3] + input[4];
+  output[4] = input[3] - input[4];
+  output[5] = input[2] - input[5];
+  output[6] = input[1] - input[6];
+  output[7] = input[0] - input[7];
+
+  range_check(output, 8, 14);
+
+  // stage 2
+  step[0] = output[0] + output[3];
+  step[1] = output[1] + output[2];
+  step[2] = output[1] - output[2];
+  step[3] = output[0] - output[3];
+  step[4] = output[4];
+  temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
+  step[5] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
+  step[6] = (tran_low_t)fdct_round_shift(temp);
+  step[7] = output[7];
+
+  range_check(step, 8, 15);
+
+  // stage 3
+  temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
+  output[0] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
+  output[1] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+  output[2] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
+  output[3] = (tran_low_t)fdct_round_shift(temp);
+  output[4] = step[4] + step[5];
+  output[5] = step[4] - step[5];
+  output[6] = step[7] - step[6];
+  output[7] = step[7] + step[6];
+
+  range_check(output, 8, 16);
+
+  // stage 4
+  step[0] = output[0];
+  step[1] = output[1];
+  step[2] = output[2];
+  step[3] = output[3];
+  temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
+  step[4] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
+  step[5] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
+  step[6] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
+  step[7] = (tran_low_t)fdct_round_shift(temp);
+
+  range_check(step, 8, 16);
+
+  // stage 5
+  output[0] = step[0];
+  output[1] = step[4];
+  output[2] = step[2];
+  output[3] = step[6];
+  output[4] = step[1];
+  output[5] = step[5];
+  output[6] = step[3];
+  output[7] = step[7];
+
+  range_check(output, 8, 16);
+}
+
+static void fdct16(const tran_low_t in[16], tran_low_t out[16]) {
+  tran_high_t step1[8];
+  tran_high_t step2[8];
+  tran_high_t step3[8];
+  tran_high_t input[8];
+  tran_high_t temp1, temp2;
+
+  // step 1
+  input[0] = in[0] + in[15];
+  input[1] = in[1] + in[14];
+  input[2] = in[2] + in[13];
+  input[3] = in[3] + in[12];
+  input[4] = in[4] + in[11];
+  input[5] = in[5] + in[10];
+  input[6] = in[6] + in[9];
+  input[7] = in[7] + in[8];
+
+  step1[0] = in[7] - in[8];
+  step1[1] = in[6] - in[9];
+  step1[2] = in[5] - in[10];
+  step1[3] = in[4] - in[11];
+  step1[4] = in[3] - in[12];
+  step1[5] = in[2] - in[13];
+  step1[6] = in[1] - in[14];
+  step1[7] = in[0] - in[15];
+
+  // fdct8(step, step);
+  {
+    tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+    tran_high_t t0, t1, t2, t3;
+    tran_high_t x0, x1, x2, x3;
+
+    // stage 1
+    s0 = input[0] + input[7];
+    s1 = input[1] + input[6];
+    s2 = input[2] + input[5];
+    s3 = input[3] + input[4];
+    s4 = input[3] - input[4];
+    s5 = input[2] - input[5];
+    s6 = input[1] - input[6];
+    s7 = input[0] - input[7];
+
+    // fdct4(step, step);
+    x0 = s0 + s3;
+    x1 = s1 + s2;
+    x2 = s1 - s2;
+    x3 = s0 - s3;
+    t0 = (x0 + x1) * cospi_16_64;
+    t1 = (x0 - x1) * cospi_16_64;
+    t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
+    t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
+    out[0] = (tran_low_t)fdct_round_shift(t0);
+    out[4] = (tran_low_t)fdct_round_shift(t2);
+    out[8] = (tran_low_t)fdct_round_shift(t1);
+    out[12] = (tran_low_t)fdct_round_shift(t3);
+
+    // Stage 2
+    t0 = (s6 - s5) * cospi_16_64;
+    t1 = (s6 + s5) * cospi_16_64;
+    t2 = fdct_round_shift(t0);
+    t3 = fdct_round_shift(t1);
+
+    // Stage 3
+    x0 = s4 + t2;
+    x1 = s4 - t2;
+    x2 = s7 - t3;
+    x3 = s7 + t3;
+
+    // Stage 4
+    t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+    t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+    t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+    t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+    out[2] = (tran_low_t)fdct_round_shift(t0);
+    out[6] = (tran_low_t)fdct_round_shift(t2);
+    out[10] = (tran_low_t)fdct_round_shift(t1);
+    out[14] = (tran_low_t)fdct_round_shift(t3);
+  }
+
+  // step 2
+  temp1 = (step1[5] - step1[2]) * cospi_16_64;
+  temp2 = (step1[4] - step1[3]) * cospi_16_64;
+  step2[2] = fdct_round_shift(temp1);
+  step2[3] = fdct_round_shift(temp2);
+  temp1 = (step1[4] + step1[3]) * cospi_16_64;
+  temp2 = (step1[5] + step1[2]) * cospi_16_64;
+  step2[4] = fdct_round_shift(temp1);
+  step2[5] = fdct_round_shift(temp2);
+
+  // step 3
+  step3[0] = step1[0] + step2[3];
+  step3[1] = step1[1] + step2[2];
+  step3[2] = step1[1] - step2[2];
+  step3[3] = step1[0] - step2[3];
+  step3[4] = step1[7] - step2[4];
+  step3[5] = step1[6] - step2[5];
+  step3[6] = step1[6] + step2[5];
+  step3[7] = step1[7] + step2[4];
+
+  // step 4
+  temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
+  temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
+  step2[1] = fdct_round_shift(temp1);
+  step2[2] = fdct_round_shift(temp2);
+  temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
+  temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
+  step2[5] = fdct_round_shift(temp1);
+  step2[6] = fdct_round_shift(temp2);
+
+  // step 5
+  step1[0] = step3[0] + step2[1];
+  step1[1] = step3[0] - step2[1];
+  step1[2] = step3[3] + step2[2];
+  step1[3] = step3[3] - step2[2];
+  step1[4] = step3[4] - step2[5];
+  step1[5] = step3[4] + step2[5];
+  step1[6] = step3[7] - step2[6];
+  step1[7] = step3[7] + step2[6];
+
+  // step 6
+  temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
+  temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
+  out[1] = (tran_low_t)fdct_round_shift(temp1);
+  out[9] = (tran_low_t)fdct_round_shift(temp2);
+
+  temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
+  temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
+  out[5] = (tran_low_t)fdct_round_shift(temp1);
+  out[13] = (tran_low_t)fdct_round_shift(temp2);
+
+  temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
+  temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
+  out[3] = (tran_low_t)fdct_round_shift(temp1);
+  out[11] = (tran_low_t)fdct_round_shift(temp2);
+
+  temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
+  temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
+  out[7] = (tran_low_t)fdct_round_shift(temp1);
+  out[15] = (tran_low_t)fdct_round_shift(temp2);
+}
+
+/* TODO(angiebird): Unify this with vp10_fwd_txfm.c: vp10_fdct32
+static void fdct32(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t temp;
+  tran_low_t step[32];
+
+  // stage 0
+  range_check(input, 32, 14);
+
+  // stage 1
+  output[0] = input[0] + input[31];
+  output[1] = input[1] + input[30];
+  output[2] = input[2] + input[29];
+  output[3] = input[3] + input[28];
+  output[4] = input[4] + input[27];
+  output[5] = input[5] + input[26];
+  output[6] = input[6] + input[25];
+  output[7] = input[7] + input[24];
+  output[8] = input[8] + input[23];
+  output[9] = input[9] + input[22];
+  output[10] = input[10] + input[21];
+  output[11] = input[11] + input[20];
+  output[12] = input[12] + input[19];
+  output[13] = input[13] + input[18];
+  output[14] = input[14] + input[17];
+  output[15] = input[15] + input[16];
+  output[16] = input[15] - input[16];
+  output[17] = input[14] - input[17];
+  output[18] = input[13] - input[18];
+  output[19] = input[12] - input[19];
+  output[20] = input[11] - input[20];
+  output[21] = input[10] - input[21];
+  output[22] = input[9] - input[22];
+  output[23] = input[8] - input[23];
+  output[24] = input[7] - input[24];
+  output[25] = input[6] - input[25];
+  output[26] = input[5] - input[26];
+  output[27] = input[4] - input[27];
+  output[28] = input[3] - input[28];
+  output[29] = input[2] - input[29];
+  output[30] = input[1] - input[30];
+  output[31] = input[0] - input[31];
+
+  range_check(output, 32, 15);
+
+  // stage 2
+  step[0] = output[0] + output[15];
+  step[1] = output[1] + output[14];
+  step[2] = output[2] + output[13];
+  step[3] = output[3] + output[12];
+  step[4] = output[4] + output[11];
+  step[5] = output[5] + output[10];
+  step[6] = output[6] + output[9];
+  step[7] = output[7] + output[8];
+  step[8] = output[7] - output[8];
+  step[9] = output[6] - output[9];
+  step[10] = output[5] - output[10];
+  step[11] = output[4] - output[11];
+  step[12] = output[3] - output[12];
+  step[13] = output[2] - output[13];
+  step[14] = output[1] - output[14];
+  step[15] = output[0] - output[15];
+  step[16] = output[16];
+  step[17] = output[17];
+  step[18] = output[18];
+  step[19] = output[19];
+  temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64;
+  step[20] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64;
+  step[21] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64;
+  step[22] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64;
+  step[23] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[24] * cospi_16_64 + output[23] * cospi_16_64;
+  step[24] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[25] * cospi_16_64 + output[22] * cospi_16_64;
+  step[25] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[26] * cospi_16_64 + output[21] * cospi_16_64;
+  step[26] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[27] * cospi_16_64 + output[20] * cospi_16_64;
+  step[27] = (tran_low_t)fdct_round_shift(temp);
+  step[28] = output[28];
+  step[29] = output[29];
+  step[30] = output[30];
+  step[31] = output[31];
+
+  range_check(step, 32, 16);
+
+  // stage 3
+  output[0] = step[0] + step[7];
+  output[1] = step[1] + step[6];
+  output[2] = step[2] + step[5];
+  output[3] = step[3] + step[4];
+  output[4] = step[3] - step[4];
+  output[5] = step[2] - step[5];
+  output[6] = step[1] - step[6];
+  output[7] = step[0] - step[7];
+  output[8] = step[8];
+  output[9] = step[9];
+  temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64;
+  output[10] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64;
+  output[11] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[12] * cospi_16_64 + step[11] * cospi_16_64;
+  output[12] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[13] * cospi_16_64 + step[10] * cospi_16_64;
+  output[13] = (tran_low_t)fdct_round_shift(temp);
+  output[14] = step[14];
+  output[15] = step[15];
+  output[16] = step[16] + step[23];
+  output[17] = step[17] + step[22];
+  output[18] = step[18] + step[21];
+  output[19] = step[19] + step[20];
+  output[20] = step[19] - step[20];
+  output[21] = step[18] - step[21];
+  output[22] = step[17] - step[22];
+  output[23] = step[16] - step[23];
+  output[24] = step[31] - step[24];
+  output[25] = step[30] - step[25];
+  output[26] = step[29] - step[26];
+  output[27] = step[28] - step[27];
+  output[28] = step[28] + step[27];
+  output[29] = step[29] + step[26];
+  output[30] = step[30] + step[25];
+  output[31] = step[31] + step[24];
+
+  range_check(output, 32, 17);
+
+  // stage 4
+  step[0] = output[0] + output[3];
+  step[1] = output[1] + output[2];
+  step[2] = output[1] - output[2];
+  step[3] = output[0] - output[3];
+  step[4] = output[4];
+  temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
+  step[5] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
+  step[6] = (tran_low_t)fdct_round_shift(temp);
+  step[7] = output[7];
+  step[8] = output[8] + output[11];
+  step[9] = output[9] + output[10];
+  step[10] = output[9] - output[10];
+  step[11] = output[8] - output[11];
+  step[12] = output[15] - output[12];
+  step[13] = output[14] - output[13];
+  step[14] = output[14] + output[13];
+  step[15] = output[15] + output[12];
+  step[16] = output[16];
+  step[17] = output[17];
+  temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64;
+  step[18] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64;
+  step[19] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64;
+  step[20] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64;
+  step[21] = (tran_low_t)fdct_round_shift(temp);
+  step[22] = output[22];
+  step[23] = output[23];
+  step[24] = output[24];
+  step[25] = output[25];
+  temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64;
+  step[26] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64;
+  step[27] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[28] * cospi_8_64 + output[19] * cospi_24_64;
+  step[28] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[29] * cospi_8_64 + output[18] * cospi_24_64;
+  step[29] = (tran_low_t)fdct_round_shift(temp);
+  step[30] = output[30];
+  step[31] = output[31];
+
+  range_check(step, 32, 18);
+
+  // stage 5
+  temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
+  output[0] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
+  output[1] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+  output[2] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
+  output[3] = (tran_low_t)fdct_round_shift(temp);
+  output[4] = step[4] + step[5];
+  output[5] = step[4] - step[5];
+  output[6] = step[7] - step[6];
+  output[7] = step[7] + step[6];
+  output[8] = step[8];
+  temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64;
+  output[9] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64;
+  output[10] = (tran_low_t)fdct_round_shift(temp);
+  output[11] = step[11];
+  output[12] = step[12];
+  temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64;
+  output[13] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[14] * cospi_8_64 + step[9] * cospi_24_64;
+  output[14] = (tran_low_t)fdct_round_shift(temp);
+  output[15] = step[15];
+  output[16] = step[16] + step[19];
+  output[17] = step[17] + step[18];
+  output[18] = step[17] - step[18];
+  output[19] = step[16] - step[19];
+  output[20] = step[23] - step[20];
+  output[21] = step[22] - step[21];
+  output[22] = step[22] + step[21];
+  output[23] = step[23] + step[20];
+  output[24] = step[24] + step[27];
+  output[25] = step[25] + step[26];
+  output[26] = step[25] - step[26];
+  output[27] = step[24] - step[27];
+  output[28] = step[31] - step[28];
+  output[29] = step[30] - step[29];
+  output[30] = step[30] + step[29];
+  output[31] = step[31] + step[28];
+
+  range_check(output, 32, 18);
+
+  // stage 6
+  step[0] = output[0];
+  step[1] = output[1];
+  step[2] = output[2];
+  step[3] = output[3];
+  temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
+  step[4] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
+  step[5] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
+  step[6] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
+  step[7] = (tran_low_t)fdct_round_shift(temp);
+  step[8] = output[8] + output[9];
+  step[9] = output[8] - output[9];
+  step[10] = output[11] - output[10];
+  step[11] = output[11] + output[10];
+  step[12] = output[12] + output[13];
+  step[13] = output[12] - output[13];
+  step[14] = output[15] - output[14];
+  step[15] = output[15] + output[14];
+  step[16] = output[16];
+  temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64;
+  step[17] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64;
+  step[18] = (tran_low_t)fdct_round_shift(temp);
+  step[19] = output[19];
+  step[20] = output[20];
+  temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64;
+  step[21] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64;
+  step[22] = (tran_low_t)fdct_round_shift(temp);
+  step[23] = output[23];
+  step[24] = output[24];
+  temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64;
+  step[25] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[26] * cospi_20_64 + output[21] * cospi_12_64;
+  step[26] = (tran_low_t)fdct_round_shift(temp);
+  step[27] = output[27];
+  step[28] = output[28];
+  temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64;
+  step[29] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[30] * cospi_4_64 + output[17] * cospi_28_64;
+  step[30] = (tran_low_t)fdct_round_shift(temp);
+  step[31] = output[31];
+
+  range_check(step, 32, 18);
+
+  // stage 7
+  output[0] = step[0];
+  output[1] = step[1];
+  output[2] = step[2];
+  output[3] = step[3];
+  output[4] = step[4];
+  output[5] = step[5];
+  output[6] = step[6];
+  output[7] = step[7];
+  temp = step[8] * cospi_30_64 + step[15] * cospi_2_64;
+  output[8] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[9] * cospi_14_64 + step[14] * cospi_18_64;
+  output[9] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[10] * cospi_22_64 + step[13] * cospi_10_64;
+  output[10] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[11] * cospi_6_64 + step[12] * cospi_26_64;
+  output[11] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64;
+  output[12] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64;
+  output[13] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64;
+  output[14] = (tran_low_t)fdct_round_shift(temp);
+  temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64;
+  output[15] = (tran_low_t)fdct_round_shift(temp);
+  output[16] = step[16] + step[17];
+  output[17] = step[16] - step[17];
+  output[18] = step[19] - step[18];
+  output[19] = step[19] + step[18];
+  output[20] = step[20] + step[21];
+  output[21] = step[20] - step[21];
+  output[22] = step[23] - step[22];
+  output[23] = step[23] + step[22];
+  output[24] = step[24] + step[25];
+  output[25] = step[24] - step[25];
+  output[26] = step[27] - step[26];
+  output[27] = step[27] + step[26];
+  output[28] = step[28] + step[29];
+  output[29] = step[28] - step[29];
+  output[30] = step[31] - step[30];
+  output[31] = step[31] + step[30];
+
+  range_check(output, 32, 18);
+
+  // stage 8
+  step[0] = output[0];
+  step[1] = output[1];
+  step[2] = output[2];
+  step[3] = output[3];
+  step[4] = output[4];
+  step[5] = output[5];
+  step[6] = output[6];
+  step[7] = output[7];
+  step[8] = output[8];
+  step[9] = output[9];
+  step[10] = output[10];
+  step[11] = output[11];
+  step[12] = output[12];
+  step[13] = output[13];
+  step[14] = output[14];
+  step[15] = output[15];
+  temp = output[16] * cospi_31_64 + output[31] * cospi_1_64;
+  step[16] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[17] * cospi_15_64 + output[30] * cospi_17_64;
+  step[17] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[18] * cospi_23_64 + output[29] * cospi_9_64;
+  step[18] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[19] * cospi_7_64 + output[28] * cospi_25_64;
+  step[19] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[20] * cospi_27_64 + output[27] * cospi_5_64;
+  step[20] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[21] * cospi_11_64 + output[26] * cospi_21_64;
+  step[21] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[22] * cospi_19_64 + output[25] * cospi_13_64;
+  step[22] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[23] * cospi_3_64 + output[24] * cospi_29_64;
+  step[23] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64;
+  step[24] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64;
+  step[25] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64;
+  step[26] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64;
+  step[27] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64;
+  step[28] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64;
+  step[29] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64;
+  step[30] = (tran_low_t)fdct_round_shift(temp);
+  temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64;
+  step[31] = (tran_low_t)fdct_round_shift(temp);
+
+  range_check(step, 32, 18);
+
+  // stage 9
+  output[0] = step[0];
+  output[1] = step[16];
+  output[2] = step[8];
+  output[3] = step[24];
+  output[4] = step[4];
+  output[5] = step[20];
+  output[6] = step[12];
+  output[7] = step[28];
+  output[8] = step[2];
+  output[9] = step[18];
+  output[10] = step[10];
+  output[11] = step[26];
+  output[12] = step[6];
+  output[13] = step[22];
+  output[14] = step[14];
+  output[15] = step[30];
+  output[16] = step[1];
+  output[17] = step[17];
+  output[18] = step[9];
+  output[19] = step[25];
+  output[20] = step[5];
+  output[21] = step[21];
+  output[22] = step[13];
+  output[23] = step[29];
+  output[24] = step[3];
+  output[25] = step[19];
+  output[26] = step[11];
+  output[27] = step[27];
+  output[28] = step[7];
+  output[29] = step[23];
+  output[30] = step[15];
+  output[31] = step[31];
+
+  range_check(output, 32, 18);
+}
+*/
+
+static void fadst4(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t x0, x1, x2, x3;
+  tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+
+  x0 = input[0];
+  x1 = input[1];
+  x2 = input[2];
+  x3 = input[3];
+
+  if (!(x0 | x1 | x2 | x3)) {
+    output[0] = output[1] = output[2] = output[3] = 0;
+    return;
+  }
+
+  s0 = sinpi_1_9 * x0;
+  s1 = sinpi_4_9 * x0;
+  s2 = sinpi_2_9 * x1;
+  s3 = sinpi_1_9 * x1;
+  s4 = sinpi_3_9 * x2;
+  s5 = sinpi_4_9 * x3;
+  s6 = sinpi_2_9 * x3;
+  s7 = x0 + x1 - x3;
+
+  x0 = s0 + s2 + s5;
+  x1 = sinpi_3_9 * s7;
+  x2 = s1 - s3 + s6;
+  x3 = s4;
+
+  s0 = x0 + x3;
+  s1 = x1;
+  s2 = x2 - x3;
+  s3 = x2 - x0 + x3;
+
+  // 1-D transform scaling factor is sqrt(2).
+  output[0] = (tran_low_t)fdct_round_shift(s0);
+  output[1] = (tran_low_t)fdct_round_shift(s1);
+  output[2] = (tran_low_t)fdct_round_shift(s2);
+  output[3] = (tran_low_t)fdct_round_shift(s3);
+}
+
+static void fadst8(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+
+  tran_high_t x0 = input[7];
+  tran_high_t x1 = input[0];
+  tran_high_t x2 = input[5];
+  tran_high_t x3 = input[2];
+  tran_high_t x4 = input[3];
+  tran_high_t x5 = input[4];
+  tran_high_t x6 = input[1];
+  tran_high_t x7 = input[6];
+
+  // stage 1
+  s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
+  s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
+  s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
+  s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
+  s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
+  s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
+  s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
+  s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
+
+  x0 = fdct_round_shift(s0 + s4);
+  x1 = fdct_round_shift(s1 + s5);
+  x2 = fdct_round_shift(s2 + s6);
+  x3 = fdct_round_shift(s3 + s7);
+  x4 = fdct_round_shift(s0 - s4);
+  x5 = fdct_round_shift(s1 - s5);
+  x6 = fdct_round_shift(s2 - s6);
+  x7 = fdct_round_shift(s3 - s7);
+
+  // stage 2
+  s0 = x0;
+  s1 = x1;
+  s2 = x2;
+  s3 = x3;
+  s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
+  s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
+  s6 = -cospi_24_64 * x6 + cospi_8_64 * x7;
+  s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
+
+  x0 = s0 + s2;
+  x1 = s1 + s3;
+  x2 = s0 - s2;
+  x3 = s1 - s3;
+  x4 = fdct_round_shift(s4 + s6);
+  x5 = fdct_round_shift(s5 + s7);
+  x6 = fdct_round_shift(s4 - s6);
+  x7 = fdct_round_shift(s5 - s7);
+
+  // stage 3
+  s2 = cospi_16_64 * (x2 + x3);
+  s3 = cospi_16_64 * (x2 - x3);
+  s6 = cospi_16_64 * (x6 + x7);
+  s7 = cospi_16_64 * (x6 - x7);
+
+  x2 = fdct_round_shift(s2);
+  x3 = fdct_round_shift(s3);
+  x6 = fdct_round_shift(s6);
+  x7 = fdct_round_shift(s7);
+
+  output[0] = (tran_low_t)x0;
+  output[1] = (tran_low_t)-x4;
+  output[2] = (tran_low_t)x6;
+  output[3] = (tran_low_t)-x2;
+  output[4] = (tran_low_t)x3;
+  output[5] = (tran_low_t)-x7;
+  output[6] = (tran_low_t)x5;
+  output[7] = (tran_low_t)-x1;
+}
+
+static void fadst16(const tran_low_t *input, tran_low_t *output) {
+  tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
+  tran_high_t s9, s10, s11, s12, s13, s14, s15;
+
+  tran_high_t x0 = input[15];
+  tran_high_t x1 = input[0];
+  tran_high_t x2 = input[13];
+  tran_high_t x3 = input[2];
+  tran_high_t x4 = input[11];
+  tran_high_t x5 = input[4];
+  tran_high_t x6 = input[9];
+  tran_high_t x7 = input[6];
+  tran_high_t x8 = input[7];
+  tran_high_t x9 = input[8];
+  tran_high_t x10 = input[5];
+  tran_high_t x11 = input[10];
+  tran_high_t x12 = input[3];
+  tran_high_t x13 = input[12];
+  tran_high_t x14 = input[1];
+  tran_high_t x15 = input[14];
+
+  // stage 1
+  s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
+  s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
+  s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
+  s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
+  s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
+  s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
+  s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
+  s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
+  s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
+  s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
+  s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
+  s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
+  s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
+  s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
+  s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
+  s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
+
+  x0 = fdct_round_shift(s0 + s8);
+  x1 = fdct_round_shift(s1 + s9);
+  x2 = fdct_round_shift(s2 + s10);
+  x3 = fdct_round_shift(s3 + s11);
+  x4 = fdct_round_shift(s4 + s12);
+  x5 = fdct_round_shift(s5 + s13);
+  x6 = fdct_round_shift(s6 + s14);
+  x7 = fdct_round_shift(s7 + s15);
+  x8 = fdct_round_shift(s0 - s8);
+  x9 = fdct_round_shift(s1 - s9);
+  x10 = fdct_round_shift(s2 - s10);
+  x11 = fdct_round_shift(s3 - s11);
+  x12 = fdct_round_shift(s4 - s12);
+  x13 = fdct_round_shift(s5 - s13);
+  x14 = fdct_round_shift(s6 - s14);
+  x15 = fdct_round_shift(s7 - s15);
+
+  // stage 2
+  s0 = x0;
+  s1 = x1;
+  s2 = x2;
+  s3 = x3;
+  s4 = x4;
+  s5 = x5;
+  s6 = x6;
+  s7 = x7;
+  s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
+  s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
+  s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
+  s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
+  s12 = -x12 * cospi_28_64 + x13 * cospi_4_64;
+  s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
+  s14 = -x14 * cospi_12_64 + x15 * cospi_20_64;
+  s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
+
+  x0 = s0 + s4;
+  x1 = s1 + s5;
+  x2 = s2 + s6;
+  x3 = s3 + s7;
+  x4 = s0 - s4;
+  x5 = s1 - s5;
+  x6 = s2 - s6;
+  x7 = s3 - s7;
+  x8 = fdct_round_shift(s8 + s12);
+  x9 = fdct_round_shift(s9 + s13);
+  x10 = fdct_round_shift(s10 + s14);
+  x11 = fdct_round_shift(s11 + s15);
+  x12 = fdct_round_shift(s8 - s12);
+  x13 = fdct_round_shift(s9 - s13);
+  x14 = fdct_round_shift(s10 - s14);
+  x15 = fdct_round_shift(s11 - s15);
+
+  // stage 3
+  s0 = x0;
+  s1 = x1;
+  s2 = x2;
+  s3 = x3;
+  s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
+  s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
+  s6 = -x6 * cospi_24_64 + x7 * cospi_8_64;
+  s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
+  s8 = x8;
+  s9 = x9;
+  s10 = x10;
+  s11 = x11;
+  s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
+  s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
+  s14 = -x14 * cospi_24_64 + x15 * cospi_8_64;
+  s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
+
+  x0 = s0 + s2;
+  x1 = s1 + s3;
+  x2 = s0 - s2;
+  x3 = s1 - s3;
+  x4 = fdct_round_shift(s4 + s6);
+  x5 = fdct_round_shift(s5 + s7);
+  x6 = fdct_round_shift(s4 - s6);
+  x7 = fdct_round_shift(s5 - s7);
+  x8 = s8 + s10;
+  x9 = s9 + s11;
+  x10 = s8 - s10;
+  x11 = s9 - s11;
+  x12 = fdct_round_shift(s12 + s14);
+  x13 = fdct_round_shift(s13 + s15);
+  x14 = fdct_round_shift(s12 - s14);
+  x15 = fdct_round_shift(s13 - s15);
+
+  // stage 4
+  s2 = (-cospi_16_64) * (x2 + x3);
+  s3 = cospi_16_64 * (x2 - x3);
+  s6 = cospi_16_64 * (x6 + x7);
+  s7 = cospi_16_64 * (-x6 + x7);
+  s10 = cospi_16_64 * (x10 + x11);
+  s11 = cospi_16_64 * (-x10 + x11);
+  s14 = (-cospi_16_64) * (x14 + x15);
+  s15 = cospi_16_64 * (x14 - x15);
+
+  x2 = fdct_round_shift(s2);
+  x3 = fdct_round_shift(s3);
+  x6 = fdct_round_shift(s6);
+  x7 = fdct_round_shift(s7);
+  x10 = fdct_round_shift(s10);
+  x11 = fdct_round_shift(s11);
+  x14 = fdct_round_shift(s14);
+  x15 = fdct_round_shift(s15);
+
+  output[0] = (tran_low_t)x0;
+  output[1] = (tran_low_t)-x8;
+  output[2] = (tran_low_t)x12;
+  output[3] = (tran_low_t)-x4;
+  output[4] = (tran_low_t)x6;
+  output[5] = (tran_low_t)x14;
+  output[6] = (tran_low_t)x10;
+  output[7] = (tran_low_t)x2;
+  output[8] = (tran_low_t)x3;
+  output[9] = (tran_low_t)x11;
+  output[10] = (tran_low_t)x15;
+  output[11] = (tran_low_t)x7;
+  output[12] = (tran_low_t)x5;
+  output[13] = (tran_low_t)-x13;
+  output[14] = (tran_low_t)x9;
+  output[15] = (tran_low_t)-x1;
+}
+
+static const transform_2d FHT_4[] = {
+  { fdct4, fdct4 },   // DCT_DCT  = 0
+  { fadst4, fdct4 },  // ADST_DCT = 1
+  { fdct4, fadst4 },  // DCT_ADST = 2
+  { fadst4, fadst4 }  // ADST_ADST = 3
+};
+
+static const transform_2d FHT_8[] = {
+  { fdct8, fdct8 },   // DCT_DCT  = 0
+  { fadst8, fdct8 },  // ADST_DCT = 1
+  { fdct8, fadst8 },  // DCT_ADST = 2
+  { fadst8, fadst8 }  // ADST_ADST = 3
+};
+
+static const transform_2d FHT_16[] = {
+  { fdct16, fdct16 },   // DCT_DCT  = 0
+  { fadst16, fdct16 },  // ADST_DCT = 1
+  { fdct16, fadst16 },  // DCT_ADST = 2
+  { fadst16, fadst16 }  // ADST_ADST = 3
+};
+
+void vp10_fht4x4_c(const int16_t *input, tran_low_t *output, int stride,
+                   int tx_type) {
+  if (tx_type == DCT_DCT) {
+    vpx_fdct4x4_c(input, output, stride);
+  } else {
+    tran_low_t out[4 * 4];
+    int i, j;
+    tran_low_t temp_in[4], temp_out[4];
+    const transform_2d ht = FHT_4[tx_type];
+
+    // Columns
+    for (i = 0; i < 4; ++i) {
+      for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16;
+      if (i == 0 && temp_in[0]) temp_in[0] += 1;
+      ht.cols(temp_in, temp_out);
+      for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j];
+    }
+
+    // Rows
+    for (i = 0; i < 4; ++i) {
+      for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4];
+      ht.rows(temp_in, temp_out);
+      for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2;
+    }
+  }
+}
+
+void vp10_fdct8x8_quant_c(const int16_t *input, int stride,
+                          tran_low_t *coeff_ptr, intptr_t n_coeffs,
+                          int skip_block, const int16_t *zbin_ptr,
+                          const int16_t *round_ptr, const int16_t *quant_ptr,
+                          const int16_t *quant_shift_ptr,
+                          tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+                          const int16_t *dequant_ptr, uint16_t *eob_ptr,
+                          const int16_t *scan, const int16_t *iscan
+#if CONFIG_AOM_QM
+                          ,
+                          const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
+#endif
+                          ) {
+  int eob = -1;
+
+  int i, j;
+  tran_low_t intermediate[64];
+
+  // Transform columns
+  {
+    tran_low_t *output = intermediate;
+    tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
+    tran_high_t t0, t1, t2, t3;                  // needs32
+    tran_high_t x0, x1, x2, x3;                  // canbe16
+
+    int i;
+    for (i = 0; i < 8; i++) {
+      // stage 1
+      s0 = (input[0 * stride] + input[7 * stride]) * 4;
+      s1 = (input[1 * stride] + input[6 * stride]) * 4;
+      s2 = (input[2 * stride] + input[5 * stride]) * 4;
+      s3 = (input[3 * stride] + input[4 * stride]) * 4;
+      s4 = (input[3 * stride] - input[4 * stride]) * 4;
+      s5 = (input[2 * stride] - input[5 * stride]) * 4;
+      s6 = (input[1 * stride] - input[6 * stride]) * 4;
+      s7 = (input[0 * stride] - input[7 * stride]) * 4;
+
+      // fdct4(step, step);
+      x0 = s0 + s3;
+      x1 = s1 + s2;
+      x2 = s1 - s2;
+      x3 = s0 - s3;
+      t0 = (x0 + x1) * cospi_16_64;
+      t1 = (x0 - x1) * cospi_16_64;
+      t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
+      t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
+      output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
+      output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
+      output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
+      output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
+
+      // stage 2
+      t0 = (s6 - s5) * cospi_16_64;
+      t1 = (s6 + s5) * cospi_16_64;
+      t2 = fdct_round_shift(t0);
+      t3 = fdct_round_shift(t1);
+
+      // stage 3
+      x0 = s4 + t2;
+      x1 = s4 - t2;
+      x2 = s7 - t3;
+      x3 = s7 + t3;
+
+      // stage 4
+      t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+      t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+      t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+      t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+      output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
+      output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
+      output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
+      output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
+      input++;
+      output++;
+    }
+  }
+
+  // Rows
+  for (i = 0; i < 8; ++i) {
+    fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]);
+    for (j = 0; j < 8; ++j) coeff_ptr[j + i * 8] /= 2;
+  }
+
+  // TODO(jingning) Decide the need of these arguments after the
+  // quantization process is completed.
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)iscan;
+
+  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+  if (!skip_block) {
+    // Quantization pass: All coefficients with index >= zero_flag are
+    // skippable. Note: zero_flag can be zero.
+    for (i = 0; i < n_coeffs; i++) {
+      const int rc = scan[i];
+      const int coeff = coeff_ptr[rc];
+#if CONFIG_AOM_QM
+      const qm_val_t wt = qm_ptr[rc];
+      const qm_val_t iwt = iqm_ptr[rc];
+      const int dequant =
+          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
+          AOM_QM_BITS;
+#endif
+      const int coeff_sign = (coeff >> 31);
+      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+      int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+      int tmp32;
+#if CONFIG_AOM_QM
+      tmp32 = (tmp * quant_ptr[rc != 0] * wt) >> (16 + AOM_QM_BITS);
+      qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant;
+#else
+      tmp32 = (tmp * quant_ptr[rc != 0]) >> 16;
+      qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+#endif
+
+      if (tmp32) eob = i;
+    }
+  }
+  *eob_ptr = eob + 1;
+}
+
+void vp10_fht8x8_c(const int16_t *input, tran_low_t *output, int stride,
+                   int tx_type) {
+  if (tx_type == DCT_DCT) {
+    vpx_fdct8x8_c(input, output, stride);
+  } else {
+    tran_low_t out[64];
+    int i, j;
+    tran_low_t temp_in[8], temp_out[8];
+    const transform_2d ht = FHT_8[tx_type];
+
+    // Columns
+    for (i = 0; i < 8; ++i) {
+      for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4;
+      ht.cols(temp_in, temp_out);
+      for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j];
+    }
+
+    // Rows
+    for (i = 0; i < 8; ++i) {
+      for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8];
+      ht.rows(temp_in, temp_out);
+      for (j = 0; j < 8; ++j)
+        output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+    }
+  }
+}
+
+/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
+   pixel. */
+void vp10_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) {
+  int i;
+  tran_high_t a1, b1, c1, d1, e1;
+  const int16_t *ip_pass0 = input;
+  const tran_low_t *ip = NULL;
+  tran_low_t *op = output;
+
+  for (i = 0; i < 4; i++) {
+    a1 = ip_pass0[0 * stride];
+    b1 = ip_pass0[1 * stride];
+    c1 = ip_pass0[2 * stride];
+    d1 = ip_pass0[3 * stride];
+
+    a1 += b1;
+    d1 = d1 - c1;
+    e1 = (a1 - d1) >> 1;
+    b1 = e1 - b1;
+    c1 = e1 - c1;
+    a1 -= c1;
+    d1 += b1;
+    op[0] = (tran_low_t)a1;
+    op[4] = (tran_low_t)c1;
+    op[8] = (tran_low_t)d1;
+    op[12] = (tran_low_t)b1;
+
+    ip_pass0++;
+    op++;
+  }
+  ip = output;
+  op = output;
+
+  for (i = 0; i < 4; i++) {
+    a1 = ip[0];
+    b1 = ip[1];
+    c1 = ip[2];
+    d1 = ip[3];
+
+    a1 += b1;
+    d1 -= c1;
+    e1 = (a1 - d1) >> 1;
+    b1 = e1 - b1;
+    c1 = e1 - c1;
+    a1 -= c1;
+    d1 += b1;
+    op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR);
+    op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR);
+    op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR);
+    op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR);
+
+    ip += 4;
+    op += 4;
+  }
+}
+
+void vp10_fht16x16_c(const int16_t *input, tran_low_t *output, int stride,
+                     int tx_type) {
+  if (tx_type == DCT_DCT) {
+    vpx_fdct16x16_c(input, output, stride);
+  } else {
+    tran_low_t out[256];
+    int i, j;
+    tran_low_t temp_in[16], temp_out[16];
+    const transform_2d ht = FHT_16[tx_type];
+
+    // Columns
+    for (i = 0; i < 16; ++i) {
+      for (j = 0; j < 16; ++j) temp_in[j] = input[j * stride + i] * 4;
+      ht.cols(temp_in, temp_out);
+      for (j = 0; j < 16; ++j)
+        out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+    }
+
+    // Rows
+    for (i = 0; i < 16; ++i) {
+      for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16];
+      ht.rows(temp_in, temp_out);
+      for (j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j];
+    }
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_fht4x4_c(const int16_t *input, tran_low_t *output, int stride,
+                          int tx_type) {
+  vp10_fht4x4_c(input, output, stride, tx_type);
+}
+
+void vp10_highbd_fht8x8_c(const int16_t *input, tran_low_t *output, int stride,
+                          int tx_type) {
+  vp10_fht8x8_c(input, output, stride, tx_type);
+}
+
+void vp10_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output,
+                           int stride) {
+  vp10_fwht4x4_c(input, output, stride);
+}
+
+void vp10_highbd_fht16x16_c(const int16_t *input, tran_low_t *output,
+                            int stride, int tx_type) {
+  vp10_fht16x16_c(input, output, stride, tx_type);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
diff --git a/av1/encoder/encodeframe.c b/av1/encoder/encodeframe.c
new file mode 100644
index 0000000..9805944
--- /dev/null
+++ b/av1/encoder/encodeframe.c
@@ -0,0 +1,2903 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp10_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_config.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/vpx_timer.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/idct.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/encoder/aq_complexity.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/tokenize.h"
+
+static void encode_superblock(VP10_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
+                              int output_enabled, int mi_row, int mi_col,
+                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
+
+// This is used as a reference when computing the source variance for the
+//  purposes of activity masking.
+// Eventually this should be replaced by custom no-reference routines,
+//  which will be faster.
+static const uint8_t VP9_VAR_OFFS[64] = {
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
+};
+
+static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+  128 * 16
+};
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+unsigned int vp10_get_sby_perpixel_variance(VP10_COMP *cpi,
+                                            const struct buf_2d *ref,
+                                            BLOCK_SIZE bs) {
+  unsigned int sse;
+  const unsigned int var =
+      cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
+  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+unsigned int vp10_high_get_sby_perpixel_variance(VP10_COMP *cpi,
+                                                 const struct buf_2d *ref,
+                                                 BLOCK_SIZE bs, int bd) {
+  unsigned int var, sse;
+  switch (bd) {
+    case 10:
+      var =
+          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+                             CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
+      break;
+    case 12:
+      var =
+          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+                             CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
+      break;
+    case 8:
+    default:
+      var =
+          cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+                             CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
+      break;
+  }
+  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static unsigned int get_sby_perpixel_diff_variance(VP10_COMP *cpi,
+                                                   const struct buf_2d *ref,
+                                                   int mi_row, int mi_col,
+                                                   BLOCK_SIZE bs) {
+  unsigned int sse, var;
+  uint8_t *last_y;
+  const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
+
+  assert(last != NULL);
+  last_y =
+      &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
+  var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
+  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+static BLOCK_SIZE get_rd_var_based_fixed_partition(VP10_COMP *cpi,
+                                                   MACROBLOCK *x, int mi_row,
+                                                   int mi_col) {
+  unsigned int var = get_sby_perpixel_diff_variance(
+      cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
+  if (var < 8)
+    return BLOCK_64X64;
+  else if (var < 128)
+    return BLOCK_32X32;
+  else if (var < 2048)
+    return BLOCK_16X16;
+  else
+    return BLOCK_8X8;
+}
+
+// Lighter version of set_offsets that only sets the mode info
+// pointers.
+static INLINE void set_mode_info_offsets(VP10_COMP *const cpi,
+                                         MACROBLOCK *const x,
+                                         MACROBLOCKD *const xd, int mi_row,
+                                         int mi_col) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int idx_str = xd->mi_stride * mi_row + mi_col;
+  xd->mi = cm->mi_grid_visible + idx_str;
+  xd->mi[0] = cm->mi + idx_str;
+  x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
+}
+
+static void set_offsets(VP10_COMP *cpi, const TileInfo *const tile,
+                        MACROBLOCK *const x, int mi_row, int mi_col,
+                        BLOCK_SIZE bsize) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi;
+  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  const int mi_height = num_8x8_blocks_high_lookup[bsize];
+  const struct segmentation *const seg = &cm->seg;
+
+  set_skip_context(xd, mi_row, mi_col);
+
+  set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
+
+  mbmi = &xd->mi[0]->mbmi;
+
+  // Set up destination pointers.
+  vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
+
+  // Set up limit values for MV components.
+  // Mv beyond the range do not produce new/different prediction block.
+  x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VPX_INTERP_EXTEND);
+  x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VPX_INTERP_EXTEND);
+  x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VPX_INTERP_EXTEND;
+  x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VPX_INTERP_EXTEND;
+
+  // Set up distance of MB to edge of frame in 1/8th pel units.
+  assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
+  set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
+                 cm->mi_cols);
+
+  // Set up source buffers.
+  vp10_setup_src_planes(x, cpi->Source, mi_row, mi_col);
+
+  // R/D setup.
+  x->rddiv = cpi->rd.RDDIV;
+  x->rdmult = cpi->rd.RDMULT;
+
+  // Setup segment ID.
+  if (seg->enabled) {
+    if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
+      const uint8_t *const map =
+          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+      mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
+    }
+    vp10_init_plane_quantizers(cpi, x);
+
+    x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
+  } else {
+    mbmi->segment_id = 0;
+    x->encode_breakout = cpi->encode_breakout;
+  }
+
+  // required by vp10_append_sub8x8_mvs_for_idx() and vp10_find_best_ref_mvs()
+  xd->tile = *tile;
+}
+
+static void set_block_size(VP10_COMP *const cpi, MACROBLOCK *const x,
+                           MACROBLOCKD *const xd, int mi_row, int mi_col,
+                           BLOCK_SIZE bsize) {
+  if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
+    set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
+    xd->mi[0]->mbmi.sb_type = bsize;
+  }
+}
+
+typedef struct {
+  int64_t sum_square_error;
+  int64_t sum_error;
+  int log2_count;
+  int variance;
+} var;
+
+typedef struct {
+  var none;
+  var horz[2];
+  var vert[2];
+} partition_variance;
+
+typedef struct {
+  partition_variance part_variances;
+  var split[4];
+} v4x4;
+
+typedef struct {
+  partition_variance part_variances;
+  v4x4 split[4];
+} v8x8;
+
+typedef struct {
+  partition_variance part_variances;
+  v8x8 split[4];
+} v16x16;
+
+typedef struct {
+  partition_variance part_variances;
+  v16x16 split[4];
+} v32x32;
+
+typedef struct {
+  partition_variance part_variances;
+  v32x32 split[4];
+} v64x64;
+
+typedef struct {
+  partition_variance *part_variances;
+  var *split[4];
+} variance_node;
+
+typedef enum {
+  V16X16,
+  V32X32,
+  V64X64,
+} TREE_LEVEL;
+
+static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
+  int i;
+  node->part_variances = NULL;
+  switch (bsize) {
+    case BLOCK_64X64: {
+      v64x64 *vt = (v64x64 *)data;
+      node->part_variances = &vt->part_variances;
+      for (i = 0; i < 4; i++)
+        node->split[i] = &vt->split[i].part_variances.none;
+      break;
+    }
+    case BLOCK_32X32: {
+      v32x32 *vt = (v32x32 *)data;
+      node->part_variances = &vt->part_variances;
+      for (i = 0; i < 4; i++)
+        node->split[i] = &vt->split[i].part_variances.none;
+      break;
+    }
+    case BLOCK_16X16: {
+      v16x16 *vt = (v16x16 *)data;
+      node->part_variances = &vt->part_variances;
+      for (i = 0; i < 4; i++)
+        node->split[i] = &vt->split[i].part_variances.none;
+      break;
+    }
+    case BLOCK_8X8: {
+      v8x8 *vt = (v8x8 *)data;
+      node->part_variances = &vt->part_variances;
+      for (i = 0; i < 4; i++)
+        node->split[i] = &vt->split[i].part_variances.none;
+      break;
+    }
+    case BLOCK_4X4: {
+      v4x4 *vt = (v4x4 *)data;
+      node->part_variances = &vt->part_variances;
+      for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
+      break;
+    }
+    default: {
+      assert(0);
+      break;
+    }
+  }
+}
+
+// Set variance values given sum square error, sum error, count.
+static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
+  v->sum_square_error = s2;
+  v->sum_error = s;
+  v->log2_count = c;
+}
+
+static void get_variance(var *v) {
+  v->variance =
+      (int)(256 * (v->sum_square_error -
+                   ((v->sum_error * v->sum_error) >> v->log2_count)) >>
+            v->log2_count);
+}
+
+static void sum_2_variances(const var *a, const var *b, var *r) {
+  assert(a->log2_count == b->log2_count);
+  fill_variance(a->sum_square_error + b->sum_square_error,
+                a->sum_error + b->sum_error, a->log2_count + 1, r);
+}
+
+static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
+  variance_node node;
+  memset(&node, 0, sizeof(node));
+  tree_to_node(data, bsize, &node);
+  sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
+  sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
+  sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
+  sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
+  sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
+                  &node.part_variances->none);
+}
+
+static int set_vt_partitioning(VP10_COMP *cpi, MACROBLOCK *const x,
+                               MACROBLOCKD *const xd, void *data,
+                               BLOCK_SIZE bsize, int mi_row, int mi_col,
+                               int64_t threshold, BLOCK_SIZE bsize_min,
+                               int force_split) {
+  VP10_COMMON *const cm = &cpi->common;
+  variance_node vt;
+  const int block_width = num_8x8_blocks_wide_lookup[bsize];
+  const int block_height = num_8x8_blocks_high_lookup[bsize];
+  const int low_res = (cm->width <= 352 && cm->height <= 288);
+
+  assert(block_height == block_width);
+  tree_to_node(data, bsize, &vt);
+
+  if (force_split == 1) return 0;
+
+  // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
+  // variance is below threshold, otherwise split will be selected.
+  // No check for vert/horiz split as too few samples for variance.
+  if (bsize == bsize_min) {
+    // Variance already computed to set the force_split.
+    if (low_res || cm->frame_type == KEY_FRAME)
+      get_variance(&vt.part_variances->none);
+    if (mi_col + block_width / 2 < cm->mi_cols &&
+        mi_row + block_height / 2 < cm->mi_rows &&
+        vt.part_variances->none.variance < threshold) {
+      set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
+      return 1;
+    }
+    return 0;
+  } else if (bsize > bsize_min) {
+    // Variance already computed to set the force_split.
+    if (low_res || cm->frame_type == KEY_FRAME)
+      get_variance(&vt.part_variances->none);
+    // For key frame: take split for bsize above 32X32 or very high variance.
+    if (cm->frame_type == KEY_FRAME &&
+        (bsize > BLOCK_32X32 ||
+         vt.part_variances->none.variance > (threshold << 4))) {
+      return 0;
+    }
+    // If variance is low, take the bsize (no split).
+    if (mi_col + block_width / 2 < cm->mi_cols &&
+        mi_row + block_height / 2 < cm->mi_rows &&
+        vt.part_variances->none.variance < threshold) {
+      set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
+      return 1;
+    }
+
+    // Check vertical split.
+    if (mi_row + block_height / 2 < cm->mi_rows) {
+      BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
+      get_variance(&vt.part_variances->vert[0]);
+      get_variance(&vt.part_variances->vert[1]);
+      if (vt.part_variances->vert[0].variance < threshold &&
+          vt.part_variances->vert[1].variance < threshold &&
+          get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
+        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
+        set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
+        return 1;
+      }
+    }
+    // Check horizontal split.
+    if (mi_col + block_width / 2 < cm->mi_cols) {
+      BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
+      get_variance(&vt.part_variances->horz[0]);
+      get_variance(&vt.part_variances->horz[1]);
+      if (vt.part_variances->horz[0].variance < threshold &&
+          vt.part_variances->horz[1].variance < threshold &&
+          get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
+        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
+        set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
+        return 1;
+      }
+    }
+
+    return 0;
+  }
+  return 0;
+}
+
+// Set the variance split thresholds for following the block sizes:
+// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
+// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
+// currently only used on key frame.
+static void set_vbp_thresholds(VP10_COMP *cpi, int64_t thresholds[], int q) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int is_key_frame = (cm->frame_type == KEY_FRAME);
+  const int threshold_multiplier = is_key_frame ? 20 : 1;
+  const int64_t threshold_base =
+      (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
+  if (is_key_frame) {
+    thresholds[0] = threshold_base;
+    thresholds[1] = threshold_base >> 2;
+    thresholds[2] = threshold_base >> 2;
+    thresholds[3] = threshold_base << 2;
+  } else {
+    thresholds[1] = threshold_base;
+    if (cm->width <= 352 && cm->height <= 288) {
+      thresholds[0] = threshold_base >> 2;
+      thresholds[2] = threshold_base << 3;
+    } else {
+      thresholds[0] = threshold_base;
+      thresholds[1] = (5 * threshold_base) >> 2;
+      if (cm->width >= 1920 && cm->height >= 1080)
+        thresholds[1] = (7 * threshold_base) >> 2;
+      thresholds[2] = threshold_base << cpi->oxcf.speed;
+    }
+  }
+}
+
+void vp10_set_variance_partition_thresholds(VP10_COMP *cpi, int q) {
+  VP10_COMMON *const cm = &cpi->common;
+  SPEED_FEATURES *const sf = &cpi->sf;
+  const int is_key_frame = (cm->frame_type == KEY_FRAME);
+  if (sf->partition_search_type != VAR_BASED_PARTITION &&
+      sf->partition_search_type != REFERENCE_PARTITION) {
+    return;
+  } else {
+    set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
+    // The thresholds below are not changed locally.
+    if (is_key_frame) {
+      cpi->vbp_threshold_sad = 0;
+      cpi->vbp_bsize_min = BLOCK_8X8;
+    } else {
+      if (cm->width <= 352 && cm->height <= 288)
+        cpi->vbp_threshold_sad = 100;
+      else
+        cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
+                                     ? (cpi->y_dequant[q][1] << 1)
+                                     : 1000;
+      cpi->vbp_bsize_min = BLOCK_16X16;
+    }
+    cpi->vbp_threshold_minmax = 15 + (q >> 3);
+  }
+}
+
+// Compute the minmax over the 8x8 subblocks.
+static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
+                              int dp, int x16_idx, int y16_idx,
+#if CONFIG_VPX_HIGHBITDEPTH
+                              int highbd_flag,
+#endif
+                              int pixels_wide, int pixels_high) {
+  int k;
+  int minmax_max = 0;
+  int minmax_min = 255;
+  // Loop over the 4 8x8 subblocks.
+  for (k = 0; k < 4; k++) {
+    int x8_idx = x16_idx + ((k & 1) << 3);
+    int y8_idx = y16_idx + ((k >> 1) << 3);
+    int min = 0;
+    int max = 0;
+    if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+        vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
+                              d + y8_idx * dp + x8_idx, dp, &min, &max);
+      } else {
+        vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
+                       dp, &min, &max);
+      }
+#else
+      vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
+                     &min, &max);
+#endif
+      if ((max - min) > minmax_max) minmax_max = (max - min);
+      if ((max - min) < minmax_min) minmax_min = (max - min);
+    }
+  }
+  return (minmax_max - minmax_min);
+}
+
+static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
+                                 int dp, int x8_idx, int y8_idx, v8x8 *vst,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                 int highbd_flag,
+#endif
+                                 int pixels_wide, int pixels_high,
+                                 int is_key_frame) {
+  int k;
+  for (k = 0; k < 4; k++) {
+    int x4_idx = x8_idx + ((k & 1) << 2);
+    int y4_idx = y8_idx + ((k >> 1) << 2);
+    unsigned int sse = 0;
+    int sum = 0;
+    if (x4_idx < pixels_wide && y4_idx < pixels_high) {
+      int s_avg;
+      int d_avg = 128;
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+        s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+        if (!is_key_frame)
+          d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+      } else {
+        s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+        if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+      }
+#else
+      s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+      if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+#endif
+      sum = s_avg - d_avg;
+      sse = sum * sum;
+    }
+    fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
+  }
+}
+
+static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
+                                 int dp, int x16_idx, int y16_idx, v16x16 *vst,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                 int highbd_flag,
+#endif
+                                 int pixels_wide, int pixels_high,
+                                 int is_key_frame) {
+  int k;
+  for (k = 0; k < 4; k++) {
+    int x8_idx = x16_idx + ((k & 1) << 3);
+    int y8_idx = y16_idx + ((k >> 1) << 3);
+    unsigned int sse = 0;
+    int sum = 0;
+    if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+      int s_avg;
+      int d_avg = 128;
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+        s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+        if (!is_key_frame)
+          d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+      } else {
+        s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+        if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+      }
+#else
+      s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+      if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+#endif
+      sum = s_avg - d_avg;
+      sse = sum * sum;
+    }
+    fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
+  }
+}
+
+// This function chooses partitioning based on the variance between source and
+// reconstructed last, where variance is computed for down-sampled inputs.
+static int choose_partitioning(VP10_COMP *cpi, const TileInfo *const tile,
+                               MACROBLOCK *x, int mi_row, int mi_col) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *xd = &x->e_mbd;
+  int i, j, k, m;
+  v64x64 vt;
+  v16x16 vt2[16];
+  int force_split[21];
+  uint8_t *s;
+  const uint8_t *d;
+  int sp;
+  int dp;
+  int pixels_wide = 64, pixels_high = 64;
+  int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
+                            cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
+
+  // Always use 4x4 partition for key frame.
+  const int is_key_frame = (cm->frame_type == KEY_FRAME);
+  const int use_4x4_partition = is_key_frame;
+  const int low_res = (cm->width <= 352 && cm->height <= 288);
+  int variance4x4downsample[16];
+
+  int segment_id = CR_SEGMENT_ID_BASE;
+  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+    const uint8_t *const map =
+        cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+    segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
+
+    if (cyclic_refresh_segment_id_boosted(segment_id)) {
+      int q = vp10_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+      set_vbp_thresholds(cpi, thresholds, q);
+    }
+  }
+
+  set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
+
+  if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
+  if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
+
+  s = x->plane[0].src.buf;
+  sp = x->plane[0].src.stride;
+
+  if (!is_key_frame) {
+    MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+    unsigned int uv_sad;
+    const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+
+    const YV12_BUFFER_CONFIG *yv12_g = NULL;
+    unsigned int y_sad, y_sad_g;
+    const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
+                             (mi_row + 4 < cm->mi_rows);
+
+    assert(yv12 != NULL);
+    yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+
+    if (yv12_g && yv12_g != yv12) {
+      vp10_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
+                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
+      y_sad_g = cpi->fn_ptr[bsize].sdf(
+          x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
+          xd->plane[0].pre[0].stride);
+    } else {
+      y_sad_g = UINT_MAX;
+    }
+
+    vp10_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
+                          &cm->frame_refs[LAST_FRAME - 1].sf);
+    mbmi->ref_frame[0] = LAST_FRAME;
+    mbmi->ref_frame[1] = NONE;
+    mbmi->sb_type = BLOCK_64X64;
+    mbmi->mv[0].as_int = 0;
+    mbmi->interp_filter = BILINEAR;
+
+    y_sad = vp10_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
+    if (y_sad_g < y_sad) {
+      vp10_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
+                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
+      mbmi->ref_frame[0] = GOLDEN_FRAME;
+      mbmi->mv[0].as_int = 0;
+      y_sad = y_sad_g;
+    } else {
+      x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
+    }
+
+    vp10_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
+
+    for (i = 1; i <= 2; ++i) {
+      struct macroblock_plane *p = &x->plane[i];
+      struct macroblockd_plane *pd = &xd->plane[i];
+      const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
+
+      if (bs == BLOCK_INVALID)
+        uv_sad = UINT_MAX;
+      else
+        uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
+                                     pd->dst.stride);
+
+      x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
+    }
+
+    d = xd->plane[0].dst.buf;
+    dp = xd->plane[0].dst.stride;
+
+    // If the y_sad is very small, take 64x64 as partition and exit.
+    // Don't check on boosted segment for now, as 64x64 is suppressed there.
+    if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
+      const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
+      const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
+      if (mi_col + block_width / 2 < cm->mi_cols &&
+          mi_row + block_height / 2 < cm->mi_rows) {
+        set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
+        return 0;
+      }
+    }
+  } else {
+    d = VP9_VAR_OFFS;
+    dp = 0;
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      switch (xd->bd) {
+        case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
+        case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
+        case 8:
+        default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
+      }
+    }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  }
+
+  // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
+  // 5-20 for the 16x16 blocks.
+  force_split[0] = 0;
+  // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
+  // for splits.
+  for (i = 0; i < 4; i++) {
+    const int x32_idx = ((i & 1) << 5);
+    const int y32_idx = ((i >> 1) << 5);
+    const int i2 = i << 2;
+    force_split[i + 1] = 0;
+    for (j = 0; j < 4; j++) {
+      const int x16_idx = x32_idx + ((j & 1) << 4);
+      const int y16_idx = y32_idx + ((j >> 1) << 4);
+      const int split_index = 5 + i2 + j;
+      v16x16 *vst = &vt.split[i].split[j];
+      force_split[split_index] = 0;
+      variance4x4downsample[i2 + j] = 0;
+      if (!is_key_frame) {
+        fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
+#if CONFIG_VPX_HIGHBITDEPTH
+                             xd->cur_buf->flags,
+#endif
+                             pixels_wide, pixels_high, is_key_frame);
+        fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
+        get_variance(&vt.split[i].split[j].part_variances.none);
+        if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
+          // 16X16 variance is above threshold for split, so force split to 8x8
+          // for this 16x16 block (this also forces splits for upper levels).
+          force_split[split_index] = 1;
+          force_split[i + 1] = 1;
+          force_split[0] = 1;
+        } else if (vt.split[i].split[j].part_variances.none.variance >
+                       thresholds[1] &&
+                   !cyclic_refresh_segment_id_boosted(segment_id)) {
+          // We have some nominal amount of 16x16 variance (based on average),
+          // compute the minmax over the 8x8 sub-blocks, and if above threshold,
+          // force split to 8x8 block for this 16x16 block.
+          int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                          xd->cur_buf->flags,
+#endif
+                                          pixels_wide, pixels_high);
+          if (minmax > cpi->vbp_threshold_minmax) {
+            force_split[split_index] = 1;
+            force_split[i + 1] = 1;
+            force_split[0] = 1;
+          }
+        }
+      }
+      if (is_key_frame || (low_res &&
+                           vt.split[i].split[j].part_variances.none.variance >
+                               (thresholds[1] << 1))) {
+        force_split[split_index] = 0;
+        // Go down to 4x4 down-sampling for variance.
+        variance4x4downsample[i2 + j] = 1;
+        for (k = 0; k < 4; k++) {
+          int x8_idx = x16_idx + ((k & 1) << 3);
+          int y8_idx = y16_idx + ((k >> 1) << 3);
+          v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
+          fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
+#if CONFIG_VPX_HIGHBITDEPTH
+                               xd->cur_buf->flags,
+#endif
+                               pixels_wide, pixels_high, is_key_frame);
+        }
+      }
+    }
+  }
+
+  // Fill the rest of the variance tree by summing split partition values.
+  for (i = 0; i < 4; i++) {
+    const int i2 = i << 2;
+    for (j = 0; j < 4; j++) {
+      if (variance4x4downsample[i2 + j] == 1) {
+        v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
+        for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
+        fill_variance_tree(vtemp, BLOCK_16X16);
+      }
+    }
+    fill_variance_tree(&vt.split[i], BLOCK_32X32);
+    // If variance of this 32x32 block is above the threshold, force the block
+    // to split. This also forces a split on the upper (64x64) level.
+    if (!force_split[i + 1]) {
+      get_variance(&vt.split[i].part_variances.none);
+      if (vt.split[i].part_variances.none.variance > thresholds[1]) {
+        force_split[i + 1] = 1;
+        force_split[0] = 1;
+      }
+    }
+  }
+  if (!force_split[0]) {
+    fill_variance_tree(&vt, BLOCK_64X64);
+    get_variance(&vt.part_variances.none);
+  }
+
+  // Now go through the entire structure, splitting every block size until
+  // we get to one that's got a variance lower than our threshold.
+  if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
+      !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
+                           thresholds[0], BLOCK_16X16, force_split[0])) {
+    for (i = 0; i < 4; ++i) {
+      const int x32_idx = ((i & 1) << 2);
+      const int y32_idx = ((i >> 1) << 2);
+      const int i2 = i << 2;
+      if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
+                               (mi_row + y32_idx), (mi_col + x32_idx),
+                               thresholds[1], BLOCK_16X16,
+                               force_split[i + 1])) {
+        for (j = 0; j < 4; ++j) {
+          const int x16_idx = ((j & 1) << 1);
+          const int y16_idx = ((j >> 1) << 1);
+          // For inter frames: if variance4x4downsample[] == 1 for this 16x16
+          // block, then the variance is based on 4x4 down-sampling, so use vt2
+          // in set_vt_partioning(), otherwise use vt.
+          v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
+                              ? &vt2[i2 + j]
+                              : &vt.split[i].split[j];
+          if (!set_vt_partitioning(
+                  cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
+                  mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
+                  force_split[5 + i2 + j])) {
+            for (k = 0; k < 4; ++k) {
+              const int x8_idx = (k & 1);
+              const int y8_idx = (k >> 1);
+              if (use_4x4_partition) {
+                if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
+                                         BLOCK_8X8,
+                                         mi_row + y32_idx + y16_idx + y8_idx,
+                                         mi_col + x32_idx + x16_idx + x8_idx,
+                                         thresholds[3], BLOCK_8X8, 0)) {
+                  set_block_size(
+                      cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
+                      (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
+                }
+              } else {
+                set_block_size(
+                    cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
+                    (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  return 0;
+}
+
+static void update_state(VP10_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
+                         int mi_row, int mi_col, BLOCK_SIZE bsize,
+                         int output_enabled) {
+  int i, x_idx, y;
+  VP10_COMMON *const cm = &cpi->common;
+  RD_COUNTS *const rdc = &td->rd_counts;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblock_plane *const p = x->plane;
+  struct macroblockd_plane *const pd = xd->plane;
+  MODE_INFO *mi = &ctx->mic;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  MODE_INFO *mi_addr = xd->mi[0];
+  const struct segmentation *const seg = &cm->seg;
+  const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
+  const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
+  const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
+  const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
+  MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
+  int w, h;
+
+  const int mis = cm->mi_stride;
+  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  const int mi_height = num_8x8_blocks_high_lookup[bsize];
+  int max_plane;
+
+  assert(mi->mbmi.sb_type == bsize);
+
+  *mi_addr = *mi;
+  *x->mbmi_ext = ctx->mbmi_ext;
+
+  // If segmentation in use
+  if (seg->enabled) {
+    // For in frame complexity AQ copy the segment id from the segment map.
+    if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+      const uint8_t *const map =
+          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+      mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
+    }
+    // Else for cyclic refresh mode update the segment map, set the segment id
+    // and then update the quantizer.
+    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+      vp10_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
+                                         bsize, ctx->rate, ctx->dist, x->skip);
+    }
+  }
+
+  max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
+  for (i = 0; i < max_plane; ++i) {
+    p[i].coeff = ctx->coeff_pbuf[i][1];
+    p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+    pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+    p[i].eobs = ctx->eobs_pbuf[i][1];
+  }
+
+  for (i = max_plane; i < MAX_MB_PLANE; ++i) {
+    p[i].coeff = ctx->coeff_pbuf[i][2];
+    p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
+    pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
+    p[i].eobs = ctx->eobs_pbuf[i][2];
+  }
+
+  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+
+  // Restore the coding context of the MB to that that was in place
+  // when the mode was picked for it
+  for (y = 0; y < mi_height; y++)
+    for (x_idx = 0; x_idx < mi_width; x_idx++)
+      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
+          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
+        xd->mi[x_idx + y * mis] = mi_addr;
+      }
+
+  if (cpi->oxcf.aq_mode) vp10_init_plane_quantizers(cpi, x);
+
+  if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
+    mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
+    mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
+  }
+
+  x->skip = ctx->skip;
+  memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
+         sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
+
+  if (!output_enabled) return;
+
+#if CONFIG_INTERNAL_STATS
+  if (frame_is_intra_only(cm)) {
+    static const int kf_mode_index[] = {
+      THR_DC /*DC_PRED*/,          THR_V_PRED /*V_PRED*/,
+      THR_H_PRED /*H_PRED*/,       THR_D45_PRED /*D45_PRED*/,
+      THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
+      THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
+      THR_D63_PRED /*D63_PRED*/,   THR_TM /*TM_PRED*/,
+    };
+    ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
+  } else {
+    // Note how often each mode chosen as best
+    ++cpi->mode_chosen_counts[ctx->best_mode_index];
+  }
+#endif
+  if (!frame_is_intra_only(cm)) {
+    if (is_inter_block(mbmi)) {
+      vp10_update_mv_count(td);
+
+      if (cm->interp_filter == SWITCHABLE) {
+        const int ctx = vp10_get_pred_context_switchable_interp(xd);
+        ++td->counts->switchable_interp[ctx][mbmi->interp_filter];
+      }
+    }
+
+    rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
+    rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
+    rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
+
+    for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+      rdc->filter_diff[i] += ctx->best_filter_diff[i];
+  }
+
+  for (h = 0; h < y_mis; ++h) {
+    MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
+    for (w = 0; w < x_mis; ++w) {
+      MV_REF *const mv = frame_mv + w;
+      mv->ref_frame[0] = mi->mbmi.ref_frame[0];
+      mv->ref_frame[1] = mi->mbmi.ref_frame[1];
+      mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
+      mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
+    }
+  }
+}
+
+void vp10_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
+                           int mi_row, int mi_col) {
+  uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
+  const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
+  int i;
+
+  // Set current frame pointer.
+  x->e_mbd.cur_buf = src;
+
+  for (i = 0; i < MAX_MB_PLANE; i++)
+    setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
+                     NULL, x->e_mbd.plane[i].subsampling_x,
+                     x->e_mbd.plane[i].subsampling_y);
+}
+
+static int set_segment_rdmult(VP10_COMP *const cpi, MACROBLOCK *const x,
+                              int8_t segment_id) {
+  int segment_qindex;
+  VP10_COMMON *const cm = &cpi->common;
+  vp10_init_plane_quantizers(cpi, x);
+  vpx_clear_system_state();
+  segment_qindex = vp10_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+  return vp10_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
+}
+
+static void rd_pick_sb_modes(VP10_COMP *cpi, TileDataEnc *tile_data,
+                             MACROBLOCK *const x, int mi_row, int mi_col,
+                             RD_COST *rd_cost, BLOCK_SIZE bsize,
+                             PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
+  VP10_COMMON *const cm = &cpi->common;
+  TileInfo *const tile_info = &tile_data->tile_info;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi;
+  struct macroblock_plane *const p = x->plane;
+  struct macroblockd_plane *const pd = xd->plane;
+  const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
+  int i, orig_rdmult;
+
+  vpx_clear_system_state();
+
+  // Use the lower precision, but faster, 32x32 fdct for mode selection.
+  x->use_lp32x32fdct = 1;
+
+  set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+  mbmi = &xd->mi[0]->mbmi;
+  mbmi->sb_type = bsize;
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    p[i].coeff = ctx->coeff_pbuf[i][0];
+    p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
+    pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
+    p[i].eobs = ctx->eobs_pbuf[i][0];
+  }
+
+  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+
+  ctx->is_coded = 0;
+  ctx->skippable = 0;
+  ctx->pred_pixel_ready = 0;
+  x->skip_recode = 0;
+
+  // Set to zero to make sure we do not use the previous encoded frame stats
+  mbmi->skip = 0;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    x->source_variance = vp10_high_get_sby_perpixel_variance(
+        cpi, &x->plane[0].src, bsize, xd->bd);
+  } else {
+    x->source_variance =
+        vp10_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+  }
+#else
+  x->source_variance =
+      vp10_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  // Save rdmult before it might be changed, so it can be restored later.
+  orig_rdmult = x->rdmult;
+
+  if (aq_mode == VARIANCE_AQ) {
+    const int energy =
+        bsize <= BLOCK_16X16 ? x->mb_energy : vp10_block_energy(cpi, x, bsize);
+    if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
+        (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+      mbmi->segment_id = vp10_vaq_segment_id(energy);
+    } else {
+      const uint8_t *const map =
+          cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+      mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
+    }
+    x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+  } else if (aq_mode == COMPLEXITY_AQ) {
+    x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+  } else if (aq_mode == CYCLIC_REFRESH_AQ) {
+    const uint8_t *const map =
+        cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+    // If segment is boosted, use rdmult for that segment.
+    if (cyclic_refresh_segment_id_boosted(
+            get_segment_id(cm, map, bsize, mi_row, mi_col)))
+      x->rdmult = vp10_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+  }
+
+  // Find best coding mode & reconstruct the MB so it is available
+  // as a predictor for MBs that follow in the SB
+  if (frame_is_intra_only(cm)) {
+    vp10_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
+  } else {
+    if (bsize >= BLOCK_8X8) {
+      if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
+        vp10_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
+                                            ctx, best_rd);
+      else
+        vp10_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
+                                   bsize, ctx, best_rd);
+    } else {
+      vp10_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
+                                     bsize, ctx, best_rd);
+    }
+  }
+
+  // Examine the resulting rate and for AQ mode 2 make a segment choice.
+  if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
+      (bsize >= BLOCK_16X16) &&
+      (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
+       (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
+    vp10_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
+  }
+
+  x->rdmult = orig_rdmult;
+
+  // TODO(jingning) The rate-distortion optimization flow needs to be
+  // refactored to provide proper exit/return handle.
+  if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
+
+  ctx->rate = rd_cost->rate;
+  ctx->dist = rd_cost->dist;
+}
+
+static void update_stats(VP10_COMMON *cm, ThreadData *td) {
+  const MACROBLOCK *x = &td->mb;
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const MODE_INFO *const mi = xd->mi[0];
+  const MB_MODE_INFO *const mbmi = &mi->mbmi;
+  const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+
+  if (!frame_is_intra_only(cm)) {
+    FRAME_COUNTS *const counts = td->counts;
+    const int inter_block = is_inter_block(mbmi);
+    const int seg_ref_active =
+        segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+    if (!seg_ref_active) {
+      counts->intra_inter[vp10_get_intra_inter_context(xd)][inter_block]++;
+      // If the segment reference feature is enabled we have only a single
+      // reference frame allowed for the segment so exclude it from
+      // the reference frame counts used to work out probabilities.
+      if (inter_block) {
+        const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
+        if (cm->reference_mode == REFERENCE_MODE_SELECT)
+          counts->comp_inter[vp10_get_reference_mode_context(
+              cm, xd)][has_second_ref(mbmi)]++;
+
+        if (has_second_ref(mbmi)) {
+          counts->comp_ref[vp10_get_pred_context_comp_ref_p(
+              cm, xd)][ref0 == GOLDEN_FRAME]++;
+        } else {
+          counts->single_ref[vp10_get_pred_context_single_ref_p1(
+              xd)][0][ref0 != LAST_FRAME]++;
+          if (ref0 != LAST_FRAME)
+            counts->single_ref[vp10_get_pred_context_single_ref_p2(
+                xd)][1][ref0 != GOLDEN_FRAME]++;
+        }
+      }
+    }
+    if (inter_block &&
+        !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+      const int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
+      if (bsize >= BLOCK_8X8) {
+        const PREDICTION_MODE mode = mbmi->mode;
+        ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
+      } else {
+        const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+        const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+        int idx, idy;
+        for (idy = 0; idy < 2; idy += num_4x4_h) {
+          for (idx = 0; idx < 2; idx += num_4x4_w) {
+            const int j = idy * 2 + idx;
+            const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+            ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
+          }
+        }
+      }
+    }
+  }
+}
+
+static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
+                            ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
+                            ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
+                            PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
+                            BLOCK_SIZE bsize) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  int p;
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+  int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  int mi_height = num_8x8_blocks_high_lookup[bsize];
+  for (p = 0; p < MAX_MB_PLANE; p++) {
+    memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
+           a + num_4x4_blocks_wide * p,
+           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+               xd->plane[p].subsampling_x);
+    memcpy(xd->left_context[p] +
+               ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
+           l + num_4x4_blocks_high * p,
+           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+               xd->plane[p].subsampling_y);
+  }
+  memcpy(xd->above_seg_context + mi_col, sa,
+         sizeof(*xd->above_seg_context) * mi_width);
+  memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
+         sizeof(xd->left_seg_context[0]) * mi_height);
+}
+
+static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
+                         ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
+                         ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
+                         PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
+                         BLOCK_SIZE bsize) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  int p;
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+  int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  int mi_height = num_8x8_blocks_high_lookup[bsize];
+
+  // buffer the above/left context information of the block in search.
+  for (p = 0; p < MAX_MB_PLANE; ++p) {
+    memcpy(a + num_4x4_blocks_wide * p,
+           xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
+           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+               xd->plane[p].subsampling_x);
+    memcpy(l + num_4x4_blocks_high * p,
+           xd->left_context[p] +
+               ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
+           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+               xd->plane[p].subsampling_y);
+  }
+  memcpy(sa, xd->above_seg_context + mi_col,
+         sizeof(*xd->above_seg_context) * mi_width);
+  memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
+         sizeof(xd->left_seg_context[0]) * mi_height);
+}
+
+static void encode_b(VP10_COMP *cpi, const TileInfo *const tile, ThreadData *td,
+                     TOKENEXTRA **tp, int mi_row, int mi_col,
+                     int output_enabled, BLOCK_SIZE bsize,
+                     PICK_MODE_CONTEXT *ctx) {
+  MACROBLOCK *const x = &td->mb;
+  set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
+  update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
+  encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
+
+  if (output_enabled) {
+    update_stats(&cpi->common, td);
+  }
+}
+
+static void encode_sb(VP10_COMP *cpi, ThreadData *td,
+                      const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
+                      int mi_col, int output_enabled, BLOCK_SIZE bsize,
+                      PC_TREE *pc_tree) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+
+  const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+  int ctx;
+  PARTITION_TYPE partition;
+  BLOCK_SIZE subsize = bsize;
+
+  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+  if (bsize >= BLOCK_8X8) {
+    ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+    subsize = get_subsize(bsize, pc_tree->partitioning);
+  } else {
+    ctx = 0;
+    subsize = BLOCK_4X4;
+  }
+
+  partition = partition_lookup[bsl][subsize];
+  if (output_enabled && bsize != BLOCK_4X4)
+    td->counts->partition[ctx][partition]++;
+
+  switch (partition) {
+    case PARTITION_NONE:
+      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+               &pc_tree->none);
+      break;
+    case PARTITION_VERT:
+      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+               &pc_tree->vertical[0]);
+      if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+        encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
+                 subsize, &pc_tree->vertical[1]);
+      }
+      break;
+    case PARTITION_HORZ:
+      encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+               &pc_tree->horizontal[0]);
+      if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+        encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
+                 subsize, &pc_tree->horizontal[1]);
+      }
+      break;
+    case PARTITION_SPLIT:
+      if (bsize == BLOCK_8X8) {
+        encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+                 pc_tree->leaf_split[0]);
+      } else {
+        encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+                  pc_tree->split[0]);
+        encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
+                  subsize, pc_tree->split[1]);
+        encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
+                  subsize, pc_tree->split[2]);
+        encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
+                  subsize, pc_tree->split[3]);
+      }
+      break;
+    default: assert(0 && "Invalid partition type."); break;
+  }
+
+  if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
+    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+// Check to see if the given partition size is allowed for a specified number
+// of 8x8 block rows and columns remaining in the image.
+// If not then return the largest allowed partition size
+static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
+                                      int cols_left, int *bh, int *bw) {
+  if (rows_left <= 0 || cols_left <= 0) {
+    return VPXMIN(bsize, BLOCK_8X8);
+  } else {
+    for (; bsize > 0; bsize -= 3) {
+      *bh = num_8x8_blocks_high_lookup[bsize];
+      *bw = num_8x8_blocks_wide_lookup[bsize];
+      if ((*bh <= rows_left) && (*bw <= cols_left)) {
+        break;
+      }
+    }
+  }
+  return bsize;
+}
+
+static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
+                                         int bw_in, int row8x8_remaining,
+                                         int col8x8_remaining, BLOCK_SIZE bsize,
+                                         MODE_INFO **mi_8x8) {
+  int bh = bh_in;
+  int r, c;
+  for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
+    int bw = bw_in;
+    for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
+      const int index = r * mis + c;
+      mi_8x8[index] = mi + index;
+      mi_8x8[index]->mbmi.sb_type = find_partition_size(
+          bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
+    }
+  }
+}
+
+// This function attempts to set all mode info entries in a given SB64
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+static void set_fixed_partitioning(VP10_COMP *cpi, const TileInfo *const tile,
+                                   MODE_INFO **mi_8x8, int mi_row, int mi_col,
+                                   BLOCK_SIZE bsize) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int mis = cm->mi_stride;
+  const int row8x8_remaining = tile->mi_row_end - mi_row;
+  const int col8x8_remaining = tile->mi_col_end - mi_col;
+  int block_row, block_col;
+  MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
+  int bh = num_8x8_blocks_high_lookup[bsize];
+  int bw = num_8x8_blocks_wide_lookup[bsize];
+
+  assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+  // Apply the requested partition size to the SB64 if it is all "in image"
+  if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+      (row8x8_remaining >= MI_BLOCK_SIZE)) {
+    for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
+      for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
+        int index = block_row * mis + block_col;
+        mi_8x8[index] = mi_upper_left + index;
+        mi_8x8[index]->mbmi.sb_type = bsize;
+      }
+    }
+  } else {
+    // Else this is a partial SB64.
+    set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
+                                 col8x8_remaining, bsize, mi_8x8);
+  }
+}
+
+static void rd_use_partition(VP10_COMP *cpi, ThreadData *td,
+                             TileDataEnc *tile_data, MODE_INFO **mi_8x8,
+                             TOKENEXTRA **tp, int mi_row, int mi_col,
+                             BLOCK_SIZE bsize, int *rate, int64_t *dist,
+                             int do_recon, PC_TREE *pc_tree) {
+  VP10_COMMON *const cm = &cpi->common;
+  TileInfo *const tile_info = &tile_data->tile_info;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const int mis = cm->mi_stride;
+  const int bsl = b_width_log2_lookup[bsize];
+  const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
+  const int bss = (1 << bsl) / 4;
+  int i, pl;
+  PARTITION_TYPE partition = PARTITION_NONE;
+  BLOCK_SIZE subsize;
+  ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+  PARTITION_CONTEXT sl[8], sa[8];
+  RD_COST last_part_rdc, none_rdc, chosen_rdc;
+  BLOCK_SIZE sub_subsize = BLOCK_4X4;
+  int splits_below = 0;
+  BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
+  int do_partition_search = 1;
+  PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+
+  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+  assert(num_4x4_blocks_wide_lookup[bsize] ==
+         num_4x4_blocks_high_lookup[bsize]);
+
+  vp10_rd_cost_reset(&last_part_rdc);
+  vp10_rd_cost_reset(&none_rdc);
+  vp10_rd_cost_reset(&chosen_rdc);
+
+  partition = partition_lookup[bsl][bs_type];
+  subsize = get_subsize(bsize, partition);
+
+  pc_tree->partitioning = partition;
+  save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+  if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
+    set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+    x->mb_energy = vp10_block_energy(cpi, x, bsize);
+  }
+
+  if (do_partition_search &&
+      cpi->sf.partition_search_type == SEARCH_PARTITION &&
+      cpi->sf.adjust_partitioning_from_last_frame) {
+    // Check if any of the sub blocks are further split.
+    if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
+      sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
+      splits_below = 1;
+      for (i = 0; i < 4; i++) {
+        int jj = i >> 1, ii = i & 0x01;
+        MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
+        if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
+          splits_below = 0;
+        }
+      }
+    }
+
+    // If partition is not none try none unless each of the 4 splits are split
+    // even further..
+    if (partition != PARTITION_NONE && !splits_below &&
+        mi_row + (mi_step >> 1) < cm->mi_rows &&
+        mi_col + (mi_step >> 1) < cm->mi_cols) {
+      pc_tree->partitioning = PARTITION_NONE;
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
+                       INT64_MAX);
+
+      pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+
+      if (none_rdc.rate < INT_MAX) {
+        none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+        none_rdc.rdcost =
+            RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
+      }
+
+      restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+      mi_8x8[0]->mbmi.sb_type = bs_type;
+      pc_tree->partitioning = partition;
+    }
+  }
+
+  switch (partition) {
+    case PARTITION_NONE:
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
+                       ctx, INT64_MAX);
+      break;
+    case PARTITION_HORZ:
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+                       subsize, &pc_tree->horizontal[0], INT64_MAX);
+      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+          mi_row + (mi_step >> 1) < cm->mi_rows) {
+        RD_COST tmp_rdc;
+        PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+        vp10_rd_cost_init(&tmp_rdc);
+        update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+        encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+        rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
+                         &tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX);
+        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+          vp10_rd_cost_reset(&last_part_rdc);
+          break;
+        }
+        last_part_rdc.rate += tmp_rdc.rate;
+        last_part_rdc.dist += tmp_rdc.dist;
+        last_part_rdc.rdcost += tmp_rdc.rdcost;
+      }
+      break;
+    case PARTITION_VERT:
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+                       subsize, &pc_tree->vertical[0], INT64_MAX);
+      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+          mi_col + (mi_step >> 1) < cm->mi_cols) {
+        RD_COST tmp_rdc;
+        PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
+        vp10_rd_cost_init(&tmp_rdc);
+        update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+        encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+        rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1),
+                         &tmp_rdc, subsize,
+                         &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX);
+        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+          vp10_rd_cost_reset(&last_part_rdc);
+          break;
+        }
+        last_part_rdc.rate += tmp_rdc.rate;
+        last_part_rdc.dist += tmp_rdc.dist;
+        last_part_rdc.rdcost += tmp_rdc.rdcost;
+      }
+      break;
+    case PARTITION_SPLIT:
+      if (bsize == BLOCK_8X8) {
+        rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+                         subsize, pc_tree->leaf_split[0], INT64_MAX);
+        break;
+      }
+      last_part_rdc.rate = 0;
+      last_part_rdc.dist = 0;
+      last_part_rdc.rdcost = 0;
+      for (i = 0; i < 4; i++) {
+        int x_idx = (i & 1) * (mi_step >> 1);
+        int y_idx = (i >> 1) * (mi_step >> 1);
+        int jj = i >> 1, ii = i & 0x01;
+        RD_COST tmp_rdc;
+        if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
+          continue;
+
+        vp10_rd_cost_init(&tmp_rdc);
+        rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
+                         tp, mi_row + y_idx, mi_col + x_idx, subsize,
+                         &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
+                         pc_tree->split[i]);
+        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+          vp10_rd_cost_reset(&last_part_rdc);
+          break;
+        }
+        last_part_rdc.rate += tmp_rdc.rate;
+        last_part_rdc.dist += tmp_rdc.dist;
+      }
+      break;
+    default: assert(0); break;
+  }
+
+  pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+  if (last_part_rdc.rate < INT_MAX) {
+    last_part_rdc.rate += cpi->partition_cost[pl][partition];
+    last_part_rdc.rdcost =
+        RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
+  }
+
+  if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
+      cpi->sf.partition_search_type == SEARCH_PARTITION &&
+      partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
+      (mi_row + mi_step < cm->mi_rows ||
+       mi_row + (mi_step >> 1) == cm->mi_rows) &&
+      (mi_col + mi_step < cm->mi_cols ||
+       mi_col + (mi_step >> 1) == cm->mi_cols)) {
+    BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
+    chosen_rdc.rate = 0;
+    chosen_rdc.dist = 0;
+    restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+    pc_tree->partitioning = PARTITION_SPLIT;
+
+    // Split partition.
+    for (i = 0; i < 4; i++) {
+      int x_idx = (i & 1) * (mi_step >> 1);
+      int y_idx = (i >> 1) * (mi_step >> 1);
+      RD_COST tmp_rdc;
+      ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+      PARTITION_CONTEXT sl[8], sa[8];
+
+      if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
+        continue;
+
+      save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+      pc_tree->split[i]->partitioning = PARTITION_NONE;
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
+                       &tmp_rdc, split_subsize, &pc_tree->split[i]->none,
+                       INT64_MAX);
+
+      restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+      if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+        vp10_rd_cost_reset(&chosen_rdc);
+        break;
+      }
+
+      chosen_rdc.rate += tmp_rdc.rate;
+      chosen_rdc.dist += tmp_rdc.dist;
+
+      if (i != 3)
+        encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
+                  split_subsize, pc_tree->split[i]);
+
+      pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
+                                   split_subsize);
+      chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+    }
+    pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+    if (chosen_rdc.rate < INT_MAX) {
+      chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
+      chosen_rdc.rdcost =
+          RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
+    }
+  }
+
+  // If last_part is better set the partitioning to that.
+  if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
+    mi_8x8[0]->mbmi.sb_type = bsize;
+    if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
+    chosen_rdc = last_part_rdc;
+  }
+  // If none was better set the partitioning to that.
+  if (none_rdc.rdcost < chosen_rdc.rdcost) {
+    if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
+    chosen_rdc = none_rdc;
+  }
+
+  restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+  // We must have chosen a partitioning and encoding or we'll fail later on.
+  // No other opportunities for success.
+  if (bsize == BLOCK_64X64)
+    assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
+
+  if (do_recon) {
+    int output_enabled = (bsize == BLOCK_64X64);
+    encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
+              pc_tree);
+  }
+
+  *rate = chosen_rdc.rate;
+  *dist = chosen_rdc.dist;
+}
+
+static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
+  BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,  BLOCK_4X4, BLOCK_4X4,
+  BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,  BLOCK_8X8, BLOCK_16X16,
+  BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
+};
+
+static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
+  BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
+  BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
+  BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
+};
+
+// Look at all the mode_info entries for blocks that are part of this
+// partition and find the min and max values for sb_type.
+// At the moment this is designed to work on a 64x64 SB but could be
+// adjusted to use a size parameter.
+//
+// The min and max are assumed to have been initialized prior to calling this
+// function so repeat calls can accumulate a min and max of more than one sb64.
+static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
+                                        BLOCK_SIZE *min_block_size,
+                                        BLOCK_SIZE *max_block_size,
+                                        int bs_hist[BLOCK_SIZES]) {
+  int sb_width_in_blocks = MI_BLOCK_SIZE;
+  int sb_height_in_blocks = MI_BLOCK_SIZE;
+  int i, j;
+  int index = 0;
+
+  // Check the sb_type for each block that belongs to this region.
+  for (i = 0; i < sb_height_in_blocks; ++i) {
+    for (j = 0; j < sb_width_in_blocks; ++j) {
+      MODE_INFO *mi = mi_8x8[index + j];
+      BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
+      bs_hist[sb_type]++;
+      *min_block_size = VPXMIN(*min_block_size, sb_type);
+      *max_block_size = VPXMAX(*max_block_size, sb_type);
+    }
+    index += xd->mi_stride;
+  }
+}
+
+// Next square block size less or equal than current block size.
+static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
+  BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,
+  BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
+  BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
+};
+
+// Look at neighboring blocks and set a min and max partition size based on
+// what they chose.
+static void rd_auto_partition_range(VP10_COMP *cpi, const TileInfo *const tile,
+                                    MACROBLOCKD *const xd, int mi_row,
+                                    int mi_col, BLOCK_SIZE *min_block_size,
+                                    BLOCK_SIZE *max_block_size) {
+  VP10_COMMON *const cm = &cpi->common;
+  MODE_INFO **mi = xd->mi;
+  const int left_in_image = xd->left_available && mi[-1];
+  const int above_in_image = xd->up_available && mi[-xd->mi_stride];
+  const int row8x8_remaining = tile->mi_row_end - mi_row;
+  const int col8x8_remaining = tile->mi_col_end - mi_col;
+  int bh, bw;
+  BLOCK_SIZE min_size = BLOCK_4X4;
+  BLOCK_SIZE max_size = BLOCK_64X64;
+  int bs_hist[BLOCK_SIZES] = { 0 };
+
+  // Trap case where we do not have a prediction.
+  if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
+    // Default "min to max" and "max to min"
+    min_size = BLOCK_64X64;
+    max_size = BLOCK_4X4;
+
+    // NOTE: each call to get_sb_partition_size_range() uses the previous
+    // passed in values for min and max as a starting point.
+    // Find the min and max partition used in previous frame at this location
+    if (cm->frame_type != KEY_FRAME) {
+      MODE_INFO **prev_mi =
+          &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
+      get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
+    }
+    // Find the min and max partition sizes used in the left SB64
+    if (left_in_image) {
+      MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
+      get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
+                                  bs_hist);
+    }
+    // Find the min and max partition sizes used in the above SB64.
+    if (above_in_image) {
+      MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
+      get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
+                                  bs_hist);
+    }
+
+    // Adjust observed min and max for "relaxed" auto partition case.
+    if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
+      min_size = min_partition_size[min_size];
+      max_size = max_partition_size[max_size];
+    }
+  }
+
+  // Check border cases where max and min from neighbors may not be legal.
+  max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
+                                 &bh, &bw);
+  // Test for blocks at the edge of the active image.
+  // This may be the actual edge of the image or where there are formatting
+  // bars.
+  if (vp10_active_edge_sb(cpi, mi_row, mi_col)) {
+    min_size = BLOCK_4X4;
+  } else {
+    min_size =
+        VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
+  }
+
+  // When use_square_partition_only is true, make sure at least one square
+  // partition is allowed by selecting the next smaller square size as
+  // *min_block_size.
+  if (cpi->sf.use_square_partition_only &&
+      next_square_size[max_size] < min_size) {
+    min_size = next_square_size[max_size];
+  }
+
+  *min_block_size = min_size;
+  *max_block_size = max_size;
+}
+
+// TODO(jingning) refactor functions setting partition search range
+static void set_partition_range(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row,
+                                int mi_col, BLOCK_SIZE bsize,
+                                BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
+  int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  int mi_height = num_8x8_blocks_high_lookup[bsize];
+  int idx, idy;
+
+  MODE_INFO *mi;
+  const int idx_str = cm->mi_stride * mi_row + mi_col;
+  MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
+  BLOCK_SIZE bs, min_size, max_size;
+
+  min_size = BLOCK_64X64;
+  max_size = BLOCK_4X4;
+
+  if (prev_mi) {
+    for (idy = 0; idy < mi_height; ++idy) {
+      for (idx = 0; idx < mi_width; ++idx) {
+        mi = prev_mi[idy * cm->mi_stride + idx];
+        bs = mi ? mi->mbmi.sb_type : bsize;
+        min_size = VPXMIN(min_size, bs);
+        max_size = VPXMAX(max_size, bs);
+      }
+    }
+  }
+
+  if (xd->left_available) {
+    for (idy = 0; idy < mi_height; ++idy) {
+      mi = xd->mi[idy * cm->mi_stride - 1];
+      bs = mi ? mi->mbmi.sb_type : bsize;
+      min_size = VPXMIN(min_size, bs);
+      max_size = VPXMAX(max_size, bs);
+    }
+  }
+
+  if (xd->up_available) {
+    for (idx = 0; idx < mi_width; ++idx) {
+      mi = xd->mi[idx - cm->mi_stride];
+      bs = mi ? mi->mbmi.sb_type : bsize;
+      min_size = VPXMIN(min_size, bs);
+      max_size = VPXMAX(max_size, bs);
+    }
+  }
+
+  if (min_size == max_size) {
+    min_size = min_partition_size[min_size];
+    max_size = max_partition_size[max_size];
+  }
+
+  *min_bs = min_size;
+  *max_bs = max_size;
+}
+
+static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
+  memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
+}
+
+static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
+  memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
+}
+
+#if CONFIG_FP_MB_STATS
+const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
+                                                        1, 2, 2, 2, 4, 4 };
+const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
+                                                        2, 1, 2, 4, 2, 4 };
+const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
+  0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120
+};
+const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
+  0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120
+};
+const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
+  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6
+};
+
+typedef enum {
+  MV_ZERO = 0,
+  MV_LEFT = 1,
+  MV_UP = 2,
+  MV_RIGHT = 3,
+  MV_DOWN = 4,
+  MV_INVALID
+} MOTION_DIRECTION;
+
+static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
+  if (fp_byte & FPMB_MOTION_ZERO_MASK) {
+    return MV_ZERO;
+  } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
+    return MV_LEFT;
+  } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
+    return MV_RIGHT;
+  } else if (fp_byte & FPMB_MOTION_UP_MASK) {
+    return MV_UP;
+  } else {
+    return MV_DOWN;
+  }
+}
+
+static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
+                                           MOTION_DIRECTION that_mv) {
+  if (this_mv == that_mv) {
+    return 0;
+  } else {
+    return abs(this_mv - that_mv) == 2 ? 2 : 1;
+  }
+}
+#endif
+
+// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
+// unlikely to be selected depending on previous rate-distortion optimization
+// results, for encoding speed-up.
+static void rd_pick_partition(VP10_COMP *cpi, ThreadData *td,
+                              TileDataEnc *tile_data, TOKENEXTRA **tp,
+                              int mi_row, int mi_col, BLOCK_SIZE bsize,
+                              RD_COST *rd_cost, int64_t best_rd,
+                              PC_TREE *pc_tree) {
+  VP10_COMMON *const cm = &cpi->common;
+  TileInfo *const tile_info = &tile_data->tile_info;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
+  ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+  PARTITION_CONTEXT sl[8], sa[8];
+  TOKENEXTRA *tp_orig = *tp;
+  PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+  int i, pl;
+  BLOCK_SIZE subsize;
+  RD_COST this_rdc, sum_rdc, best_rdc;
+  int do_split = bsize >= BLOCK_8X8;
+  int do_rect = 1;
+
+  // Override skipping rectangular partition operations for edge blocks
+  const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
+  const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
+  const int xss = x->e_mbd.plane[1].subsampling_x;
+  const int yss = x->e_mbd.plane[1].subsampling_y;
+
+  BLOCK_SIZE min_size = x->min_partition_size;
+  BLOCK_SIZE max_size = x->max_partition_size;
+
+#if CONFIG_FP_MB_STATS
+  unsigned int src_diff_var = UINT_MAX;
+  int none_complexity = 0;
+#endif
+
+  int partition_none_allowed = !force_horz_split && !force_vert_split;
+  int partition_horz_allowed =
+      !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
+  int partition_vert_allowed =
+      !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
+  (void)*tp_orig;
+
+  assert(num_8x8_blocks_wide_lookup[bsize] ==
+         num_8x8_blocks_high_lookup[bsize]);
+
+  vp10_rd_cost_init(&this_rdc);
+  vp10_rd_cost_init(&sum_rdc);
+  vp10_rd_cost_reset(&best_rdc);
+  best_rdc.rdcost = best_rd;
+
+  set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+
+  if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
+    x->mb_energy = vp10_block_energy(cpi, x, bsize);
+
+  if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
+    int cb_partition_search_ctrl =
+        ((pc_tree->index == 0 || pc_tree->index == 3) +
+         get_chessboard_index(cm->current_video_frame)) &
+        0x1;
+
+    if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
+      set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
+  }
+
+  // Determine partition types in search according to the speed features.
+  // The threshold set here has to be of square block size.
+  if (cpi->sf.auto_min_max_partition_size) {
+    partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
+    partition_horz_allowed &=
+        ((bsize <= max_size && bsize > min_size) || force_horz_split);
+    partition_vert_allowed &=
+        ((bsize <= max_size && bsize > min_size) || force_vert_split);
+    do_split &= bsize > min_size;
+  }
+  if (cpi->sf.use_square_partition_only) {
+    partition_horz_allowed &= force_horz_split;
+    partition_vert_allowed &= force_vert_split;
+  }
+
+  save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+#if CONFIG_FP_MB_STATS
+  if (cpi->use_fp_mb_stats) {
+    set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+    src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
+                                                  mi_col, bsize);
+  }
+#endif
+
+#if CONFIG_FP_MB_STATS
+  // Decide whether we shall split directly and skip searching NONE by using
+  // the first pass block statistics
+  if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
+      partition_none_allowed && src_diff_var > 4 &&
+      cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
+    int mb_row = mi_row >> 1;
+    int mb_col = mi_col >> 1;
+    int mb_row_end =
+        VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
+    int mb_col_end =
+        VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
+    int r, c;
+
+    // compute a complexity measure, basically measure inconsistency of motion
+    // vectors obtained from the first pass in the current block
+    for (r = mb_row; r < mb_row_end; r++) {
+      for (c = mb_col; c < mb_col_end; c++) {
+        const int mb_index = r * cm->mb_cols + c;
+
+        MOTION_DIRECTION this_mv;
+        MOTION_DIRECTION right_mv;
+        MOTION_DIRECTION bottom_mv;
+
+        this_mv =
+            get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
+
+        // to its right
+        if (c != mb_col_end - 1) {
+          right_mv = get_motion_direction_fp(
+              cpi->twopass.this_frame_mb_stats[mb_index + 1]);
+          none_complexity += get_motion_inconsistency(this_mv, right_mv);
+        }
+
+        // to its bottom
+        if (r != mb_row_end - 1) {
+          bottom_mv = get_motion_direction_fp(
+              cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
+          none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
+        }
+
+        // do not count its left and top neighbors to avoid double counting
+      }
+    }
+
+    if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
+      partition_none_allowed = 0;
+    }
+  }
+#endif
+
+  // PARTITION_NONE
+  if (partition_none_allowed) {
+    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
+                     best_rdc.rdcost);
+    if (this_rdc.rate != INT_MAX) {
+      if (bsize >= BLOCK_8X8) {
+        pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+        this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+        this_rdc.rdcost =
+            RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
+      }
+
+      if (this_rdc.rdcost < best_rdc.rdcost) {
+        int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
+        int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
+
+        best_rdc = this_rdc;
+        if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
+
+        // Adjust dist breakout threshold according to the partition size.
+        dist_breakout_thr >>=
+            8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
+
+        rate_breakout_thr *= num_pels_log2_lookup[bsize];
+
+        // If all y, u, v transform blocks in this partition are skippable, and
+        // the dist & rate are within the thresholds, the partition search is
+        // terminated for current branch of the partition search tree.
+        // The dist & rate thresholds are set to 0 at speed 0 to disable the
+        // early termination at that speed.
+        if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
+            (ctx->skippable && best_rdc.dist < dist_breakout_thr &&
+             best_rdc.rate < rate_breakout_thr)) {
+          do_split = 0;
+          do_rect = 0;
+        }
+
+#if CONFIG_FP_MB_STATS
+        // Check if every 16x16 first pass block statistics has zero
+        // motion and the corresponding first pass residue is small enough.
+        // If that is the case, check the difference variance between the
+        // current frame and the last frame. If the variance is small enough,
+        // stop further splitting in RD optimization
+        if (cpi->use_fp_mb_stats && do_split != 0 &&
+            cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
+          int mb_row = mi_row >> 1;
+          int mb_col = mi_col >> 1;
+          int mb_row_end =
+              VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
+          int mb_col_end =
+              VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
+          int r, c;
+
+          int skip = 1;
+          for (r = mb_row; r < mb_row_end; r++) {
+            for (c = mb_col; c < mb_col_end; c++) {
+              const int mb_index = r * cm->mb_cols + c;
+              if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
+                    FPMB_MOTION_ZERO_MASK) ||
+                  !(cpi->twopass.this_frame_mb_stats[mb_index] &
+                    FPMB_ERROR_SMALL_MASK)) {
+                skip = 0;
+                break;
+              }
+            }
+            if (skip == 0) {
+              break;
+            }
+          }
+          if (skip) {
+            if (src_diff_var == UINT_MAX) {
+              set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+              src_diff_var = get_sby_perpixel_diff_variance(
+                  cpi, &x->plane[0].src, mi_row, mi_col, bsize);
+            }
+            if (src_diff_var < 8) {
+              do_split = 0;
+              do_rect = 0;
+            }
+          }
+        }
+#endif
+      }
+    }
+    restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+  }
+
+  // store estimated motion vector
+  if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx);
+
+  // PARTITION_SPLIT
+  // TODO(jingning): use the motion vectors given by the above search as
+  // the starting point of motion search in the following partition type check.
+  if (do_split) {
+    subsize = get_subsize(bsize, PARTITION_SPLIT);
+    if (bsize == BLOCK_8X8) {
+      i = 4;
+      if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
+        pc_tree->leaf_split[0]->pred_interp_filter =
+            ctx->mic.mbmi.interp_filter;
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+                       pc_tree->leaf_split[0], best_rdc.rdcost);
+      if (sum_rdc.rate == INT_MAX) sum_rdc.rdcost = INT64_MAX;
+    } else {
+      for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
+        const int x_idx = (i & 1) * mi_step;
+        const int y_idx = (i >> 1) * mi_step;
+
+        if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
+          continue;
+
+        if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
+
+        pc_tree->split[i]->index = i;
+        rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
+                          mi_col + x_idx, subsize, &this_rdc,
+                          best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
+
+        if (this_rdc.rate == INT_MAX) {
+          sum_rdc.rdcost = INT64_MAX;
+          break;
+        } else {
+          sum_rdc.rate += this_rdc.rate;
+          sum_rdc.dist += this_rdc.dist;
+          sum_rdc.rdcost += this_rdc.rdcost;
+        }
+      }
+    }
+
+    if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
+      pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+      sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
+      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
+
+      if (sum_rdc.rdcost < best_rdc.rdcost) {
+        best_rdc = sum_rdc;
+        pc_tree->partitioning = PARTITION_SPLIT;
+      }
+    } else {
+      // skip rectangular partition test when larger block size
+      // gives better rd cost
+      if (cpi->sf.less_rectangular_check) do_rect &= !partition_none_allowed;
+    }
+    restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+  }
+
+  // PARTITION_HORZ
+  if (partition_horz_allowed &&
+      (do_rect || vp10_active_h_edge(cpi, mi_row, mi_step))) {
+    subsize = get_subsize(bsize, PARTITION_HORZ);
+    if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
+    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+        partition_none_allowed)
+      pc_tree->horizontal[0].pred_interp_filter = ctx->mic.mbmi.interp_filter;
+    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+                     &pc_tree->horizontal[0], best_rdc.rdcost);
+
+    if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
+        bsize > BLOCK_8X8) {
+      PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+      update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+      encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+
+      if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
+      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+          partition_none_allowed)
+        pc_tree->horizontal[1].pred_interp_filter = ctx->mic.mbmi.interp_filter;
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
+                       subsize, &pc_tree->horizontal[1],
+                       best_rdc.rdcost - sum_rdc.rdcost);
+      if (this_rdc.rate == INT_MAX) {
+        sum_rdc.rdcost = INT64_MAX;
+      } else {
+        sum_rdc.rate += this_rdc.rate;
+        sum_rdc.dist += this_rdc.dist;
+        sum_rdc.rdcost += this_rdc.rdcost;
+      }
+    }
+
+    if (sum_rdc.rdcost < best_rdc.rdcost) {
+      pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+      sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
+      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
+      if (sum_rdc.rdcost < best_rdc.rdcost) {
+        best_rdc = sum_rdc;
+        pc_tree->partitioning = PARTITION_HORZ;
+      }
+    }
+    restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+  }
+  // PARTITION_VERT
+  if (partition_vert_allowed &&
+      (do_rect || vp10_active_v_edge(cpi, mi_col, mi_step))) {
+    subsize = get_subsize(bsize, PARTITION_VERT);
+
+    if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
+    if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+        partition_none_allowed)
+      pc_tree->vertical[0].pred_interp_filter = ctx->mic.mbmi.interp_filter;
+    rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+                     &pc_tree->vertical[0], best_rdc.rdcost);
+    if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
+        bsize > BLOCK_8X8) {
+      update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
+      encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
+                        &pc_tree->vertical[0]);
+
+      if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
+      if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+          partition_none_allowed)
+        pc_tree->vertical[1].pred_interp_filter = ctx->mic.mbmi.interp_filter;
+      rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
+                       subsize, &pc_tree->vertical[1],
+                       best_rdc.rdcost - sum_rdc.rdcost);
+      if (this_rdc.rate == INT_MAX) {
+        sum_rdc.rdcost = INT64_MAX;
+      } else {
+        sum_rdc.rate += this_rdc.rate;
+        sum_rdc.dist += this_rdc.dist;
+        sum_rdc.rdcost += this_rdc.rdcost;
+      }
+    }
+
+    if (sum_rdc.rdcost < best_rdc.rdcost) {
+      pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+      sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
+      sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
+      if (sum_rdc.rdcost < best_rdc.rdcost) {
+        best_rdc = sum_rdc;
+        pc_tree->partitioning = PARTITION_VERT;
+      }
+    }
+    restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+  }
+
+  // TODO(jbb): This code added so that we avoid static analysis
+  // warning related to the fact that best_rd isn't used after this
+  // point.  This code should be refactored so that the duplicate
+  // checks occur in some sub function and thus are used...
+  (void)best_rd;
+  *rd_cost = best_rdc;
+
+  if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
+      pc_tree->index != 3) {
+    int output_enabled = (bsize == BLOCK_64X64);
+    encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
+              pc_tree);
+  }
+
+  if (bsize == BLOCK_64X64) {
+    assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
+    assert(best_rdc.rate < INT_MAX);
+    assert(best_rdc.dist < INT64_MAX);
+  } else {
+    assert(tp_orig == *tp);
+  }
+}
+
+static void encode_rd_sb_row(VP10_COMP *cpi, ThreadData *td,
+                             TileDataEnc *tile_data, int mi_row,
+                             TOKENEXTRA **tp) {
+  VP10_COMMON *const cm = &cpi->common;
+  TileInfo *const tile_info = &tile_data->tile_info;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  SPEED_FEATURES *const sf = &cpi->sf;
+  int mi_col;
+
+  // Initialize the left context for the new SB row
+  memset(&xd->left_context, 0, sizeof(xd->left_context));
+  memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
+
+  // Code each SB in the row
+  for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
+       mi_col += MI_BLOCK_SIZE) {
+    const struct segmentation *const seg = &cm->seg;
+    int dummy_rate;
+    int64_t dummy_dist;
+    RD_COST dummy_rdc;
+    int i;
+    int seg_skip = 0;
+
+    const int idx_str = cm->mi_stride * mi_row + mi_col;
+    MODE_INFO **mi = cm->mi_grid_visible + idx_str;
+
+    if (sf->adaptive_pred_interp_filter) {
+      for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
+
+      for (i = 0; i < 64; ++i) {
+        td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
+        td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
+        td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
+        td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
+      }
+    }
+
+    vp10_zero(x->pred_mv);
+    td->pc_root->index = 0;
+
+    if (seg->enabled) {
+      const uint8_t *const map =
+          seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
+      int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
+      seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
+    }
+
+    x->source_variance = UINT_MAX;
+    if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
+      const BLOCK_SIZE bsize =
+          seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
+      set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+      set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
+                       &dummy_rate, &dummy_dist, 1, td->pc_root);
+    } else if (cpi->partition_search_skippable_frame) {
+      BLOCK_SIZE bsize;
+      set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+      bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
+      set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
+                       &dummy_rate, &dummy_dist, 1, td->pc_root);
+    } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
+               cm->frame_type != KEY_FRAME) {
+      choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
+      rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
+                       &dummy_rate, &dummy_dist, 1, td->pc_root);
+    } else {
+      // If required set upper and lower partition size limits
+      if (sf->auto_min_max_partition_size) {
+        set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+        rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
+                                &x->min_partition_size, &x->max_partition_size);
+      }
+      rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
+                        &dummy_rdc, INT64_MAX, td->pc_root);
+    }
+  }
+}
+
+static void init_encode_frame_mb_context(VP10_COMP *cpi) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
+
+  // Copy data over into macro block data structures.
+  vp10_setup_src_planes(x, cpi->Source, 0, 0);
+
+  vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
+
+  // Note: this memset assumes above_context[0], [1] and [2]
+  // are allocated as part of the same buffer.
+  memset(xd->above_context[0], 0,
+         sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
+  memset(xd->above_seg_context, 0,
+         sizeof(*xd->above_seg_context) * aligned_mi_cols);
+}
+
+static int check_dual_ref_flags(VP10_COMP *cpi) {
+  const int ref_flags = cpi->ref_frame_flags;
+
+  if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
+    return 0;
+  } else {
+    return (!!(ref_flags & VPX_GOLD_FLAG) + !!(ref_flags & VPX_LAST_FLAG) +
+            !!(ref_flags & VPX_ALT_FLAG)) >= 2;
+  }
+}
+
+static void reset_skip_tx_size(VP10_COMMON *cm, TX_SIZE max_tx_size) {
+  int mi_row, mi_col;
+  const int mis = cm->mi_stride;
+  MODE_INFO **mi_ptr = cm->mi_grid_visible;
+
+  for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
+    for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
+      if (mi_ptr[mi_col]->mbmi.tx_size > max_tx_size)
+        mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
+    }
+  }
+}
+
+static MV_REFERENCE_FRAME get_frame_type(const VP10_COMP *cpi) {
+  if (frame_is_intra_only(&cpi->common))
+    return INTRA_FRAME;
+  else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
+    return ALTREF_FRAME;
+  else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
+    return GOLDEN_FRAME;
+  else
+    return LAST_FRAME;
+}
+
+static TX_MODE select_tx_mode(const VP10_COMP *cpi, MACROBLOCKD *const xd) {
+  if (xd->lossless[0]) return ONLY_4X4;
+  if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
+    return ALLOW_32X32;
+  else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
+           cpi->sf.tx_size_search_method == USE_TX_8X8)
+    return TX_MODE_SELECT;
+  else
+    return cpi->common.tx_mode;
+}
+
+void vp10_init_tile_data(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  const int tile_rows = 1 << cm->log2_tile_rows;
+  int tile_col, tile_row;
+  TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
+  int tile_tok = 0;
+
+  if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
+    if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
+    CHECK_MEM_ERROR(cm, cpi->tile_data, vpx_malloc(tile_cols * tile_rows *
+                                                   sizeof(*cpi->tile_data)));
+    cpi->allocated_tiles = tile_cols * tile_rows;
+
+    for (tile_row = 0; tile_row < tile_rows; ++tile_row)
+      for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+        TileDataEnc *tile_data =
+            &cpi->tile_data[tile_row * tile_cols + tile_col];
+        int i, j;
+        for (i = 0; i < BLOCK_SIZES; ++i) {
+          for (j = 0; j < MAX_MODES; ++j) {
+            tile_data->thresh_freq_fact[i][j] = 32;
+            tile_data->mode_map[i][j] = j;
+          }
+        }
+      }
+  }
+
+  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
+    for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+      TileInfo *tile_info =
+          &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
+      vp10_tile_init(tile_info, cm, tile_row, tile_col);
+
+      cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
+      pre_tok = cpi->tile_tok[tile_row][tile_col];
+      tile_tok = allocated_tokens(*tile_info);
+    }
+  }
+}
+
+void vp10_encode_tile(VP10_COMP *cpi, ThreadData *td, int tile_row,
+                      int tile_col) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
+  const TileInfo *const tile_info = &this_tile->tile_info;
+  TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
+  int mi_row;
+
+  // Set up pointers to per thread motion search counters.
+  td->mb.m_search_count_ptr = &td->rd_counts.m_search_count;
+  td->mb.ex_search_count_ptr = &td->rd_counts.ex_search_count;
+
+  for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
+       mi_row += MI_BLOCK_SIZE) {
+    encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
+  }
+  cpi->tok_count[tile_row][tile_col] =
+      (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
+  assert(tok - cpi->tile_tok[tile_row][tile_col] <=
+         allocated_tokens(*tile_info));
+}
+
+static void encode_tiles(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  const int tile_rows = 1 << cm->log2_tile_rows;
+  int tile_col, tile_row;
+
+  vp10_init_tile_data(cpi);
+
+  for (tile_row = 0; tile_row < tile_rows; ++tile_row)
+    for (tile_col = 0; tile_col < tile_cols; ++tile_col)
+      vp10_encode_tile(cpi, &cpi->td, tile_row, tile_col);
+}
+
+#if CONFIG_FP_MB_STATS
+static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
+                            VP10_COMMON *cm, uint8_t **this_frame_mb_stats) {
+  uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
+                         cm->current_video_frame * cm->MBs * sizeof(uint8_t);
+
+  if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
+
+  *this_frame_mb_stats = mb_stats_in;
+
+  return 1;
+}
+#endif
+
+static void encode_frame_internal(VP10_COMP *cpi) {
+  ThreadData *const td = &cpi->td;
+  MACROBLOCK *const x = &td->mb;
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  RD_COUNTS *const rdc = &cpi->td.rd_counts;
+  int i;
+
+  xd->mi = cm->mi_grid_visible;
+  xd->mi[0] = cm->mi;
+
+  vp10_zero(*td->counts);
+  vp10_zero(rdc->coef_counts);
+  vp10_zero(rdc->comp_pred_diff);
+  vp10_zero(rdc->filter_diff);
+  rdc->m_search_count = 0;   // Count of motion search hits.
+  rdc->ex_search_count = 0;  // Exhaustive mesh search hits.
+
+  for (i = 0; i < MAX_SEGMENTS; ++i) {
+    const int qindex = CONFIG_MISC_FIXES && cm->seg.enabled
+                           ? vp10_get_qindex(&cm->seg, i, cm->base_qindex)
+                           : cm->base_qindex;
+    xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
+                      cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
+  }
+
+  if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0;
+
+  cm->tx_mode = select_tx_mode(cpi, xd);
+
+  vp10_frame_init_quantizer(cpi);
+
+  vp10_initialize_rd_consts(cpi);
+  vp10_initialize_me_consts(cpi, x, cm->base_qindex);
+  init_encode_frame_mb_context(cpi);
+  cm->use_prev_frame_mvs =
+      !cm->error_resilient_mode && cm->width == cm->last_width &&
+      cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
+  // Special case: set prev_mi to NULL when the previous mode info
+  // context cannot be used.
+  cm->prev_mi =
+      cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
+
+  x->quant_fp = cpi->sf.use_quant_fp;
+  vp10_zero(x->skip_txfm);
+
+  {
+    struct vpx_usec_timer emr_timer;
+    vpx_usec_timer_start(&emr_timer);
+
+#if CONFIG_FP_MB_STATS
+    if (cpi->use_fp_mb_stats) {
+      input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
+                       &cpi->twopass.this_frame_mb_stats);
+    }
+#endif
+
+    // If allowed, encoding tiles in parallel with one thread handling one tile.
+    if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
+      vp10_encode_tiles_mt(cpi);
+    else
+      encode_tiles(cpi);
+
+    vpx_usec_timer_mark(&emr_timer);
+    cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
+  }
+
+#if 0
+  // Keep record of the total distortion this time around for future use
+  cpi->last_frame_distortion = cpi->frame_distortion;
+#endif
+}
+
+static INTERP_FILTER get_interp_filter(
+    const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
+  if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
+      threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
+      threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
+    return EIGHTTAP_SMOOTH;
+  } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
+             threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
+    return EIGHTTAP_SHARP;
+  } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
+    return EIGHTTAP;
+  } else {
+    return SWITCHABLE;
+  }
+}
+
+void vp10_encode_frame(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  // In the longer term the encoder should be generalized to match the
+  // decoder such that we allow compound where one of the 3 buffers has a
+  // different sign bias and that buffer is then the fixed ref. However, this
+  // requires further work in the rd loop. For now the only supported encoder
+  // side behavior is where the ALT ref buffer has opposite sign bias to
+  // the other two.
+  if (!frame_is_intra_only(cm)) {
+    if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+         cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
+        (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+         cm->ref_frame_sign_bias[LAST_FRAME])) {
+      cpi->allow_comp_inter_inter = 0;
+    } else {
+      cpi->allow_comp_inter_inter = 1;
+      cm->comp_fixed_ref = ALTREF_FRAME;
+      cm->comp_var_ref[0] = LAST_FRAME;
+      cm->comp_var_ref[1] = GOLDEN_FRAME;
+    }
+  } else {
+    cpi->allow_comp_inter_inter = 0;
+  }
+
+  if (cpi->sf.frame_parameter_update) {
+    int i;
+    RD_OPT *const rd_opt = &cpi->rd;
+    FRAME_COUNTS *counts = cpi->td.counts;
+    RD_COUNTS *const rdc = &cpi->td.rd_counts;
+
+    // This code does a single RD pass over the whole frame assuming
+    // either compound, single or hybrid prediction as per whatever has
+    // worked best for that type of frame in the past.
+    // It also predicts whether another coding mode would have worked
+    // better that this coding mode. If that is the case, it remembers
+    // that for subsequent frames.
+    // It does the same analysis for transform size selection also.
+    const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
+    int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
+    int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
+    const int is_alt_ref = frame_type == ALTREF_FRAME;
+
+    /* prediction (compound, single or hybrid) mode selection */
+    if (is_alt_ref || !cpi->allow_comp_inter_inter)
+      cm->reference_mode = SINGLE_REFERENCE;
+    else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
+             mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
+             check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
+      cm->reference_mode = COMPOUND_REFERENCE;
+    else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
+      cm->reference_mode = SINGLE_REFERENCE;
+    else
+      cm->reference_mode = REFERENCE_MODE_SELECT;
+
+    if (cm->interp_filter == SWITCHABLE)
+      cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
+
+    encode_frame_internal(cpi);
+
+    for (i = 0; i < REFERENCE_MODES; ++i)
+      mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
+
+    for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+      filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
+
+    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+      int single_count_zero = 0;
+      int comp_count_zero = 0;
+
+      for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
+        single_count_zero += counts->comp_inter[i][0];
+        comp_count_zero += counts->comp_inter[i][1];
+      }
+
+      if (comp_count_zero == 0) {
+        cm->reference_mode = SINGLE_REFERENCE;
+        vp10_zero(counts->comp_inter);
+      } else if (single_count_zero == 0) {
+        cm->reference_mode = COMPOUND_REFERENCE;
+        vp10_zero(counts->comp_inter);
+      }
+    }
+
+    if (cm->tx_mode == TX_MODE_SELECT) {
+      int count4x4 = 0;
+      int count8x8_lp = 0, count8x8_8x8p = 0;
+      int count16x16_16x16p = 0, count16x16_lp = 0;
+      int count32x32 = 0;
+
+      for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
+        count4x4 += counts->tx.p32x32[i][TX_4X4];
+        count4x4 += counts->tx.p16x16[i][TX_4X4];
+        count4x4 += counts->tx.p8x8[i][TX_4X4];
+
+        count8x8_lp += counts->tx.p32x32[i][TX_8X8];
+        count8x8_lp += counts->tx.p16x16[i][TX_8X8];
+        count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
+
+        count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
+        count16x16_lp += counts->tx.p32x32[i][TX_16X16];
+        count32x32 += counts->tx.p32x32[i][TX_32X32];
+      }
+      if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
+          count32x32 == 0) {
+        cm->tx_mode = ALLOW_8X8;
+        reset_skip_tx_size(cm, TX_8X8);
+      } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
+                 count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
+        cm->tx_mode = ONLY_4X4;
+        reset_skip_tx_size(cm, TX_4X4);
+      } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
+        cm->tx_mode = ALLOW_32X32;
+      } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
+        cm->tx_mode = ALLOW_16X16;
+        reset_skip_tx_size(cm, TX_16X16);
+      }
+    }
+  } else {
+    cm->reference_mode = SINGLE_REFERENCE;
+    encode_frame_internal(cpi);
+  }
+}
+
+static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi,
+                            const MODE_INFO *above_mi, const MODE_INFO *left_mi,
+                            const int intraonly) {
+  const PREDICTION_MODE y_mode = mi->mbmi.mode;
+  const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
+  const BLOCK_SIZE bsize = mi->mbmi.sb_type;
+
+  if (bsize < BLOCK_8X8) {
+    int idx, idy;
+    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+    for (idy = 0; idy < 2; idy += num_4x4_h)
+      for (idx = 0; idx < 2; idx += num_4x4_w) {
+        const int bidx = idy * 2 + idx;
+        const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode;
+        if (intraonly) {
+          const PREDICTION_MODE a = vp10_above_block_mode(mi, above_mi, bidx);
+          const PREDICTION_MODE l = vp10_left_block_mode(mi, left_mi, bidx);
+          ++counts->kf_y_mode[a][l][bmode];
+        } else {
+          ++counts->y_mode[0][bmode];
+        }
+      }
+  } else {
+    if (intraonly) {
+      const PREDICTION_MODE above = vp10_above_block_mode(mi, above_mi, 0);
+      const PREDICTION_MODE left = vp10_left_block_mode(mi, left_mi, 0);
+      ++counts->kf_y_mode[above][left][y_mode];
+    } else {
+      ++counts->y_mode[size_group_lookup[bsize]][y_mode];
+    }
+  }
+
+  ++counts->uv_mode[y_mode][uv_mode];
+}
+
+static void encode_superblock(VP10_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
+                              int output_enabled, int mi_row, int mi_col,
+                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MODE_INFO **mi_8x8 = xd->mi;
+  MODE_INFO *mi = mi_8x8[0];
+  MB_MODE_INFO *mbmi = &mi->mbmi;
+  const int seg_skip =
+      segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
+  const int mis = cm->mi_stride;
+  const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+  const int mi_height = num_8x8_blocks_high_lookup[bsize];
+
+  x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
+                   cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
+                   cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
+                   cpi->sf.allow_skip_recode;
+
+  if (!x->skip_recode) memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+
+  x->skip_optimize = ctx->is_coded;
+  ctx->is_coded = 1;
+  x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
+
+  if (!is_inter_block(mbmi)) {
+    int plane;
+    mbmi->skip = 1;
+    for (plane = 0; plane < MAX_MB_PLANE; ++plane)
+      vp10_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane);
+    if (output_enabled)
+      sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi,
+                      frame_is_intra_only(cm));
+    vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
+  } else {
+    int ref;
+    const int is_compound = has_second_ref(mbmi);
+    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+    for (ref = 0; ref < 1 + is_compound; ++ref) {
+      YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
+      assert(cfg != NULL);
+      vp10_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
+                            &xd->block_refs[ref]->sf);
+    }
+    if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
+      vp10_build_inter_predictors_sby(xd, mi_row, mi_col,
+                                      VPXMAX(bsize, BLOCK_8X8));
+
+    vp10_build_inter_predictors_sbuv(xd, mi_row, mi_col,
+                                     VPXMAX(bsize, BLOCK_8X8));
+
+    vp10_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
+    vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
+  }
+
+  if (output_enabled) {
+    if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 &&
+        !(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
+      ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
+                      &td->counts->tx)[mbmi->tx_size];
+    } else {
+      int x, y;
+      TX_SIZE tx_size;
+      // The new intra coding scheme requires no change of transform size
+      if (is_inter_block(&mi->mbmi)) {
+        tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
+                         max_txsize_lookup[bsize]);
+      } else {
+        tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
+      }
+
+      for (y = 0; y < mi_height; y++)
+        for (x = 0; x < mi_width; x++)
+          if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
+            mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
+    }
+    ++td->counts->tx.tx_totals[mbmi->tx_size];
+    ++td->counts->tx.tx_totals[get_uv_tx_size(mbmi, &xd->plane[1])];
+    if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
+        !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+      if (is_inter_block(mbmi)) {
+        ++td->counts->inter_ext_tx[mbmi->tx_size][mbmi->tx_type];
+      } else {
+        ++td->counts
+              ->intra_ext_tx[mbmi->tx_size][intra_mode_to_tx_type_context
+                                                [mbmi->mode]][mbmi->tx_type];
+      }
+    }
+  }
+}
diff --git a/av1/encoder/encodeframe.h b/av1/encoder/encodeframe.h
new file mode 100644
index 0000000..338cb86
--- /dev/null
+++ b/av1/encoder/encodeframe.h
@@ -0,0 +1,48 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_ENCODEFRAME_H_
+#define VP10_ENCODER_ENCODEFRAME_H_
+
+#include "aom/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct macroblock;
+struct yv12_buffer_config;
+struct VP10_COMP;
+struct ThreadData;
+
+// Constants used in SOURCE_VAR_BASED_PARTITION
+#define VAR_HIST_MAX_BG_VAR 1000
+#define VAR_HIST_FACTOR 10
+#define VAR_HIST_BINS (VAR_HIST_MAX_BG_VAR / VAR_HIST_FACTOR + 1)
+#define VAR_HIST_LARGE_CUT_OFF 75
+#define VAR_HIST_SMALL_CUT_OFF 45
+
+void vp10_setup_src_planes(struct macroblock *x,
+                           const struct yv12_buffer_config *src, int mi_row,
+                           int mi_col);
+
+void vp10_encode_frame(struct VP10_COMP *cpi);
+
+void vp10_init_tile_data(struct VP10_COMP *cpi);
+void vp10_encode_tile(struct VP10_COMP *cpi, struct ThreadData *td,
+                      int tile_row, int tile_col);
+
+void vp10_set_variance_partition_thresholds(struct VP10_COMP *cpi, int q);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_ENCODEFRAME_H_
diff --git a/av1/encoder/encodemb.c b/av1/encoder/encodemb.c
new file mode 100644
index 0000000..853629a
--- /dev/null
+++ b/av1/encoder/encodemb.c
@@ -0,0 +1,1300 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp10_rtcd.h"
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "aom_dsp/quantize.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/idct.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/scan.h"
+
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/tokenize.h"
+
+struct optimize_ctx {
+  ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
+  ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
+};
+
+void vp10_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+  struct macroblock_plane *const p = &x->plane[plane];
+  const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
+  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+  const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+  const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
+                              p->src.stride, pd->dst.buf, pd->dst.stride,
+                              x->e_mbd.bd);
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+                     pd->dst.buf, pd->dst.stride);
+}
+
+#define RDTRUNC(RM, DM, R, D)                        \
+  (((1 << (VP9_PROB_COST_SHIFT - 1)) + (R) * (RM)) & \
+   ((1 << VP9_PROB_COST_SHIFT) - 1))
+
+typedef struct vp10_token_state {
+  int rate;
+  int error;
+  int next;
+  int16_t token;
+  short qc;
+} vp10_token_state;
+
+// TODO(jimbankoski): experiment to find optimal RD numbers.
+static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
+
+#define UPDATE_RD_COST()                                \
+  {                                                     \
+    rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);    \
+    rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);    \
+    if (rd_cost0 == rd_cost1) {                         \
+      rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); \
+      rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); \
+    }                                                   \
+  }
+
+// This function is a place holder for now but may ultimately need
+// to scan previous tokens to work out the correct context.
+static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb,
+                                     int idx, int token, uint8_t *token_cache) {
+  int bak = token_cache[scan[idx]], pt;
+  token_cache[scan[idx]] = vp10_pt_energy_class[token];
+  pt = get_coef_context(nb, token_cache, idx + 1);
+  token_cache[scan[idx]] = bak;
+  return pt;
+}
+
+static int optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
+                      int ctx) {
+  MACROBLOCKD *const xd = &mb->e_mbd;
+  struct macroblock_plane *const p = &mb->plane[plane];
+  struct macroblockd_plane *const pd = &xd->plane[plane];
+  const int ref = is_inter_block(&xd->mi[0]->mbmi);
+  vp10_token_state tokens[1025][2];
+  unsigned best_index[1025][2];
+  uint8_t token_cache[1024];
+  const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
+  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  const int eob = p->eobs[block];
+  const PLANE_TYPE type = pd->plane_type;
+  const int default_eob = 16 << (tx_size << 1);
+  const int mul = 1 + (tx_size == TX_32X32);
+#if CONFIG_AOM_QM
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+  int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
+#endif
+  const int16_t *dequant_ptr = pd->dequant;
+  const uint8_t *const band_translate = get_band_translate(tx_size);
+  TX_TYPE tx_type = get_tx_type(type, xd, block);
+  const scan_order *const so = get_scan(tx_size, tx_type);
+  const int16_t *const scan = so->scan;
+  const int16_t *const nb = so->neighbors;
+  int next = eob, sz = 0;
+  int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
+  int64_t rd_cost0, rd_cost1;
+  int rate0, rate1, error0, error1;
+  int16_t t0, t1;
+  EXTRABIT e0;
+  int best, band, pt, i, final_eob;
+#if CONFIG_VPX_HIGHBITDEPTH
+  const int *cat6_high_cost = vp10_get_high_cost_table(xd->bd);
+#else
+  const int *cat6_high_cost = vp10_get_high_cost_table(8);
+#endif
+
+  assert((!type && !plane) || (type && plane));
+  assert(eob <= default_eob);
+
+  /* Now set up a Viterbi trellis to evaluate alternative roundings. */
+  if (!ref) rdmult = (rdmult * 9) >> 4;
+
+  /* Initialize the sentinel node of the trellis. */
+  tokens[eob][0].rate = 0;
+  tokens[eob][0].error = 0;
+  tokens[eob][0].next = default_eob;
+  tokens[eob][0].token = EOB_TOKEN;
+  tokens[eob][0].qc = 0;
+  tokens[eob][1] = tokens[eob][0];
+
+  for (i = 0; i < eob; i++)
+    token_cache[scan[i]] =
+        vp10_pt_energy_class[vp10_get_token(qcoeff[scan[i]])];
+
+  for (i = eob; i-- > 0;) {
+    int base_bits, d2, dx;
+
+    const int rc = scan[i];
+#if CONFIG_AOM_QM
+    int iwt = iqmatrix[rc];
+#endif
+    int x = qcoeff[rc];
+    /* Only add a trellis state for non-zero coefficients. */
+    if (x) {
+      int shortcut = 0;
+      error0 = tokens[next][0].error;
+      error1 = tokens[next][1].error;
+      /* Evaluate the first possibility for this state. */
+      rate0 = tokens[next][0].rate;
+      rate1 = tokens[next][1].rate;
+      vp10_get_token_extra(x, &t0, &e0);
+      /* Consider both possible successor states. */
+      if (next < default_eob) {
+        band = band_translate[i + 1];
+        pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
+        rate0 +=
+            mb->token_costs[tx_size][type][ref][band][0][pt][tokens[next][0]
+                                                                 .token];
+        rate1 +=
+            mb->token_costs[tx_size][type][ref][band][0][pt][tokens[next][1]
+                                                                 .token];
+      }
+      UPDATE_RD_COST();
+      /* And pick the best. */
+      best = rd_cost1 < rd_cost0;
+      base_bits = vp10_get_cost(t0, e0, cat6_high_cost);
+      dx = mul * (dqcoeff[rc] - coeff[rc]);
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+        dx >>= xd->bd - 8;
+      }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      d2 = dx * dx;
+      tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
+      tokens[i][0].error = d2 + (best ? error1 : error0);
+      tokens[i][0].next = next;
+      tokens[i][0].token = t0;
+      tokens[i][0].qc = x;
+      best_index[i][0] = best;
+
+      /* Evaluate the second possibility for this state. */
+      rate0 = tokens[next][0].rate;
+      rate1 = tokens[next][1].rate;
+
+#if CONFIG_AOM_QM
+      if ((abs(x) * dequant_ptr[rc != 0] * iwt >
+           ((abs(coeff[rc]) * mul) << AOM_QM_BITS)) &&
+          (abs(x) * dequant_ptr[rc != 0] * iwt <
+           ((abs(coeff[rc]) * mul + dequant_ptr[rc != 0]) << AOM_QM_BITS)))
+#else
+      if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
+          (abs(x) * dequant_ptr[rc != 0] <
+           abs(coeff[rc]) * mul + dequant_ptr[rc != 0]))
+#endif
+        shortcut = 1;
+      else
+        shortcut = 0;
+
+      if (shortcut) {
+        sz = -(x < 0);
+        x -= 2 * sz + 1;
+      }
+
+      /* Consider both possible successor states. */
+      if (!x) {
+        /* If we reduced this coefficient to zero, check to see if
+         *  we need to move the EOB back here.
+         */
+        t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+        t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+        e0 = 0;
+      } else {
+        vp10_get_token_extra(x, &t0, &e0);
+        t1 = t0;
+      }
+      if (next < default_eob) {
+        band = band_translate[i + 1];
+        if (t0 != EOB_TOKEN) {
+          pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
+          rate0 +=
+              mb->token_costs[tx_size][type][ref][band][!x][pt][tokens[next][0]
+                                                                    .token];
+        }
+        if (t1 != EOB_TOKEN) {
+          pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
+          rate1 +=
+              mb->token_costs[tx_size][type][ref][band][!x][pt][tokens[next][1]
+                                                                    .token];
+        }
+      }
+
+      UPDATE_RD_COST();
+      /* And pick the best. */
+      best = rd_cost1 < rd_cost0;
+      base_bits = vp10_get_cost(t0, e0, cat6_high_cost);
+
+      if (shortcut) {
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+          dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
+        } else {
+          dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
+        }
+#else
+        dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+        d2 = dx * dx;
+      }
+
+      tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
+      tokens[i][1].error = d2 + (best ? error1 : error0);
+      tokens[i][1].next = next;
+      tokens[i][1].token = best ? t1 : t0;
+      tokens[i][1].qc = x;
+      best_index[i][1] = best;
+      /* Finally, make this the new head of the trellis. */
+      next = i;
+    } else {
+      /* There's no choice to make for a zero coefficient, so we don't
+       *  add a new trellis node, but we do need to update the costs.
+       */
+      band = band_translate[i + 1];
+      t0 = tokens[next][0].token;
+      t1 = tokens[next][1].token;
+      /* Update the cost of each path if we're past the EOB token. */
+      if (t0 != EOB_TOKEN) {
+        tokens[next][0].rate +=
+            mb->token_costs[tx_size][type][ref][band][1][0][t0];
+        tokens[next][0].token = ZERO_TOKEN;
+      }
+      if (t1 != EOB_TOKEN) {
+        tokens[next][1].rate +=
+            mb->token_costs[tx_size][type][ref][band][1][0][t1];
+        tokens[next][1].token = ZERO_TOKEN;
+      }
+      best_index[i][0] = best_index[i][1] = 0;
+      /* Don't update next, because we didn't add a new node. */
+    }
+  }
+
+  /* Now pick the best path through the whole trellis. */
+  band = band_translate[i + 1];
+  rate0 = tokens[next][0].rate;
+  rate1 = tokens[next][1].rate;
+  error0 = tokens[next][0].error;
+  error1 = tokens[next][1].error;
+  t0 = tokens[next][0].token;
+  t1 = tokens[next][1].token;
+  rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
+  rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
+  UPDATE_RD_COST();
+  best = rd_cost1 < rd_cost0;
+  final_eob = -1;
+  memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2)));
+  memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2)));
+  for (i = next; i < eob; i = next) {
+    const int x = tokens[i][best].qc;
+    const int rc = scan[i];
+#if CONFIG_AOM_QM
+    const int iwt = iqmatrix[rc];
+    const int dequant =
+        (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
+#endif
+    if (x) {
+      final_eob = i;
+    }
+
+    qcoeff[rc] = x;
+#if CONFIG_AOM_QM
+    dqcoeff[rc] = (x * dequant) / mul;
+#else
+    dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
+#endif
+
+    next = tokens[i][best].next;
+    best = best_index[i][best];
+  }
+  final_eob++;
+
+  mb->plane[plane].eobs[block] = final_eob;
+  return final_eob;
+}
+
+static INLINE void fdct32x32(int rd_transform, const int16_t *src,
+                             tran_low_t *dst, int src_stride) {
+  if (rd_transform)
+    vpx_fdct32x32_rd(src, dst, src_stride);
+  else
+    vpx_fdct32x32(src, dst, src_stride);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src,
+                                    tran_low_t *dst, int src_stride) {
+  if (rd_transform)
+    vpx_highbd_fdct32x32_rd(src, dst, src_stride);
+  else
+    vpx_highbd_fdct32x32(src, dst, src_stride);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+void vp10_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
+                       int diff_stride, TX_TYPE tx_type, int lossless) {
+  if (lossless) {
+    vp10_fwht4x4(src_diff, coeff, diff_stride);
+  } else {
+    switch (tx_type) {
+      case DCT_DCT:
+        vpx_fdct4x4(src_diff, coeff, diff_stride);
+        break;
+      case ADST_DCT:
+      case DCT_ADST:
+      case ADST_ADST:
+        vp10_fht4x4(src_diff, coeff, diff_stride, tx_type);
+        break;
+      default:
+        assert(0);
+        break;
+    }
+  }
+}
+
+static void fwd_txfm_8x8(const int16_t *src_diff, tran_low_t *coeff,
+                         int diff_stride, TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      vp10_fht8x8(src_diff, coeff, diff_stride, tx_type);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+static void fwd_txfm_16x16(const int16_t *src_diff, tran_low_t *coeff,
+                           int diff_stride, TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      vp10_fht16x16(src_diff, coeff, diff_stride, tx_type);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+static void fwd_txfm_32x32(int rd_transform, const int16_t *src_diff,
+                           tran_low_t *coeff, int diff_stride,
+                           TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+      fdct32x32(rd_transform, src_diff, coeff, diff_stride);
+      break;
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      assert(0);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
+                              int diff_stride, TX_TYPE tx_type, int lossless) {
+  if (lossless) {
+    assert(tx_type == DCT_DCT);
+    vp10_highbd_fwht4x4(src_diff, coeff, diff_stride);
+  } else {
+    switch (tx_type) {
+      case DCT_DCT:
+        vpx_highbd_fdct4x4(src_diff, coeff, diff_stride);
+        break;
+      case ADST_DCT:
+      case DCT_ADST:
+      case ADST_ADST:
+        vp10_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
+        break;
+      default:
+        assert(0);
+        break;
+    }
+  }
+}
+
+static void highbd_fwd_txfm_8x8(const int16_t *src_diff, tran_low_t *coeff,
+                                int diff_stride, TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+      vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
+      break;
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      vp10_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+static void highbd_fwd_txfm_16x16(const int16_t *src_diff, tran_low_t *coeff,
+                                  int diff_stride, TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+      vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
+      break;
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      vp10_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+static void highbd_fwd_txfm_32x32(int rd_transform, const int16_t *src_diff,
+                                  tran_low_t *coeff, int diff_stride,
+                                  TX_TYPE tx_type) {
+  switch (tx_type) {
+    case DCT_DCT:
+      highbd_fdct32x32(rd_transform, src_diff, coeff, diff_stride);
+      break;
+    case ADST_DCT:
+    case DCT_ADST:
+    case ADST_ADST:
+      assert(0);
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+void vp10_xform_quant_fp(MACROBLOCK *x, int plane, int block, int blk_row,
+                         int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const struct macroblock_plane *const p = &x->plane[plane];
+  const struct macroblockd_plane *const pd = &xd->plane[plane];
+  PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
+  TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
+  const scan_order *const scan_order = get_scan(tx_size, tx_type);
+  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  uint16_t *const eob = &p->eobs[block];
+  const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+#if CONFIG_AOM_QM
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+  int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
+#endif
+  const int16_t *src_diff;
+  src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    switch (tx_size) {
+      case TX_32X32:
+        highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+        vp10_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
+                                      p->round_fp, p->quant_fp, p->quant_shift,
+                                      qcoeff, dqcoeff, pd->dequant, eob,
+                                      scan_order->scan,
+#if !CONFIG_AOM_QM
+                                      scan_order->iscan);
+#else
+                                      scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_16X16:
+        vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
+        vp10_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
+                                p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_8X8:
+        vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
+        vp10_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
+                                p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_4X4:
+        if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+          vp10_highbd_fwht4x4(src_diff, coeff, diff_stride);
+        } else {
+          vpx_highbd_fdct4x4(src_diff, coeff, diff_stride);
+        }
+        vp10_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
+                                p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      default:
+        assert(0);
+    }
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  switch (tx_size) {
+    case TX_32X32:
+      fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+      vp10_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp,
+                             p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                             pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                             scan_order->iscan);
+#else
+                             scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_16X16:
+      vpx_fdct16x16(src_diff, coeff, diff_stride);
+      vp10_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
+                       p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                       pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                       scan_order->iscan);
+#else
+                       scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_8X8:
+      vp10_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block,
+                         p->zbin, p->round_fp, p->quant_fp, p->quant_shift,
+                         qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                         scan_order->iscan);
+#else
+                         scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_4X4:
+      if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+        vp10_fwht4x4(src_diff, coeff, diff_stride);
+      } else {
+        vpx_fdct4x4(src_diff, coeff, diff_stride);
+      }
+      vp10_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
+                       p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+                       pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                       scan_order->iscan);
+#else
+                       scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+void vp10_xform_quant_dc(MACROBLOCK *x, int plane, int block, int blk_row,
+                         int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const struct macroblock_plane *const p = &x->plane[plane];
+  const struct macroblockd_plane *const pd = &xd->plane[plane];
+  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  uint16_t *const eob = &p->eobs[block];
+  const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+#if CONFIG_AOM_QM
+  int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
+#endif
+  const int16_t *src_diff;
+  src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    switch (tx_size) {
+      case TX_32X32:
+        vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride);
+        vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round,
+                                     p->quant_fp[0], qcoeff, dqcoeff,
+                                     pd->dequant[0],
+#if !CONFIG_AOM_QM
+                                     eob);
+#else
+                                     eob, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_16X16:
+        vpx_highbd_fdct16x16_1(src_diff, coeff, diff_stride);
+        vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round,
+                               p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                               eob);
+#else
+                               eob, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_8X8:
+        vpx_highbd_fdct8x8_1(src_diff, coeff, diff_stride);
+        vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round,
+                               p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                               eob);
+#else
+                               eob, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_4X4:
+        if (xd->lossless[seg_id]) {
+          vp10_highbd_fwht4x4(src_diff, coeff, diff_stride);
+        } else {
+          vpx_highbd_fdct4x4(src_diff, coeff, diff_stride);
+        }
+        vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round,
+                               p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                               eob);
+#else
+                               eob, qmatrix, iqmatrix);
+#endif
+        break;
+      default:
+        assert(0);
+    }
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  switch (tx_size) {
+    case TX_32X32:
+      vpx_fdct32x32_1(src_diff, coeff, diff_stride);
+      vpx_quantize_dc_32x32(coeff, x->skip_block, p->round, p->quant_fp[0],
+                            qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                            eob);
+#else
+                            eob, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_16X16:
+      vpx_fdct16x16_1(src_diff, coeff, diff_stride);
+      vpx_quantize_dc(coeff, 256, x->skip_block, p->round, p->quant_fp[0],
+                      qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                      eob);
+#else
+                      eob, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_8X8:
+      vpx_fdct8x8_1(src_diff, coeff, diff_stride);
+      vpx_quantize_dc(coeff, 64, x->skip_block, p->round, p->quant_fp[0],
+                      qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                      eob);
+#else
+                      eob, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_4X4:
+      if (xd->lossless[seg_id]) {
+        vp10_fwht4x4(src_diff, coeff, diff_stride);
+      } else {
+        vpx_fdct4x4(src_diff, coeff, diff_stride);
+      }
+      vpx_quantize_dc(coeff, 16, x->skip_block, p->round, p->quant_fp[0],
+                      qcoeff, dqcoeff, pd->dequant[0],
+#if !CONFIG_AOM_QM
+                      eob);
+#else
+                      eob, qmatrix, iqmatrix);
+#endif
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+void vp10_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
+                      int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const struct macroblock_plane *const p = &x->plane[plane];
+  const struct macroblockd_plane *const pd = &xd->plane[plane];
+  PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
+  TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
+  const scan_order *const scan_order = get_scan(tx_size, tx_type);
+  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+  tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  uint16_t *const eob = &p->eobs[block];
+  const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+#if CONFIG_AOM_QM
+  int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
+#endif
+  const int16_t *src_diff;
+  src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    switch (tx_size) {
+      case TX_32X32:
+        highbd_fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride,
+                              tx_type);
+        vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
+                                    p->round, p->quant, p->quant_shift, qcoeff,
+                                    dqcoeff, pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                    scan_order->iscan);
+#else
+                                    scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_16X16:
+        highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
+        vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+                              p->quant, p->quant_shift, qcoeff, dqcoeff,
+                              pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                              scan_order->iscan);
+#else
+                              scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_8X8:
+        highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
+        vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
+                              p->quant, p->quant_shift, qcoeff, dqcoeff,
+                              pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                              scan_order->iscan);
+#else
+                              scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      case TX_4X4:
+        vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
+                                 xd->lossless[seg_id]);
+        vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
+                              p->quant, p->quant_shift, qcoeff, dqcoeff,
+                              pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                              scan_order->iscan);
+#else
+                              scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        break;
+      default:
+        assert(0);
+    }
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  switch (tx_size) {
+    case TX_32X32:
+      fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride, tx_type);
+      vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
+                           p->quant, p->quant_shift, qcoeff, dqcoeff,
+                           pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                           scan_order->iscan);
+#else
+                           scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_16X16:
+      fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
+      vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
+                     p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                     scan_order->scan,
+#if !CONFIG_AOM_QM
+                     scan_order->iscan);
+#else
+                     scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_8X8:
+      fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
+      vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
+                     p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                     scan_order->scan,
+#if !CONFIG_AOM_QM
+                     scan_order->iscan);
+#else
+                     scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    case TX_4X4:
+      vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
+                        xd->lossless[seg_id]);
+      vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
+                     p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                     scan_order->scan,
+#if !CONFIG_AOM_QM
+                     scan_order->iscan);
+#else
+                     scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      break;
+    default:
+      assert(0);
+      break;
+  }
+}
+
+static void encode_block(int plane, int block, int blk_row, int blk_col,
+                         BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
+  struct encode_b_args *const args = arg;
+  MACROBLOCK *const x = args->x;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct optimize_ctx *const ctx = args->ctx;
+  struct macroblock_plane *const p = &x->plane[plane];
+  struct macroblockd_plane *const pd = &xd->plane[plane];
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  uint8_t *dst;
+  ENTROPY_CONTEXT *a, *l;
+  TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block);
+  dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
+  a = &ctx->ta[plane][blk_col];
+  l = &ctx->tl[plane][blk_row];
+
+  // TODO(jingning): per transformed block zero forcing only enabled for
+  // luma component. will integrate chroma components as well.
+  if (x->zcoeff_blk[tx_size][block] && plane == 0) {
+    p->eobs[block] = 0;
+    *a = *l = 0;
+    return;
+  }
+
+  if (!x->skip_recode) {
+    if (x->quant_fp) {
+      // Encoding process for rtc mode
+      if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) {
+        // skip forward transform
+        p->eobs[block] = 0;
+        *a = *l = 0;
+        return;
+      } else {
+        vp10_xform_quant_fp(x, plane, block, blk_row, blk_col, plane_bsize,
+                            tx_size);
+      }
+    } else {
+      if (max_txsize_lookup[plane_bsize] == tx_size) {
+        int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1));
+        if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) {
+          // full forward transform and quantization
+          vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
+                           tx_size);
+        } else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) {
+          // fast path forward transform and quantization
+          vp10_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize,
+                              tx_size);
+        } else {
+          // skip forward transform
+          p->eobs[block] = 0;
+          *a = *l = 0;
+          return;
+        }
+      } else {
+        vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
+                         tx_size);
+      }
+    }
+  }
+
+  if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+    const int ctx = combine_entropy_contexts(*a, *l);
+    *a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
+  } else {
+    *a = *l = p->eobs[block] > 0;
+  }
+
+  if (p->eobs[block]) *(args->skip) = 0;
+
+  if (p->eobs[block] == 0) return;
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    switch (tx_size) {
+      case TX_32X32:
+        vp10_highbd_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride,
+                                       p->eobs[block], xd->bd, tx_type);
+        break;
+      case TX_16X16:
+        vp10_highbd_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride,
+                                       p->eobs[block], xd->bd, tx_type);
+        break;
+      case TX_8X8:
+        vp10_highbd_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride,
+                                     p->eobs[block], xd->bd, tx_type);
+        break;
+      case TX_4X4:
+        // this is like vp10_short_idct4x4 but has a special case around eob<=1
+        // which is significant (not just an optimization) for the lossless
+        // case.
+        vp10_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride,
+                                     p->eobs[block], xd->bd, tx_type,
+                                     xd->lossless[xd->mi[0]->mbmi.segment_id]);
+        break;
+      default:
+        assert(0 && "Invalid transform size");
+        break;
+    }
+
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  switch (tx_size) {
+    case TX_32X32:
+      vp10_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                              tx_type);
+      break;
+    case TX_16X16:
+      vp10_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                              tx_type);
+      break;
+    case TX_8X8:
+      vp10_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                            tx_type);
+      break;
+    case TX_4X4:
+      // this is like vp10_short_idct4x4 but has a special case around eob<=1
+      // which is significant (not just an optimization) for the lossless
+      // case.
+      vp10_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                            tx_type, xd->lossless[xd->mi[0]->mbmi.segment_id]);
+      break;
+    default:
+      assert(0 && "Invalid transform size");
+      break;
+  }
+}
+
+static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
+                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+                               void *arg) {
+  MACROBLOCK *const x = (MACROBLOCK *)arg;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblock_plane *const p = &x->plane[plane];
+  struct macroblockd_plane *const pd = &xd->plane[plane];
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  uint8_t *dst;
+  dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
+
+  vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
+
+  if (p->eobs[block] > 0) {
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      if (xd->lossless[0]) {
+        vp10_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                                xd->bd);
+      } else {
+        vp10_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+                                xd->bd);
+      }
+      return;
+    }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+    if (xd->lossless[0]) {
+      vp10_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+    } else {
+      vp10_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+    }
+  }
+}
+
+void vp10_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
+  vp10_subtract_plane(x, bsize, 0);
+  vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
+                                          encode_block_pass1, x);
+}
+
+void vp10_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct optimize_ctx ctx;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  struct encode_b_args arg = { x, &ctx, &mbmi->skip };
+  int plane;
+
+  mbmi->skip = 1;
+
+  if (x->skip) return;
+
+  for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+    if (!x->skip_recode) vp10_subtract_plane(x, bsize, plane);
+
+    if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+      const struct macroblockd_plane *const pd = &xd->plane[plane];
+      const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
+      vp10_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane],
+                                ctx.tl[plane]);
+    }
+
+    vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
+                                            &arg);
+  }
+}
+
+void vp10_encode_block_intra(int plane, int block, int blk_row, int blk_col,
+                             BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+                             void *arg) {
+  struct encode_b_args *const args = arg;
+  MACROBLOCK *const x = args->x;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  struct macroblock_plane *const p = &x->plane[plane];
+  struct macroblockd_plane *const pd = &xd->plane[plane];
+  tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
+  tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+  PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
+  TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
+  const scan_order *const scan_order = get_scan(tx_size, tx_type);
+  PREDICTION_MODE mode;
+  const int bwl = b_width_log2_lookup[plane_bsize];
+  const int bhl = b_height_log2_lookup[plane_bsize];
+  const int diff_stride = 4 * (1 << bwl);
+  uint8_t *src, *dst;
+  int16_t *src_diff;
+  uint16_t *eob = &p->eobs[block];
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+#if CONFIG_AOM_QM
+  int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
+#endif
+  const int src_stride = p->src.stride;
+  const int dst_stride = pd->dst.stride;
+  dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
+  src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
+  src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
+
+  mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
+  vp10_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride, dst,
+                           dst_stride, blk_col, blk_row, plane);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    switch (tx_size) {
+      case TX_32X32:
+        if (!x->skip_recode) {
+          vpx_highbd_subtract_block(32, 32, src_diff, diff_stride, src,
+                                    src_stride, dst, dst_stride, xd->bd);
+          highbd_fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff,
+                                diff_stride, tx_type);
+          vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
+                                      p->round, p->quant, p->quant_shift,
+                                      qcoeff, dqcoeff, pd->dequant, eob,
+                                      scan_order->scan,
+#if !CONFIG_AOM_QM
+                                      scan_order->iscan);
+#else
+                                      scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        }
+        if (*eob)
+          vp10_highbd_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, xd->bd,
+                                         tx_type);
+        break;
+      case TX_16X16:
+        if (!x->skip_recode) {
+          vpx_highbd_subtract_block(16, 16, src_diff, diff_stride, src,
+                                    src_stride, dst, dst_stride, xd->bd);
+          highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
+          vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+                                p->quant, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        }
+        if (*eob)
+          vp10_highbd_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, xd->bd,
+                                         tx_type);
+        break;
+      case TX_8X8:
+        if (!x->skip_recode) {
+          vpx_highbd_subtract_block(8, 8, src_diff, diff_stride, src,
+                                    src_stride, dst, dst_stride, xd->bd);
+          highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
+          vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
+                                p->quant, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        }
+        if (*eob)
+          vp10_highbd_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, xd->bd,
+                                       tx_type);
+        break;
+      case TX_4X4:
+        if (!x->skip_recode) {
+          vpx_highbd_subtract_block(4, 4, src_diff, diff_stride, src,
+                                    src_stride, dst, dst_stride, xd->bd);
+          vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
+                                   xd->lossless[seg_id]);
+          vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
+                                p->quant, p->quant_shift, qcoeff, dqcoeff,
+                                pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                                scan_order->iscan);
+#else
+                                scan_order->iscan, qmatrix, iqmatrix);
+#endif
+        }
+
+        if (*eob)
+          // this is like vp10_short_idct4x4 but has a special case around
+          // eob<=1 which is significant (not just an optimization) for the
+          // lossless case.
+          vp10_highbd_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, xd->bd,
+                                       tx_type, xd->lossless[seg_id]);
+        break;
+      default:
+        assert(0);
+        return;
+    }
+    if (*eob) *(args->skip) = 0;
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  switch (tx_size) {
+    case TX_32X32:
+      if (!x->skip_recode) {
+        vpx_subtract_block(32, 32, src_diff, diff_stride, src, src_stride, dst,
+                           dst_stride);
+        fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride,
+                       tx_type);
+        vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
+                             p->quant, p->quant_shift, qcoeff, dqcoeff,
+                             pd->dequant, eob, scan_order->scan,
+#if !CONFIG_AOM_QM
+                             scan_order->iscan);
+#else
+                             scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      }
+      if (*eob)
+        vp10_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type);
+      break;
+    case TX_16X16:
+      if (!x->skip_recode) {
+        vpx_subtract_block(16, 16, src_diff, diff_stride, src, src_stride, dst,
+                           dst_stride);
+        fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
+        vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
+                       p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                       scan_order->scan,
+#if !CONFIG_AOM_QM
+                       scan_order->iscan);
+#else
+                       scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      }
+      if (*eob)
+        vp10_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type);
+      break;
+    case TX_8X8:
+      if (!x->skip_recode) {
+        vpx_subtract_block(8, 8, src_diff, diff_stride, src, src_stride, dst,
+                           dst_stride);
+        fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
+        vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
+                       p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                       scan_order->scan,
+#if !CONFIG_AOM_QM
+                       scan_order->iscan);
+#else
+                       scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      }
+      if (*eob) vp10_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type);
+      break;
+    case TX_4X4:
+      if (!x->skip_recode) {
+        vpx_subtract_block(4, 4, src_diff, diff_stride, src, src_stride, dst,
+                           dst_stride);
+        vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
+                          xd->lossless[seg_id]);
+        vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
+                       p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
+                       scan_order->scan,
+#if !CONFIG_AOM_QM
+                       scan_order->iscan);
+#else
+                       scan_order->iscan, qmatrix, iqmatrix);
+#endif
+      }
+
+      if (*eob) {
+        // this is like vp10_short_idct4x4 but has a special case around eob<=1
+        // which is significant (not just an optimization) for the lossless
+        // case.
+        vp10_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type,
+                              xd->lossless[seg_id]);
+      }
+      break;
+    default:
+      assert(0);
+      break;
+  }
+  if (*eob) *(args->skip) = 0;
+}
+
+void vp10_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  struct encode_b_args arg = { x, NULL, &xd->mi[0]->mbmi.skip };
+
+  vp10_foreach_transformed_block_in_plane(xd, bsize, plane,
+                                          vp10_encode_block_intra, &arg);
+}
diff --git a/av1/encoder/encodemb.h b/av1/encoder/encodemb.h
new file mode 100644
index 0000000..2faec3d
--- /dev/null
+++ b/av1/encoder/encodemb.h
@@ -0,0 +1,55 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_ENCODEMB_H_
+#define VP10_ENCODER_ENCODEMB_H_
+
+#include "./vpx_config.h"
+#include "av1/encoder/block.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct encode_b_args {
+  MACROBLOCK *x;
+  struct optimize_ctx *ctx;
+  int8_t *skip;
+};
+void vp10_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp10_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp10_xform_quant_fp(MACROBLOCK *x, int plane, int block, int blk_row,
+                         int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+void vp10_xform_quant_dc(MACROBLOCK *x, int plane, int block, int blk_row,
+                         int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+void vp10_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
+                      int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+
+void vp10_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+void vp10_encode_block_intra(int plane, int block, int blk_row, int blk_col,
+                             BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+                             void *arg);
+
+void vp10_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+void vp10_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
+                       int diff_stride, TX_TYPE tx_type, int lossless);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
+                              int diff_stride, TX_TYPE tx_type, int lossless);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_ENCODEMB_H_
diff --git a/av1/encoder/encodemv.c b/av1/encoder/encodemv.c
new file mode 100644
index 0000000..41f4049
--- /dev/null
+++ b/av1/encoder/encodemv.c
@@ -0,0 +1,267 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "av1/common/common.h"
+#include "av1/common/entropymode.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/subexp.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+
+static struct vp10_token mv_joint_encodings[MV_JOINTS];
+static struct vp10_token mv_class_encodings[MV_CLASSES];
+static struct vp10_token mv_fp_encodings[MV_FP_SIZE];
+static struct vp10_token mv_class0_encodings[CLASS0_SIZE];
+
+void vp10_entropy_mv_init(void) {
+  vp10_tokens_from_tree(mv_joint_encodings, vp10_mv_joint_tree);
+  vp10_tokens_from_tree(mv_class_encodings, vp10_mv_class_tree);
+  vp10_tokens_from_tree(mv_class0_encodings, vp10_mv_class0_tree);
+  vp10_tokens_from_tree(mv_fp_encodings, vp10_mv_fp_tree);
+}
+
+static void encode_mv_component(vpx_writer *w, int comp,
+                                const nmv_component *mvcomp, int usehp) {
+  int offset;
+  const int sign = comp < 0;
+  const int mag = sign ? -comp : comp;
+  const int mv_class = vp10_get_mv_class(mag - 1, &offset);
+  const int d = offset >> 3;         // int mv data
+  const int fr = (offset >> 1) & 3;  // fractional mv data
+  const int hp = offset & 1;         // high precision mv data
+
+  assert(comp != 0);
+
+  // Sign
+  vpx_write(w, sign, mvcomp->sign);
+
+  // Class
+  vp10_write_token(w, vp10_mv_class_tree, mvcomp->classes,
+                   &mv_class_encodings[mv_class]);
+
+  // Integer bits
+  if (mv_class == MV_CLASS_0) {
+    vp10_write_token(w, vp10_mv_class0_tree, mvcomp->class0,
+                     &mv_class0_encodings[d]);
+  } else {
+    int i;
+    const int n = mv_class + CLASS0_BITS - 1;  // number of bits
+    for (i = 0; i < n; ++i) vpx_write(w, (d >> i) & 1, mvcomp->bits[i]);
+  }
+
+  // Fractional bits
+  vp10_write_token(w, vp10_mv_fp_tree,
+                   mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp,
+                   &mv_fp_encodings[fr]);
+
+  // High precision bit
+  if (usehp)
+    vpx_write(w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp);
+}
+
+static void build_nmv_component_cost_table(int *mvcost,
+                                           const nmv_component *const mvcomp,
+                                           int usehp) {
+  int i, v;
+  int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
+  int bits_cost[MV_OFFSET_BITS][2];
+  int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
+  int class0_hp_cost[2], hp_cost[2];
+
+  sign_cost[0] = vp10_cost_zero(mvcomp->sign);
+  sign_cost[1] = vp10_cost_one(mvcomp->sign);
+  vp10_cost_tokens(class_cost, mvcomp->classes, vp10_mv_class_tree);
+  vp10_cost_tokens(class0_cost, mvcomp->class0, vp10_mv_class0_tree);
+  for (i = 0; i < MV_OFFSET_BITS; ++i) {
+    bits_cost[i][0] = vp10_cost_zero(mvcomp->bits[i]);
+    bits_cost[i][1] = vp10_cost_one(mvcomp->bits[i]);
+  }
+
+  for (i = 0; i < CLASS0_SIZE; ++i)
+    vp10_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], vp10_mv_fp_tree);
+  vp10_cost_tokens(fp_cost, mvcomp->fp, vp10_mv_fp_tree);
+
+  if (usehp) {
+    class0_hp_cost[0] = vp10_cost_zero(mvcomp->class0_hp);
+    class0_hp_cost[1] = vp10_cost_one(mvcomp->class0_hp);
+    hp_cost[0] = vp10_cost_zero(mvcomp->hp);
+    hp_cost[1] = vp10_cost_one(mvcomp->hp);
+  }
+  mvcost[0] = 0;
+  for (v = 1; v <= MV_MAX; ++v) {
+    int z, c, o, d, e, f, cost = 0;
+    z = v - 1;
+    c = vp10_get_mv_class(z, &o);
+    cost += class_cost[c];
+    d = (o >> 3);     /* int mv data */
+    f = (o >> 1) & 3; /* fractional pel mv data */
+    e = (o & 1);      /* high precision mv data */
+    if (c == MV_CLASS_0) {
+      cost += class0_cost[d];
+    } else {
+      int i, b;
+      b = c + CLASS0_BITS - 1; /* number of bits */
+      for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)];
+    }
+    if (c == MV_CLASS_0) {
+      cost += class0_fp_cost[d][f];
+    } else {
+      cost += fp_cost[f];
+    }
+    if (usehp) {
+      if (c == MV_CLASS_0) {
+        cost += class0_hp_cost[e];
+      } else {
+        cost += hp_cost[e];
+      }
+    }
+    mvcost[v] = cost + sign_cost[0];
+    mvcost[-v] = cost + sign_cost[1];
+  }
+}
+
+static void update_mv(vpx_writer *w, const unsigned int ct[2], vpx_prob *cur_p,
+                      vpx_prob upd_p) {
+#if CONFIG_MISC_FIXES
+  (void)upd_p;
+  vp10_cond_prob_diff_update(w, cur_p, ct);
+#else
+  const vpx_prob new_p = get_binary_prob(ct[0], ct[1]) | 1;
+  const int update = cost_branch256(ct, *cur_p) + vp10_cost_zero(upd_p) >
+                     cost_branch256(ct, new_p) + vp10_cost_one(upd_p) + 7 * 256;
+  vpx_write(w, update, upd_p);
+  if (update) {
+    *cur_p = new_p;
+    vpx_write_literal(w, new_p >> 1, 7);
+  }
+#endif
+}
+
+static void write_mv_update(const vpx_tree_index *tree,
+                            vpx_prob probs[/*n - 1*/],
+                            const unsigned int counts[/*n - 1*/], int n,
+                            vpx_writer *w) {
+  int i;
+  unsigned int branch_ct[32][2];
+
+  // Assuming max number of probabilities <= 32
+  assert(n <= 32);
+
+  vp10_tree_probs_from_distribution(tree, branch_ct, counts);
+  for (i = 0; i < n - 1; ++i)
+    update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB);
+}
+
+void vp10_write_nmv_probs(VP10_COMMON *cm, int usehp, vpx_writer *w,
+                          nmv_context_counts *const counts) {
+  int i, j;
+  nmv_context *const mvc = &cm->fc->nmvc;
+
+  write_mv_update(vp10_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS,
+                  w);
+
+  for (i = 0; i < 2; ++i) {
+    nmv_component *comp = &mvc->comps[i];
+    nmv_component_counts *comp_counts = &counts->comps[i];
+
+    update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB);
+    write_mv_update(vp10_mv_class_tree, comp->classes, comp_counts->classes,
+                    MV_CLASSES, w);
+    write_mv_update(vp10_mv_class0_tree, comp->class0, comp_counts->class0,
+                    CLASS0_SIZE, w);
+    for (j = 0; j < MV_OFFSET_BITS; ++j)
+      update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB);
+  }
+
+  for (i = 0; i < 2; ++i) {
+    for (j = 0; j < CLASS0_SIZE; ++j)
+      write_mv_update(vp10_mv_fp_tree, mvc->comps[i].class0_fp[j],
+                      counts->comps[i].class0_fp[j], MV_FP_SIZE, w);
+
+    write_mv_update(vp10_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp,
+                    MV_FP_SIZE, w);
+  }
+
+  if (usehp) {
+    for (i = 0; i < 2; ++i) {
+      update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp,
+                MV_UPDATE_PROB);
+      update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB);
+    }
+  }
+}
+
+void vp10_encode_mv(VP10_COMP *cpi, vpx_writer *w, const MV *mv, const MV *ref,
+                    const nmv_context *mvctx, int usehp) {
+  const MV diff = { mv->row - ref->row, mv->col - ref->col };
+  const MV_JOINT_TYPE j = vp10_get_mv_joint(&diff);
+  usehp = usehp && vp10_use_mv_hp(ref);
+
+  vp10_write_token(w, vp10_mv_joint_tree, mvctx->joints,
+                   &mv_joint_encodings[j]);
+  if (mv_joint_vertical(j))
+    encode_mv_component(w, diff.row, &mvctx->comps[0], usehp);
+
+  if (mv_joint_horizontal(j))
+    encode_mv_component(w, diff.col, &mvctx->comps[1], usehp);
+
+  // If auto_mv_step_size is enabled then keep track of the largest
+  // motion vector component used.
+  if (cpi->sf.mv.auto_mv_step_size) {
+    unsigned int maxv = VPXMAX(abs(mv->row), abs(mv->col)) >> 3;
+    cpi->max_mv_magnitude = VPXMAX(maxv, cpi->max_mv_magnitude);
+  }
+}
+
+void vp10_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+                               const nmv_context *ctx, int usehp) {
+  vp10_cost_tokens(mvjoint, ctx->joints, vp10_mv_joint_tree);
+  build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp);
+  build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp);
+}
+
+static void inc_mvs(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext,
+                    const int_mv mvs[2], nmv_context_counts *counts) {
+  int i;
+
+  for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
+    const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_mv;
+    const MV diff = { mvs[i].as_mv.row - ref->row,
+                      mvs[i].as_mv.col - ref->col };
+    vp10_inc_mv(&diff, counts, vp10_use_mv_hp(ref));
+  }
+}
+
+void vp10_update_mv_count(ThreadData *td) {
+  const MACROBLOCKD *xd = &td->mb.e_mbd;
+  const MODE_INFO *mi = xd->mi[0];
+  const MB_MODE_INFO *const mbmi = &mi->mbmi;
+  const MB_MODE_INFO_EXT *mbmi_ext = td->mb.mbmi_ext;
+
+  if (mbmi->sb_type < BLOCK_8X8) {
+    const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type];
+    const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi->sb_type];
+    int idx, idy;
+
+    for (idy = 0; idy < 2; idy += num_4x4_h) {
+      for (idx = 0; idx < 2; idx += num_4x4_w) {
+        const int i = idy * 2 + idx;
+        if (mi->bmi[i].as_mode == NEWMV)
+          inc_mvs(mbmi, mbmi_ext, mi->bmi[i].as_mv, &td->counts->mv);
+      }
+    }
+  } else {
+    if (mbmi->mode == NEWMV) inc_mvs(mbmi, mbmi_ext, mbmi->mv, &td->counts->mv);
+  }
+}
diff --git a/av1/encoder/encodemv.h b/av1/encoder/encodemv.h
new file mode 100644
index 0000000..dfcfffc
--- /dev/null
+++ b/av1/encoder/encodemv.h
@@ -0,0 +1,37 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_ENCODEMV_H_
+#define VP10_ENCODER_ENCODEMV_H_
+
+#include "av1/encoder/encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_entropy_mv_init(void);
+
+void vp10_write_nmv_probs(VP10_COMMON *cm, int usehp, vpx_writer *w,
+                          nmv_context_counts *const counts);
+
+void vp10_encode_mv(VP10_COMP *cpi, vpx_writer *w, const MV *mv, const MV *ref,
+                    const nmv_context *mvctx, int usehp);
+
+void vp10_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+                               const nmv_context *mvctx, int usehp);
+
+void vp10_update_mv_count(ThreadData *td);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_ENCODEMV_H_
diff --git a/av1/encoder/encoder.c b/av1/encoder/encoder.c
new file mode 100644
index 0000000..107345a
--- /dev/null
+++ b/av1/encoder/encoder.c
@@ -0,0 +1,4140 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "./vpx_config.h"
+
+#include "av1/common/alloccommon.h"
+#if CONFIG_CLPF
+#include "av1/common/clpf.h"
+#endif
+#if CONFIG_DERING
+#include "av1/common/dering.h"
+#endif  // CONFIG_DERING
+#include "av1/common/filter.h"
+#include "av1/common/idct.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/encoder/aq_complexity.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/bitstream.h"
+#include "av1/encoder/context_tree.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/mbgraph.h"
+#include "av1/encoder/picklpf.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/resize.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/skin_detection.h"
+#include "av1/encoder/speed_features.h"
+#include "av1/encoder/temporal_filter.h"
+
+#include "./vp10_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_scale_rtcd.h"
+#include "aom/internal/vpx_psnr.h"
+#if CONFIG_INTERNAL_STATS
+#include "aom_dsp/ssim.h"
+#endif
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_dsp/vpx_filter.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+#include "aom_ports/vpx_timer.h"
+#include "aom_scale/vpx_scale.h"
+
+#define AM_SEGMENT_ID_INACTIVE 7
+#define AM_SEGMENT_ID_ACTIVE 0
+
+#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
+
+#define ALTREF_HIGH_PRECISION_MV 1     // Whether to use high precision mv
+                                       //  for altref computation.
+#define HIGH_PRECISION_MV_QTHRESH 200  // Q threshold for high precision
+                                       // mv. Choose a very high value for
+                                       // now so that HIGH_PRECISION is always
+                                       // chosen.
+// #define OUTPUT_YUV_REC
+
+#ifdef OUTPUT_YUV_DENOISED
+FILE *yuv_denoised_file = NULL;
+#endif
+#ifdef OUTPUT_YUV_SKINMAP
+FILE *yuv_skinmap_file = NULL;
+#endif
+#ifdef OUTPUT_YUV_REC
+FILE *yuv_rec_file;
+#endif
+
+#if 0
+FILE *framepsnr;
+FILE *kf_list;
+FILE *keyfile;
+#endif
+
+static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
+  switch (mode) {
+    case NORMAL:
+      *hr = 1;
+      *hs = 1;
+      break;
+    case FOURFIVE:
+      *hr = 4;
+      *hs = 5;
+      break;
+    case THREEFIVE:
+      *hr = 3;
+      *hs = 5;
+      break;
+    case ONETWO:
+      *hr = 1;
+      *hs = 2;
+      break;
+    default:
+      *hr = 1;
+      *hs = 1;
+      assert(0);
+      break;
+  }
+}
+
+// Mark all inactive blocks as active. Other segmentation features may be set
+// so memset cannot be used, instead only inactive blocks should be reset.
+static void suppress_active_map(VP10_COMP *cpi) {
+  unsigned char *const seg_map = cpi->segmentation_map;
+  int i;
+  if (cpi->active_map.enabled || cpi->active_map.update)
+    for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
+      if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
+        seg_map[i] = AM_SEGMENT_ID_ACTIVE;
+}
+
+static void apply_active_map(VP10_COMP *cpi) {
+  struct segmentation *const seg = &cpi->common.seg;
+  unsigned char *const seg_map = cpi->segmentation_map;
+  const unsigned char *const active_map = cpi->active_map.map;
+  int i;
+
+  assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
+
+  if (frame_is_intra_only(&cpi->common)) {
+    cpi->active_map.enabled = 0;
+    cpi->active_map.update = 1;
+  }
+
+  if (cpi->active_map.update) {
+    if (cpi->active_map.enabled) {
+      for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
+        if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
+      vp10_enable_segmentation(seg);
+      vp10_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
+      vp10_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
+      // Setting the data to -MAX_LOOP_FILTER will result in the computed loop
+      // filter level being zero regardless of the value of seg->abs_delta.
+      vp10_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF,
+                       -MAX_LOOP_FILTER);
+    } else {
+      vp10_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
+      vp10_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
+      if (seg->enabled) {
+        seg->update_data = 1;
+        seg->update_map = 1;
+      }
+    }
+    cpi->active_map.update = 0;
+  }
+}
+
+int vp10_set_active_map(VP10_COMP *cpi, unsigned char *new_map_16x16, int rows,
+                        int cols) {
+  if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
+    unsigned char *const active_map_8x8 = cpi->active_map.map;
+    const int mi_rows = cpi->common.mi_rows;
+    const int mi_cols = cpi->common.mi_cols;
+    cpi->active_map.update = 1;
+    if (new_map_16x16) {
+      int r, c;
+      for (r = 0; r < mi_rows; ++r) {
+        for (c = 0; c < mi_cols; ++c) {
+          active_map_8x8[r * mi_cols + c] =
+              new_map_16x16[(r >> 1) * cols + (c >> 1)]
+                  ? AM_SEGMENT_ID_ACTIVE
+                  : AM_SEGMENT_ID_INACTIVE;
+        }
+      }
+      cpi->active_map.enabled = 1;
+    } else {
+      cpi->active_map.enabled = 0;
+    }
+    return 0;
+  } else {
+    return -1;
+  }
+}
+
+int vp10_get_active_map(VP10_COMP *cpi, unsigned char *new_map_16x16, int rows,
+                        int cols) {
+  if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
+      new_map_16x16) {
+    unsigned char *const seg_map_8x8 = cpi->segmentation_map;
+    const int mi_rows = cpi->common.mi_rows;
+    const int mi_cols = cpi->common.mi_cols;
+    memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
+    if (cpi->active_map.enabled) {
+      int r, c;
+      for (r = 0; r < mi_rows; ++r) {
+        for (c = 0; c < mi_cols; ++c) {
+          // Cyclic refresh segments are considered active despite not having
+          // AM_SEGMENT_ID_ACTIVE
+          new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
+              seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
+        }
+      }
+    }
+    return 0;
+  } else {
+    return -1;
+  }
+}
+
+void vp10_set_high_precision_mv(VP10_COMP *cpi, int allow_high_precision_mv) {
+  MACROBLOCK *const mb = &cpi->td.mb;
+  cpi->common.allow_high_precision_mv = allow_high_precision_mv;
+  if (cpi->common.allow_high_precision_mv) {
+    mb->mvcost = mb->nmvcost_hp;
+    mb->mvsadcost = mb->nmvsadcost_hp;
+  } else {
+    mb->mvcost = mb->nmvcost;
+    mb->mvsadcost = mb->nmvsadcost;
+  }
+}
+
+static void setup_frame(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  // Set up entropy context depending on frame type. The decoder mandates
+  // the use of the default context, index 0, for keyframes and inter
+  // frames where the error_resilient_mode or intra_only flag is set. For
+  // other inter-frames the encoder currently uses only two contexts;
+  // context 1 for ALTREF frames and context 0 for the others.
+  if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
+    vp10_setup_past_independence(cm);
+  } else {
+    cm->frame_context_idx = cpi->refresh_alt_ref_frame;
+  }
+
+  if (cm->frame_type == KEY_FRAME) {
+    cpi->refresh_golden_frame = 1;
+    cpi->refresh_alt_ref_frame = 1;
+    vp10_zero(cpi->interp_filter_selected);
+  } else {
+    *cm->fc = cm->frame_contexts[cm->frame_context_idx];
+    vp10_zero(cpi->interp_filter_selected[0]);
+  }
+}
+
+static void vp10_enc_setup_mi(VP10_COMMON *cm) {
+  int i;
+  cm->mi = cm->mip + cm->mi_stride + 1;
+  memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
+  cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
+  // Clear top border row
+  memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
+  // Clear left border column
+  for (i = 1; i < cm->mi_rows + 1; ++i)
+    memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
+
+  cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
+  cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
+
+  memset(cm->mi_grid_base, 0,
+         cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
+}
+
+static int vp10_enc_alloc_mi(VP10_COMMON *cm, int mi_size) {
+  cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip));
+  if (!cm->mip) return 1;
+  cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip));
+  if (!cm->prev_mip) return 1;
+  cm->mi_alloc_size = mi_size;
+
+  cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *));
+  if (!cm->mi_grid_base) return 1;
+  cm->prev_mi_grid_base =
+      (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *));
+  if (!cm->prev_mi_grid_base) return 1;
+
+  return 0;
+}
+
+static void vp10_enc_free_mi(VP10_COMMON *cm) {
+  vpx_free(cm->mip);
+  cm->mip = NULL;
+  vpx_free(cm->prev_mip);
+  cm->prev_mip = NULL;
+  vpx_free(cm->mi_grid_base);
+  cm->mi_grid_base = NULL;
+  vpx_free(cm->prev_mi_grid_base);
+  cm->prev_mi_grid_base = NULL;
+}
+
+static void vp10_swap_mi_and_prev_mi(VP10_COMMON *cm) {
+  // Current mip will be the prev_mip for the next frame.
+  MODE_INFO **temp_base = cm->prev_mi_grid_base;
+  MODE_INFO *temp = cm->prev_mip;
+  cm->prev_mip = cm->mip;
+  cm->mip = temp;
+
+  // Update the upper left visible macroblock ptrs.
+  cm->mi = cm->mip + cm->mi_stride + 1;
+  cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
+
+  cm->prev_mi_grid_base = cm->mi_grid_base;
+  cm->mi_grid_base = temp_base;
+  cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
+  cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
+}
+
+void vp10_initialize_enc(void) {
+  static volatile int init_done = 0;
+
+  if (!init_done) {
+    vp10_rtcd();
+    vpx_dsp_rtcd();
+    vpx_scale_rtcd();
+    vp10_init_intra_predictors();
+    vp10_init_me_luts();
+    vp10_rc_init_minq_luts();
+    vp10_entropy_mv_init();
+    vp10_encode_token_init();
+    init_done = 1;
+  }
+}
+
+static void dealloc_compressor_data(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  vpx_free(cpi->mbmi_ext_base);
+  cpi->mbmi_ext_base = NULL;
+
+  vpx_free(cpi->tile_data);
+  cpi->tile_data = NULL;
+
+  // Delete sementation map
+  vpx_free(cpi->segmentation_map);
+  cpi->segmentation_map = NULL;
+  vpx_free(cpi->coding_context.last_frame_seg_map_copy);
+  cpi->coding_context.last_frame_seg_map_copy = NULL;
+
+  vpx_free(cpi->nmvcosts[0]);
+  vpx_free(cpi->nmvcosts[1]);
+  cpi->nmvcosts[0] = NULL;
+  cpi->nmvcosts[1] = NULL;
+
+  vpx_free(cpi->nmvcosts_hp[0]);
+  vpx_free(cpi->nmvcosts_hp[1]);
+  cpi->nmvcosts_hp[0] = NULL;
+  cpi->nmvcosts_hp[1] = NULL;
+
+  vpx_free(cpi->nmvsadcosts[0]);
+  vpx_free(cpi->nmvsadcosts[1]);
+  cpi->nmvsadcosts[0] = NULL;
+  cpi->nmvsadcosts[1] = NULL;
+
+  vpx_free(cpi->nmvsadcosts_hp[0]);
+  vpx_free(cpi->nmvsadcosts_hp[1]);
+  cpi->nmvsadcosts_hp[0] = NULL;
+  cpi->nmvsadcosts_hp[1] = NULL;
+
+  vp10_cyclic_refresh_free(cpi->cyclic_refresh);
+  cpi->cyclic_refresh = NULL;
+
+  vpx_free(cpi->active_map.map);
+  cpi->active_map.map = NULL;
+
+  vp10_free_ref_frame_buffers(cm->buffer_pool);
+  vp10_free_context_buffers(cm);
+
+  vpx_free_frame_buffer(&cpi->last_frame_uf);
+  vpx_free_frame_buffer(&cpi->scaled_source);
+  vpx_free_frame_buffer(&cpi->scaled_last_source);
+  vpx_free_frame_buffer(&cpi->alt_ref_buffer);
+  vp10_lookahead_destroy(cpi->lookahead);
+
+  vpx_free(cpi->tile_tok[0][0]);
+  cpi->tile_tok[0][0] = 0;
+
+  vp10_free_pc_tree(&cpi->td);
+
+  if (cpi->source_diff_var != NULL) {
+    vpx_free(cpi->source_diff_var);
+    cpi->source_diff_var = NULL;
+  }
+}
+
+static void save_coding_context(VP10_COMP *cpi) {
+  CODING_CONTEXT *const cc = &cpi->coding_context;
+  VP10_COMMON *cm = &cpi->common;
+
+  // Stores a snapshot of key state variables which can subsequently be
+  // restored with a call to vp10_restore_coding_context. These functions are
+  // intended for use in a re-code loop in vp10_compress_frame where the
+  // quantizer value is adjusted between loop iterations.
+  vp10_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
+
+  memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
+         MV_VALS * sizeof(*cpi->nmvcosts[0]));
+  memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
+         MV_VALS * sizeof(*cpi->nmvcosts[1]));
+  memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
+         MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
+  memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
+         MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
+
+#if !CONFIG_MISC_FIXES
+  vp10_copy(cc->segment_pred_probs, cm->segp.pred_probs);
+#endif
+
+  memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map,
+         (cm->mi_rows * cm->mi_cols));
+
+  vp10_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
+  vp10_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
+
+  cc->fc = *cm->fc;
+}
+
+static void restore_coding_context(VP10_COMP *cpi) {
+  CODING_CONTEXT *const cc = &cpi->coding_context;
+  VP10_COMMON *cm = &cpi->common;
+
+  // Restore key state variables to the snapshot state stored in the
+  // previous call to vp10_save_coding_context.
+  vp10_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
+
+  memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
+  memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
+  memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
+         MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
+  memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
+         MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
+
+#if !CONFIG_MISC_FIXES
+  vp10_copy(cm->segp.pred_probs, cc->segment_pred_probs);
+#endif
+
+  memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy,
+         (cm->mi_rows * cm->mi_cols));
+
+  vp10_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
+  vp10_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
+
+  *cm->fc = cc->fc;
+}
+
+static void configure_static_seg_features(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  struct segmentation *const seg = &cm->seg;
+
+  int high_q = (int)(rc->avg_q > 48.0);
+  int qi_delta;
+
+  // Disable and clear down for KF
+  if (cm->frame_type == KEY_FRAME) {
+    // Clear down the global segmentation map
+    memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+    seg->update_map = 0;
+    seg->update_data = 0;
+    cpi->static_mb_pct = 0;
+
+    // Disable segmentation
+    vp10_disable_segmentation(seg);
+
+    // Clear down the segment features.
+    vp10_clearall_segfeatures(seg);
+  } else if (cpi->refresh_alt_ref_frame) {
+    // If this is an alt ref frame
+    // Clear down the global segmentation map
+    memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+    seg->update_map = 0;
+    seg->update_data = 0;
+    cpi->static_mb_pct = 0;
+
+    // Disable segmentation and individual segment features by default
+    vp10_disable_segmentation(seg);
+    vp10_clearall_segfeatures(seg);
+
+    // Scan frames from current to arf frame.
+    // This function re-enables segmentation if appropriate.
+    vp10_update_mbgraph_stats(cpi);
+
+    // If segmentation was enabled set those features needed for the
+    // arf itself.
+    if (seg->enabled) {
+      seg->update_map = 1;
+      seg->update_data = 1;
+
+      qi_delta =
+          vp10_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth);
+      vp10_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
+      vp10_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+
+      vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+      vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+      // Where relevant assume segment data is delta data
+      seg->abs_delta = SEGMENT_DELTADATA;
+    }
+  } else if (seg->enabled) {
+    // All other frames if segmentation has been enabled
+
+    // First normal frame in a valid gf or alt ref group
+    if (rc->frames_since_golden == 0) {
+      // Set up segment features for normal frames in an arf group
+      if (rc->source_alt_ref_active) {
+        seg->update_map = 0;
+        seg->update_data = 1;
+        seg->abs_delta = SEGMENT_DELTADATA;
+
+        qi_delta = vp10_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
+                                       cm->bit_depth);
+        vp10_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
+        vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+
+        vp10_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+        vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+        // Segment coding disabled for compred testing
+        if (high_q || (cpi->static_mb_pct == 100)) {
+          vp10_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+          vp10_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+          vp10_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+        }
+      } else {
+        // Disable segmentation and clear down features if alt ref
+        // is not active for this group
+
+        vp10_disable_segmentation(seg);
+
+        memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+
+        seg->update_map = 0;
+        seg->update_data = 0;
+
+        vp10_clearall_segfeatures(seg);
+      }
+    } else if (rc->is_src_frame_alt_ref) {
+      // Special case where we are coding over the top of a previous
+      // alt ref frame.
+      // Segment coding disabled for compred testing
+
+      // Enable ref frame features for segment 0 as well
+      vp10_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
+      vp10_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+
+      // All mbs should use ALTREF_FRAME
+      vp10_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
+      vp10_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+      vp10_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
+      vp10_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+
+      // Skip all MBs if high Q (0,0 mv and skip coeffs)
+      if (high_q) {
+        vp10_enable_segfeature(seg, 0, SEG_LVL_SKIP);
+        vp10_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+      }
+      // Enable data update
+      seg->update_data = 1;
+    } else {
+      // All other frames.
+
+      // No updates.. leave things as they are.
+      seg->update_map = 0;
+      seg->update_data = 0;
+    }
+  }
+}
+
+static void update_reference_segmentation_map(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
+  uint8_t *cache_ptr = cm->last_frame_seg_map;
+  int row, col;
+
+  for (row = 0; row < cm->mi_rows; row++) {
+    MODE_INFO **mi_8x8 = mi_8x8_ptr;
+    uint8_t *cache = cache_ptr;
+    for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
+      cache[0] = mi_8x8[0]->mbmi.segment_id;
+    mi_8x8_ptr += cm->mi_stride;
+    cache_ptr += cm->mi_cols;
+  }
+}
+
+static void alloc_raw_frame_buffers(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+  const VP10EncoderConfig *oxcf = &cpi->oxcf;
+
+  if (!cpi->lookahead)
+    cpi->lookahead = vp10_lookahead_init(oxcf->width, oxcf->height,
+                                         cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                         cm->use_highbitdepth,
+#endif
+                                         oxcf->lag_in_frames);
+  if (!cpi->lookahead)
+    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+                       "Failed to allocate lag buffers");
+
+  // TODO(agrange) Check if ARF is enabled and skip allocation if not.
+  if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height,
+                               cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                               cm->use_highbitdepth,
+#endif
+                               VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+                               NULL, NULL, NULL))
+    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+                       "Failed to allocate altref buffer");
+}
+
+static void alloc_util_frame_buffers(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  if (vpx_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height,
+                               cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                               cm->use_highbitdepth,
+#endif
+                               VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+                               NULL, NULL, NULL))
+    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+                       "Failed to allocate last frame buffer");
+
+  if (vpx_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height,
+                               cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                               cm->use_highbitdepth,
+#endif
+                               VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+                               NULL, NULL, NULL))
+    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+                       "Failed to allocate scaled source buffer");
+
+  if (vpx_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height,
+                               cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                               cm->use_highbitdepth,
+#endif
+                               VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+                               NULL, NULL, NULL))
+    vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+                       "Failed to allocate scaled last source buffer");
+}
+
+static int alloc_context_buffers_ext(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+  int mi_size = cm->mi_cols * cm->mi_rows;
+
+  cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
+  if (!cpi->mbmi_ext_base) return 1;
+
+  return 0;
+}
+
+void vp10_alloc_compressor_data(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+
+  vp10_alloc_context_buffers(cm, cm->width, cm->height);
+
+  alloc_context_buffers_ext(cpi);
+
+  vpx_free(cpi->tile_tok[0][0]);
+
+  {
+    unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
+    CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
+                    vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
+  }
+
+  vp10_setup_pc_tree(&cpi->common, &cpi->td);
+}
+
+void vp10_new_framerate(VP10_COMP *cpi, double framerate) {
+  cpi->framerate = framerate < 0.1 ? 30 : framerate;
+  vp10_rc_update_framerate(cpi);
+}
+
+static void set_tile_limits(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  int min_log2_tile_cols, max_log2_tile_cols;
+  vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+  cm->log2_tile_cols =
+      clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols);
+  cm->log2_tile_rows = cpi->oxcf.tile_rows;
+}
+
+static void update_frame_size(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+  vp10_set_mb_mi(cm, cm->width, cm->height);
+  vp10_init_context_buffers(cm);
+  vp10_init_macroblockd(cm, xd, NULL);
+  memset(cpi->mbmi_ext_base, 0,
+         cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
+
+  set_tile_limits(cpi);
+}
+
+static void init_buffer_indices(VP10_COMP *cpi) {
+  cpi->lst_fb_idx = 0;
+  cpi->gld_fb_idx = 1;
+  cpi->alt_fb_idx = 2;
+}
+
+static void init_config(struct VP10_COMP *cpi, VP10EncoderConfig *oxcf) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  cpi->oxcf = *oxcf;
+  cpi->framerate = oxcf->init_framerate;
+
+  cm->profile = oxcf->profile;
+  cm->bit_depth = oxcf->bit_depth;
+#if CONFIG_VPX_HIGHBITDEPTH
+  cm->use_highbitdepth = oxcf->use_highbitdepth;
+#endif
+  cm->color_space = oxcf->color_space;
+  cm->color_range = oxcf->color_range;
+
+  cm->width = oxcf->width;
+  cm->height = oxcf->height;
+  vp10_alloc_compressor_data(cpi);
+
+  // Single thread case: use counts in common.
+  cpi->td.counts = &cm->counts;
+
+  // change includes all joint functionality
+  vp10_change_config(cpi, oxcf);
+
+  cpi->static_mb_pct = 0;
+  cpi->ref_frame_flags = 0;
+
+  init_buffer_indices(cpi);
+}
+
+static void set_rc_buffer_sizes(RATE_CONTROL *rc,
+                                const VP10EncoderConfig *oxcf) {
+  const int64_t bandwidth = oxcf->target_bandwidth;
+  const int64_t starting = oxcf->starting_buffer_level_ms;
+  const int64_t optimal = oxcf->optimal_buffer_level_ms;
+  const int64_t maximum = oxcf->maximum_buffer_size_ms;
+
+  rc->starting_buffer_level = starting * bandwidth / 1000;
+  rc->optimal_buffer_level =
+      (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
+  rc->maximum_buffer_size =
+      (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
+  cpi->fn_ptr[BT].sdf = SDF;                                           \
+  cpi->fn_ptr[BT].sdaf = SDAF;                                         \
+  cpi->fn_ptr[BT].vf = VF;                                             \
+  cpi->fn_ptr[BT].svf = SVF;                                           \
+  cpi->fn_ptr[BT].svaf = SVAF;                                         \
+  cpi->fn_ptr[BT].sdx3f = SDX3F;                                       \
+  cpi->fn_ptr[BT].sdx8f = SDX8F;                                       \
+  cpi->fn_ptr[BT].sdx4df = SDX4DF;
+
+#define MAKE_BFP_SAD_WRAPPER(fnname)                                           \
+  static unsigned int fnname##_bits8(const uint8_t *src_ptr,                   \
+                                     int source_stride,                        \
+                                     const uint8_t *ref_ptr, int ref_stride) { \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride);                \
+  }                                                                            \
+  static unsigned int fnname##_bits10(                                         \
+      const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
+      int ref_stride) {                                                        \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2;           \
+  }                                                                            \
+  static unsigned int fnname##_bits12(                                         \
+      const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
+      int ref_stride) {                                                        \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4;           \
+  }
+
+#define MAKE_BFP_SADAVG_WRAPPER(fnname)                                        \
+  static unsigned int fnname##_bits8(                                          \
+      const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
+      int ref_stride, const uint8_t *second_pred) {                            \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred);   \
+  }                                                                            \
+  static unsigned int fnname##_bits10(                                         \
+      const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
+      int ref_stride, const uint8_t *second_pred) {                            \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
+           2;                                                                  \
+  }                                                                            \
+  static unsigned int fnname##_bits12(                                         \
+      const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr,       \
+      int ref_stride, const uint8_t *second_pred) {                            \
+    return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
+           4;                                                                  \
+  }
+
+#define MAKE_BFP_SAD3_WRAPPER(fnname)                                    \
+  static void fnname##_bits8(const uint8_t *src_ptr, int source_stride,  \
+                             const uint8_t *ref_ptr, int ref_stride,     \
+                             unsigned int *sad_array) {                  \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+  }                                                                      \
+  static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
+                              const uint8_t *ref_ptr, int ref_stride,    \
+                              unsigned int *sad_array) {                 \
+    int i;                                                               \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+    for (i = 0; i < 3; i++) sad_array[i] >>= 2;                          \
+  }                                                                      \
+  static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
+                              const uint8_t *ref_ptr, int ref_stride,    \
+                              unsigned int *sad_array) {                 \
+    int i;                                                               \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+    for (i = 0; i < 3; i++) sad_array[i] >>= 4;                          \
+  }
+
+#define MAKE_BFP_SAD8_WRAPPER(fnname)                                    \
+  static void fnname##_bits8(const uint8_t *src_ptr, int source_stride,  \
+                             const uint8_t *ref_ptr, int ref_stride,     \
+                             unsigned int *sad_array) {                  \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+  }                                                                      \
+  static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
+                              const uint8_t *ref_ptr, int ref_stride,    \
+                              unsigned int *sad_array) {                 \
+    int i;                                                               \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+    for (i = 0; i < 8; i++) sad_array[i] >>= 2;                          \
+  }                                                                      \
+  static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
+                              const uint8_t *ref_ptr, int ref_stride,    \
+                              unsigned int *sad_array) {                 \
+    int i;                                                               \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);      \
+    for (i = 0; i < 8; i++) sad_array[i] >>= 4;                          \
+  }
+#define MAKE_BFP_SAD4D_WRAPPER(fnname)                                        \
+  static void fnname##_bits8(const uint8_t *src_ptr, int source_stride,       \
+                             const uint8_t *const ref_ptr[], int ref_stride,  \
+                             unsigned int *sad_array) {                       \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
+  }                                                                           \
+  static void fnname##_bits10(const uint8_t *src_ptr, int source_stride,      \
+                              const uint8_t *const ref_ptr[], int ref_stride, \
+                              unsigned int *sad_array) {                      \
+    int i;                                                                    \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
+    for (i = 0; i < 4; i++) sad_array[i] >>= 2;                               \
+  }                                                                           \
+  static void fnname##_bits12(const uint8_t *src_ptr, int source_stride,      \
+                              const uint8_t *const ref_ptr[], int ref_stride, \
+                              unsigned int *sad_array) {                      \
+    int i;                                                                    \
+    fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array);           \
+    for (i = 0; i < 4; i++) sad_array[i] >>= 4;                               \
+  }
+
+/* clang-format off */
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad32x32x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad32x32x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad64x64x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad64x64x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x16x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x16x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x8x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x16x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x16x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x8x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x4x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad4x4x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x4x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d)
+/* clang-format on */
+
+static void highbd_set_var_fns(VP10_COMP *const cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  if (cm->use_highbitdepth) {
+    switch (cm->bit_depth) {
+      case VPX_BITS_8:
+        HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits8,
+                   vpx_highbd_sad32x16_avg_bits8, vpx_highbd_8_variance32x16,
+                   vpx_highbd_8_sub_pixel_variance32x16,
+                   vpx_highbd_8_sub_pixel_avg_variance32x16, NULL, NULL,
+                   vpx_highbd_sad32x16x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits8,
+                   vpx_highbd_sad16x32_avg_bits8, vpx_highbd_8_variance16x32,
+                   vpx_highbd_8_sub_pixel_variance16x32,
+                   vpx_highbd_8_sub_pixel_avg_variance16x32, NULL, NULL,
+                   vpx_highbd_sad16x32x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits8,
+                   vpx_highbd_sad64x32_avg_bits8, vpx_highbd_8_variance64x32,
+                   vpx_highbd_8_sub_pixel_variance64x32,
+                   vpx_highbd_8_sub_pixel_avg_variance64x32, NULL, NULL,
+                   vpx_highbd_sad64x32x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits8,
+                   vpx_highbd_sad32x64_avg_bits8, vpx_highbd_8_variance32x64,
+                   vpx_highbd_8_sub_pixel_variance32x64,
+                   vpx_highbd_8_sub_pixel_avg_variance32x64, NULL, NULL,
+                   vpx_highbd_sad32x64x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits8,
+                   vpx_highbd_sad32x32_avg_bits8, vpx_highbd_8_variance32x32,
+                   vpx_highbd_8_sub_pixel_variance32x32,
+                   vpx_highbd_8_sub_pixel_avg_variance32x32,
+                   vpx_highbd_sad32x32x3_bits8, vpx_highbd_sad32x32x8_bits8,
+                   vpx_highbd_sad32x32x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits8,
+                   vpx_highbd_sad64x64_avg_bits8, vpx_highbd_8_variance64x64,
+                   vpx_highbd_8_sub_pixel_variance64x64,
+                   vpx_highbd_8_sub_pixel_avg_variance64x64,
+                   vpx_highbd_sad64x64x3_bits8, vpx_highbd_sad64x64x8_bits8,
+                   vpx_highbd_sad64x64x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits8,
+                   vpx_highbd_sad16x16_avg_bits8, vpx_highbd_8_variance16x16,
+                   vpx_highbd_8_sub_pixel_variance16x16,
+                   vpx_highbd_8_sub_pixel_avg_variance16x16,
+                   vpx_highbd_sad16x16x3_bits8, vpx_highbd_sad16x16x8_bits8,
+                   vpx_highbd_sad16x16x4d_bits8)
+
+        HIGHBD_BFP(
+            BLOCK_16X8, vpx_highbd_sad16x8_bits8, vpx_highbd_sad16x8_avg_bits8,
+            vpx_highbd_8_variance16x8, vpx_highbd_8_sub_pixel_variance16x8,
+            vpx_highbd_8_sub_pixel_avg_variance16x8, vpx_highbd_sad16x8x3_bits8,
+            vpx_highbd_sad16x8x8_bits8, vpx_highbd_sad16x8x4d_bits8)
+
+        HIGHBD_BFP(
+            BLOCK_8X16, vpx_highbd_sad8x16_bits8, vpx_highbd_sad8x16_avg_bits8,
+            vpx_highbd_8_variance8x16, vpx_highbd_8_sub_pixel_variance8x16,
+            vpx_highbd_8_sub_pixel_avg_variance8x16, vpx_highbd_sad8x16x3_bits8,
+            vpx_highbd_sad8x16x8_bits8, vpx_highbd_sad8x16x4d_bits8)
+
+        HIGHBD_BFP(
+            BLOCK_8X8, vpx_highbd_sad8x8_bits8, vpx_highbd_sad8x8_avg_bits8,
+            vpx_highbd_8_variance8x8, vpx_highbd_8_sub_pixel_variance8x8,
+            vpx_highbd_8_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x3_bits8,
+            vpx_highbd_sad8x8x8_bits8, vpx_highbd_sad8x8x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits8,
+                   vpx_highbd_sad8x4_avg_bits8, vpx_highbd_8_variance8x4,
+                   vpx_highbd_8_sub_pixel_variance8x4,
+                   vpx_highbd_8_sub_pixel_avg_variance8x4, NULL,
+                   vpx_highbd_sad8x4x8_bits8, vpx_highbd_sad8x4x4d_bits8)
+
+        HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits8,
+                   vpx_highbd_sad4x8_avg_bits8, vpx_highbd_8_variance4x8,
+                   vpx_highbd_8_sub_pixel_variance4x8,
+                   vpx_highbd_8_sub_pixel_avg_variance4x8, NULL,
+                   vpx_highbd_sad4x8x8_bits8, vpx_highbd_sad4x8x4d_bits8)
+
+        HIGHBD_BFP(
+            BLOCK_4X4, vpx_highbd_sad4x4_bits8, vpx_highbd_sad4x4_avg_bits8,
+            vpx_highbd_8_variance4x4, vpx_highbd_8_sub_pixel_variance4x4,
+            vpx_highbd_8_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x3_bits8,
+            vpx_highbd_sad4x4x8_bits8, vpx_highbd_sad4x4x4d_bits8)
+        break;
+
+      case VPX_BITS_10:
+        HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits10,
+                   vpx_highbd_sad32x16_avg_bits10, vpx_highbd_10_variance32x16,
+                   vpx_highbd_10_sub_pixel_variance32x16,
+                   vpx_highbd_10_sub_pixel_avg_variance32x16, NULL, NULL,
+                   vpx_highbd_sad32x16x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits10,
+                   vpx_highbd_sad16x32_avg_bits10, vpx_highbd_10_variance16x32,
+                   vpx_highbd_10_sub_pixel_variance16x32,
+                   vpx_highbd_10_sub_pixel_avg_variance16x32, NULL, NULL,
+                   vpx_highbd_sad16x32x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits10,
+                   vpx_highbd_sad64x32_avg_bits10, vpx_highbd_10_variance64x32,
+                   vpx_highbd_10_sub_pixel_variance64x32,
+                   vpx_highbd_10_sub_pixel_avg_variance64x32, NULL, NULL,
+                   vpx_highbd_sad64x32x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits10,
+                   vpx_highbd_sad32x64_avg_bits10, vpx_highbd_10_variance32x64,
+                   vpx_highbd_10_sub_pixel_variance32x64,
+                   vpx_highbd_10_sub_pixel_avg_variance32x64, NULL, NULL,
+                   vpx_highbd_sad32x64x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits10,
+                   vpx_highbd_sad32x32_avg_bits10, vpx_highbd_10_variance32x32,
+                   vpx_highbd_10_sub_pixel_variance32x32,
+                   vpx_highbd_10_sub_pixel_avg_variance32x32,
+                   vpx_highbd_sad32x32x3_bits10, vpx_highbd_sad32x32x8_bits10,
+                   vpx_highbd_sad32x32x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits10,
+                   vpx_highbd_sad64x64_avg_bits10, vpx_highbd_10_variance64x64,
+                   vpx_highbd_10_sub_pixel_variance64x64,
+                   vpx_highbd_10_sub_pixel_avg_variance64x64,
+                   vpx_highbd_sad64x64x3_bits10, vpx_highbd_sad64x64x8_bits10,
+                   vpx_highbd_sad64x64x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits10,
+                   vpx_highbd_sad16x16_avg_bits10, vpx_highbd_10_variance16x16,
+                   vpx_highbd_10_sub_pixel_variance16x16,
+                   vpx_highbd_10_sub_pixel_avg_variance16x16,
+                   vpx_highbd_sad16x16x3_bits10, vpx_highbd_sad16x16x8_bits10,
+                   vpx_highbd_sad16x16x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits10,
+                   vpx_highbd_sad16x8_avg_bits10, vpx_highbd_10_variance16x8,
+                   vpx_highbd_10_sub_pixel_variance16x8,
+                   vpx_highbd_10_sub_pixel_avg_variance16x8,
+                   vpx_highbd_sad16x8x3_bits10, vpx_highbd_sad16x8x8_bits10,
+                   vpx_highbd_sad16x8x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits10,
+                   vpx_highbd_sad8x16_avg_bits10, vpx_highbd_10_variance8x16,
+                   vpx_highbd_10_sub_pixel_variance8x16,
+                   vpx_highbd_10_sub_pixel_avg_variance8x16,
+                   vpx_highbd_sad8x16x3_bits10, vpx_highbd_sad8x16x8_bits10,
+                   vpx_highbd_sad8x16x4d_bits10)
+
+        HIGHBD_BFP(
+            BLOCK_8X8, vpx_highbd_sad8x8_bits10, vpx_highbd_sad8x8_avg_bits10,
+            vpx_highbd_10_variance8x8, vpx_highbd_10_sub_pixel_variance8x8,
+            vpx_highbd_10_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x3_bits10,
+            vpx_highbd_sad8x8x8_bits10, vpx_highbd_sad8x8x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits10,
+                   vpx_highbd_sad8x4_avg_bits10, vpx_highbd_10_variance8x4,
+                   vpx_highbd_10_sub_pixel_variance8x4,
+                   vpx_highbd_10_sub_pixel_avg_variance8x4, NULL,
+                   vpx_highbd_sad8x4x8_bits10, vpx_highbd_sad8x4x4d_bits10)
+
+        HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits10,
+                   vpx_highbd_sad4x8_avg_bits10, vpx_highbd_10_variance4x8,
+                   vpx_highbd_10_sub_pixel_variance4x8,
+                   vpx_highbd_10_sub_pixel_avg_variance4x8, NULL,
+                   vpx_highbd_sad4x8x8_bits10, vpx_highbd_sad4x8x4d_bits10)
+
+        HIGHBD_BFP(
+            BLOCK_4X4, vpx_highbd_sad4x4_bits10, vpx_highbd_sad4x4_avg_bits10,
+            vpx_highbd_10_variance4x4, vpx_highbd_10_sub_pixel_variance4x4,
+            vpx_highbd_10_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x3_bits10,
+            vpx_highbd_sad4x4x8_bits10, vpx_highbd_sad4x4x4d_bits10)
+        break;
+
+      case VPX_BITS_12:
+        HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits12,
+                   vpx_highbd_sad32x16_avg_bits12, vpx_highbd_12_variance32x16,
+                   vpx_highbd_12_sub_pixel_variance32x16,
+                   vpx_highbd_12_sub_pixel_avg_variance32x16, NULL, NULL,
+                   vpx_highbd_sad32x16x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits12,
+                   vpx_highbd_sad16x32_avg_bits12, vpx_highbd_12_variance16x32,
+                   vpx_highbd_12_sub_pixel_variance16x32,
+                   vpx_highbd_12_sub_pixel_avg_variance16x32, NULL, NULL,
+                   vpx_highbd_sad16x32x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits12,
+                   vpx_highbd_sad64x32_avg_bits12, vpx_highbd_12_variance64x32,
+                   vpx_highbd_12_sub_pixel_variance64x32,
+                   vpx_highbd_12_sub_pixel_avg_variance64x32, NULL, NULL,
+                   vpx_highbd_sad64x32x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits12,
+                   vpx_highbd_sad32x64_avg_bits12, vpx_highbd_12_variance32x64,
+                   vpx_highbd_12_sub_pixel_variance32x64,
+                   vpx_highbd_12_sub_pixel_avg_variance32x64, NULL, NULL,
+                   vpx_highbd_sad32x64x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits12,
+                   vpx_highbd_sad32x32_avg_bits12, vpx_highbd_12_variance32x32,
+                   vpx_highbd_12_sub_pixel_variance32x32,
+                   vpx_highbd_12_sub_pixel_avg_variance32x32,
+                   vpx_highbd_sad32x32x3_bits12, vpx_highbd_sad32x32x8_bits12,
+                   vpx_highbd_sad32x32x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits12,
+                   vpx_highbd_sad64x64_avg_bits12, vpx_highbd_12_variance64x64,
+                   vpx_highbd_12_sub_pixel_variance64x64,
+                   vpx_highbd_12_sub_pixel_avg_variance64x64,
+                   vpx_highbd_sad64x64x3_bits12, vpx_highbd_sad64x64x8_bits12,
+                   vpx_highbd_sad64x64x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits12,
+                   vpx_highbd_sad16x16_avg_bits12, vpx_highbd_12_variance16x16,
+                   vpx_highbd_12_sub_pixel_variance16x16,
+                   vpx_highbd_12_sub_pixel_avg_variance16x16,
+                   vpx_highbd_sad16x16x3_bits12, vpx_highbd_sad16x16x8_bits12,
+                   vpx_highbd_sad16x16x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits12,
+                   vpx_highbd_sad16x8_avg_bits12, vpx_highbd_12_variance16x8,
+                   vpx_highbd_12_sub_pixel_variance16x8,
+                   vpx_highbd_12_sub_pixel_avg_variance16x8,
+                   vpx_highbd_sad16x8x3_bits12, vpx_highbd_sad16x8x8_bits12,
+                   vpx_highbd_sad16x8x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits12,
+                   vpx_highbd_sad8x16_avg_bits12, vpx_highbd_12_variance8x16,
+                   vpx_highbd_12_sub_pixel_variance8x16,
+                   vpx_highbd_12_sub_pixel_avg_variance8x16,
+                   vpx_highbd_sad8x16x3_bits12, vpx_highbd_sad8x16x8_bits12,
+                   vpx_highbd_sad8x16x4d_bits12)
+
+        HIGHBD_BFP(
+            BLOCK_8X8, vpx_highbd_sad8x8_bits12, vpx_highbd_sad8x8_avg_bits12,
+            vpx_highbd_12_variance8x8, vpx_highbd_12_sub_pixel_variance8x8,
+            vpx_highbd_12_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x3_bits12,
+            vpx_highbd_sad8x8x8_bits12, vpx_highbd_sad8x8x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits12,
+                   vpx_highbd_sad8x4_avg_bits12, vpx_highbd_12_variance8x4,
+                   vpx_highbd_12_sub_pixel_variance8x4,
+                   vpx_highbd_12_sub_pixel_avg_variance8x4, NULL,
+                   vpx_highbd_sad8x4x8_bits12, vpx_highbd_sad8x4x4d_bits12)
+
+        HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits12,
+                   vpx_highbd_sad4x8_avg_bits12, vpx_highbd_12_variance4x8,
+                   vpx_highbd_12_sub_pixel_variance4x8,
+                   vpx_highbd_12_sub_pixel_avg_variance4x8, NULL,
+                   vpx_highbd_sad4x8x8_bits12, vpx_highbd_sad4x8x4d_bits12)
+
+        HIGHBD_BFP(
+            BLOCK_4X4, vpx_highbd_sad4x4_bits12, vpx_highbd_sad4x4_avg_bits12,
+            vpx_highbd_12_variance4x4, vpx_highbd_12_sub_pixel_variance4x4,
+            vpx_highbd_12_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x3_bits12,
+            vpx_highbd_sad4x4x8_bits12, vpx_highbd_sad4x4x4d_bits12)
+        break;
+
+      default:
+        assert(0 &&
+               "cm->bit_depth should be VPX_BITS_8, "
+               "VPX_BITS_10 or VPX_BITS_12");
+    }
+  }
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static void realloc_segmentation_maps(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  // Create the encoder segmentation map and set all entries to 0
+  vpx_free(cpi->segmentation_map);
+  CHECK_MEM_ERROR(cm, cpi->segmentation_map,
+                  vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+  // Create a map used for cyclic background refresh.
+  if (cpi->cyclic_refresh) vp10_cyclic_refresh_free(cpi->cyclic_refresh);
+  CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
+                  vp10_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
+
+  // Create a map used to mark inactive areas.
+  vpx_free(cpi->active_map.map);
+  CHECK_MEM_ERROR(cm, cpi->active_map.map,
+                  vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+  // And a place holder structure is the coding context
+  // for use if we want to save and restore it
+  vpx_free(cpi->coding_context.last_frame_seg_map_copy);
+  CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
+                  vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+}
+
+void vp10_change_config(struct VP10_COMP *cpi, const VP10EncoderConfig *oxcf) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  if (cm->profile != oxcf->profile) cm->profile = oxcf->profile;
+  cm->bit_depth = oxcf->bit_depth;
+  cm->color_space = oxcf->color_space;
+  cm->color_range = oxcf->color_range;
+
+  if (cm->profile <= PROFILE_1)
+    assert(cm->bit_depth == VPX_BITS_8);
+  else
+    assert(cm->bit_depth > VPX_BITS_8);
+
+  cpi->oxcf = *oxcf;
+#if CONFIG_VPX_HIGHBITDEPTH
+  cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
+    rc->baseline_gf_interval = FIXED_GF_INTERVAL;
+  } else {
+    rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
+  }
+
+  cpi->refresh_golden_frame = 0;
+  cpi->refresh_last_frame = 1;
+  cm->refresh_frame_context = oxcf->error_resilient_mode
+                                  ? REFRESH_FRAME_CONTEXT_OFF
+                                  : oxcf->frame_parallel_decoding_mode
+                                        ? REFRESH_FRAME_CONTEXT_FORWARD
+                                        : REFRESH_FRAME_CONTEXT_BACKWARD;
+  cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
+
+  vp10_reset_segment_features(cm);
+  vp10_set_high_precision_mv(cpi, 0);
+
+  {
+    int i;
+
+    for (i = 0; i < MAX_SEGMENTS; i++)
+      cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
+  }
+  cpi->encode_breakout = cpi->oxcf.encode_breakout;
+
+  set_rc_buffer_sizes(rc, &cpi->oxcf);
+
+  // Under a configuration change, where maximum_buffer_size may change,
+  // keep buffer level clipped to the maximum allowed buffer size.
+  rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
+  rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
+
+  // Set up frame rate and related parameters rate control values.
+  vp10_new_framerate(cpi, cpi->framerate);
+
+  // Set absolute upper and lower quality limits
+  rc->worst_quality = cpi->oxcf.worst_allowed_q;
+  rc->best_quality = cpi->oxcf.best_allowed_q;
+
+  cm->interp_filter = cpi->sf.default_interp_filter;
+
+  if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
+    cm->render_width = cpi->oxcf.render_width;
+    cm->render_height = cpi->oxcf.render_height;
+  } else {
+    cm->render_width = cpi->oxcf.width;
+    cm->render_height = cpi->oxcf.height;
+  }
+  cm->width = cpi->oxcf.width;
+  cm->height = cpi->oxcf.height;
+
+  if (cpi->initial_width) {
+    if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) {
+      vp10_free_context_buffers(cm);
+      vp10_alloc_compressor_data(cpi);
+      realloc_segmentation_maps(cpi);
+      cpi->initial_width = cpi->initial_height = 0;
+    }
+  }
+  update_frame_size(cpi);
+
+  cpi->alt_ref_source = NULL;
+  rc->is_src_frame_alt_ref = 0;
+
+#if 0
+  // Experimental RD Code
+  cpi->frame_distortion = 0;
+  cpi->last_frame_distortion = 0;
+#endif
+
+  set_tile_limits(cpi);
+
+  cpi->ext_refresh_frame_flags_pending = 0;
+  cpi->ext_refresh_frame_context_pending = 0;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  highbd_set_var_fns(cpi);
+#endif
+}
+
+#ifndef M_LOG2_E
+#define M_LOG2_E 0.693147180559945309417
+#endif
+#define log2f(x) (log(x) / (float)M_LOG2_E)
+
+static void cal_nmvjointsadcost(int *mvjointsadcost) {
+  mvjointsadcost[0] = 600;
+  mvjointsadcost[1] = 300;
+  mvjointsadcost[2] = 300;
+  mvjointsadcost[3] = 300;
+}
+
+static void cal_nmvsadcosts(int *mvsadcost[2]) {
+  int i = 1;
+
+  mvsadcost[0][0] = 0;
+  mvsadcost[1][0] = 0;
+
+  do {
+    double z = 256 * (2 * (log2f(8 * i) + .6));
+    mvsadcost[0][i] = (int)z;
+    mvsadcost[1][i] = (int)z;
+    mvsadcost[0][-i] = (int)z;
+    mvsadcost[1][-i] = (int)z;
+  } while (++i <= MV_MAX);
+}
+
+static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
+  int i = 1;
+
+  mvsadcost[0][0] = 0;
+  mvsadcost[1][0] = 0;
+
+  do {
+    double z = 256 * (2 * (log2f(8 * i) + .6));
+    mvsadcost[0][i] = (int)z;
+    mvsadcost[1][i] = (int)z;
+    mvsadcost[0][-i] = (int)z;
+    mvsadcost[1][-i] = (int)z;
+  } while (++i <= MV_MAX);
+}
+
+VP10_COMP *vp10_create_compressor(VP10EncoderConfig *oxcf,
+                                  BufferPool *const pool) {
+  unsigned int i;
+  VP10_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP10_COMP));
+  VP10_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
+
+  if (!cm) return NULL;
+
+  vp10_zero(*cpi);
+
+  if (setjmp(cm->error.jmp)) {
+    cm->error.setjmp = 0;
+    vp10_remove_compressor(cpi);
+    return 0;
+  }
+
+  cm->error.setjmp = 1;
+  cm->alloc_mi = vp10_enc_alloc_mi;
+  cm->free_mi = vp10_enc_free_mi;
+  cm->setup_mi = vp10_enc_setup_mi;
+
+  CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc)));
+  CHECK_MEM_ERROR(
+      cm, cm->frame_contexts,
+      (FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts)));
+
+  cpi->resize_state = 0;
+  cpi->resize_avg_qp = 0;
+  cpi->resize_buffer_underflow = 0;
+  cpi->common.buffer_pool = pool;
+
+  init_config(cpi, oxcf);
+  vp10_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
+
+  cm->current_video_frame = 0;
+  cpi->partition_search_skippable_frame = 0;
+  cpi->tile_data = NULL;
+
+  realloc_segmentation_maps(cpi);
+
+  CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
+  CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
+  CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
+  CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
+  CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
+  CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
+  CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
+  CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
+                  vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
+
+  for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
+       i++) {
+    CHECK_MEM_ERROR(
+        cm, cpi->mbgraph_stats[i].mb_stats,
+        vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
+  }
+
+#if CONFIG_FP_MB_STATS
+  cpi->use_fp_mb_stats = 0;
+  if (cpi->use_fp_mb_stats) {
+    // a place holder used to store the first pass mb stats in the first pass
+    CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
+                    vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
+  } else {
+    cpi->twopass.frame_mb_stats_buf = NULL;
+  }
+#endif
+
+  cpi->refresh_alt_ref_frame = 0;
+  cpi->multi_arf_last_grp_enabled = 0;
+
+  cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
+#if CONFIG_INTERNAL_STATS
+  cpi->b_calculate_ssimg = 0;
+  cpi->b_calculate_blockiness = 1;
+  cpi->b_calculate_consistency = 1;
+  cpi->total_inconsistency = 0;
+  cpi->psnr.worst = 100.0;
+  cpi->worst_ssim = 100.0;
+
+  cpi->count = 0;
+  cpi->bytes = 0;
+
+  if (cpi->b_calculate_psnr) {
+    cpi->total_sq_error = 0;
+    cpi->total_samples = 0;
+
+    cpi->totalp_sq_error = 0;
+    cpi->totalp_samples = 0;
+
+    cpi->tot_recode_hits = 0;
+    cpi->summed_quality = 0;
+    cpi->summed_weights = 0;
+    cpi->summedp_quality = 0;
+    cpi->summedp_weights = 0;
+  }
+
+  if (cpi->b_calculate_ssimg) {
+    cpi->ssimg.worst = 100.0;
+  }
+  cpi->fastssim.worst = 100.0;
+
+  cpi->psnrhvs.worst = 100.0;
+
+  if (cpi->b_calculate_blockiness) {
+    cpi->total_blockiness = 0;
+    cpi->worst_blockiness = 0.0;
+  }
+
+  if (cpi->b_calculate_consistency) {
+    cpi->ssim_vars = vpx_malloc(sizeof(*cpi->ssim_vars) * 4 *
+                                cpi->common.mi_rows * cpi->common.mi_cols);
+    cpi->worst_consistency = 100.0;
+  }
+
+#endif
+
+  cpi->first_time_stamp_ever = INT64_MAX;
+
+  cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
+  cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
+  cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
+  cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
+  cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
+  cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
+
+  cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
+  cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
+  cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
+  cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
+  cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
+
+#ifdef OUTPUT_YUV_SKINMAP
+  yuv_skinmap_file = fopen("skinmap.yuv", "ab");
+#endif
+#ifdef OUTPUT_YUV_REC
+  yuv_rec_file = fopen("rec.yuv", "wb");
+#endif
+
+#if 0
+  framepsnr = fopen("framepsnr.stt", "a");
+  kf_list = fopen("kf_list.stt", "w");
+#endif
+
+  cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+
+  if (oxcf->pass == 1) {
+    vp10_init_first_pass(cpi);
+  } else if (oxcf->pass == 2) {
+    const size_t packet_sz = sizeof(FIRSTPASS_STATS);
+    const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
+
+#if CONFIG_FP_MB_STATS
+    if (cpi->use_fp_mb_stats) {
+      const size_t psz = cpi->common.MBs * sizeof(uint8_t);
+      const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
+
+      cpi->twopass.firstpass_mb_stats.mb_stats_start =
+          oxcf->firstpass_mb_stats_in.buf;
+      cpi->twopass.firstpass_mb_stats.mb_stats_end =
+          cpi->twopass.firstpass_mb_stats.mb_stats_start +
+          (ps - 1) * cpi->common.MBs * sizeof(uint8_t);
+    }
+#endif
+
+    cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
+    cpi->twopass.stats_in = cpi->twopass.stats_in_start;
+    cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
+
+    vp10_init_second_pass(cpi);
+  }
+
+  vp10_set_speed_features_framesize_independent(cpi);
+  vp10_set_speed_features_framesize_dependent(cpi);
+
+  // Allocate memory to store variances for a frame.
+  CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff)));
+  cpi->source_var_thresh = 0;
+  cpi->frames_till_next_var_check = 0;
+
+#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
+  cpi->fn_ptr[BT].sdf = SDF;                                    \
+  cpi->fn_ptr[BT].sdaf = SDAF;                                  \
+  cpi->fn_ptr[BT].vf = VF;                                      \
+  cpi->fn_ptr[BT].svf = SVF;                                    \
+  cpi->fn_ptr[BT].svaf = SVAF;                                  \
+  cpi->fn_ptr[BT].sdx3f = SDX3F;                                \
+  cpi->fn_ptr[BT].sdx8f = SDX8F;                                \
+  cpi->fn_ptr[BT].sdx4df = SDX4DF;
+
+  BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg, vpx_variance32x16,
+      vpx_sub_pixel_variance32x16, vpx_sub_pixel_avg_variance32x16, NULL, NULL,
+      vpx_sad32x16x4d)
+
+  BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg, vpx_variance16x32,
+      vpx_sub_pixel_variance16x32, vpx_sub_pixel_avg_variance16x32, NULL, NULL,
+      vpx_sad16x32x4d)
+
+  BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg, vpx_variance64x32,
+      vpx_sub_pixel_variance64x32, vpx_sub_pixel_avg_variance64x32, NULL, NULL,
+      vpx_sad64x32x4d)
+
+  BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg, vpx_variance32x64,
+      vpx_sub_pixel_variance32x64, vpx_sub_pixel_avg_variance32x64, NULL, NULL,
+      vpx_sad32x64x4d)
+
+  BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg, vpx_variance32x32,
+      vpx_sub_pixel_variance32x32, vpx_sub_pixel_avg_variance32x32,
+      vpx_sad32x32x3, vpx_sad32x32x8, vpx_sad32x32x4d)
+
+  BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg, vpx_variance64x64,
+      vpx_sub_pixel_variance64x64, vpx_sub_pixel_avg_variance64x64,
+      vpx_sad64x64x3, vpx_sad64x64x8, vpx_sad64x64x4d)
+
+  BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg, vpx_variance16x16,
+      vpx_sub_pixel_variance16x16, vpx_sub_pixel_avg_variance16x16,
+      vpx_sad16x16x3, vpx_sad16x16x8, vpx_sad16x16x4d)
+
+  BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg, vpx_variance16x8,
+      vpx_sub_pixel_variance16x8, vpx_sub_pixel_avg_variance16x8, vpx_sad16x8x3,
+      vpx_sad16x8x8, vpx_sad16x8x4d)
+
+  BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg, vpx_variance8x16,
+      vpx_sub_pixel_variance8x16, vpx_sub_pixel_avg_variance8x16, vpx_sad8x16x3,
+      vpx_sad8x16x8, vpx_sad8x16x4d)
+
+  BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg, vpx_variance8x8,
+      vpx_sub_pixel_variance8x8, vpx_sub_pixel_avg_variance8x8, vpx_sad8x8x3,
+      vpx_sad8x8x8, vpx_sad8x8x4d)
+
+  BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg, vpx_variance8x4,
+      vpx_sub_pixel_variance8x4, vpx_sub_pixel_avg_variance8x4, NULL,
+      vpx_sad8x4x8, vpx_sad8x4x4d)
+
+  BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg, vpx_variance4x8,
+      vpx_sub_pixel_variance4x8, vpx_sub_pixel_avg_variance4x8, NULL,
+      vpx_sad4x8x8, vpx_sad4x8x4d)
+
+  BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg, vpx_variance4x4,
+      vpx_sub_pixel_variance4x4, vpx_sub_pixel_avg_variance4x4, vpx_sad4x4x3,
+      vpx_sad4x4x8, vpx_sad4x4x4d)
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  highbd_set_var_fns(cpi);
+#endif
+
+  /* vp10_init_quantizer() is first called here. Add check in
+   * vp10_frame_init_quantizer() so that vp10_init_quantizer is only
+   * called later when needed. This will avoid unnecessary calls of
+   * vp10_init_quantizer() for every frame.
+   */
+  vp10_init_quantizer(cpi);
+#if CONFIG_AOM_QM
+  aom_qm_init(cm);
+#endif
+
+  vp10_loop_filter_init(cm);
+
+  cm->error.setjmp = 0;
+
+  return cpi;
+}
+#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
+
+#define SNPRINT2(H, T, V) \
+  snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
+
+void vp10_remove_compressor(VP10_COMP *cpi) {
+  VP10_COMMON *cm;
+  unsigned int i;
+  int t;
+
+  if (!cpi) return;
+
+  cm = &cpi->common;
+  if (cm->current_video_frame > 0) {
+#if CONFIG_INTERNAL_STATS
+    vpx_clear_system_state();
+
+    if (cpi->oxcf.pass != 1) {
+      char headings[512] = { 0 };
+      char results[512] = { 0 };
+      FILE *f = fopen("opsnr.stt", "a");
+      double time_encoded =
+          (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
+          10000000.000;
+      double total_encode_time =
+          (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
+      const double dr =
+          (double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
+      const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
+
+      if (cpi->b_calculate_psnr) {
+        const double total_psnr = vpx_sse_to_psnr(
+            (double)cpi->total_samples, peak, (double)cpi->total_sq_error);
+        const double totalp_psnr = vpx_sse_to_psnr(
+            (double)cpi->totalp_samples, peak, (double)cpi->totalp_sq_error);
+        const double total_ssim =
+            100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
+        const double totalp_ssim =
+            100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0);
+
+        snprintf(headings, sizeof(headings),
+                 "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
+                 "VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
+                 "WstPsnr\tWstSsim\tWstFast\tWstHVS");
+        snprintf(results, sizeof(results),
+                 "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
+                 "%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
+                 "%7.3f\t%7.3f\t%7.3f\t%7.3f",
+                 dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
+                 cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr, total_ssim,
+                 totalp_ssim, cpi->fastssim.stat[ALL] / cpi->count,
+                 cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst,
+                 cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst);
+
+        if (cpi->b_calculate_blockiness) {
+          SNPRINT(headings, "\t  Block\tWstBlck");
+          SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
+          SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
+        }
+
+        if (cpi->b_calculate_consistency) {
+          double consistency =
+              vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
+                              (double)cpi->total_inconsistency);
+
+          SNPRINT(headings, "\tConsist\tWstCons");
+          SNPRINT2(results, "\t%7.3f", consistency);
+          SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
+        }
+
+        if (cpi->b_calculate_ssimg) {
+          SNPRINT(headings, "\t  SSIMG\tWtSSIMG");
+          SNPRINT2(results, "\t%7.3f", cpi->ssimg.stat[ALL] / cpi->count);
+          SNPRINT2(results, "\t%7.3f", cpi->ssimg.worst);
+        }
+
+        fprintf(f, "%s\t    Time\n", headings);
+        fprintf(f, "%s\t%8.0f\n", results, total_encode_time);
+      }
+
+      fclose(f);
+    }
+
+#endif
+
+#if 0
+    {
+      printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
+      printf("\n_frames recive_data encod_mb_row compress_frame  Total\n");
+      printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
+             cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
+             cpi->time_compress_data / 1000,
+             (cpi->time_receive_data + cpi->time_compress_data) / 1000);
+    }
+#endif
+  }
+
+  for (t = 0; t < cpi->num_workers; ++t) {
+    VPxWorker *const worker = &cpi->workers[t];
+    EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
+
+    // Deallocate allocated threads.
+    vpx_get_worker_interface()->end(worker);
+
+    // Deallocate allocated thread data.
+    if (t < cpi->num_workers - 1) {
+      vpx_free(thread_data->td->counts);
+      vp10_free_pc_tree(thread_data->td);
+      vpx_free(thread_data->td);
+    }
+  }
+  vpx_free(cpi->tile_thr_data);
+  vpx_free(cpi->workers);
+
+  if (cpi->num_workers > 1) vp10_loop_filter_dealloc(&cpi->lf_row_sync);
+
+  dealloc_compressor_data(cpi);
+
+  for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
+       ++i) {
+    vpx_free(cpi->mbgraph_stats[i].mb_stats);
+  }
+
+#if CONFIG_FP_MB_STATS
+  if (cpi->use_fp_mb_stats) {
+    vpx_free(cpi->twopass.frame_mb_stats_buf);
+    cpi->twopass.frame_mb_stats_buf = NULL;
+  }
+#endif
+
+  vp10_remove_common(cm);
+  vp10_free_ref_frame_buffers(cm->buffer_pool);
+  vpx_free(cpi);
+
+#ifdef OUTPUT_YUV_SKINMAP
+  fclose(yuv_skinmap_file);
+#endif
+#ifdef OUTPUT_YUV_REC
+  fclose(yuv_rec_file);
+#endif
+
+#if 0
+
+  if (keyfile)
+    fclose(keyfile);
+
+  if (framepsnr)
+    fclose(framepsnr);
+
+  if (kf_list)
+    fclose(kf_list);
+
+#endif
+}
+
+/* TODO(yaowu): The block_variance calls the unoptimized versions of variance()
+ * and highbd_8_variance(). It should not.
+ */
+static void encoder_variance(const uint8_t *a, int a_stride, const uint8_t *b,
+                             int b_stride, int w, int h, unsigned int *sse,
+                             int *sum) {
+  int i, j;
+
+  *sum = 0;
+  *sse = 0;
+
+  for (i = 0; i < h; i++) {
+    for (j = 0; j < w; j++) {
+      const int diff = a[j] - b[j];
+      *sum += diff;
+      *sse += diff * diff;
+    }
+
+    a += a_stride;
+    b += b_stride;
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void encoder_highbd_variance64(const uint8_t *a8, int a_stride,
+                                      const uint8_t *b8, int b_stride, int w,
+                                      int h, uint64_t *sse, uint64_t *sum) {
+  int i, j;
+
+  uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+  uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+  *sum = 0;
+  *sse = 0;
+
+  for (i = 0; i < h; i++) {
+    for (j = 0; j < w; j++) {
+      const int diff = a[j] - b[j];
+      *sum += diff;
+      *sse += diff * diff;
+    }
+    a += a_stride;
+    b += b_stride;
+  }
+}
+
+static void encoder_highbd_8_variance(const uint8_t *a8, int a_stride,
+                                      const uint8_t *b8, int b_stride, int w,
+                                      int h, unsigned int *sse, int *sum) {
+  uint64_t sse_long = 0;
+  uint64_t sum_long = 0;
+  encoder_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long,
+                            &sum_long);
+  *sse = (unsigned int)sse_long;
+  *sum = (int)sum_long;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static int64_t get_sse(const uint8_t *a, int a_stride, const uint8_t *b,
+                       int b_stride, int width, int height) {
+  const int dw = width % 16;
+  const int dh = height % 16;
+  int64_t total_sse = 0;
+  unsigned int sse = 0;
+  int sum = 0;
+  int x, y;
+
+  if (dw > 0) {
+    encoder_variance(&a[width - dw], a_stride, &b[width - dw], b_stride, dw,
+                     height, &sse, &sum);
+    total_sse += sse;
+  }
+
+  if (dh > 0) {
+    encoder_variance(&a[(height - dh) * a_stride], a_stride,
+                     &b[(height - dh) * b_stride], b_stride, width - dw, dh,
+                     &sse, &sum);
+    total_sse += sse;
+  }
+
+  for (y = 0; y < height / 16; ++y) {
+    const uint8_t *pa = a;
+    const uint8_t *pb = b;
+    for (x = 0; x < width / 16; ++x) {
+      vpx_mse16x16(pa, a_stride, pb, b_stride, &sse);
+      total_sse += sse;
+
+      pa += 16;
+      pb += 16;
+    }
+
+    a += 16 * a_stride;
+    b += 16 * b_stride;
+  }
+
+  return total_sse;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static int64_t highbd_get_sse_shift(const uint8_t *a8, int a_stride,
+                                    const uint8_t *b8, int b_stride, int width,
+                                    int height, unsigned int input_shift) {
+  const uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+  const uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+  int64_t total_sse = 0;
+  int x, y;
+  for (y = 0; y < height; ++y) {
+    for (x = 0; x < width; ++x) {
+      int64_t diff;
+      diff = (a[x] >> input_shift) - (b[x] >> input_shift);
+      total_sse += diff * diff;
+    }
+    a += a_stride;
+    b += b_stride;
+  }
+  return total_sse;
+}
+
+static int64_t highbd_get_sse(const uint8_t *a, int a_stride, const uint8_t *b,
+                              int b_stride, int width, int height) {
+  int64_t total_sse = 0;
+  int x, y;
+  const int dw = width % 16;
+  const int dh = height % 16;
+  unsigned int sse = 0;
+  int sum = 0;
+  if (dw > 0) {
+    encoder_highbd_8_variance(&a[width - dw], a_stride, &b[width - dw],
+                              b_stride, dw, height, &sse, &sum);
+    total_sse += sse;
+  }
+  if (dh > 0) {
+    encoder_highbd_8_variance(&a[(height - dh) * a_stride], a_stride,
+                              &b[(height - dh) * b_stride], b_stride,
+                              width - dw, dh, &sse, &sum);
+    total_sse += sse;
+  }
+  for (y = 0; y < height / 16; ++y) {
+    const uint8_t *pa = a;
+    const uint8_t *pb = b;
+    for (x = 0; x < width / 16; ++x) {
+      vpx_highbd_8_mse16x16(pa, a_stride, pb, b_stride, &sse);
+      total_sse += sse;
+      pa += 16;
+      pb += 16;
+    }
+    a += 16 * a_stride;
+    b += 16 * b_stride;
+  }
+  return total_sse;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+typedef struct {
+  double psnr[4];       // total/y/u/v
+  uint64_t sse[4];      // total/y/u/v
+  uint32_t samples[4];  // total/y/u/v
+} PSNR_STATS;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void calc_highbd_psnr(const YV12_BUFFER_CONFIG *a,
+                             const YV12_BUFFER_CONFIG *b, PSNR_STATS *psnr,
+                             unsigned int bit_depth,
+                             unsigned int in_bit_depth) {
+  const int widths[3] = { a->y_crop_width, a->uv_crop_width, a->uv_crop_width };
+  const int heights[3] = { a->y_crop_height, a->uv_crop_height,
+                           a->uv_crop_height };
+  const uint8_t *a_planes[3] = { a->y_buffer, a->u_buffer, a->v_buffer };
+  const int a_strides[3] = { a->y_stride, a->uv_stride, a->uv_stride };
+  const uint8_t *b_planes[3] = { b->y_buffer, b->u_buffer, b->v_buffer };
+  const int b_strides[3] = { b->y_stride, b->uv_stride, b->uv_stride };
+  int i;
+  uint64_t total_sse = 0;
+  uint32_t total_samples = 0;
+  const double peak = (double)((1 << in_bit_depth) - 1);
+  const unsigned int input_shift = bit_depth - in_bit_depth;
+
+  for (i = 0; i < 3; ++i) {
+    const int w = widths[i];
+    const int h = heights[i];
+    const uint32_t samples = w * h;
+    uint64_t sse;
+    if (a->flags & YV12_FLAG_HIGHBITDEPTH) {
+      if (input_shift) {
+        sse = highbd_get_sse_shift(a_planes[i], a_strides[i], b_planes[i],
+                                   b_strides[i], w, h, input_shift);
+      } else {
+        sse = highbd_get_sse(a_planes[i], a_strides[i], b_planes[i],
+                             b_strides[i], w, h);
+      }
+    } else {
+      sse = get_sse(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h);
+    }
+    psnr->sse[1 + i] = sse;
+    psnr->samples[1 + i] = samples;
+    psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
+
+    total_sse += sse;
+    total_samples += samples;
+  }
+
+  psnr->sse[0] = total_sse;
+  psnr->samples[0] = total_samples;
+  psnr->psnr[0] =
+      vpx_sse_to_psnr((double)total_samples, peak, (double)total_sse);
+}
+
+#else   // !CONFIG_VPX_HIGHBITDEPTH
+
+static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
+                      PSNR_STATS *psnr) {
+  static const double peak = 255.0;
+  const int widths[3] = { a->y_crop_width, a->uv_crop_width, a->uv_crop_width };
+  const int heights[3] = { a->y_crop_height, a->uv_crop_height,
+                           a->uv_crop_height };
+  const uint8_t *a_planes[3] = { a->y_buffer, a->u_buffer, a->v_buffer };
+  const int a_strides[3] = { a->y_stride, a->uv_stride, a->uv_stride };
+  const uint8_t *b_planes[3] = { b->y_buffer, b->u_buffer, b->v_buffer };
+  const int b_strides[3] = { b->y_stride, b->uv_stride, b->uv_stride };
+  int i;
+  uint64_t total_sse = 0;
+  uint32_t total_samples = 0;
+
+  for (i = 0; i < 3; ++i) {
+    const int w = widths[i];
+    const int h = heights[i];
+    const uint32_t samples = w * h;
+    const uint64_t sse =
+        get_sse(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h);
+    psnr->sse[1 + i] = sse;
+    psnr->samples[1 + i] = samples;
+    psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
+
+    total_sse += sse;
+    total_samples += samples;
+  }
+
+  psnr->sse[0] = total_sse;
+  psnr->samples[0] = total_samples;
+  psnr->psnr[0] =
+      vpx_sse_to_psnr((double)total_samples, peak, (double)total_sse);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static void generate_psnr_packet(VP10_COMP *cpi) {
+  struct vpx_codec_cx_pkt pkt;
+  int i;
+  PSNR_STATS psnr;
+#if CONFIG_VPX_HIGHBITDEPTH
+  calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
+                   cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
+#else
+  calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
+#endif
+
+  for (i = 0; i < 4; ++i) {
+    pkt.data.psnr.samples[i] = psnr.samples[i];
+    pkt.data.psnr.sse[i] = psnr.sse[i];
+    pkt.data.psnr.psnr[i] = psnr.psnr[i];
+  }
+  pkt.kind = VPX_CODEC_PSNR_PKT;
+  vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
+}
+
+int vp10_use_as_reference(VP10_COMP *cpi, int ref_frame_flags) {
+  if (ref_frame_flags > 7) return -1;
+
+  cpi->ref_frame_flags = ref_frame_flags;
+  return 0;
+}
+
+void vp10_update_reference(VP10_COMP *cpi, int ref_frame_flags) {
+  cpi->ext_refresh_golden_frame = (ref_frame_flags & VPX_GOLD_FLAG) != 0;
+  cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VPX_ALT_FLAG) != 0;
+  cpi->ext_refresh_last_frame = (ref_frame_flags & VPX_LAST_FLAG) != 0;
+  cpi->ext_refresh_frame_flags_pending = 1;
+}
+
+static YV12_BUFFER_CONFIG *get_vp10_ref_frame_buffer(
+    VP10_COMP *cpi, VPX_REFFRAME ref_frame_flag) {
+  MV_REFERENCE_FRAME ref_frame = NONE;
+  if (ref_frame_flag == VPX_LAST_FLAG)
+    ref_frame = LAST_FRAME;
+  else if (ref_frame_flag == VPX_GOLD_FLAG)
+    ref_frame = GOLDEN_FRAME;
+  else if (ref_frame_flag == VPX_ALT_FLAG)
+    ref_frame = ALTREF_FRAME;
+
+  return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
+}
+
+int vp10_copy_reference_enc(VP10_COMP *cpi, VPX_REFFRAME ref_frame_flag,
+                            YV12_BUFFER_CONFIG *sd) {
+  YV12_BUFFER_CONFIG *cfg = get_vp10_ref_frame_buffer(cpi, ref_frame_flag);
+  if (cfg) {
+    vpx_yv12_copy_frame(cfg, sd);
+    return 0;
+  } else {
+    return -1;
+  }
+}
+
+int vp10_set_reference_enc(VP10_COMP *cpi, VPX_REFFRAME ref_frame_flag,
+                           YV12_BUFFER_CONFIG *sd) {
+  YV12_BUFFER_CONFIG *cfg = get_vp10_ref_frame_buffer(cpi, ref_frame_flag);
+  if (cfg) {
+    vpx_yv12_copy_frame(sd, cfg);
+    return 0;
+  } else {
+    return -1;
+  }
+}
+
+int vp10_update_entropy(VP10_COMP *cpi, int update) {
+  cpi->ext_refresh_frame_context = update;
+  cpi->ext_refresh_frame_context_pending = 1;
+  return 0;
+}
+
+#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
+// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
+// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
+// not denoise the UV channels at this time. If ever we implement UV channel
+// denoising we will have to modify this.
+void vp10_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
+  uint8_t *src = s->y_buffer;
+  int h = s->y_height;
+
+  do {
+    fwrite(src, s->y_width, 1, f);
+    src += s->y_stride;
+  } while (--h);
+
+  src = s->u_buffer;
+  h = s->uv_height;
+
+  do {
+    fwrite(src, s->uv_width, 1, f);
+    src += s->uv_stride;
+  } while (--h);
+
+  src = s->v_buffer;
+  h = s->uv_height;
+
+  do {
+    fwrite(src, s->uv_width, 1, f);
+    src += s->uv_stride;
+  } while (--h);
+}
+#endif
+
+#ifdef OUTPUT_YUV_REC
+void vp10_write_yuv_rec_frame(VP10_COMMON *cm) {
+  YV12_BUFFER_CONFIG *s = cm->frame_to_show;
+  uint8_t *src = s->y_buffer;
+  int h = cm->height;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
+    uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
+
+    do {
+      fwrite(src16, s->y_width, 2, yuv_rec_file);
+      src16 += s->y_stride;
+    } while (--h);
+
+    src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
+    h = s->uv_height;
+
+    do {
+      fwrite(src16, s->uv_width, 2, yuv_rec_file);
+      src16 += s->uv_stride;
+    } while (--h);
+
+    src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
+    h = s->uv_height;
+
+    do {
+      fwrite(src16, s->uv_width, 2, yuv_rec_file);
+      src16 += s->uv_stride;
+    } while (--h);
+
+    fflush(yuv_rec_file);
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  do {
+    fwrite(src, s->y_width, 1, yuv_rec_file);
+    src += s->y_stride;
+  } while (--h);
+
+  src = s->u_buffer;
+  h = s->uv_height;
+
+  do {
+    fwrite(src, s->uv_width, 1, yuv_rec_file);
+    src += s->uv_stride;
+  } while (--h);
+
+  src = s->v_buffer;
+  h = s->uv_height;
+
+  do {
+    fwrite(src, s->uv_width, 1, yuv_rec_file);
+    src += s->uv_stride;
+  } while (--h);
+
+  fflush(yuv_rec_file);
+}
+#endif
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
+                                                YV12_BUFFER_CONFIG *dst,
+                                                int bd) {
+#else
+static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
+                                                YV12_BUFFER_CONFIG *dst) {
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
+  int i;
+  const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
+                                   src->v_buffer };
+  const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
+  const int src_widths[3] = { src->y_crop_width, src->uv_crop_width,
+                              src->uv_crop_width };
+  const int src_heights[3] = { src->y_crop_height, src->uv_crop_height,
+                               src->uv_crop_height };
+  uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
+  const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
+  const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width,
+                              dst->uv_crop_width };
+  const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height,
+                               dst->uv_crop_height };
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+      vp10_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
+                               src_strides[i], dsts[i], dst_heights[i],
+                               dst_widths[i], dst_strides[i], bd);
+    } else {
+      vp10_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
+                        dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
+    }
+#else
+    vp10_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
+                      dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  }
+  vpx_extend_frame_borders(dst);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+                                   YV12_BUFFER_CONFIG *dst, int bd) {
+#else
+static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+                                   YV12_BUFFER_CONFIG *dst) {
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  const int src_w = src->y_crop_width;
+  const int src_h = src->y_crop_height;
+  const int dst_w = dst->y_crop_width;
+  const int dst_h = dst->y_crop_height;
+  const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
+                                   src->v_buffer };
+  const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
+  uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
+  const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
+  const InterpKernel *const kernel = vp10_filter_kernels[EIGHTTAP];
+  int x, y, i;
+
+  for (y = 0; y < dst_h; y += 16) {
+    for (x = 0; x < dst_w; x += 16) {
+      for (i = 0; i < MAX_MB_PLANE; ++i) {
+        const int factor = (i == 0 || i == 3 ? 1 : 2);
+        const int x_q4 = x * (16 / factor) * src_w / dst_w;
+        const int y_q4 = y * (16 / factor) * src_h / dst_h;
+        const int src_stride = src_strides[i];
+        const int dst_stride = dst_strides[i];
+        const uint8_t *src_ptr = srcs[i] +
+                                 (y / factor) * src_h / dst_h * src_stride +
+                                 (x / factor) * src_w / dst_w;
+        uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+          vpx_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+                               kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+                               kernel[y_q4 & 0xf], 16 * src_h / dst_h,
+                               16 / factor, 16 / factor, bd);
+        } else {
+          vpx_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+                        kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+                        kernel[y_q4 & 0xf], 16 * src_h / dst_h, 16 / factor,
+                        16 / factor);
+        }
+#else
+        vpx_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+                      kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+                      kernel[y_q4 & 0xf], 16 * src_h / dst_h, 16 / factor,
+                      16 / factor);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      }
+    }
+  }
+
+  vpx_extend_frame_borders(dst);
+}
+
+static int scale_down(VP10_COMP *cpi, int q) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+  int scale = 0;
+  assert(frame_is_kf_gf_arf(cpi));
+
+  if (rc->frame_size_selector == UNSCALED &&
+      q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
+    const int max_size_thresh =
+        (int)(rate_thresh_mult[SCALE_STEP1] *
+              VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
+    scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
+  }
+  return scale;
+}
+
+// Function to test for conditions that indicate we should loop
+// back and recode a frame.
+static int recode_loop_test(VP10_COMP *cpi, int high_limit, int low_limit,
+                            int q, int maxq, int minq) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
+  int force_recode = 0;
+
+  if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
+      (cpi->sf.recode_loop == ALLOW_RECODE) ||
+      (frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
+    if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) &&
+        scale_down(cpi, q)) {
+      // Code this group at a lower resolution.
+      cpi->resize_pending = 1;
+      return 1;
+    }
+
+    // TODO(agrange) high_limit could be greater than the scale-down threshold.
+    if ((rc->projected_frame_size > high_limit && q < maxq) ||
+        (rc->projected_frame_size < low_limit && q > minq)) {
+      force_recode = 1;
+    } else if (cpi->oxcf.rc_mode == VPX_CQ) {
+      // Deal with frame undershoot and whether or not we are
+      // below the automatically set cq level.
+      if (q > oxcf->cq_level &&
+          rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
+        force_recode = 1;
+      }
+    }
+  }
+  return force_recode;
+}
+
+void vp10_update_reference_frames(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  BufferPool *const pool = cm->buffer_pool;
+
+  // At this point the new frame has been encoded.
+  // If any buffer copy / swapping is signaled it should be done here.
+  if (cm->frame_type == KEY_FRAME) {
+    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+               cm->new_fb_idx);
+    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
+               cm->new_fb_idx);
+  } else if (vp10_preserve_existing_gf(cpi)) {
+    // We have decided to preserve the previously existing golden frame as our
+    // new ARF frame. However, in the short term in function
+    // vp10_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
+    // we're updating the GF with the current decoded frame, we save it to the
+    // ARF slot instead.
+    // We now have to update the ARF with the current frame and swap gld_fb_idx
+    // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
+    // slot and, if we're updating the GF, the current frame becomes the new GF.
+    int tmp;
+
+    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
+               cm->new_fb_idx);
+
+    tmp = cpi->alt_fb_idx;
+    cpi->alt_fb_idx = cpi->gld_fb_idx;
+    cpi->gld_fb_idx = tmp;
+  } else { /* For non key/golden frames */
+    if (cpi->refresh_alt_ref_frame) {
+      int arf_idx = cpi->alt_fb_idx;
+      if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+        const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+        arf_idx = gf_group->arf_update_idx[gf_group->index];
+      }
+
+      ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
+      memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
+             cpi->interp_filter_selected[0],
+             sizeof(cpi->interp_filter_selected[0]));
+    }
+
+    if (cpi->refresh_golden_frame) {
+      ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+                 cm->new_fb_idx);
+      if (!cpi->rc.is_src_frame_alt_ref)
+        memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
+               cpi->interp_filter_selected[0],
+               sizeof(cpi->interp_filter_selected[0]));
+      else
+        memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
+               cpi->interp_filter_selected[ALTREF_FRAME],
+               sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
+    }
+  }
+
+  if (cpi->refresh_last_frame) {
+    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
+               cm->new_fb_idx);
+    if (!cpi->rc.is_src_frame_alt_ref)
+      memcpy(cpi->interp_filter_selected[LAST_FRAME],
+             cpi->interp_filter_selected[0],
+             sizeof(cpi->interp_filter_selected[0]));
+  }
+}
+
+static void loopfilter_frame(VP10_COMP *cpi, VP10_COMMON *cm) {
+  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
+  struct loopfilter *lf = &cm->lf;
+  if (is_lossless_requested(&cpi->oxcf)) {
+    lf->filter_level = 0;
+  } else {
+    struct vpx_usec_timer timer;
+
+    vpx_clear_system_state();
+
+    vpx_usec_timer_start(&timer);
+
+    vp10_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
+
+    vpx_usec_timer_mark(&timer);
+    cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
+  }
+
+  if (lf->filter_level > 0) {
+    if (cpi->num_workers > 1)
+      vp10_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
+                                lf->filter_level, 0, 0, cpi->workers,
+                                cpi->num_workers, &cpi->lf_row_sync);
+    else
+      vp10_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
+  }
+
+#if CONFIG_DERING
+  if (is_lossless_requested(&cpi->oxcf)) {
+    cm->dering_level = 0;
+  } else {
+    cm->dering_level = vp10_dering_search(cm->frame_to_show, cpi->Source, cm,
+                                          xd);
+    vp10_dering_frame(cm->frame_to_show, cm, xd, cm->dering_level);
+  }
+#endif  // CONFIG_DERING
+
+#if CONFIG_CLPF
+  cm->clpf = 0;
+  if (!is_lossless_requested(&cpi->oxcf)) {
+    // Test CLPF
+    int i, hq = 1;
+    uint64_t before, after;
+    // TODO(yaowu): investigate per-segment CLPF decision and
+    // an optimal threshold, use 80 for now.
+    for (i = 0; i < MAX_SEGMENTS; i++)
+      hq &= vp10_get_qindex(&cm->seg, i, cm->base_qindex) < 80;
+
+    if (!hq) {  // Don't try filter if the entire image is nearly losslessly
+                // encoded
+#if CLPF_FILTER_ALL_PLANES
+      vpx_yv12_copy_frame(cm->frame_to_show, &cpi->last_frame_uf);
+      before =
+          get_sse(cpi->Source->y_buffer, cpi->Source->y_stride,
+                  cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+                  cpi->Source->y_crop_width, cpi->Source->y_crop_height) +
+          get_sse(cpi->Source->u_buffer, cpi->Source->uv_stride,
+                  cm->frame_to_show->u_buffer, cm->frame_to_show->uv_stride,
+                  cpi->Source->uv_crop_width, cpi->Source->uv_crop_height) +
+          get_sse(cpi->Source->v_buffer, cpi->Source->uv_stride,
+                  cm->frame_to_show->v_buffer, cm->frame_to_show->uv_stride,
+                  cpi->Source->uv_crop_width, cpi->Source->uv_crop_height);
+      vp10_clpf_frame(cm->frame_to_show, cm, xd);
+      after = get_sse(cpi->Source->y_buffer, cpi->Source->y_stride,
+                      cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+                      cpi->Source->y_crop_width, cpi->Source->y_crop_height) +
+              get_sse(cpi->Source->u_buffer, cpi->Source->uv_stride,
+                      cm->frame_to_show->u_buffer, cm->frame_to_show->uv_stride,
+                      cpi->Source->uv_crop_width, cpi->Source->uv_crop_height) +
+              get_sse(cpi->Source->v_buffer, cpi->Source->uv_stride,
+                      cm->frame_to_show->v_buffer, cm->frame_to_show->uv_stride,
+                      cpi->Source->uv_crop_width, cpi->Source->uv_crop_height);
+#else
+      vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
+      before = get_sse(cpi->Source->y_buffer, cpi->Source->y_stride,
+                       cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+                       cpi->Source->y_crop_width, cpi->Source->y_crop_height);
+      vp10_clpf_frame(cm->frame_to_show, cm, xd);
+      after = get_sse(cpi->Source->y_buffer, cpi->Source->y_stride,
+                      cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+                      cpi->Source->y_crop_width, cpi->Source->y_crop_height);
+#endif
+      if (before < after) {
+// No improvement, restore original
+#if CLPF_FILTER_ALL_PLANES
+        vpx_yv12_copy_frame(&cpi->last_frame_uf, cm->frame_to_show);
+#else
+        vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
+#endif
+      } else {
+        cm->clpf = 1;
+      }
+    }
+  }
+#endif
+
+  vpx_extend_frame_inner_borders(cm->frame_to_show);
+}
+
+static INLINE void alloc_frame_mvs(const VP10_COMMON *cm, int buffer_idx) {
+  RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
+  if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows ||
+      new_fb_ptr->mi_cols < cm->mi_cols) {
+    vpx_free(new_fb_ptr->mvs);
+    new_fb_ptr->mvs = (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
+                                           sizeof(*new_fb_ptr->mvs));
+    new_fb_ptr->mi_rows = cm->mi_rows;
+    new_fb_ptr->mi_cols = cm->mi_cols;
+  }
+}
+
+void vp10_scale_references(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+  MV_REFERENCE_FRAME ref_frame;
+  const VPX_REFFRAME ref_mask[3] = { VPX_LAST_FLAG, VPX_GOLD_FLAG,
+                                     VPX_ALT_FLAG };
+
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+    // Need to convert from VPX_REFFRAME to index into ref_mask (subtract 1).
+    if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
+      BufferPool *const pool = cm->buffer_pool;
+      const YV12_BUFFER_CONFIG *const ref =
+          get_ref_frame_buffer(cpi, ref_frame);
+
+      if (ref == NULL) {
+        cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
+        continue;
+      }
+
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
+        RefCntBuffer *new_fb_ptr = NULL;
+        int force_scaling = 0;
+        int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
+        if (new_fb == INVALID_IDX) {
+          new_fb = get_free_fb(cm);
+          force_scaling = 1;
+        }
+        if (new_fb == INVALID_IDX) return;
+        new_fb_ptr = &pool->frame_bufs[new_fb];
+        if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
+            new_fb_ptr->buf.y_crop_height != cm->height) {
+          vpx_realloc_frame_buffer(
+              &new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x,
+              cm->subsampling_y, cm->use_highbitdepth, VPX_ENC_BORDER_IN_PIXELS,
+              cm->byte_alignment, NULL, NULL, NULL);
+          scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth);
+          cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
+          alloc_frame_mvs(cm, new_fb);
+        }
+#else
+      if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
+        RefCntBuffer *new_fb_ptr = NULL;
+        int force_scaling = 0;
+        int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
+        if (new_fb == INVALID_IDX) {
+          new_fb = get_free_fb(cm);
+          force_scaling = 1;
+        }
+        if (new_fb == INVALID_IDX) return;
+        new_fb_ptr = &pool->frame_bufs[new_fb];
+        if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
+            new_fb_ptr->buf.y_crop_height != cm->height) {
+          vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
+                                   cm->subsampling_x, cm->subsampling_y,
+                                   VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+                                   NULL, NULL, NULL);
+          scale_and_extend_frame(ref, &new_fb_ptr->buf);
+          cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
+          alloc_frame_mvs(cm, new_fb);
+        }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      } else {
+        const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+        RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
+        buf->buf.y_crop_width = ref->y_crop_width;
+        buf->buf.y_crop_height = ref->y_crop_height;
+        cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
+        ++buf->ref_count;
+      }
+    } else {
+      if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
+    }
+  }
+}
+
+static void release_scaled_references(VP10_COMP *cpi) {
+  VP10_COMMON *cm = &cpi->common;
+  int i;
+  if (cpi->oxcf.pass == 0) {
+    // Only release scaled references under certain conditions:
+    // if reference will be updated, or if scaled reference has same resolution.
+    int refresh[3];
+    refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
+    refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
+    refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
+    for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+      const int idx = cpi->scaled_ref_idx[i - 1];
+      RefCntBuffer *const buf =
+          idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
+      const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
+      if (buf != NULL &&
+          (refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width &&
+                              buf->buf.y_crop_height == ref->y_crop_height))) {
+        --buf->ref_count;
+        cpi->scaled_ref_idx[i - 1] = INVALID_IDX;
+      }
+    }
+  } else {
+    for (i = 0; i < MAX_REF_FRAMES; ++i) {
+      const int idx = cpi->scaled_ref_idx[i];
+      RefCntBuffer *const buf =
+          idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
+      if (buf != NULL) {
+        --buf->ref_count;
+        cpi->scaled_ref_idx[i] = INVALID_IDX;
+      }
+    }
+  }
+}
+
+static void full_to_model_count(unsigned int *model_count,
+                                unsigned int *full_count) {
+  int n;
+  model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
+  model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
+  model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
+  for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
+    model_count[TWO_TOKEN] += full_count[n];
+  model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
+}
+
+static void full_to_model_counts(vp10_coeff_count_model *model_count,
+                                 vp10_coeff_count *full_count) {
+  int i, j, k, l;
+
+  for (i = 0; i < PLANE_TYPES; ++i)
+    for (j = 0; j < REF_TYPES; ++j)
+      for (k = 0; k < COEF_BANDS; ++k)
+        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
+          full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
+}
+
+#if 0 && CONFIG_INTERNAL_STATS
+static void output_frame_level_debug_stats(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
+  int64_t recon_err;
+
+  vpx_clear_system_state();
+
+  recon_err = vp10_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+
+  if (cpi->twopass.total_left_stats.coded_error != 0.0)
+    fprintf(f, "%10u %dx%d  %10d %10d %d %d %10d %10d %10d %10d"
+       "%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
+       "%10"PRId64" %10"PRId64" %10d "
+       "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
+        "%6d %6d %5d %5d %5d "
+        "%10"PRId64" %10.3lf"
+        "%10lf %8u %10"PRId64" %10d %10d %10d\n",
+        cpi->common.current_video_frame,
+        cm->width, cm->height,
+        cpi->td.rd_counts.m_search_count,
+        cpi->td.rd_counts.ex_search_count,
+        cpi->rc.source_alt_ref_pending,
+        cpi->rc.source_alt_ref_active,
+        cpi->rc.this_frame_target,
+        cpi->rc.projected_frame_size,
+        cpi->rc.projected_frame_size / cpi->common.MBs,
+        (cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
+        cpi->rc.vbr_bits_off_target,
+        cpi->rc.vbr_bits_off_target_fast,
+        cpi->twopass.extend_minq,
+        cpi->twopass.extend_minq_fast,
+        cpi->rc.total_target_vs_actual,
+        (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
+        cpi->rc.total_actual_bits, cm->base_qindex,
+        vp10_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
+        (double)vp10_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0,
+        vp10_convert_qindex_to_q(cpi->twopass.active_worst_quality,
+                                cm->bit_depth),
+        cpi->rc.avg_q,
+        vp10_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
+        cpi->refresh_last_frame, cpi->refresh_golden_frame,
+        cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
+        cpi->twopass.bits_left,
+        cpi->twopass.total_left_stats.coded_error,
+        cpi->twopass.bits_left /
+            (1 + cpi->twopass.total_left_stats.coded_error),
+        cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
+        cpi->twopass.kf_zeromotion_pct,
+        cpi->twopass.fr_content_type);
+
+  fclose(f);
+
+  if (0) {
+    FILE *const fmodes = fopen("Modes.stt", "a");
+    int i;
+
+    fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
+            cm->frame_type, cpi->refresh_golden_frame,
+            cpi->refresh_alt_ref_frame);
+
+    for (i = 0; i < MAX_MODES; ++i)
+      fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
+
+    fprintf(fmodes, "\n");
+
+    fclose(fmodes);
+  }
+}
+#endif
+
+static void set_mv_search_params(VP10_COMP *cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
+
+  // Default based on max resolution.
+  cpi->mv_step_param = vp10_init_search_range(max_mv_def);
+
+  if (cpi->sf.mv.auto_mv_step_size) {
+    if (frame_is_intra_only(cm)) {
+      // Initialize max_mv_magnitude for use in the first INTER frame
+      // after a key/intra-only frame.
+      cpi->max_mv_magnitude = max_mv_def;
+    } else {
+      if (cm->show_frame) {
+        // Allow mv_steps to correspond to twice the max mv magnitude found
+        // in the previous frame, capped by the default max_mv_magnitude based
+        // on resolution.
+        cpi->mv_step_param = vp10_init_search_range(
+            VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
+      }
+      cpi->max_mv_magnitude = 0;
+    }
+  }
+}
+
+static void set_size_independent_vars(VP10_COMP *cpi) {
+  vp10_set_speed_features_framesize_independent(cpi);
+  vp10_set_rd_speed_thresholds(cpi);
+  vp10_set_rd_speed_thresholds_sub8x8(cpi);
+  cpi->common.interp_filter = cpi->sf.default_interp_filter;
+}
+
+static void set_size_dependent_vars(VP10_COMP *cpi, int *q, int *bottom_index,
+                                    int *top_index) {
+  VP10_COMMON *const cm = &cpi->common;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+
+  // Setup variables that depend on the dimensions of the frame.
+  vp10_set_speed_features_framesize_dependent(cpi);
+
+  // Decide q and q bounds.
+  *q = vp10_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
+
+  if (!frame_is_intra_only(cm)) {
+    vp10_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
+  }
+
+  // Configure experimental use of segmentation for enhanced coding of
+  // static regions if indicated.
+  // Only allowed in the second pass of a two pass encode, as it requires
+  // lagged coding, and if the relevant speed feature flag is set.
+  if (oxcf->pass == 2 && cpi->sf.static_segmentation)
+    configure_static_seg_features(cpi);
+}
+
+static void init_motion_estimation(VP10_COMP *cpi) {
+  int y_stride = cpi->scaled_source.y_stride;
+
+  if (cpi->sf.mv.search_method == NSTEP) {
+    vp10_init3smotion_compensation(&cpi->ss_cfg, y_stride);
+  } else if (cpi->sf.mv.search_method == DIAMOND) {
+    vp10_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
+  }
+}
+
+static void set_frame_size(VP10_COMP *cpi) {
+  int ref_frame;
+  VP10_COMMON *const cm = &cpi->common;
+  VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+  if (oxcf->pass == 2 && oxcf->rc_mode == VPX_VBR &&
+      ((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
+       (oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
+    vp10_calculate_coded_size(cpi, &oxcf->scaled_frame_width,
+                              &oxcf->scaled_frame_height);
+
+    // There has been a change in frame size.
+    vp10_set_size_literal(cpi, oxcf->scaled_frame_width,
+                          oxcf->scaled_frame_height);
+  }
+
+  if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR &&
+      oxcf->resize_mode == RESIZE_DYNAMIC) {
+    if (cpi->resize_pending == 1) {
+      oxcf->scaled_frame_width =
+          (cm->width * cpi->resize_scale_num) / cpi->resize_scale_den;
+      oxcf->scaled_frame_height =
+          (cm->height * cpi->resize_scale_num) / cpi->resize_scale_den;
+    } else if (cpi->resize_pending == -1) {
+      // Go back up to original size.
+      oxcf->scaled_frame_width = oxcf->width;
+      oxcf->scaled_frame_height = oxcf->height;
+    }
+    if (cpi->resize_pending != 0) {
+      // There has been a change in frame size.
+      vp10_set_size_literal(cpi, oxcf->scaled_frame_width,
+                            oxcf->scaled_frame_height);
+
+      // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
+      set_mv_search_params(cpi);
+    }
+  }
+
+  if (oxcf->pass == 2) {
+    vp10_set_target_rate(cpi);
+  }
+
+  alloc_frame_mvs(cm, cm->new_fb_idx);
+
+  // Reset the frame pointers to the current frame size.
+  vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
+                           cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                           cm->use_highbitdepth,
+#endif
+                           VPX_ENC_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
+                           NULL, NULL);
+
+  alloc_util_frame_buffers(cpi);
+  init_motion_estimation(cpi);
+
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+    RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
+    const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+
+    ref_buf->idx = buf_idx;
+
+    if (buf_idx != INVALID_IDX) {
+      YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
+      ref_buf->buf = buf;
+#if CONFIG_VPX_HIGHBITDEPTH
+      vp10_setup_scale_factors_for_frame(
+          &ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width,
+          cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0);
+#else
+      vp10_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
+                                         buf->y_crop_height, cm->width,
+                                         cm->height);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      if (vp10_is_scaled(&ref_buf->sf)) vpx_extend_frame_borders(buf);
+    } else {
+      ref_buf->buf = NULL;
+    }
+  }
+
+  set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
+}
+
+static void encode_without_recode_loop(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  int q = 0, bottom_index = 0, top_index = 0;  // Dummy variables.
+
+  vpx_clear_system_state();
+
+  set_frame_size(cpi);
+
+  // For 1 pass CBR under dynamic resize mode: use faster scaling for source.
+  // Only for 2x2 scaling for now.
+  if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR &&
+      cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
+      cpi->un_scaled_source->y_width == (cm->width << 1) &&
+      cpi->un_scaled_source->y_height == (cm->height << 1)) {
+    cpi->Source = vp10_scale_if_required_fast(cm, cpi->un_scaled_source,
+                                              &cpi->scaled_source);
+    if (cpi->unscaled_last_source != NULL)
+      cpi->Last_Source = vp10_scale_if_required_fast(
+          cm, cpi->unscaled_last_source, &cpi->scaled_last_source);
+  } else {
+    cpi->Source =
+        vp10_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
+    if (cpi->unscaled_last_source != NULL)
+      cpi->Last_Source = vp10_scale_if_required(cm, cpi->unscaled_last_source,
+                                                &cpi->scaled_last_source);
+  }
+
+  if (frame_is_intra_only(cm) == 0) {
+    vp10_scale_references(cpi);
+  }
+
+  set_size_independent_vars(cpi);
+  set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
+
+  vp10_set_quantizer(cm, q);
+  vp10_set_variance_partition_thresholds(cpi, q);
+
+  setup_frame(cpi);
+
+  suppress_active_map(cpi);
+  // Variance adaptive and in frame q adjustment experiments are mutually
+  // exclusive.
+  if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+    vp10_vaq_frame_setup(cpi);
+  } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+    vp10_setup_in_frame_q_adj(cpi);
+  } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+    vp10_cyclic_refresh_setup(cpi);
+  }
+  apply_active_map(cpi);
+
+  // transform / motion compensation build reconstruction frame
+  vp10_encode_frame(cpi);
+
+  // Update some stats from cyclic refresh, and check if we should not update
+  // golden reference, for 1 pass CBR.
+  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME &&
+      (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR))
+    vp10_cyclic_refresh_check_golden_update(cpi);
+
+  // Update the skip mb flag probabilities based on the distribution
+  // seen in the last encoder iteration.
+  // update_base_skip_probs(cpi);
+  vpx_clear_system_state();
+}
+
+static void encode_with_recode_loop(VP10_COMP *cpi, size_t *size,
+                                    uint8_t *dest) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  int bottom_index, top_index;
+  int loop_count = 0;
+  int loop_at_this_size = 0;
+  int loop = 0;
+  int overshoot_seen = 0;
+  int undershoot_seen = 0;
+  int frame_over_shoot_limit;
+  int frame_under_shoot_limit;
+  int q = 0, q_low = 0, q_high = 0;
+
+  set_size_independent_vars(cpi);
+
+  do {
+    vpx_clear_system_state();
+
+    set_frame_size(cpi);
+
+    if (loop_count == 0 || cpi->resize_pending != 0) {
+      set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
+
+      // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
+      set_mv_search_params(cpi);
+
+      // Reset the loop state for new frame size.
+      overshoot_seen = 0;
+      undershoot_seen = 0;
+
+      // Reconfiguration for change in frame size has concluded.
+      cpi->resize_pending = 0;
+
+      q_low = bottom_index;
+      q_high = top_index;
+
+      loop_at_this_size = 0;
+    }
+
+    // Decide frame size bounds first time through.
+    if (loop_count == 0) {
+      vp10_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
+                                        &frame_under_shoot_limit,
+                                        &frame_over_shoot_limit);
+    }
+
+    cpi->Source =
+        vp10_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source);
+
+    if (cpi->unscaled_last_source != NULL)
+      cpi->Last_Source = vp10_scale_if_required(cm, cpi->unscaled_last_source,
+                                                &cpi->scaled_last_source);
+
+    if (frame_is_intra_only(cm) == 0) {
+      if (loop_count > 0) {
+        release_scaled_references(cpi);
+      }
+      vp10_scale_references(cpi);
+    }
+
+    vp10_set_quantizer(cm, q);
+
+    if (loop_count == 0) setup_frame(cpi);
+
+    // Variance adaptive and in frame q adjustment experiments are mutually
+    // exclusive.
+    if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+      vp10_vaq_frame_setup(cpi);
+    } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+      vp10_setup_in_frame_q_adj(cpi);
+    }
+
+    // transform / motion compensation build reconstruction frame
+    vp10_encode_frame(cpi);
+
+    // Update the skip mb flag probabilities based on the distribution
+    // seen in the last encoder iteration.
+    // update_base_skip_probs(cpi);
+
+    vpx_clear_system_state();
+
+    // Dummy pack of the bitstream using up to date stats to get an
+    // accurate estimate of output frame size to determine if we need
+    // to recode.
+    if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
+      save_coding_context(cpi);
+      vp10_pack_bitstream(cpi, dest, size);
+
+      rc->projected_frame_size = (int)(*size) << 3;
+      restore_coding_context(cpi);
+
+      if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
+    }
+
+    if (cpi->oxcf.rc_mode == VPX_Q) {
+      loop = 0;
+    } else {
+      if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
+          (rc->projected_frame_size < rc->max_frame_bandwidth)) {
+        int last_q = q;
+        int64_t kf_err;
+
+        int64_t high_err_target = cpi->ambient_err;
+        int64_t low_err_target = cpi->ambient_err >> 1;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (cm->use_highbitdepth) {
+          kf_err = vp10_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+        } else {
+          kf_err = vp10_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+        }
+#else
+        kf_err = vp10_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+        // Prevent possible divide by zero error below for perfect KF
+        kf_err += !kf_err;
+
+        // The key frame is not good enough or we can afford
+        // to make it better without undue risk of popping.
+        if ((kf_err > high_err_target &&
+             rc->projected_frame_size <= frame_over_shoot_limit) ||
+            (kf_err > low_err_target &&
+             rc->projected_frame_size <= frame_under_shoot_limit)) {
+          // Lower q_high
+          q_high = q > q_low ? q - 1 : q_low;
+
+          // Adjust Q
+          q = (int)((q * high_err_target) / kf_err);
+          q = VPXMIN(q, (q_high + q_low) >> 1);
+        } else if (kf_err < low_err_target &&
+                   rc->projected_frame_size >= frame_under_shoot_limit) {
+          // The key frame is much better than the previous frame
+          // Raise q_low
+          q_low = q < q_high ? q + 1 : q_high;
+
+          // Adjust Q
+          q = (int)((q * low_err_target) / kf_err);
+          q = VPXMIN(q, (q_high + q_low + 1) >> 1);
+        }
+
+        // Clamp Q to upper and lower limits:
+        q = clamp(q, q_low, q_high);
+
+        loop = q != last_q;
+      } else if (recode_loop_test(cpi, frame_over_shoot_limit,
+                                  frame_under_shoot_limit, q,
+                                  VPXMAX(q_high, top_index), bottom_index)) {
+        // Is the projected frame size out of range and are we allowed
+        // to attempt to recode.
+        int last_q = q;
+        int retries = 0;
+
+        if (cpi->resize_pending == 1) {
+          // Change in frame size so go back around the recode loop.
+          cpi->rc.frame_size_selector =
+              SCALE_STEP1 - cpi->rc.frame_size_selector;
+          cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
+
+#if CONFIG_INTERNAL_STATS
+          ++cpi->tot_recode_hits;
+#endif
+          ++loop_count;
+          loop = 1;
+          continue;
+        }
+
+        // Frame size out of permitted range:
+        // Update correction factor & compute new Q to try...
+
+        // Frame is too large
+        if (rc->projected_frame_size > rc->this_frame_target) {
+          // Special case if the projected size is > the max allowed.
+          if (rc->projected_frame_size >= rc->max_frame_bandwidth)
+            q_high = rc->worst_quality;
+
+          // Raise Qlow as to at least the current value
+          q_low = q < q_high ? q + 1 : q_high;
+
+          if (undershoot_seen || loop_at_this_size > 1) {
+            // Update rate_correction_factor unless
+            vp10_rc_update_rate_correction_factors(cpi);
+
+            q = (q_high + q_low + 1) / 2;
+          } else {
+            // Update rate_correction_factor unless
+            vp10_rc_update_rate_correction_factors(cpi);
+
+            q = vp10_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
+                                   VPXMAX(q_high, top_index));
+
+            while (q < q_low && retries < 10) {
+              vp10_rc_update_rate_correction_factors(cpi);
+              q = vp10_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
+                                     VPXMAX(q_high, top_index));
+              retries++;
+            }
+          }
+
+          overshoot_seen = 1;
+        } else {
+          // Frame is too small
+          q_high = q > q_low ? q - 1 : q_low;
+
+          if (overshoot_seen || loop_at_this_size > 1) {
+            vp10_rc_update_rate_correction_factors(cpi);
+            q = (q_high + q_low) / 2;
+          } else {
+            vp10_rc_update_rate_correction_factors(cpi);
+            q = vp10_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
+                                   top_index);
+            // Special case reset for qlow for constrained quality.
+            // This should only trigger where there is very substantial
+            // undershoot on a frame and the auto cq level is above
+            // the user passsed in value.
+            if (cpi->oxcf.rc_mode == VPX_CQ && q < q_low) {
+              q_low = q;
+            }
+
+            while (q > q_high && retries < 10) {
+              vp10_rc_update_rate_correction_factors(cpi);
+              q = vp10_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
+                                     top_index);
+              retries++;
+            }
+          }
+
+          undershoot_seen = 1;
+        }
+
+        // Clamp Q to upper and lower limits:
+        q = clamp(q, q_low, q_high);
+
+        loop = (q != last_q);
+      } else {
+        loop = 0;
+      }
+    }
+
+    // Special case for overlay frame.
+    if (rc->is_src_frame_alt_ref &&
+        rc->projected_frame_size < rc->max_frame_bandwidth)
+      loop = 0;
+
+    if (loop) {
+      ++loop_count;
+      ++loop_at_this_size;
+
+#if CONFIG_INTERNAL_STATS
+      ++cpi->tot_recode_hits;
+#endif
+    }
+  } while (loop);
+}
+
+static int get_ref_frame_flags(const VP10_COMP *cpi) {
+  const int *const map = cpi->common.ref_frame_map;
+  const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
+  const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
+  const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
+  int flags = VPX_ALT_FLAG | VPX_GOLD_FLAG | VPX_LAST_FLAG;
+
+  if (gold_is_last) flags &= ~VPX_GOLD_FLAG;
+
+  if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~VPX_GOLD_FLAG;
+
+  if (alt_is_last) flags &= ~VPX_ALT_FLAG;
+
+  if (gold_is_alt) flags &= ~VPX_ALT_FLAG;
+
+  return flags;
+}
+
+static void set_ext_overrides(VP10_COMP *cpi) {
+  // Overrides the defaults with the externally supplied values with
+  // vp10_update_reference() and vp10_update_entropy() calls
+  // Note: The overrides are valid only for the next frame passed
+  // to encode_frame_to_data_rate() function
+  if (cpi->ext_refresh_frame_context_pending) {
+    cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
+    cpi->ext_refresh_frame_context_pending = 0;
+  }
+  if (cpi->ext_refresh_frame_flags_pending) {
+    cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
+    cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
+    cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
+    cpi->ext_refresh_frame_flags_pending = 0;
+  }
+}
+
+YV12_BUFFER_CONFIG *vp10_scale_if_required_fast(VP10_COMMON *cm,
+                                                YV12_BUFFER_CONFIG *unscaled,
+                                                YV12_BUFFER_CONFIG *scaled) {
+  if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
+      cm->mi_rows * MI_SIZE != unscaled->y_height) {
+    // For 2x2 scaling down.
+    vpx_scale_frame(unscaled, scaled, unscaled->y_buffer, 9, 2, 1, 2, 1, 0);
+    vpx_extend_frame_borders(scaled);
+    return scaled;
+  } else {
+    return unscaled;
+  }
+}
+
+YV12_BUFFER_CONFIG *vp10_scale_if_required(VP10_COMMON *cm,
+                                           YV12_BUFFER_CONFIG *unscaled,
+                                           YV12_BUFFER_CONFIG *scaled) {
+  if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
+      cm->mi_rows * MI_SIZE != unscaled->y_height) {
+#if CONFIG_VPX_HIGHBITDEPTH
+    scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
+#else
+    scale_and_extend_frame_nonnormative(unscaled, scaled);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+    return scaled;
+  } else {
+    return unscaled;
+  }
+}
+
+static void set_arf_sign_bias(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  int arf_sign_bias;
+
+  if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+    const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+    arf_sign_bias = cpi->rc.source_alt_ref_active &&
+                    (!cpi->refresh_alt_ref_frame ||
+                     (gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
+  } else {
+    arf_sign_bias =
+        (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
+  }
+  cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
+}
+
+static int setup_interp_filter_search_mask(VP10_COMP *cpi) {
+  INTERP_FILTER ifilter;
+  int ref_total[MAX_REF_FRAMES] = { 0 };
+  MV_REFERENCE_FRAME ref;
+  int mask = 0;
+  if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame)
+    return mask;
+  for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
+    for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter)
+      ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
+
+  for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) {
+    if ((ref_total[LAST_FRAME] &&
+         cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
+        (ref_total[GOLDEN_FRAME] == 0 ||
+         cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 <
+             ref_total[GOLDEN_FRAME]) &&
+        (ref_total[ALTREF_FRAME] == 0 ||
+         cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50 <
+             ref_total[ALTREF_FRAME]))
+      mask |= 1 << ifilter;
+  }
+  return mask;
+}
+
+static void encode_frame_to_data_rate(VP10_COMP *cpi, size_t *size,
+                                      uint8_t *dest,
+                                      unsigned int *frame_flags) {
+  VP10_COMMON *const cm = &cpi->common;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  struct segmentation *const seg = &cm->seg;
+  TX_SIZE t;
+
+  set_ext_overrides(cpi);
+  vpx_clear_system_state();
+
+  // Set the arf sign bias for this frame.
+  set_arf_sign_bias(cpi);
+
+  // Set default state for segment based loop filter update flags.
+  cm->lf.mode_ref_delta_update = 0;
+
+  if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search)
+    cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi);
+
+  // Set various flags etc to special state if it is a key frame.
+  if (frame_is_intra_only(cm)) {
+    // Reset the loop filter deltas and segmentation map.
+    vp10_reset_segment_features(cm);
+
+    // If segmentation is enabled force a map update for key frames.
+    if (seg->enabled) {
+      seg->update_map = 1;
+      seg->update_data = 1;
+    }
+
+    // The alternate reference frame cannot be active for a key frame.
+    cpi->rc.source_alt_ref_active = 0;
+
+    cm->error_resilient_mode = oxcf->error_resilient_mode;
+
+    // By default, encoder assumes decoder can use prev_mi.
+    if (cm->error_resilient_mode) {
+      cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
+      cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_OFF;
+    } else if (cm->intra_only) {
+      // Only reset the current context.
+      cm->reset_frame_context = RESET_FRAME_CONTEXT_CURRENT;
+    }
+  }
+
+  // For 1 pass CBR, check if we are dropping this frame.
+  // Never drop on key frame.
+  if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR &&
+      cm->frame_type != KEY_FRAME) {
+    if (vp10_rc_drop_frame(cpi)) {
+      vp10_rc_postencode_update_drop_frame(cpi);
+      ++cm->current_video_frame;
+      return;
+    }
+  }
+
+  vpx_clear_system_state();
+
+#if CONFIG_INTERNAL_STATS
+  memset(cpi->mode_chosen_counts, 0,
+         MAX_MODES * sizeof(*cpi->mode_chosen_counts));
+#endif
+
+  if (cpi->sf.recode_loop == DISALLOW_RECODE) {
+    encode_without_recode_loop(cpi);
+  } else {
+    encode_with_recode_loop(cpi, size, dest);
+  }
+
+#ifdef OUTPUT_YUV_SKINMAP
+  if (cpi->common.current_video_frame > 1) {
+    vp10_compute_skin_map(cpi, yuv_skinmap_file);
+  }
+#endif
+
+  // Special case code to reduce pulsing when key frames are forced at a
+  // fixed interval. Note the reconstruction error if it is the frame before
+  // the force key frame
+  if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (cm->use_highbitdepth) {
+      cpi->ambient_err =
+          vp10_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+    } else {
+      cpi->ambient_err = vp10_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+    }
+#else
+    cpi->ambient_err = vp10_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  }
+
+  // If the encoder forced a KEY_FRAME decision
+  if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1;
+
+  cm->frame_to_show = get_frame_new_buffer(cm);
+  cm->frame_to_show->color_space = cm->color_space;
+  cm->frame_to_show->color_range = cm->color_range;
+  cm->frame_to_show->render_width = cm->render_width;
+  cm->frame_to_show->render_height = cm->render_height;
+
+  // Pick the loop filter level for the frame.
+  loopfilter_frame(cpi, cm);
+
+  // build the bitstream
+  vp10_pack_bitstream(cpi, dest, size);
+
+  if (cm->seg.update_map) update_reference_segmentation_map(cpi);
+
+  if (frame_is_intra_only(cm) == 0) {
+    release_scaled_references(cpi);
+  }
+  vp10_update_reference_frames(cpi);
+
+  for (t = TX_4X4; t <= TX_32X32; t++)
+    full_to_model_counts(cpi->td.counts->coef[t],
+                         cpi->td.rd_counts.coef_counts[t]);
+
+  if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+    vp10_adapt_coef_probs(cm);
+#if CONFIG_MISC_FIXES
+    vp10_adapt_intra_frame_probs(cm);
+#else
+    if (!frame_is_intra_only(cm)) vp10_adapt_intra_frame_probs(cm);
+#endif
+  }
+
+  if (!frame_is_intra_only(cm)) {
+    if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+      vp10_adapt_inter_frame_probs(cm);
+      vp10_adapt_mv_probs(cm, cm->allow_high_precision_mv);
+    }
+  }
+
+  if (cpi->refresh_golden_frame == 1)
+    cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
+  else
+    cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
+
+  if (cpi->refresh_alt_ref_frame == 1)
+    cpi->frame_flags |= FRAMEFLAGS_ALTREF;
+  else
+    cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
+
+  cpi->ref_frame_flags = get_ref_frame_flags(cpi);
+
+  cm->last_frame_type = cm->frame_type;
+
+  vp10_rc_postencode_update(cpi, *size);
+
+#if 0
+  output_frame_level_debug_stats(cpi);
+#endif
+
+  if (cm->frame_type == KEY_FRAME) {
+    // Tell the caller that the frame was coded as a key frame
+    *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
+  } else {
+    *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
+  }
+
+  // Clear the one shot update flags for segmentation map and mode/ref loop
+  // filter deltas.
+  cm->seg.update_map = 0;
+  cm->seg.update_data = 0;
+  cm->lf.mode_ref_delta_update = 0;
+
+  // keep track of the last coded dimensions
+  cm->last_width = cm->width;
+  cm->last_height = cm->height;
+
+  // reset to normal state now that we are done.
+  if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame;
+
+  if (cm->show_frame) {
+    vp10_swap_mi_and_prev_mi(cm);
+    // Don't increment frame counters if this was an altref buffer
+    // update not a real frame
+    ++cm->current_video_frame;
+  }
+  cm->prev_frame = cm->cur_frame;
+}
+
+static void Pass0Encode(VP10_COMP *cpi, size_t *size, uint8_t *dest,
+                        unsigned int *frame_flags) {
+  if (cpi->oxcf.rc_mode == VPX_CBR) {
+    vp10_rc_get_one_pass_cbr_params(cpi);
+  } else {
+    vp10_rc_get_one_pass_vbr_params(cpi);
+  }
+  encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+}
+
+static void Pass2Encode(VP10_COMP *cpi, size_t *size, uint8_t *dest,
+                        unsigned int *frame_flags) {
+  cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+  encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+
+  vp10_twopass_postencode_update(cpi);
+}
+
+static void init_ref_frame_bufs(VP10_COMMON *cm) {
+  int i;
+  BufferPool *const pool = cm->buffer_pool;
+  cm->new_fb_idx = INVALID_IDX;
+  for (i = 0; i < REF_FRAMES; ++i) {
+    cm->ref_frame_map[i] = INVALID_IDX;
+    pool->frame_bufs[i].ref_count = 0;
+  }
+}
+
+static void check_initial_width(VP10_COMP *cpi,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                int use_highbitdepth,
+#endif
+                                int subsampling_x, int subsampling_y) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  if (!cpi->initial_width ||
+#if CONFIG_VPX_HIGHBITDEPTH
+      cm->use_highbitdepth != use_highbitdepth ||
+#endif
+      cm->subsampling_x != subsampling_x ||
+      cm->subsampling_y != subsampling_y) {
+    cm->subsampling_x = subsampling_x;
+    cm->subsampling_y = subsampling_y;
+#if CONFIG_VPX_HIGHBITDEPTH
+    cm->use_highbitdepth = use_highbitdepth;
+#endif
+
+    alloc_raw_frame_buffers(cpi);
+    init_ref_frame_bufs(cm);
+    alloc_util_frame_buffers(cpi);
+
+    init_motion_estimation(cpi);  // TODO(agrange) This can be removed.
+
+    cpi->initial_width = cm->width;
+    cpi->initial_height = cm->height;
+    cpi->initial_mbs = cm->MBs;
+  }
+}
+
+int vp10_receive_raw_frame(VP10_COMP *cpi, unsigned int frame_flags,
+                           YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+                           int64_t end_time) {
+  VP10_COMMON *cm = &cpi->common;
+  struct vpx_usec_timer timer;
+  int res = 0;
+  const int subsampling_x = sd->subsampling_x;
+  const int subsampling_y = sd->subsampling_y;
+#if CONFIG_VPX_HIGHBITDEPTH
+  const int use_highbitdepth = sd->flags & YV12_FLAG_HIGHBITDEPTH;
+  check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
+#else
+  check_initial_width(cpi, subsampling_x, subsampling_y);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  vpx_usec_timer_start(&timer);
+
+  if (vp10_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
+#if CONFIG_VPX_HIGHBITDEPTH
+                          use_highbitdepth,
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+                          frame_flags))
+    res = -1;
+  vpx_usec_timer_mark(&timer);
+  cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
+
+  if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
+      (subsampling_x != 1 || subsampling_y != 1)) {
+    vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
+                       "Non-4:2:0 color format requires profile 1 or 3");
+    res = -1;
+  }
+  if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
+      (subsampling_x == 1 && subsampling_y == 1)) {
+    vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
+                       "4:2:0 color format requires profile 0 or 2");
+    res = -1;
+  }
+
+  return res;
+}
+
+static int frame_is_reference(const VP10_COMP *cpi) {
+  const VP10_COMMON *cm = &cpi->common;
+
+  return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
+         cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame ||
+         cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF ||
+         cm->lf.mode_ref_delta_update || cm->seg.update_map ||
+         cm->seg.update_data;
+}
+
+static void adjust_frame_rate(VP10_COMP *cpi,
+                              const struct lookahead_entry *source) {
+  int64_t this_duration;
+  int step = 0;
+
+  if (source->ts_start == cpi->first_time_stamp_ever) {
+    this_duration = source->ts_end - source->ts_start;
+    step = 1;
+  } else {
+    int64_t last_duration =
+        cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
+
+    this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
+
+    // do a step update if the duration changes by 10%
+    if (last_duration)
+      step = (int)((this_duration - last_duration) * 10 / last_duration);
+  }
+
+  if (this_duration) {
+    if (step) {
+      vp10_new_framerate(cpi, 10000000.0 / this_duration);
+    } else {
+      // Average this frame's rate into the last second's average
+      // frame rate. If we haven't seen 1 second yet, then average
+      // over the whole interval seen.
+      const double interval = VPXMIN(
+          (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
+      double avg_duration = 10000000.0 / cpi->framerate;
+      avg_duration *= (interval - avg_duration + this_duration);
+      avg_duration /= interval;
+
+      vp10_new_framerate(cpi, 10000000.0 / avg_duration);
+    }
+  }
+  cpi->last_time_stamp_seen = source->ts_start;
+  cpi->last_end_time_stamp_seen = source->ts_end;
+}
+
+// Returns 0 if this is not an alt ref else the offset of the source frame
+// used as the arf midpoint.
+static int get_arf_src_index(VP10_COMP *cpi) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  int arf_src_index = 0;
+  if (is_altref_enabled(cpi)) {
+    if (cpi->oxcf.pass == 2) {
+      const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+      if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
+        arf_src_index = gf_group->arf_src_offset[gf_group->index];
+      }
+    } else if (rc->source_alt_ref_pending) {
+      arf_src_index = rc->frames_till_gf_update_due;
+    }
+  }
+  return arf_src_index;
+}
+
+static void check_src_altref(VP10_COMP *cpi,
+                             const struct lookahead_entry *source) {
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  if (cpi->oxcf.pass == 2) {
+    const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+    rc->is_src_frame_alt_ref =
+        (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
+  } else {
+    rc->is_src_frame_alt_ref =
+        cpi->alt_ref_source && (source == cpi->alt_ref_source);
+  }
+
+  if (rc->is_src_frame_alt_ref) {
+    // Current frame is an ARF overlay frame.
+    cpi->alt_ref_source = NULL;
+
+    // Don't refresh the last buffer for an ARF overlay frame. It will
+    // become the GF so preserve last as an alternative prediction option.
+    cpi->refresh_last_frame = 0;
+  }
+}
+
+#if CONFIG_INTERNAL_STATS
+extern double vp10_get_blockiness(const unsigned char *img1, int img1_pitch,
+                                  const unsigned char *img2, int img2_pitch,
+                                  int width, int height);
+
+static void adjust_image_stat(double y, double u, double v, double all,
+                              ImageStat *s) {
+  s->stat[Y] += y;
+  s->stat[U] += u;
+  s->stat[V] += v;
+  s->stat[ALL] += all;
+  s->worst = VPXMIN(s->worst, all);
+}
+#endif  // CONFIG_INTERNAL_STATS
+
+int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
+                             size_t *size, uint8_t *dest, int64_t *time_stamp,
+                             int64_t *time_end, int flush) {
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  VP10_COMMON *const cm = &cpi->common;
+  BufferPool *const pool = cm->buffer_pool;
+  RATE_CONTROL *const rc = &cpi->rc;
+  struct vpx_usec_timer cmptimer;
+  YV12_BUFFER_CONFIG *force_src_buffer = NULL;
+  struct lookahead_entry *last_source = NULL;
+  struct lookahead_entry *source = NULL;
+  int arf_src_index;
+  int i;
+
+  vpx_usec_timer_start(&cmptimer);
+
+  vp10_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
+
+  // Is multi-arf enabled.
+  // Note that at the moment multi_arf is only configured for 2 pass VBR
+  if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
+    cpi->multi_arf_allowed = 1;
+  else
+    cpi->multi_arf_allowed = 0;
+
+  // Normal defaults
+  cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
+  cm->refresh_frame_context = oxcf->error_resilient_mode
+                                  ? REFRESH_FRAME_CONTEXT_OFF
+                                  : oxcf->frame_parallel_decoding_mode
+                                        ? REFRESH_FRAME_CONTEXT_FORWARD
+                                        : REFRESH_FRAME_CONTEXT_BACKWARD;
+
+  cpi->refresh_last_frame = 1;
+  cpi->refresh_golden_frame = 0;
+  cpi->refresh_alt_ref_frame = 0;
+
+  // Should we encode an arf frame.
+  arf_src_index = get_arf_src_index(cpi);
+
+  if (arf_src_index) {
+    assert(arf_src_index <= rc->frames_to_key);
+
+    if ((source = vp10_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
+      cpi->alt_ref_source = source;
+
+      if (oxcf->arnr_max_frames > 0) {
+        // Produce the filtered ARF frame.
+        vp10_temporal_filter(cpi, arf_src_index);
+        vpx_extend_frame_borders(&cpi->alt_ref_buffer);
+        force_src_buffer = &cpi->alt_ref_buffer;
+      }
+
+      cm->show_frame = 0;
+      cm->intra_only = 0;
+      cpi->refresh_alt_ref_frame = 1;
+      cpi->refresh_golden_frame = 0;
+      cpi->refresh_last_frame = 0;
+      rc->is_src_frame_alt_ref = 0;
+      rc->source_alt_ref_pending = 0;
+    } else {
+      rc->source_alt_ref_pending = 0;
+    }
+  }
+
+  if (!source) {
+    // Get last frame source.
+    if (cm->current_video_frame > 0) {
+      if ((last_source = vp10_lookahead_peek(cpi->lookahead, -1)) == NULL)
+        return -1;
+    }
+
+    // Read in the source frame.
+    source = vp10_lookahead_pop(cpi->lookahead, flush);
+
+    if (source != NULL) {
+      cm->show_frame = 1;
+      cm->intra_only = 0;
+
+      // Check to see if the frame should be encoded as an arf overlay.
+      check_src_altref(cpi, source);
+    }
+  }
+
+  if (source) {
+    cpi->un_scaled_source = cpi->Source =
+        force_src_buffer ? force_src_buffer : &source->img;
+
+    cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
+
+    *time_stamp = source->ts_start;
+    *time_end = source->ts_end;
+    *frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
+
+  } else {
+    *size = 0;
+    if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
+      vp10_end_first_pass(cpi); /* get last stats packet */
+      cpi->twopass.first_pass_done = 1;
+    }
+    return -1;
+  }
+
+  if (source->ts_start < cpi->first_time_stamp_ever) {
+    cpi->first_time_stamp_ever = source->ts_start;
+    cpi->last_end_time_stamp_seen = source->ts_start;
+  }
+
+  // Clear down mmx registers
+  vpx_clear_system_state();
+
+  // adjust frame rates based on timestamps given
+  if (cm->show_frame) {
+    adjust_frame_rate(cpi, source);
+  }
+
+  // Find a free buffer for the new frame, releasing the reference previously
+  // held.
+  if (cm->new_fb_idx != INVALID_IDX) {
+    --pool->frame_bufs[cm->new_fb_idx].ref_count;
+  }
+  cm->new_fb_idx = get_free_fb(cm);
+
+  if (cm->new_fb_idx == INVALID_IDX) return -1;
+
+  cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
+
+  if (cpi->multi_arf_allowed) {
+    if (cm->frame_type == KEY_FRAME) {
+      init_buffer_indices(cpi);
+    } else if (oxcf->pass == 2) {
+      const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+      cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
+    }
+  }
+
+  // Start with a 0 size frame.
+  *size = 0;
+
+  cpi->frame_flags = *frame_flags;
+
+  if (oxcf->pass == 2) {
+    vp10_rc_get_second_pass_params(cpi);
+  } else if (oxcf->pass == 1) {
+    set_frame_size(cpi);
+  }
+
+  if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
+    for (i = 0; i < MAX_REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX;
+  }
+
+#if CONFIG_AOM_QM
+  cm->using_qmatrix = cpi->oxcf.using_qm;
+  cm->min_qmlevel = cpi->oxcf.qm_minlevel;
+  cm->max_qmlevel = cpi->oxcf.qm_maxlevel;
+#endif
+
+  if (oxcf->pass == 1) {
+    cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
+    vp10_first_pass(cpi, source);
+  } else if (oxcf->pass == 2) {
+    Pass2Encode(cpi, size, dest, frame_flags);
+  } else {
+    // One pass encode
+    Pass0Encode(cpi, size, dest, frame_flags);
+  }
+
+  if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF)
+    cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
+
+  // No frame encoded, or frame was dropped, release scaled references.
+  if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
+    release_scaled_references(cpi);
+  }
+
+  if (*size > 0) {
+    cpi->droppable = !frame_is_reference(cpi);
+  }
+
+  vpx_usec_timer_mark(&cmptimer);
+  cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
+
+  if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
+    generate_psnr_packet(cpi);
+
+#if CONFIG_INTERNAL_STATS
+
+  if (oxcf->pass != 1) {
+    double samples = 0.0;
+    cpi->bytes += (int)(*size);
+
+    if (cm->show_frame) {
+      cpi->count++;
+
+      if (cpi->b_calculate_psnr) {
+        YV12_BUFFER_CONFIG *orig = cpi->Source;
+        YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
+        PSNR_STATS psnr;
+#if CONFIG_VPX_HIGHBITDEPTH
+        calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd,
+                         cpi->oxcf.input_bit_depth);
+#else
+        calc_psnr(orig, recon, &psnr);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+        adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3],
+                          psnr.psnr[0], &cpi->psnr);
+        cpi->total_sq_error += psnr.sse[0];
+        cpi->total_samples += psnr.samples[0];
+        samples = psnr.samples[0];
+
+        {
+          double frame_ssim2 = 0, weight = 0;
+          vpx_clear_system_state();
+
+#if CONFIG_VPX_HIGHBITDEPTH
+          if (cm->use_highbitdepth) {
+            frame_ssim2 =
+                vpx_highbd_calc_ssim(orig, recon, &weight, (int)cm->bit_depth);
+          } else {
+            frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
+          }
+#else
+          frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+          cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2);
+          cpi->summed_quality += frame_ssim2 * weight;
+          cpi->summed_weights += weight;
+
+          cpi->summedp_quality += frame_ssim2 * weight;
+          cpi->summedp_weights += weight;
+#if 0
+          {
+            FILE *f = fopen("q_used.stt", "a");
+            fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
+                    cpi->common.current_video_frame, y2, u2, v2,
+                    frame_psnr2, frame_ssim2);
+            fclose(f);
+          }
+#endif
+        }
+      }
+      if (cpi->b_calculate_blockiness) {
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (!cm->use_highbitdepth)
+#endif
+        {
+          double frame_blockiness = vp10_get_blockiness(
+              cpi->Source->y_buffer, cpi->Source->y_stride,
+              cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+              cpi->Source->y_width, cpi->Source->y_height);
+          cpi->worst_blockiness =
+              VPXMAX(cpi->worst_blockiness, frame_blockiness);
+          cpi->total_blockiness += frame_blockiness;
+        }
+      }
+
+      if (cpi->b_calculate_consistency) {
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (!cm->use_highbitdepth)
+#endif
+        {
+          double this_inconsistency = vpx_get_ssim_metrics(
+              cpi->Source->y_buffer, cpi->Source->y_stride,
+              cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+              cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars,
+              &cpi->metrics, 1);
+
+          const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
+          double consistency =
+              vpx_sse_to_psnr(samples, peak, (double)cpi->total_inconsistency);
+          if (consistency > 0.0)
+            cpi->worst_consistency =
+                VPXMIN(cpi->worst_consistency, consistency);
+          cpi->total_inconsistency += this_inconsistency;
+        }
+      }
+
+      if (cpi->b_calculate_ssimg) {
+        double y, u, v, frame_all;
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (cm->use_highbitdepth) {
+          frame_all = vpx_highbd_calc_ssimg(cpi->Source, cm->frame_to_show, &y,
+                                            &u, &v, (int)cm->bit_depth);
+        } else {
+          frame_all =
+              vpx_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
+        }
+#else
+        frame_all = vpx_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+        adjust_image_stat(y, u, v, frame_all, &cpi->ssimg);
+      }
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (!cm->use_highbitdepth)
+#endif
+      {
+        double y, u, v, frame_all;
+        frame_all =
+            vpx_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u, &v);
+        adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
+        /* TODO(JBB): add 10/12 bit support */
+      }
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (!cm->use_highbitdepth)
+#endif
+      {
+        double y, u, v, frame_all;
+        frame_all = vpx_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v);
+        adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
+      }
+    }
+  }
+#endif
+
+  vpx_clear_system_state();
+  return 0;
+}
+
+int vp10_get_preview_raw_frame(VP10_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
+  VP10_COMMON *cm = &cpi->common;
+
+  if (!cm->show_frame) {
+    return -1;
+  } else {
+    int ret;
+    if (cm->frame_to_show) {
+      *dest = *cm->frame_to_show;
+      dest->y_width = cm->width;
+      dest->y_height = cm->height;
+      dest->uv_width = cm->width >> cm->subsampling_x;
+      dest->uv_height = cm->height >> cm->subsampling_y;
+      ret = 0;
+    } else {
+      ret = -1;
+    }
+    vpx_clear_system_state();
+    return ret;
+  }
+}
+
+int vp10_set_internal_size(VP10_COMP *cpi, VPX_SCALING horiz_mode,
+                           VPX_SCALING vert_mode) {
+  VP10_COMMON *cm = &cpi->common;
+  int hr = 0, hs = 0, vr = 0, vs = 0;
+
+  if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
+
+  Scale2Ratio(horiz_mode, &hr, &hs);
+  Scale2Ratio(vert_mode, &vr, &vs);
+
+  // always go to the next whole number
+  cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
+  cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
+  assert(cm->width <= cpi->initial_width);
+  assert(cm->height <= cpi->initial_height);
+
+  update_frame_size(cpi);
+
+  return 0;
+}
+
+int vp10_set_size_literal(VP10_COMP *cpi, unsigned int width,
+                          unsigned int height) {
+  VP10_COMMON *cm = &cpi->common;
+#if CONFIG_VPX_HIGHBITDEPTH
+  check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
+#else
+  check_initial_width(cpi, 1, 1);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  if (width) {
+    cm->width = width;
+    if (cm->width > cpi->initial_width) {
+      cm->width = cpi->initial_width;
+      printf("Warning: Desired width too large, changed to %d\n", cm->width);
+    }
+  }
+
+  if (height) {
+    cm->height = height;
+    if (cm->height > cpi->initial_height) {
+      cm->height = cpi->initial_height;
+      printf("Warning: Desired height too large, changed to %d\n", cm->height);
+    }
+  }
+  assert(cm->width <= cpi->initial_width);
+  assert(cm->height <= cpi->initial_height);
+
+  update_frame_size(cpi);
+
+  return 0;
+}
+
+int64_t vp10_get_y_sse(const YV12_BUFFER_CONFIG *a,
+                       const YV12_BUFFER_CONFIG *b) {
+  assert(a->y_crop_width == b->y_crop_width);
+  assert(a->y_crop_height == b->y_crop_height);
+
+  return get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
+                 a->y_crop_width, a->y_crop_height);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+int64_t vp10_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
+                              const YV12_BUFFER_CONFIG *b) {
+  assert(a->y_crop_width == b->y_crop_width);
+  assert(a->y_crop_height == b->y_crop_height);
+  assert((a->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
+  assert((b->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
+
+  return highbd_get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
+                        a->y_crop_width, a->y_crop_height);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+int vp10_get_quantizer(VP10_COMP *cpi) { return cpi->common.base_qindex; }
+
+void vp10_apply_encoding_flags(VP10_COMP *cpi, vpx_enc_frame_flags_t flags) {
+  if (flags &
+      (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) {
+    int ref = 7;
+
+    if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VPX_LAST_FLAG;
+
+    if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VPX_GOLD_FLAG;
+
+    if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VPX_ALT_FLAG;
+
+    vp10_use_as_reference(cpi, ref);
+  }
+
+  if (flags &
+      (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
+       VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) {
+    int upd = 7;
+
+    if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VPX_LAST_FLAG;
+
+    if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VPX_GOLD_FLAG;
+
+    if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VPX_ALT_FLAG;
+
+    vp10_update_reference(cpi, upd);
+  }
+
+  if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
+    vp10_update_entropy(cpi, 0);
+  }
+}
diff --git a/av1/encoder/encoder.h b/av1/encoder/encoder.h
new file mode 100644
index 0000000..181e243
--- /dev/null
+++ b/av1/encoder/encoder.h
@@ -0,0 +1,637 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_ENCODER_H_
+#define VP10_ENCODER_ENCODER_H_
+
+#include <stdio.h>
+
+#include "./vpx_config.h"
+#include "aom/vp8cx.h"
+
+#include "av1/common/alloccommon.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/thread_common.h"
+#include "av1/common/onyxc_int.h"
+
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/context_tree.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/lookahead.h"
+#include "av1/encoder/mbgraph.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/speed_features.h"
+#include "av1/encoder/tokenize.h"
+
+#if CONFIG_INTERNAL_STATS
+#include "aom_dsp/ssim.h"
+#endif
+#include "aom_dsp/variance.h"
+#include "aom/internal/vpx_codec_internal.h"
+#include "aom_util/vpx_thread.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+  int nmvjointcost[MV_JOINTS];
+  int nmvcosts[2][MV_VALS];
+  int nmvcosts_hp[2][MV_VALS];
+
+#if !CONFIG_MISC_FIXES
+  vpx_prob segment_pred_probs[PREDICTION_PROBS];
+#endif
+
+  unsigned char *last_frame_seg_map_copy;
+
+  // 0 = Intra, Last, GF, ARF
+  signed char last_ref_lf_deltas[MAX_REF_FRAMES];
+  // 0 = ZERO_MV, MV
+  signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
+
+  FRAME_CONTEXT fc;
+} CODING_CONTEXT;
+
+typedef enum {
+  // encode_breakout is disabled.
+  ENCODE_BREAKOUT_DISABLED = 0,
+  // encode_breakout is enabled.
+  ENCODE_BREAKOUT_ENABLED = 1,
+  // encode_breakout is enabled with small max_thresh limit.
+  ENCODE_BREAKOUT_LIMITED = 2
+} ENCODE_BREAKOUT_TYPE;
+
+typedef enum {
+  NORMAL = 0,
+  FOURFIVE = 1,
+  THREEFIVE = 2,
+  ONETWO = 3
+} VPX_SCALING;
+
+typedef enum {
+  // Good Quality Fast Encoding. The encoder balances quality with the amount of
+  // time it takes to encode the output. Speed setting controls how fast.
+  GOOD,
+
+  // The encoder places priority on the quality of the output over encoding
+  // speed. The output is compressed at the highest possible quality. This
+  // option takes the longest amount of time to encode. Speed setting ignored.
+  BEST,
+
+  // Realtime/Live Encoding. This mode is optimized for realtime encoding (for
+  // example, capturing a television signal or feed from a live camera). Speed
+  // setting controls how fast.
+  REALTIME
+} MODE;
+
+typedef enum {
+  FRAMEFLAGS_KEY = 1 << 0,
+  FRAMEFLAGS_GOLDEN = 1 << 1,
+  FRAMEFLAGS_ALTREF = 1 << 2,
+} FRAMETYPE_FLAGS;
+
+typedef enum {
+  NO_AQ = 0,
+  VARIANCE_AQ = 1,
+  COMPLEXITY_AQ = 2,
+  CYCLIC_REFRESH_AQ = 3,
+  AQ_MODE_COUNT  // This should always be the last member of the enum
+} AQ_MODE;
+
+typedef enum {
+  RESIZE_NONE = 0,    // No frame resizing allowed.
+  RESIZE_FIXED = 1,   // All frames are coded at the specified dimension.
+  RESIZE_DYNAMIC = 2  // Coded size of each frame is determined by the codec.
+} RESIZE_TYPE;
+
+typedef struct VP10EncoderConfig {
+  BITSTREAM_PROFILE profile;
+  vpx_bit_depth_t bit_depth;     // Codec bit-depth.
+  int width;                     // width of data passed to the compressor
+  int height;                    // height of data passed to the compressor
+  unsigned int input_bit_depth;  // Input bit depth.
+  double init_framerate;         // set to passed in framerate
+  int64_t target_bandwidth;      // bandwidth to be used in kilobits per second
+
+  int noise_sensitivity;  // pre processing blur: recommendation 0
+  int sharpness;          // sharpening output: recommendation 0:
+  int speed;
+  // maximum allowed bitrate for any intra frame in % of bitrate target.
+  unsigned int rc_max_intra_bitrate_pct;
+  // maximum allowed bitrate for any inter frame in % of bitrate target.
+  unsigned int rc_max_inter_bitrate_pct;
+  // percent of rate boost for golden frame in CBR mode.
+  unsigned int gf_cbr_boost_pct;
+
+  MODE mode;
+  int pass;
+
+  // Key Framing Operations
+  int auto_key;  // autodetect cut scenes and set the keyframes
+  int key_freq;  // maximum distance to key frame.
+
+  int lag_in_frames;  // how many frames lag before we start encoding
+
+  // ----------------------------------------------------------------
+  // DATARATE CONTROL OPTIONS
+
+  // vbr, cbr, constrained quality or constant quality
+  enum vpx_rc_mode rc_mode;
+
+  // buffer targeting aggressiveness
+  int under_shoot_pct;
+  int over_shoot_pct;
+
+  // buffering parameters
+  int64_t starting_buffer_level_ms;
+  int64_t optimal_buffer_level_ms;
+  int64_t maximum_buffer_size_ms;
+
+  // Frame drop threshold.
+  int drop_frames_water_mark;
+
+  // controlling quality
+  int fixed_q;
+  int worst_allowed_q;
+  int best_allowed_q;
+  int cq_level;
+  AQ_MODE aq_mode;  // Adaptive Quantization mode
+#if CONFIG_AOM_QM
+  int using_qm;
+  int qm_minlevel;
+  int qm_maxlevel;
+#endif
+
+  // Internal frame size scaling.
+  RESIZE_TYPE resize_mode;
+  int scaled_frame_width;
+  int scaled_frame_height;
+
+  // Enable feature to reduce the frame quantization every x frames.
+  int frame_periodic_boost;
+
+  // two pass datarate control
+  int two_pass_vbrbias;  // two pass datarate control tweaks
+  int two_pass_vbrmin_section;
+  int two_pass_vbrmax_section;
+  // END DATARATE CONTROL OPTIONS
+  // ----------------------------------------------------------------
+
+  int enable_auto_arf;
+
+  int encode_breakout;  // early breakout : for video conf recommend 800
+
+  /* Bitfield defining the error resiliency features to enable.
+   * Can provide decodable frames after losses in previous
+   * frames and decodable partitions after losses in the same frame.
+   */
+  unsigned int error_resilient_mode;
+
+  /* Bitfield defining the parallel decoding mode where the
+   * decoding in successive frames may be conducted in parallel
+   * just by decoding the frame headers.
+   */
+  unsigned int frame_parallel_decoding_mode;
+
+  int arnr_max_frames;
+  int arnr_strength;
+
+  int min_gf_interval;
+  int max_gf_interval;
+
+  int tile_columns;
+  int tile_rows;
+
+  int max_threads;
+
+  vpx_fixed_buf_t two_pass_stats_in;
+  struct vpx_codec_pkt_list *output_pkt_list;
+
+#if CONFIG_FP_MB_STATS
+  vpx_fixed_buf_t firstpass_mb_stats_in;
+#endif
+
+  vpx_tune_metric tuning;
+  vpx_tune_content content;
+#if CONFIG_VPX_HIGHBITDEPTH
+  int use_highbitdepth;
+#endif
+  vpx_color_space_t color_space;
+  int color_range;
+  int render_width;
+  int render_height;
+} VP10EncoderConfig;
+
+static INLINE int is_lossless_requested(const VP10EncoderConfig *cfg) {
+  return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
+}
+
+// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
+typedef struct TileDataEnc {
+  TileInfo tile_info;
+  int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
+  int mode_map[BLOCK_SIZES][MAX_MODES];
+} TileDataEnc;
+
+typedef struct RD_COUNTS {
+  vp10_coeff_count coef_counts[TX_SIZES][PLANE_TYPES];
+  int64_t comp_pred_diff[REFERENCE_MODES];
+  int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+  int m_search_count;
+  int ex_search_count;
+} RD_COUNTS;
+
+typedef struct ThreadData {
+  MACROBLOCK mb;
+  RD_COUNTS rd_counts;
+  FRAME_COUNTS *counts;
+
+  PICK_MODE_CONTEXT *leaf_tree;
+  PC_TREE *pc_tree;
+  PC_TREE *pc_root;
+} ThreadData;
+
+struct EncWorkerData;
+
+typedef struct ActiveMap {
+  int enabled;
+  int update;
+  unsigned char *map;
+} ActiveMap;
+
+typedef enum { Y, U, V, ALL } STAT_TYPE;
+
+typedef struct IMAGE_STAT {
+  double stat[ALL + 1];
+  double worst;
+} ImageStat;
+
+typedef struct VP10_COMP {
+  QUANTS quants;
+  ThreadData td;
+  MB_MODE_INFO_EXT *mbmi_ext_base;
+  DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]);
+  VP10_COMMON common;
+  VP10EncoderConfig oxcf;
+  struct lookahead_ctx *lookahead;
+  struct lookahead_entry *alt_ref_source;
+
+  YV12_BUFFER_CONFIG *Source;
+  YV12_BUFFER_CONFIG *Last_Source;  // NULL for first frame and alt_ref frames
+  YV12_BUFFER_CONFIG *un_scaled_source;
+  YV12_BUFFER_CONFIG scaled_source;
+  YV12_BUFFER_CONFIG *unscaled_last_source;
+  YV12_BUFFER_CONFIG scaled_last_source;
+
+  TileDataEnc *tile_data;
+  int allocated_tiles;  // Keep track of memory allocated for tiles.
+
+  // For a still frame, this flag is set to 1 to skip partition search.
+  int partition_search_skippable_frame;
+
+  int scaled_ref_idx[MAX_REF_FRAMES];
+  int lst_fb_idx;
+  int gld_fb_idx;
+  int alt_fb_idx;
+
+  int refresh_last_frame;
+  int refresh_golden_frame;
+  int refresh_alt_ref_frame;
+
+  int ext_refresh_frame_flags_pending;
+  int ext_refresh_last_frame;
+  int ext_refresh_golden_frame;
+  int ext_refresh_alt_ref_frame;
+
+  int ext_refresh_frame_context_pending;
+  int ext_refresh_frame_context;
+
+  YV12_BUFFER_CONFIG last_frame_uf;
+
+  TOKENEXTRA *tile_tok[4][1 << 6];
+  unsigned int tok_count[4][1 << 6];
+
+  // Ambient reconstruction err target for force key frames
+  int64_t ambient_err;
+
+  RD_OPT rd;
+
+  CODING_CONTEXT coding_context;
+
+  int *nmvcosts[2];
+  int *nmvcosts_hp[2];
+  int *nmvsadcosts[2];
+  int *nmvsadcosts_hp[2];
+
+  int64_t last_time_stamp_seen;
+  int64_t last_end_time_stamp_seen;
+  int64_t first_time_stamp_ever;
+
+  RATE_CONTROL rc;
+  double framerate;
+
+  int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE];
+
+  struct vpx_codec_pkt_list *output_pkt_list;
+
+  MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
+  int mbgraph_n_frames;  // number of frames filled in the above
+  int static_mb_pct;     // % forced skip mbs by segmentation
+  int ref_frame_flags;
+
+  SPEED_FEATURES sf;
+
+  unsigned int max_mv_magnitude;
+  int mv_step_param;
+
+  int allow_comp_inter_inter;
+
+  // Default value is 1. From first pass stats, encode_breakout may be disabled.
+  ENCODE_BREAKOUT_TYPE allow_encode_breakout;
+
+  // Get threshold from external input. A suggested threshold is 800 for HD
+  // clips, and 300 for < HD clips.
+  int encode_breakout;
+
+  unsigned char *segmentation_map;
+
+  // segment threashold for encode breakout
+  int segment_encode_breakout[MAX_SEGMENTS];
+
+  CYCLIC_REFRESH *cyclic_refresh;
+  ActiveMap active_map;
+
+  fractional_mv_step_fp *find_fractional_mv_step;
+  vp10_full_search_fn_t full_search_sad;
+  vp10_diamond_search_fn_t diamond_search_sad;
+  vpx_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
+  uint64_t time_receive_data;
+  uint64_t time_compress_data;
+  uint64_t time_pick_lpf;
+  uint64_t time_encode_sb_row;
+
+#if CONFIG_FP_MB_STATS
+  int use_fp_mb_stats;
+#endif
+
+  TWO_PASS twopass;
+
+  YV12_BUFFER_CONFIG alt_ref_buffer;
+
+#if CONFIG_INTERNAL_STATS
+  unsigned int mode_chosen_counts[MAX_MODES];
+
+  int count;
+  uint64_t total_sq_error;
+  uint64_t total_samples;
+  ImageStat psnr;
+
+  uint64_t totalp_sq_error;
+  uint64_t totalp_samples;
+  ImageStat psnrp;
+
+  double total_blockiness;
+  double worst_blockiness;
+
+  int bytes;
+  double summed_quality;
+  double summed_weights;
+  double summedp_quality;
+  double summedp_weights;
+  unsigned int tot_recode_hits;
+  double worst_ssim;
+
+  ImageStat ssimg;
+  ImageStat fastssim;
+  ImageStat psnrhvs;
+
+  int b_calculate_ssimg;
+  int b_calculate_blockiness;
+
+  int b_calculate_consistency;
+
+  double total_inconsistency;
+  double worst_consistency;
+  Ssimv *ssim_vars;
+  Metrics metrics;
+#endif
+  int b_calculate_psnr;
+
+  int droppable;
+
+  int initial_width;
+  int initial_height;
+  int initial_mbs;  // Number of MBs in the full-size frame; to be used to
+                    // normalize the firstpass stats. This will differ from the
+                    // number of MBs in the current frame when the frame is
+                    // scaled.
+
+  // Store frame variance info in SOURCE_VAR_BASED_PARTITION search type.
+  diff *source_diff_var;
+  // The threshold used in SOURCE_VAR_BASED_PARTITION search type.
+  unsigned int source_var_thresh;
+  int frames_till_next_var_check;
+
+  int frame_flags;
+
+  search_site_config ss_cfg;
+
+  int mbmode_cost[INTRA_MODES];
+  unsigned int inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES];
+  int intra_uv_mode_cost[INTRA_MODES][INTRA_MODES];
+  int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
+  int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
+  int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
+
+  int multi_arf_allowed;
+  int multi_arf_enabled;
+  int multi_arf_last_grp_enabled;
+
+  int intra_tx_type_costs[EXT_TX_SIZES][TX_TYPES][TX_TYPES];
+  int inter_tx_type_costs[EXT_TX_SIZES][TX_TYPES];
+
+  int resize_pending;
+  int resize_state;
+  int resize_scale_num;
+  int resize_scale_den;
+  int resize_avg_qp;
+  int resize_buffer_underflow;
+  int resize_count;
+
+  // VAR_BASED_PARTITION thresholds
+  // 0 - threshold_64x64; 1 - threshold_32x32;
+  // 2 - threshold_16x16; 3 - vbp_threshold_8x8;
+  int64_t vbp_thresholds[4];
+  int64_t vbp_threshold_minmax;
+  int64_t vbp_threshold_sad;
+  BLOCK_SIZE vbp_bsize_min;
+
+  // Multi-threading
+  int num_workers;
+  VPxWorker *workers;
+  struct EncWorkerData *tile_thr_data;
+  VP10LfSync lf_row_sync;
+} VP10_COMP;
+
+void vp10_initialize_enc(void);
+
+struct VP10_COMP *vp10_create_compressor(VP10EncoderConfig *oxcf,
+                                         BufferPool *const pool);
+void vp10_remove_compressor(VP10_COMP *cpi);
+
+void vp10_change_config(VP10_COMP *cpi, const VP10EncoderConfig *oxcf);
+
+// receive a frames worth of data. caller can assume that a copy of this
+// frame is made and not just a copy of the pointer..
+int vp10_receive_raw_frame(VP10_COMP *cpi, unsigned int frame_flags,
+                           YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+                           int64_t end_time_stamp);
+
+int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
+                             size_t *size, uint8_t *dest, int64_t *time_stamp,
+                             int64_t *time_end, int flush);
+
+int vp10_get_preview_raw_frame(VP10_COMP *cpi, YV12_BUFFER_CONFIG *dest);
+
+int vp10_use_as_reference(VP10_COMP *cpi, int ref_frame_flags);
+
+void vp10_update_reference(VP10_COMP *cpi, int ref_frame_flags);
+
+int vp10_copy_reference_enc(VP10_COMP *cpi, VPX_REFFRAME ref_frame_flag,
+                            YV12_BUFFER_CONFIG *sd);
+
+int vp10_set_reference_enc(VP10_COMP *cpi, VPX_REFFRAME ref_frame_flag,
+                           YV12_BUFFER_CONFIG *sd);
+
+int vp10_update_entropy(VP10_COMP *cpi, int update);
+
+int vp10_set_active_map(VP10_COMP *cpi, unsigned char *map, int rows, int cols);
+
+int vp10_get_active_map(VP10_COMP *cpi, unsigned char *map, int rows, int cols);
+
+int vp10_set_internal_size(VP10_COMP *cpi, VPX_SCALING horiz_mode,
+                           VPX_SCALING vert_mode);
+
+int vp10_set_size_literal(VP10_COMP *cpi, unsigned int width,
+                          unsigned int height);
+
+int vp10_get_quantizer(struct VP10_COMP *cpi);
+
+static INLINE int frame_is_kf_gf_arf(const VP10_COMP *cpi) {
+  return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame ||
+         (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref);
+}
+
+static INLINE int get_ref_frame_map_idx(const VP10_COMP *cpi,
+                                        MV_REFERENCE_FRAME ref_frame) {
+  if (ref_frame == LAST_FRAME) {
+    return cpi->lst_fb_idx;
+  } else if (ref_frame == GOLDEN_FRAME) {
+    return cpi->gld_fb_idx;
+  } else {
+    return cpi->alt_fb_idx;
+  }
+}
+
+static INLINE int get_ref_frame_buf_idx(const VP10_COMP *const cpi,
+                                        int ref_frame) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
+  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX;
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer(
+    VP10_COMP *cpi, MV_REFERENCE_FRAME ref_frame) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+  return buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf
+                                : NULL;
+}
+
+static INLINE int get_token_alloc(int mb_rows, int mb_cols) {
+  // TODO(JBB): double check we can't exceed this token count if we have a
+  // 32x32 transform crossing a boundary at a multiple of 16.
+  // mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full
+  // resolution. We assume up to 1 token per pixel, and then allow
+  // a head room of 1 EOSB token per 8x8 block per plane.
+  return mb_rows * mb_cols * (16 * 16 + 4) * 3;
+}
+
+// Get the allocated token size for a tile. It does the same calculation as in
+// the frame token allocation.
+static INLINE int allocated_tokens(TileInfo tile) {
+  int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 1) >> 1;
+  int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 1) >> 1;
+
+  return get_token_alloc(tile_mb_rows, tile_mb_cols);
+}
+
+int64_t vp10_get_y_sse(const YV12_BUFFER_CONFIG *a,
+                       const YV12_BUFFER_CONFIG *b);
+#if CONFIG_VPX_HIGHBITDEPTH
+int64_t vp10_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
+                              const YV12_BUFFER_CONFIG *b);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+void vp10_alloc_compressor_data(VP10_COMP *cpi);
+
+void vp10_scale_references(VP10_COMP *cpi);
+
+void vp10_update_reference_frames(VP10_COMP *cpi);
+
+void vp10_set_high_precision_mv(VP10_COMP *cpi, int allow_high_precision_mv);
+
+YV12_BUFFER_CONFIG *vp10_scale_if_required_fast(VP10_COMMON *cm,
+                                                YV12_BUFFER_CONFIG *unscaled,
+                                                YV12_BUFFER_CONFIG *scaled);
+
+YV12_BUFFER_CONFIG *vp10_scale_if_required(VP10_COMMON *cm,
+                                           YV12_BUFFER_CONFIG *unscaled,
+                                           YV12_BUFFER_CONFIG *scaled);
+
+void vp10_apply_encoding_flags(VP10_COMP *cpi, vpx_enc_frame_flags_t flags);
+
+static INLINE int is_altref_enabled(const VP10_COMP *const cpi) {
+  return cpi->oxcf.mode != REALTIME && cpi->oxcf.lag_in_frames > 0 &&
+         cpi->oxcf.enable_auto_arf;
+}
+
+static INLINE void set_ref_ptrs(VP10_COMMON *cm, MACROBLOCKD *xd,
+                                MV_REFERENCE_FRAME ref0,
+                                MV_REFERENCE_FRAME ref1) {
+  xd->block_refs[0] =
+      &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0];
+  xd->block_refs[1] =
+      &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0];
+}
+
+static INLINE int get_chessboard_index(const int frame_index) {
+  return frame_index & 0x1;
+}
+
+static INLINE int *cond_cost_list(const struct VP10_COMP *cpi, int *cost_list) {
+  return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL;
+}
+
+void vp10_new_framerate(VP10_COMP *cpi, double framerate);
+
+#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_ENCODER_H_
diff --git a/av1/encoder/ethread.c b/av1/encoder/ethread.c
new file mode 100644
index 0000000..4117f2b
--- /dev/null
+++ b/av1/encoder/ethread.c
@@ -0,0 +1,166 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/ethread.h"
+#include "aom_dsp/vpx_dsp_common.h"
+
+static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
+  int i, j, k, l, m, n;
+
+  for (i = 0; i < REFERENCE_MODES; i++)
+    td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
+
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+    td->rd_counts.filter_diff[i] += td_t->rd_counts.filter_diff[i];
+
+  for (i = 0; i < TX_SIZES; i++)
+    for (j = 0; j < PLANE_TYPES; j++)
+      for (k = 0; k < REF_TYPES; k++)
+        for (l = 0; l < COEF_BANDS; l++)
+          for (m = 0; m < COEFF_CONTEXTS; m++)
+            for (n = 0; n < ENTROPY_TOKENS; n++)
+              td->rd_counts.coef_counts[i][j][k][l][m][n] +=
+                  td_t->rd_counts.coef_counts[i][j][k][l][m][n];
+
+  // Counts of all motion searches and exhuastive mesh searches.
+  td->rd_counts.m_search_count += td_t->rd_counts.m_search_count;
+  td->rd_counts.ex_search_count += td_t->rd_counts.ex_search_count;
+}
+
+static int enc_worker_hook(EncWorkerData *const thread_data, void *unused) {
+  VP10_COMP *const cpi = thread_data->cpi;
+  const VP10_COMMON *const cm = &cpi->common;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  const int tile_rows = 1 << cm->log2_tile_rows;
+  int t;
+
+  (void)unused;
+
+  for (t = thread_data->start; t < tile_rows * tile_cols;
+       t += cpi->num_workers) {
+    int tile_row = t / tile_cols;
+    int tile_col = t % tile_cols;
+
+    vp10_encode_tile(cpi, thread_data->td, tile_row, tile_col);
+  }
+
+  return 0;
+}
+
+void vp10_encode_tiles_mt(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int tile_cols = 1 << cm->log2_tile_cols;
+  const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
+  const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols);
+  int i;
+
+  vp10_init_tile_data(cpi);
+
+  // Only run once to create threads and allocate thread data.
+  if (cpi->num_workers == 0) {
+    int allocated_workers = num_workers;
+
+    CHECK_MEM_ERROR(cm, cpi->workers,
+                    vpx_malloc(allocated_workers * sizeof(*cpi->workers)));
+
+    CHECK_MEM_ERROR(cm, cpi->tile_thr_data,
+                    vpx_calloc(allocated_workers, sizeof(*cpi->tile_thr_data)));
+
+    for (i = 0; i < allocated_workers; i++) {
+      VPxWorker *const worker = &cpi->workers[i];
+      EncWorkerData *thread_data = &cpi->tile_thr_data[i];
+
+      ++cpi->num_workers;
+      winterface->init(worker);
+
+      if (i < allocated_workers - 1) {
+        thread_data->cpi = cpi;
+
+        // Allocate thread data.
+        CHECK_MEM_ERROR(cm, thread_data->td,
+                        vpx_memalign(32, sizeof(*thread_data->td)));
+        vp10_zero(*thread_data->td);
+
+        // Set up pc_tree.
+        thread_data->td->leaf_tree = NULL;
+        thread_data->td->pc_tree = NULL;
+        vp10_setup_pc_tree(cm, thread_data->td);
+
+        // Allocate frame counters in thread data.
+        CHECK_MEM_ERROR(cm, thread_data->td->counts,
+                        vpx_calloc(1, sizeof(*thread_data->td->counts)));
+
+        // Create threads
+        if (!winterface->reset(worker))
+          vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
+                             "Tile encoder thread creation failed");
+      } else {
+        // Main thread acts as a worker and uses the thread data in cpi.
+        thread_data->cpi = cpi;
+        thread_data->td = &cpi->td;
+      }
+
+      winterface->sync(worker);
+    }
+  }
+
+  for (i = 0; i < num_workers; i++) {
+    VPxWorker *const worker = &cpi->workers[i];
+    EncWorkerData *thread_data;
+
+    worker->hook = (VPxWorkerHook)enc_worker_hook;
+    worker->data1 = &cpi->tile_thr_data[i];
+    worker->data2 = NULL;
+    thread_data = (EncWorkerData *)worker->data1;
+
+    // Before encoding a frame, copy the thread data from cpi.
+    if (thread_data->td != &cpi->td) {
+      thread_data->td->mb = cpi->td.mb;
+      thread_data->td->rd_counts = cpi->td.rd_counts;
+    }
+    if (thread_data->td->counts != &cpi->common.counts) {
+      memcpy(thread_data->td->counts, &cpi->common.counts,
+             sizeof(cpi->common.counts));
+    }
+  }
+
+  // Encode a frame
+  for (i = 0; i < num_workers; i++) {
+    VPxWorker *const worker = &cpi->workers[i];
+    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
+
+    // Set the starting tile for each thread.
+    thread_data->start = i;
+
+    if (i == cpi->num_workers - 1)
+      winterface->execute(worker);
+    else
+      winterface->launch(worker);
+  }
+
+  // Encoding ends.
+  for (i = 0; i < num_workers; i++) {
+    VPxWorker *const worker = &cpi->workers[i];
+    winterface->sync(worker);
+  }
+
+  for (i = 0; i < num_workers; i++) {
+    VPxWorker *const worker = &cpi->workers[i];
+    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
+
+    // Accumulate counters.
+    if (i < cpi->num_workers - 1) {
+      vp10_accumulate_frame_counts(cm, thread_data->td->counts, 0);
+      accumulate_rd_opt(&cpi->td, thread_data->td);
+    }
+  }
+}
diff --git a/av1/encoder/ethread.h b/av1/encoder/ethread.h
new file mode 100644
index 0000000..d72816cd
--- /dev/null
+++ b/av1/encoder/ethread.h
@@ -0,0 +1,33 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_ETHREAD_H_
+#define VP10_ENCODER_ETHREAD_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP10_COMP;
+struct ThreadData;
+
+typedef struct EncWorkerData {
+  struct VP10_COMP *cpi;
+  struct ThreadData *td;
+  int start;
+} EncWorkerData;
+
+void vp10_encode_tiles_mt(struct VP10_COMP *cpi);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_ETHREAD_H_
diff --git a/av1/encoder/extend.c b/av1/encoder/extend.c
new file mode 100644
index 0000000..b0e20f0
--- /dev/null
+++ b/av1/encoder/extend.c
@@ -0,0 +1,191 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/common.h"
+#include "av1/encoder/extend.h"
+
+static void copy_and_extend_plane(const uint8_t *src, int src_pitch,
+                                  uint8_t *dst, int dst_pitch, int w, int h,
+                                  int extend_top, int extend_left,
+                                  int extend_bottom, int extend_right) {
+  int i, linesize;
+
+  // copy the left and right most columns out
+  const uint8_t *src_ptr1 = src;
+  const uint8_t *src_ptr2 = src + w - 1;
+  uint8_t *dst_ptr1 = dst - extend_left;
+  uint8_t *dst_ptr2 = dst + w;
+
+  for (i = 0; i < h; i++) {
+    memset(dst_ptr1, src_ptr1[0], extend_left);
+    memcpy(dst_ptr1 + extend_left, src_ptr1, w);
+    memset(dst_ptr2, src_ptr2[0], extend_right);
+    src_ptr1 += src_pitch;
+    src_ptr2 += src_pitch;
+    dst_ptr1 += dst_pitch;
+    dst_ptr2 += dst_pitch;
+  }
+
+  // Now copy the top and bottom lines into each line of the respective
+  // borders
+  src_ptr1 = dst - extend_left;
+  src_ptr2 = dst + dst_pitch * (h - 1) - extend_left;
+  dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left;
+  dst_ptr2 = dst + dst_pitch * (h)-extend_left;
+  linesize = extend_left + extend_right + w;
+
+  for (i = 0; i < extend_top; i++) {
+    memcpy(dst_ptr1, src_ptr1, linesize);
+    dst_ptr1 += dst_pitch;
+  }
+
+  for (i = 0; i < extend_bottom; i++) {
+    memcpy(dst_ptr2, src_ptr2, linesize);
+    dst_ptr2 += dst_pitch;
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void highbd_copy_and_extend_plane(const uint8_t *src8, int src_pitch,
+                                         uint8_t *dst8, int dst_pitch, int w,
+                                         int h, int extend_top, int extend_left,
+                                         int extend_bottom, int extend_right) {
+  int i, linesize;
+  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
+
+  // copy the left and right most columns out
+  const uint16_t *src_ptr1 = src;
+  const uint16_t *src_ptr2 = src + w - 1;
+  uint16_t *dst_ptr1 = dst - extend_left;
+  uint16_t *dst_ptr2 = dst + w;
+
+  for (i = 0; i < h; i++) {
+    vpx_memset16(dst_ptr1, src_ptr1[0], extend_left);
+    memcpy(dst_ptr1 + extend_left, src_ptr1, w * sizeof(src_ptr1[0]));
+    vpx_memset16(dst_ptr2, src_ptr2[0], extend_right);
+    src_ptr1 += src_pitch;
+    src_ptr2 += src_pitch;
+    dst_ptr1 += dst_pitch;
+    dst_ptr2 += dst_pitch;
+  }
+
+  // Now copy the top and bottom lines into each line of the respective
+  // borders
+  src_ptr1 = dst - extend_left;
+  src_ptr2 = dst + dst_pitch * (h - 1) - extend_left;
+  dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left;
+  dst_ptr2 = dst + dst_pitch * (h)-extend_left;
+  linesize = extend_left + extend_right + w;
+
+  for (i = 0; i < extend_top; i++) {
+    memcpy(dst_ptr1, src_ptr1, linesize * sizeof(src_ptr1[0]));
+    dst_ptr1 += dst_pitch;
+  }
+
+  for (i = 0; i < extend_bottom; i++) {
+    memcpy(dst_ptr2, src_ptr2, linesize * sizeof(src_ptr2[0]));
+    dst_ptr2 += dst_pitch;
+  }
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+void vp10_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+                                YV12_BUFFER_CONFIG *dst) {
+  // Extend src frame in buffer
+  // Altref filtering assumes 16 pixel extension
+  const int et_y = 16;
+  const int el_y = 16;
+  // Motion estimation may use src block variance with the block size up
+  // to 64x64, so the right and bottom need to be extended to 64 multiple
+  // or up to 16, whichever is greater.
+  const int er_y =
+      VPXMAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6)) -
+      src->y_crop_width;
+  const int eb_y =
+      VPXMAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6)) -
+      src->y_crop_height;
+  const int uv_width_subsampling = (src->uv_width != src->y_width);
+  const int uv_height_subsampling = (src->uv_height != src->y_height);
+  const int et_uv = et_y >> uv_height_subsampling;
+  const int el_uv = el_y >> uv_width_subsampling;
+  const int eb_uv = eb_y >> uv_height_subsampling;
+  const int er_uv = er_y >> uv_width_subsampling;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+    highbd_copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer,
+                                 dst->y_stride, src->y_crop_width,
+                                 src->y_crop_height, et_y, el_y, eb_y, er_y);
+
+    highbd_copy_and_extend_plane(
+        src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride,
+        src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv);
+
+    highbd_copy_and_extend_plane(
+        src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride,
+        src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv);
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer,
+                        dst->y_stride, src->y_crop_width, src->y_crop_height,
+                        et_y, el_y, eb_y, er_y);
+
+  copy_and_extend_plane(src->u_buffer, src->uv_stride, dst->u_buffer,
+                        dst->uv_stride, src->uv_crop_width, src->uv_crop_height,
+                        et_uv, el_uv, eb_uv, er_uv);
+
+  copy_and_extend_plane(src->v_buffer, src->uv_stride, dst->v_buffer,
+                        dst->uv_stride, src->uv_crop_width, src->uv_crop_height,
+                        et_uv, el_uv, eb_uv, er_uv);
+}
+
+void vp10_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+                                          YV12_BUFFER_CONFIG *dst, int srcy,
+                                          int srcx, int srch, int srcw) {
+  // If the side is not touching the bounder then don't extend.
+  const int et_y = srcy ? 0 : dst->border;
+  const int el_y = srcx ? 0 : dst->border;
+  const int eb_y = srcy + srch != src->y_height
+                       ? 0
+                       : dst->border + dst->y_height - src->y_height;
+  const int er_y = srcx + srcw != src->y_width
+                       ? 0
+                       : dst->border + dst->y_width - src->y_width;
+  const int src_y_offset = srcy * src->y_stride + srcx;
+  const int dst_y_offset = srcy * dst->y_stride + srcx;
+
+  const int et_uv = ROUND_POWER_OF_TWO(et_y, 1);
+  const int el_uv = ROUND_POWER_OF_TWO(el_y, 1);
+  const int eb_uv = ROUND_POWER_OF_TWO(eb_y, 1);
+  const int er_uv = ROUND_POWER_OF_TWO(er_y, 1);
+  const int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1);
+  const int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1);
+  const int srch_uv = ROUND_POWER_OF_TWO(srch, 1);
+  const int srcw_uv = ROUND_POWER_OF_TWO(srcw, 1);
+
+  copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride,
+                        dst->y_buffer + dst_y_offset, dst->y_stride, srcw, srch,
+                        et_y, el_y, eb_y, er_y);
+
+  copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride,
+                        dst->u_buffer + dst_uv_offset, dst->uv_stride, srcw_uv,
+                        srch_uv, et_uv, el_uv, eb_uv, er_uv);
+
+  copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride,
+                        dst->v_buffer + dst_uv_offset, dst->uv_stride, srcw_uv,
+                        srch_uv, et_uv, el_uv, eb_uv, er_uv);
+}
diff --git a/av1/encoder/extend.h b/av1/encoder/extend.h
new file mode 100644
index 0000000..1ad763e
--- /dev/null
+++ b/av1/encoder/extend.h
@@ -0,0 +1,31 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_EXTEND_H_
+#define VP10_ENCODER_EXTEND_H_
+
+#include "aom_scale/yv12config.h"
+#include "aom/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+                                YV12_BUFFER_CONFIG *dst);
+
+void vp10_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+                                          YV12_BUFFER_CONFIG *dst, int srcy,
+                                          int srcx, int srch, int srcw);
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_EXTEND_H_
diff --git a/av1/encoder/firstpass.c b/av1/encoder/firstpass.c
new file mode 100644
index 0000000..b89acfd
--- /dev/null
+++ b/av1/encoder/firstpass.c
@@ -0,0 +1,2578 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_scale_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+#include "aom_scale/vpx_scale.h"
+#include "aom_scale/yv12config.h"
+
+#include "av1/common/entropymv.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"  // vp10_setup_dst_planes()
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/block.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/rd.h"
+#include "aom_dsp/variance.h"
+
+#define OUTPUT_FPF 0
+#define ARF_STATS_OUTPUT 0
+
+#define GROUP_ADAPTIVE_MAXQ 1
+
+#define BOOST_BREAKOUT 12.5
+#define BOOST_FACTOR 12.5
+#define ERR_DIVISOR 128.0
+#define FACTOR_PT_LOW 0.70
+#define FACTOR_PT_HIGH 0.90
+#define FIRST_PASS_Q 10.0
+#define GF_MAX_BOOST 96.0
+#define INTRA_MODE_PENALTY 1024
+#define KF_MAX_BOOST 128.0
+#define MIN_ARF_GF_BOOST 240
+#define MIN_DECAY_FACTOR 0.01
+#define MIN_KF_BOOST 300
+#define NEW_MV_MODE_PENALTY 32
+#define DARK_THRESH 64
+#define DEFAULT_GRP_WEIGHT 1.0
+#define RC_FACTOR_MIN 0.75
+#define RC_FACTOR_MAX 1.75
+
+#define NCOUNT_INTRA_THRESH 8192
+#define NCOUNT_INTRA_FACTOR 3
+#define NCOUNT_FRAME_II_THRESH 5.0
+
+#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
+
+#if ARF_STATS_OUTPUT
+unsigned int arf_count = 0;
+#endif
+
+// Resets the first pass file to the given position using a relative seek from
+// the current position.
+static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
+  p->stats_in = position;
+}
+
+// Read frame stats at an offset from the current position.
+static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
+  if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
+      (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
+    return NULL;
+  }
+
+  return &p->stats_in[offset];
+}
+
+static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
+  if (p->stats_in >= p->stats_in_end) return EOF;
+
+  *fps = *p->stats_in;
+  ++p->stats_in;
+  return 1;
+}
+
+static void output_stats(FIRSTPASS_STATS *stats,
+                         struct vpx_codec_pkt_list *pktlist) {
+  struct vpx_codec_cx_pkt pkt;
+  pkt.kind = VPX_CODEC_STATS_PKT;
+  pkt.data.twopass_stats.buf = stats;
+  pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
+  vpx_codec_pkt_list_add(pktlist, &pkt);
+
+// TEMP debug code
+#if OUTPUT_FPF
+  {
+    FILE *fpfile;
+    fpfile = fopen("firstpass.stt", "a");
+
+    fprintf(fpfile,
+            "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
+            "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
+            "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n",
+            stats->frame, stats->weight, stats->intra_error, stats->coded_error,
+            stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
+            stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
+            stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
+            stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
+            stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
+            stats->count, stats->duration);
+    fclose(fpfile);
+  }
+#endif
+}
+
+#if CONFIG_FP_MB_STATS
+static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP10_COMMON *cm,
+                              struct vpx_codec_pkt_list *pktlist) {
+  struct vpx_codec_cx_pkt pkt;
+  pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
+  pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
+  pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
+  vpx_codec_pkt_list_add(pktlist, &pkt);
+}
+#endif
+
+static void zero_stats(FIRSTPASS_STATS *section) {
+  section->frame = 0.0;
+  section->weight = 0.0;
+  section->intra_error = 0.0;
+  section->coded_error = 0.0;
+  section->sr_coded_error = 0.0;
+  section->pcnt_inter = 0.0;
+  section->pcnt_motion = 0.0;
+  section->pcnt_second_ref = 0.0;
+  section->pcnt_neutral = 0.0;
+  section->intra_skip_pct = 0.0;
+  section->inactive_zone_rows = 0.0;
+  section->inactive_zone_cols = 0.0;
+  section->MVr = 0.0;
+  section->mvr_abs = 0.0;
+  section->MVc = 0.0;
+  section->mvc_abs = 0.0;
+  section->MVrv = 0.0;
+  section->MVcv = 0.0;
+  section->mv_in_out_count = 0.0;
+  section->new_mv_count = 0.0;
+  section->count = 0.0;
+  section->duration = 1.0;
+}
+
+static void accumulate_stats(FIRSTPASS_STATS *section,
+                             const FIRSTPASS_STATS *frame) {
+  section->frame += frame->frame;
+  section->weight += frame->weight;
+  section->intra_error += frame->intra_error;
+  section->coded_error += frame->coded_error;
+  section->sr_coded_error += frame->sr_coded_error;
+  section->pcnt_inter += frame->pcnt_inter;
+  section->pcnt_motion += frame->pcnt_motion;
+  section->pcnt_second_ref += frame->pcnt_second_ref;
+  section->pcnt_neutral += frame->pcnt_neutral;
+  section->intra_skip_pct += frame->intra_skip_pct;
+  section->inactive_zone_rows += frame->inactive_zone_rows;
+  section->inactive_zone_cols += frame->inactive_zone_cols;
+  section->MVr += frame->MVr;
+  section->mvr_abs += frame->mvr_abs;
+  section->MVc += frame->MVc;
+  section->mvc_abs += frame->mvc_abs;
+  section->MVrv += frame->MVrv;
+  section->MVcv += frame->MVcv;
+  section->mv_in_out_count += frame->mv_in_out_count;
+  section->new_mv_count += frame->new_mv_count;
+  section->count += frame->count;
+  section->duration += frame->duration;
+}
+
+static void subtract_stats(FIRSTPASS_STATS *section,
+                           const FIRSTPASS_STATS *frame) {
+  section->frame -= frame->frame;
+  section->weight -= frame->weight;
+  section->intra_error -= frame->intra_error;
+  section->coded_error -= frame->coded_error;
+  section->sr_coded_error -= frame->sr_coded_error;
+  section->pcnt_inter -= frame->pcnt_inter;
+  section->pcnt_motion -= frame->pcnt_motion;
+  section->pcnt_second_ref -= frame->pcnt_second_ref;
+  section->pcnt_neutral -= frame->pcnt_neutral;
+  section->intra_skip_pct -= frame->intra_skip_pct;
+  section->inactive_zone_rows -= frame->inactive_zone_rows;
+  section->inactive_zone_cols -= frame->inactive_zone_cols;
+  section->MVr -= frame->MVr;
+  section->mvr_abs -= frame->mvr_abs;
+  section->MVc -= frame->MVc;
+  section->mvc_abs -= frame->mvc_abs;
+  section->MVrv -= frame->MVrv;
+  section->MVcv -= frame->MVcv;
+  section->mv_in_out_count -= frame->mv_in_out_count;
+  section->new_mv_count -= frame->new_mv_count;
+  section->count -= frame->count;
+  section->duration -= frame->duration;
+}
+
+// Calculate an active area of the image that discounts formatting
+// bars and partially discounts other 0 energy areas.
+#define MIN_ACTIVE_AREA 0.5
+#define MAX_ACTIVE_AREA 1.0
+static double calculate_active_area(const VP10_COMP *cpi,
+                                    const FIRSTPASS_STATS *this_frame) {
+  double active_pct;
+
+  active_pct =
+      1.0 -
+      ((this_frame->intra_skip_pct / 2) +
+       ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
+  return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
+}
+
+// Calculate a modified Error used in distributing bits between easier and
+// harder frames.
+#define ACT_AREA_CORRECTION 0.5
+static double calculate_modified_err(const VP10_COMP *cpi,
+                                     const TWO_PASS *twopass,
+                                     const VP10EncoderConfig *oxcf,
+                                     const FIRSTPASS_STATS *this_frame) {
+  const FIRSTPASS_STATS *const stats = &twopass->total_stats;
+  const double av_weight = stats->weight / stats->count;
+  const double av_err = (stats->coded_error * av_weight) / stats->count;
+  double modified_error =
+      av_err * pow(this_frame->coded_error * this_frame->weight /
+                       DOUBLE_DIVIDE_CHECK(av_err),
+                   oxcf->two_pass_vbrbias / 100.0);
+
+  // Correction for active area. Frames with a reduced active area
+  // (eg due to formatting bars) have a higher error per mb for the
+  // remaining active MBs. The correction here assumes that coding
+  // 0.5N blocks of complexity 2X is a little easier than coding N
+  // blocks of complexity X.
+  modified_error *=
+      pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
+
+  return fclamp(modified_error, twopass->modified_error_min,
+                twopass->modified_error_max);
+}
+
+// This function returns the maximum target rate per frame.
+static int frame_max_bits(const RATE_CONTROL *rc,
+                          const VP10EncoderConfig *oxcf) {
+  int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
+                      (int64_t)oxcf->two_pass_vbrmax_section) /
+                     100;
+  if (max_bits < 0)
+    max_bits = 0;
+  else if (max_bits > rc->max_frame_bandwidth)
+    max_bits = rc->max_frame_bandwidth;
+
+  return (int)max_bits;
+}
+
+void vp10_init_first_pass(VP10_COMP *cpi) {
+  zero_stats(&cpi->twopass.total_stats);
+}
+
+void vp10_end_first_pass(VP10_COMP *cpi) {
+  output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
+}
+
+static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
+  switch (bsize) {
+    case BLOCK_8X8: return vpx_mse8x8;
+    case BLOCK_16X8: return vpx_mse16x8;
+    case BLOCK_8X16: return vpx_mse8x16;
+    default: return vpx_mse16x16;
+  }
+}
+
+static unsigned int get_prediction_error(BLOCK_SIZE bsize,
+                                         const struct buf_2d *src,
+                                         const struct buf_2d *ref) {
+  unsigned int sse;
+  const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
+  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+  return sse;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
+                                                      int bd) {
+  switch (bd) {
+    default:
+      switch (bsize) {
+        case BLOCK_8X8: return vpx_highbd_8_mse8x8;
+        case BLOCK_16X8: return vpx_highbd_8_mse16x8;
+        case BLOCK_8X16: return vpx_highbd_8_mse8x16;
+        default: return vpx_highbd_8_mse16x16;
+      }
+      break;
+    case 10:
+      switch (bsize) {
+        case BLOCK_8X8: return vpx_highbd_10_mse8x8;
+        case BLOCK_16X8: return vpx_highbd_10_mse16x8;
+        case BLOCK_8X16: return vpx_highbd_10_mse8x16;
+        default: return vpx_highbd_10_mse16x16;
+      }
+      break;
+    case 12:
+      switch (bsize) {
+        case BLOCK_8X8: return vpx_highbd_12_mse8x8;
+        case BLOCK_16X8: return vpx_highbd_12_mse16x8;
+        case BLOCK_8X16: return vpx_highbd_12_mse8x16;
+        default: return vpx_highbd_12_mse16x16;
+      }
+      break;
+  }
+}
+
+static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
+                                                const struct buf_2d *src,
+                                                const struct buf_2d *ref,
+                                                int bd) {
+  unsigned int sse;
+  const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
+  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+  return sse;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+// Refine the motion search range according to the frame dimension
+// for first pass test.
+static int get_search_range(const VP10_COMP *cpi) {
+  int sr = 0;
+  const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
+
+  while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
+  return sr;
+}
+
+static void first_pass_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
+                                     const MV *ref_mv, MV *best_mv,
+                                     int *best_motion_err) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MV tmp_mv = { 0, 0 };
+  MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
+  int num00, tmp_err, n;
+  const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+  vpx_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
+  const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
+
+  int step_param = 3;
+  int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
+  const int sr = get_search_range(cpi);
+  step_param += sr;
+  further_steps -= sr;
+
+  // Override the default variance function to use MSE.
+  v_fn_ptr.vf = get_block_variance_fn(bsize);
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  // Center the initial step/diamond search on best mv.
+  tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+                                    step_param, x->sadperbit16, &num00,
+                                    &v_fn_ptr, ref_mv);
+  if (tmp_err < INT_MAX)
+    tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+  if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
+
+  if (tmp_err < *best_motion_err) {
+    *best_motion_err = tmp_err;
+    *best_mv = tmp_mv;
+  }
+
+  // Carry out further step/diamond searches as necessary.
+  n = num00;
+  num00 = 0;
+
+  while (n < further_steps) {
+    ++n;
+
+    if (num00) {
+      --num00;
+    } else {
+      tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+                                        step_param + n, x->sadperbit16, &num00,
+                                        &v_fn_ptr, ref_mv);
+      if (tmp_err < INT_MAX)
+        tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+      if (tmp_err < INT_MAX - new_mv_mode_penalty)
+        tmp_err += new_mv_mode_penalty;
+
+      if (tmp_err < *best_motion_err) {
+        *best_motion_err = tmp_err;
+        *best_mv = tmp_mv;
+      }
+    }
+  }
+}
+
+static BLOCK_SIZE get_bsize(const VP10_COMMON *cm, int mb_row, int mb_col) {
+  if (2 * mb_col + 1 < cm->mi_cols) {
+    return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8;
+  } else {
+    return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8;
+  }
+}
+
+static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
+  int i;
+
+  for (i = 0; i < QINDEX_RANGE; ++i)
+    if (vp10_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
+
+  if (i == QINDEX_RANGE) i--;
+
+  return i;
+}
+
+static void set_first_pass_params(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  if (!cpi->refresh_alt_ref_frame &&
+      (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
+    cm->frame_type = KEY_FRAME;
+  } else {
+    cm->frame_type = INTER_FRAME;
+  }
+  // Do not use periodic key frames.
+  cpi->rc.frames_to_key = INT_MAX;
+}
+
+#define UL_INTRA_THRESH 50
+#define INVALID_ROW -1
+void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
+  int mb_row, mb_col;
+  MACROBLOCK *const x = &cpi->td.mb;
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  TileInfo tile;
+  struct macroblock_plane *const p = x->plane;
+  struct macroblockd_plane *const pd = xd->plane;
+  const PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
+  int i;
+
+  int recon_yoffset, recon_uvoffset;
+  int64_t intra_error = 0;
+  int64_t coded_error = 0;
+  int64_t sr_coded_error = 0;
+
+  int sum_mvr = 0, sum_mvc = 0;
+  int sum_mvr_abs = 0, sum_mvc_abs = 0;
+  int64_t sum_mvrs = 0, sum_mvcs = 0;
+  int mvcount = 0;
+  int intercount = 0;
+  int second_ref_count = 0;
+  const int intrapenalty = INTRA_MODE_PENALTY;
+  double neutral_count;
+  int intra_skip_count = 0;
+  int image_data_start_row = INVALID_ROW;
+  int new_mv_count = 0;
+  int sum_in_vectors = 0;
+  MV lastmv = { 0, 0 };
+  TWO_PASS *twopass = &cpi->twopass;
+  const MV zero_mv = { 0, 0 };
+  int recon_y_stride, recon_uv_stride, uv_mb_height;
+
+  YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+  YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+  YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
+  const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
+  double intra_factor;
+  double brightness_factor;
+  BufferPool *const pool = cm->buffer_pool;
+
+  // First pass code requires valid last and new frame buffers.
+  assert(new_yv12 != NULL);
+  assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
+
+#if CONFIG_FP_MB_STATS
+  if (cpi->use_fp_mb_stats) {
+    vp10_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
+  }
+#endif
+
+  vpx_clear_system_state();
+
+  intra_factor = 0.0;
+  brightness_factor = 0.0;
+  neutral_count = 0.0;
+
+  set_first_pass_params(cpi);
+  vp10_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
+
+  vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
+
+  vp10_setup_src_planes(x, cpi->Source, 0, 0);
+  vp10_setup_dst_planes(xd->plane, new_yv12, 0, 0);
+
+  if (!frame_is_intra_only(cm)) {
+    vp10_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
+  }
+
+  xd->mi = cm->mi_grid_visible;
+  xd->mi[0] = cm->mi;
+
+  vp10_frame_init_quantizer(cpi);
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    p[i].coeff = ctx->coeff_pbuf[i][1];
+    p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+    pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+    p[i].eobs = ctx->eobs_pbuf[i][1];
+  }
+  x->skip_recode = 0;
+
+  vp10_init_mv_probs(cm);
+  vp10_initialize_rd_consts(cpi);
+
+  // Tiling is ignored in the first pass.
+  vp10_tile_init(&tile, cm, 0, 0);
+
+  recon_y_stride = new_yv12->y_stride;
+  recon_uv_stride = new_yv12->uv_stride;
+  uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
+
+  for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
+    MV best_ref_mv = { 0, 0 };
+
+    // Reset above block coeffs.
+    xd->up_available = (mb_row != 0);
+    recon_yoffset = (mb_row * recon_y_stride * 16);
+    recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
+
+    // Set up limit values for motion vectors to prevent them extending
+    // outside the UMV borders.
+    x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
+    x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
+
+    for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
+      int this_error;
+      const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+      const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
+      double log_intra;
+      int level_sample;
+
+#if CONFIG_FP_MB_STATS
+      const int mb_index = mb_row * cm->mb_cols + mb_col;
+#endif
+
+      vpx_clear_system_state();
+
+      xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
+      xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
+      xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
+      xd->left_available = (mb_col != 0);
+      xd->mi[0]->mbmi.sb_type = bsize;
+      xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+      set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize],
+                     mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
+                     cm->mi_rows, cm->mi_cols);
+
+      // Do intra 16x16 prediction.
+      xd->mi[0]->mbmi.segment_id = 0;
+      xd->mi[0]->mbmi.mode = DC_PRED;
+      xd->mi[0]->mbmi.tx_size =
+          use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
+      vp10_encode_intra_block_plane(x, bsize, 0);
+      this_error = vpx_get_mb_ss(x->plane[0].src_diff);
+
+      // Keep a record of blocks that have almost no intra error residual
+      // (i.e. are in effect completely flat and untextured in the intra
+      // domain). In natural videos this is uncommon, but it is much more
+      // common in animations, graphics and screen content, so may be used
+      // as a signal to detect these types of content.
+      if (this_error < UL_INTRA_THRESH) {
+        ++intra_skip_count;
+      } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
+        image_data_start_row = mb_row;
+      }
+
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (cm->use_highbitdepth) {
+        switch (cm->bit_depth) {
+          case VPX_BITS_8: break;
+          case VPX_BITS_10: this_error >>= 4; break;
+          case VPX_BITS_12: this_error >>= 8; break;
+          default:
+            assert(0 &&
+                   "cm->bit_depth should be VPX_BITS_8, "
+                   "VPX_BITS_10 or VPX_BITS_12");
+            return;
+        }
+      }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+      vpx_clear_system_state();
+      log_intra = log(this_error + 1.0);
+      if (log_intra < 10.0)
+        intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
+      else
+        intra_factor += 1.0;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (cm->use_highbitdepth)
+        level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
+      else
+        level_sample = x->plane[0].src.buf[0];
+#else
+      level_sample = x->plane[0].src.buf[0];
+#endif
+      if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
+        brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
+      else
+        brightness_factor += 1.0;
+
+      // Intrapenalty below deals with situations where the intra and inter
+      // error scores are very low (e.g. a plain black frame).
+      // We do not have special cases in first pass for 0,0 and nearest etc so
+      // all inter modes carry an overhead cost estimate for the mv.
+      // When the error score is very low this causes us to pick all or lots of
+      // INTRA modes and throw lots of key frames.
+      // This penalty adds a cost matching that of a 0,0 mv to the intra case.
+      this_error += intrapenalty;
+
+      // Accumulate the intra error.
+      intra_error += (int64_t)this_error;
+
+#if CONFIG_FP_MB_STATS
+      if (cpi->use_fp_mb_stats) {
+        // initialization
+        cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+      }
+#endif
+
+      // Set up limit values for motion vectors to prevent them extending
+      // outside the UMV borders.
+      x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
+      x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
+
+      // Other than for the first frame do a motion search.
+      if (cm->current_video_frame > 0) {
+        int tmp_err, motion_error, raw_motion_error;
+        // Assume 0,0 motion with no mv overhead.
+        MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
+        struct buf_2d unscaled_last_source_buf_2d;
+
+        xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+          motion_error = highbd_get_prediction_error(
+              bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+        } else {
+          motion_error = get_prediction_error(bsize, &x->plane[0].src,
+                                              &xd->plane[0].pre[0]);
+        }
+#else
+        motion_error =
+            get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+        // Compute the motion error of the 0,0 motion using the last source
+        // frame as the reference. Skip the further motion search on
+        // reconstructed frame if this error is small.
+        unscaled_last_source_buf_2d.buf =
+            cpi->unscaled_last_source->y_buffer + recon_yoffset;
+        unscaled_last_source_buf_2d.stride =
+            cpi->unscaled_last_source->y_stride;
+#if CONFIG_VPX_HIGHBITDEPTH
+        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+          raw_motion_error = highbd_get_prediction_error(
+              bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
+        } else {
+          raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+                                                  &unscaled_last_source_buf_2d);
+        }
+#else
+        raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+                                                &unscaled_last_source_buf_2d);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+        // TODO(pengchong): Replace the hard-coded threshold
+        if (raw_motion_error > 25) {
+          // Test last reference frame using the previous best mv as the
+          // starting point (best reference) for the search.
+          first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
+
+          // If the current best reference mv is not centered on 0,0 then do a
+          // 0,0 based search as well.
+          if (!is_zero_mv(&best_ref_mv)) {
+            tmp_err = INT_MAX;
+            first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
+
+            if (tmp_err < motion_error) {
+              motion_error = tmp_err;
+              mv = tmp_mv;
+            }
+          }
+
+          // Search in an older reference frame.
+          if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
+            // Assume 0,0 motion with no mv overhead.
+            int gf_motion_error;
+
+            xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
+#if CONFIG_VPX_HIGHBITDEPTH
+            if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+              gf_motion_error = highbd_get_prediction_error(
+                  bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+            } else {
+              gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+                                                     &xd->plane[0].pre[0]);
+            }
+#else
+            gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+                                                   &xd->plane[0].pre[0]);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+            first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
+                                     &gf_motion_error);
+
+            if (gf_motion_error < motion_error && gf_motion_error < this_error)
+              ++second_ref_count;
+
+            // Reset to last frame as reference buffer.
+            xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+            xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
+            xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
+
+            // In accumulating a score for the older reference frame take the
+            // best of the motion predicted score and the intra coded error
+            // (just as will be done for) accumulation of "coded_error" for
+            // the last frame.
+            if (gf_motion_error < this_error)
+              sr_coded_error += gf_motion_error;
+            else
+              sr_coded_error += this_error;
+          } else {
+            sr_coded_error += motion_error;
+          }
+        } else {
+          sr_coded_error += motion_error;
+        }
+
+        // Start by assuming that intra mode is best.
+        best_ref_mv.row = 0;
+        best_ref_mv.col = 0;
+
+#if CONFIG_FP_MB_STATS
+        if (cpi->use_fp_mb_stats) {
+          // intra predication statistics
+          cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+          cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
+          cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+          if (this_error > FPMB_ERROR_LARGE_TH) {
+            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
+          } else if (this_error < FPMB_ERROR_SMALL_TH) {
+            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
+          }
+        }
+#endif
+
+        if (motion_error <= this_error) {
+          vpx_clear_system_state();
+
+          // Keep a count of cases where the inter and intra were very close
+          // and very low. This helps with scene cut detection for example in
+          // cropped clips with black bars at the sides or top and bottom.
+          if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
+              (this_error < (2 * intrapenalty))) {
+            neutral_count += 1.0;
+            // Also track cases where the intra is not much worse than the inter
+            // and use this in limiting the GF/arf group length.
+          } else if ((this_error > NCOUNT_INTRA_THRESH) &&
+                     (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
+            neutral_count +=
+                (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
+          }
+
+          mv.row *= 8;
+          mv.col *= 8;
+          this_error = motion_error;
+          xd->mi[0]->mbmi.mode = NEWMV;
+          xd->mi[0]->mbmi.mv[0].as_mv = mv;
+          xd->mi[0]->mbmi.tx_size = TX_4X4;
+          xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
+          xd->mi[0]->mbmi.ref_frame[1] = NONE;
+          vp10_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
+          vp10_encode_sby_pass1(x, bsize);
+          sum_mvr += mv.row;
+          sum_mvr_abs += abs(mv.row);
+          sum_mvc += mv.col;
+          sum_mvc_abs += abs(mv.col);
+          sum_mvrs += mv.row * mv.row;
+          sum_mvcs += mv.col * mv.col;
+          ++intercount;
+
+          best_ref_mv = mv;
+
+#if CONFIG_FP_MB_STATS
+          if (cpi->use_fp_mb_stats) {
+            // inter predication statistics
+            cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+            cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
+            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+            if (this_error > FPMB_ERROR_LARGE_TH) {
+              cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                  FPMB_ERROR_LARGE_MASK;
+            } else if (this_error < FPMB_ERROR_SMALL_TH) {
+              cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                  FPMB_ERROR_SMALL_MASK;
+            }
+          }
+#endif
+
+          if (!is_zero_mv(&mv)) {
+            ++mvcount;
+
+#if CONFIG_FP_MB_STATS
+            if (cpi->use_fp_mb_stats) {
+              cpi->twopass.frame_mb_stats_buf[mb_index] &=
+                  ~FPMB_MOTION_ZERO_MASK;
+              // check estimated motion direction
+              if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
+                // right direction
+                cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                    FPMB_MOTION_RIGHT_MASK;
+              } else if (mv.as_mv.row < 0 &&
+                         abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
+                // up direction
+                cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                    FPMB_MOTION_UP_MASK;
+              } else if (mv.as_mv.col < 0 &&
+                         abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
+                // left direction
+                cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                    FPMB_MOTION_LEFT_MASK;
+              } else {
+                // down direction
+                cpi->twopass.frame_mb_stats_buf[mb_index] |=
+                    FPMB_MOTION_DOWN_MASK;
+              }
+            }
+#endif
+
+            // Non-zero vector, was it different from the last non zero vector?
+            if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count;
+            lastmv = mv;
+
+            // Does the row vector point inwards or outwards?
+            if (mb_row < cm->mb_rows / 2) {
+              if (mv.row > 0)
+                --sum_in_vectors;
+              else if (mv.row < 0)
+                ++sum_in_vectors;
+            } else if (mb_row > cm->mb_rows / 2) {
+              if (mv.row > 0)
+                ++sum_in_vectors;
+              else if (mv.row < 0)
+                --sum_in_vectors;
+            }
+
+            // Does the col vector point inwards or outwards?
+            if (mb_col < cm->mb_cols / 2) {
+              if (mv.col > 0)
+                --sum_in_vectors;
+              else if (mv.col < 0)
+                ++sum_in_vectors;
+            } else if (mb_col > cm->mb_cols / 2) {
+              if (mv.col > 0)
+                ++sum_in_vectors;
+              else if (mv.col < 0)
+                --sum_in_vectors;
+            }
+          }
+        }
+      } else {
+        sr_coded_error += (int64_t)this_error;
+      }
+      coded_error += (int64_t)this_error;
+
+      // Adjust to the next column of MBs.
+      x->plane[0].src.buf += 16;
+      x->plane[1].src.buf += uv_mb_height;
+      x->plane[2].src.buf += uv_mb_height;
+
+      recon_yoffset += 16;
+      recon_uvoffset += uv_mb_height;
+    }
+
+    // Adjust to the next row of MBs.
+    x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
+    x->plane[1].src.buf +=
+        uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
+    x->plane[2].src.buf +=
+        uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
+
+    vpx_clear_system_state();
+  }
+
+  // Clamp the image start to rows/2. This number of rows is discarded top
+  // and bottom as dead data so rows / 2 means the frame is blank.
+  if ((image_data_start_row > cm->mb_rows / 2) ||
+      (image_data_start_row == INVALID_ROW)) {
+    image_data_start_row = cm->mb_rows / 2;
+  }
+  // Exclude any image dead zone
+  if (image_data_start_row > 0) {
+    intra_skip_count =
+        VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
+  }
+
+  {
+    FIRSTPASS_STATS fps;
+    // The minimum error here insures some bit allocation to frames even
+    // in static regions. The allocation per MB declines for larger formats
+    // where the typical "real" energy per MB also falls.
+    // Initial estimate here uses sqrt(mbs) to define the min_err, where the
+    // number of mbs is proportional to the image area.
+    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+                            ? cpi->initial_mbs
+                            : cpi->common.MBs;
+    const double min_err = 200 * sqrt(num_mbs);
+
+    intra_factor = intra_factor / (double)num_mbs;
+    brightness_factor = brightness_factor / (double)num_mbs;
+    fps.weight = intra_factor * brightness_factor;
+
+    fps.frame = cm->current_video_frame;
+    fps.coded_error = (double)(coded_error >> 8) + min_err;
+    fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
+    fps.intra_error = (double)(intra_error >> 8) + min_err;
+    fps.count = 1.0;
+    fps.pcnt_inter = (double)intercount / num_mbs;
+    fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
+    fps.pcnt_neutral = (double)neutral_count / num_mbs;
+    fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
+    fps.inactive_zone_rows = (double)image_data_start_row;
+    fps.inactive_zone_cols = (double)0;  // TODO(paulwilkins): fix
+
+    if (mvcount > 0) {
+      fps.MVr = (double)sum_mvr / mvcount;
+      fps.mvr_abs = (double)sum_mvr_abs / mvcount;
+      fps.MVc = (double)sum_mvc / mvcount;
+      fps.mvc_abs = (double)sum_mvc_abs / mvcount;
+      fps.MVrv =
+          ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
+      fps.MVcv =
+          ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
+      fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
+      fps.new_mv_count = new_mv_count;
+      fps.pcnt_motion = (double)mvcount / num_mbs;
+    } else {
+      fps.MVr = 0.0;
+      fps.mvr_abs = 0.0;
+      fps.MVc = 0.0;
+      fps.mvc_abs = 0.0;
+      fps.MVrv = 0.0;
+      fps.MVcv = 0.0;
+      fps.mv_in_out_count = 0.0;
+      fps.new_mv_count = 0.0;
+      fps.pcnt_motion = 0.0;
+    }
+
+    // TODO(paulwilkins):  Handle the case when duration is set to 0, or
+    // something less than the full time between subsequent values of
+    // cpi->source_time_stamp.
+    fps.duration = (double)(source->ts_end - source->ts_start);
+
+    // Don't want to do output stats with a stack variable!
+    twopass->this_frame_stats = fps;
+    output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
+    accumulate_stats(&twopass->total_stats, &fps);
+
+#if CONFIG_FP_MB_STATS
+    if (cpi->use_fp_mb_stats) {
+      output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
+    }
+#endif
+  }
+
+  // Copy the previous Last Frame back into gf and and arf buffers if
+  // the prediction is good enough... but also don't allow it to lag too far.
+  if ((twopass->sr_update_lag > 3) ||
+      ((cm->current_video_frame > 0) &&
+       (twopass->this_frame_stats.pcnt_inter > 0.20) &&
+       ((twopass->this_frame_stats.intra_error /
+         DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
+    if (gld_yv12 != NULL) {
+      ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+                 cm->ref_frame_map[cpi->lst_fb_idx]);
+    }
+    twopass->sr_update_lag = 1;
+  } else {
+    ++twopass->sr_update_lag;
+  }
+
+  vpx_extend_frame_borders(new_yv12);
+
+  // The frame we just compressed now becomes the last frame.
+  ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
+             cm->new_fb_idx);
+
+  // Special case for the first frame. Copy into the GF buffer as a second
+  // reference.
+  if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
+    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+               cm->ref_frame_map[cpi->lst_fb_idx]);
+  }
+
+  // Use this to see what the first pass reconstruction looks like.
+  if (0) {
+    char filename[512];
+    FILE *recon_file;
+    snprintf(filename, sizeof(filename), "enc%04d.yuv",
+             (int)cm->current_video_frame);
+
+    if (cm->current_video_frame == 0)
+      recon_file = fopen(filename, "wb");
+    else
+      recon_file = fopen(filename, "ab");
+
+    (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
+    fclose(recon_file);
+  }
+
+  ++cm->current_video_frame;
+}
+
+static double calc_correction_factor(double err_per_mb, double err_divisor,
+                                     double pt_low, double pt_high, int q,
+                                     vpx_bit_depth_t bit_depth) {
+  const double error_term = err_per_mb / err_divisor;
+
+  // Adjustment based on actual quantizer to power term.
+  const double power_term =
+      VPXMIN(vp10_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
+
+  // Calculate correction factor.
+  if (power_term < 1.0) assert(error_term >= 0.0);
+
+  return fclamp(pow(error_term, power_term), 0.05, 5.0);
+}
+
+// Larger image formats are expected to be a little harder to code relatively
+// given the same prediction error score. This in part at least relates to the
+// increased size and hence coding cost of motion vectors.
+#define EDIV_SIZE_FACTOR 800
+
+static int get_twopass_worst_quality(const VP10_COMP *cpi,
+                                     const double section_err,
+                                     double inactive_zone,
+                                     int section_target_bandwidth,
+                                     double group_weight_factor) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+
+  inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
+
+  if (section_target_bandwidth <= 0) {
+    return rc->worst_quality;  // Highest value allowed
+  } else {
+    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+                            ? cpi->initial_mbs
+                            : cpi->common.MBs;
+    const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
+    const double av_err_per_mb = section_err / active_mbs;
+    const double speed_term = 1.0 + 0.04 * oxcf->speed;
+    const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR;
+    const int target_norm_bits_per_mb =
+        ((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / active_mbs;
+
+    int q;
+
+    // Try and pick a max Q that will be high enough to encode the
+    // content at the given rate.
+    for (q = rc->best_quality; q < rc->worst_quality; ++q) {
+      const double factor = calc_correction_factor(
+          av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW,
+          FACTOR_PT_HIGH, q, cpi->common.bit_depth);
+      const int bits_per_mb = vp10_rc_bits_per_mb(
+          INTER_FRAME, q, factor * speed_term * group_weight_factor,
+          cpi->common.bit_depth);
+      if (bits_per_mb <= target_norm_bits_per_mb) break;
+    }
+
+    // Restriction on active max q for constrained quality mode.
+    if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level);
+    return q;
+  }
+}
+
+static void setup_rf_level_maxq(VP10_COMP *cpi) {
+  int i;
+  RATE_CONTROL *const rc = &cpi->rc;
+  for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
+    int qdelta = vp10_frame_type_qdelta(cpi, i, rc->worst_quality);
+    rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
+  }
+}
+
+void vp10_init_subsampling(VP10_COMP *cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  const int w = cm->width;
+  const int h = cm->height;
+  int i;
+
+  for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
+    // Note: Frames with odd-sized dimensions may result from this scaling.
+    rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
+    rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
+  }
+
+  setup_rf_level_maxq(cpi);
+}
+
+void vp10_calculate_coded_size(VP10_COMP *cpi, int *scaled_frame_width,
+                               int *scaled_frame_height) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
+  *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
+}
+
+void vp10_init_second_pass(VP10_COMP *cpi) {
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  TWO_PASS *const twopass = &cpi->twopass;
+  double frame_rate;
+  FIRSTPASS_STATS *stats;
+
+  zero_stats(&twopass->total_stats);
+  zero_stats(&twopass->total_left_stats);
+
+  if (!twopass->stats_in_end) return;
+
+  stats = &twopass->total_stats;
+
+  *stats = *twopass->stats_in_end;
+  twopass->total_left_stats = *stats;
+
+  frame_rate = 10000000.0 * stats->count / stats->duration;
+  // Each frame can have a different duration, as the frame rate in the source
+  // isn't guaranteed to be constant. The frame rate prior to the first frame
+  // encoded in the second pass is a guess. However, the sum duration is not.
+  // It is calculated based on the actual durations of all frames from the
+  // first pass.
+  vp10_new_framerate(cpi, frame_rate);
+  twopass->bits_left =
+      (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
+
+  // This variable monitors how far behind the second ref update is lagging.
+  twopass->sr_update_lag = 1;
+
+  // Scan the first pass file and calculate a modified total error based upon
+  // the bias/power function used to allocate bits.
+  {
+    const double avg_error =
+        stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
+    const FIRSTPASS_STATS *s = twopass->stats_in;
+    double modified_error_total = 0.0;
+    twopass->modified_error_min =
+        (avg_error * oxcf->two_pass_vbrmin_section) / 100;
+    twopass->modified_error_max =
+        (avg_error * oxcf->two_pass_vbrmax_section) / 100;
+    while (s < twopass->stats_in_end) {
+      modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
+      ++s;
+    }
+    twopass->modified_error_left = modified_error_total;
+  }
+
+  // Reset the vbr bits off target counters
+  cpi->rc.vbr_bits_off_target = 0;
+  cpi->rc.vbr_bits_off_target_fast = 0;
+
+  cpi->rc.rate_error_estimate = 0;
+
+  // Static sequence monitor variables.
+  twopass->kf_zeromotion_pct = 100;
+  twopass->last_kfgroup_zeromotion_pct = 100;
+
+  if (oxcf->resize_mode != RESIZE_NONE) {
+    vp10_init_subsampling(cpi);
+  }
+}
+
+#define SR_DIFF_PART 0.0015
+#define MOTION_AMP_PART 0.003
+#define INTRA_PART 0.005
+#define DEFAULT_DECAY_LIMIT 0.75
+#define LOW_SR_DIFF_TRHESH 0.1
+#define SR_DIFF_MAX 128.0
+
+static double get_sr_decay_rate(const VP10_COMP *cpi,
+                                const FIRSTPASS_STATS *frame) {
+  const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
+                                                             : cpi->common.MBs;
+  double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs;
+  double sr_decay = 1.0;
+  double modified_pct_inter;
+  double modified_pcnt_intra;
+  const double motion_amplitude_factor =
+      frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
+
+  modified_pct_inter = frame->pcnt_inter;
+  if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
+      (double)NCOUNT_FRAME_II_THRESH) {
+    modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
+  }
+  modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
+
+  if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
+    sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
+    sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
+               (MOTION_AMP_PART * motion_amplitude_factor) -
+               (INTRA_PART * modified_pcnt_intra);
+  }
+  return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
+}
+
+// This function gives an estimate of how badly we believe the prediction
+// quality is decaying from frame to frame.
+static double get_zero_motion_factor(const VP10_COMP *cpi,
+                                     const FIRSTPASS_STATS *frame) {
+  const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
+  double sr_decay = get_sr_decay_rate(cpi, frame);
+  return VPXMIN(sr_decay, zero_motion_pct);
+}
+
+#define ZM_POWER_FACTOR 0.75
+
+static double get_prediction_decay_rate(const VP10_COMP *cpi,
+                                        const FIRSTPASS_STATS *next_frame) {
+  const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
+  const double zero_motion_factor =
+      (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
+                  ZM_POWER_FACTOR));
+
+  return VPXMAX(zero_motion_factor,
+                (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
+}
+
+// Function to test for a condition where a complex transition is followed
+// by a static section. For example in slide shows where there is a fade
+// between slides. This is to help with more optimal kf and gf positioning.
+static int detect_transition_to_still(VP10_COMP *cpi, int frame_interval,
+                                      int still_interval,
+                                      double loop_decay_rate,
+                                      double last_decay_rate) {
+  TWO_PASS *const twopass = &cpi->twopass;
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  // Break clause to detect very still sections after motion
+  // For example a static image after a fade or other transition
+  // instead of a clean scene cut.
+  if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
+      last_decay_rate < 0.9) {
+    int j;
+
+    // Look ahead a few frames to see if static condition persists...
+    for (j = 0; j < still_interval; ++j) {
+      const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
+      if (stats >= twopass->stats_in_end) break;
+
+      if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
+    }
+
+    // Only if it does do we signal a transition to still.
+    return j == still_interval;
+  }
+
+  return 0;
+}
+
+// This function detects a flash through the high relative pcnt_second_ref
+// score in the frame following a flash frame. The offset passed in should
+// reflect this.
+static int detect_flash(const TWO_PASS *twopass, int offset) {
+  const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
+
+  // What we are looking for here is a situation where there is a
+  // brief break in prediction (such as a flash) but subsequent frames
+  // are reasonably well predicted by an earlier (pre flash) frame.
+  // The recovery after a flash is indicated by a high pcnt_second_ref
+  // compared to pcnt_inter.
+  return next_frame != NULL &&
+         next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
+         next_frame->pcnt_second_ref >= 0.5;
+}
+
+// Update the motion related elements to the GF arf boost calculation.
+static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
+                                          double *mv_in_out,
+                                          double *mv_in_out_accumulator,
+                                          double *abs_mv_in_out_accumulator,
+                                          double *mv_ratio_accumulator) {
+  const double pct = stats->pcnt_motion;
+
+  // Accumulate Motion In/Out of frame stats.
+  *mv_in_out = stats->mv_in_out_count * pct;
+  *mv_in_out_accumulator += *mv_in_out;
+  *abs_mv_in_out_accumulator += fabs(*mv_in_out);
+
+  // Accumulate a measure of how uniform (or conversely how random) the motion
+  // field is (a ratio of abs(mv) / mv).
+  if (pct > 0.05) {
+    const double mvr_ratio =
+        fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
+    const double mvc_ratio =
+        fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
+
+    *mv_ratio_accumulator +=
+        pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
+    *mv_ratio_accumulator +=
+        pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
+  }
+}
+
+#define BASELINE_ERR_PER_MB 1000.0
+static double calc_frame_boost(VP10_COMP *cpi,
+                               const FIRSTPASS_STATS *this_frame,
+                               double this_frame_mv_in_out, double max_boost) {
+  double frame_boost;
+  const double lq = vp10_convert_qindex_to_q(
+      cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
+  const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
+  int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
+                                                       : cpi->common.MBs;
+
+  // Correct for any inactive region in the image
+  num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
+
+  // Underlying boost factor is based on inter error ratio.
+  frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
+                DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
+  frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
+
+  // Increase boost for frames where new data coming into frame (e.g. zoom out).
+  // Slightly reduce boost if there is a net balance of motion out of the frame
+  // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
+  if (this_frame_mv_in_out > 0.0)
+    frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+  // In the extreme case the boost is halved.
+  else
+    frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+
+  return VPXMIN(frame_boost, max_boost * boost_q_correction);
+}
+
+static int calc_arf_boost(VP10_COMP *cpi, int offset, int f_frames,
+                          int b_frames, int *f_boost, int *b_boost) {
+  TWO_PASS *const twopass = &cpi->twopass;
+  int i;
+  double boost_score = 0.0;
+  double mv_ratio_accumulator = 0.0;
+  double decay_accumulator = 1.0;
+  double this_frame_mv_in_out = 0.0;
+  double mv_in_out_accumulator = 0.0;
+  double abs_mv_in_out_accumulator = 0.0;
+  int arf_boost;
+  int flash_detected = 0;
+
+  // Search forward from the proposed arf/next gf position.
+  for (i = 0; i < f_frames; ++i) {
+    const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+    if (this_frame == NULL) break;
+
+    // Update the motion related elements to the boost calculation.
+    accumulate_frame_motion_stats(
+        this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+        &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+    // We want to discount the flash frame itself and the recovery
+    // frame that follows as both will have poor scores.
+    flash_detected = detect_flash(twopass, i + offset) ||
+                     detect_flash(twopass, i + offset + 1);
+
+    // Accumulate the effect of prediction quality decay.
+    if (!flash_detected) {
+      decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+      decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+                              ? MIN_DECAY_FACTOR
+                              : decay_accumulator;
+    }
+
+    boost_score +=
+        decay_accumulator *
+        calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+  }
+
+  *f_boost = (int)boost_score;
+
+  // Reset for backward looking loop.
+  boost_score = 0.0;
+  mv_ratio_accumulator = 0.0;
+  decay_accumulator = 1.0;
+  this_frame_mv_in_out = 0.0;
+  mv_in_out_accumulator = 0.0;
+  abs_mv_in_out_accumulator = 0.0;
+
+  // Search backward towards last gf position.
+  for (i = -1; i >= -b_frames; --i) {
+    const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+    if (this_frame == NULL) break;
+
+    // Update the motion related elements to the boost calculation.
+    accumulate_frame_motion_stats(
+        this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+        &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+    // We want to discount the the flash frame itself and the recovery
+    // frame that follows as both will have poor scores.
+    flash_detected = detect_flash(twopass, i + offset) ||
+                     detect_flash(twopass, i + offset + 1);
+
+    // Cumulative effect of prediction quality decay.
+    if (!flash_detected) {
+      decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+      decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+                              ? MIN_DECAY_FACTOR
+                              : decay_accumulator;
+    }
+
+    boost_score +=
+        decay_accumulator *
+        calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+  }
+  *b_boost = (int)boost_score;
+
+  arf_boost = (*f_boost + *b_boost);
+  if (arf_boost < ((b_frames + f_frames) * 20))
+    arf_boost = ((b_frames + f_frames) * 20);
+  arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
+
+  return arf_boost;
+}
+
+// Calculate a section intra ratio used in setting max loop filter.
+static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
+                                         const FIRSTPASS_STATS *end,
+                                         int section_length) {
+  const FIRSTPASS_STATS *s = begin;
+  double intra_error = 0.0;
+  double coded_error = 0.0;
+  int i = 0;
+
+  while (s < end && i < section_length) {
+    intra_error += s->intra_error;
+    coded_error += s->coded_error;
+    ++s;
+    ++i;
+  }
+
+  return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
+}
+
+// Calculate the total bits to allocate in this GF/ARF group.
+static int64_t calculate_total_gf_group_bits(VP10_COMP *cpi,
+                                             double gf_group_err) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const TWO_PASS *const twopass = &cpi->twopass;
+  const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+  int64_t total_group_bits;
+
+  // Calculate the bits to be allocated to the group as a whole.
+  if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
+    total_group_bits = (int64_t)(twopass->kf_group_bits *
+                                 (gf_group_err / twopass->kf_group_error_left));
+  } else {
+    total_group_bits = 0;
+  }
+
+  // Clamp odd edge cases.
+  total_group_bits =
+      (total_group_bits < 0) ? 0 : (total_group_bits > twopass->kf_group_bits)
+                                       ? twopass->kf_group_bits
+                                       : total_group_bits;
+
+  // Clip based on user supplied data rate variability limit.
+  if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
+    total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
+
+  return total_group_bits;
+}
+
+// Calculate the number bits extra to assign to boosted frames in a group.
+static int calculate_boost_bits(int frame_count, int boost,
+                                int64_t total_group_bits) {
+  int allocation_chunks;
+
+  // return 0 for invalid inputs (could arise e.g. through rounding errors)
+  if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
+
+  allocation_chunks = (frame_count * 100) + boost;
+
+  // Prevent overflow.
+  if (boost > 1023) {
+    int divisor = boost >> 10;
+    boost /= divisor;
+    allocation_chunks /= divisor;
+  }
+
+  // Calculate the number of extra bits for use in the boosted frame or frames.
+  return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
+                0);
+}
+
+// Current limit on maximum number of active arfs in a GF/ARF group.
+#define MAX_ACTIVE_ARFS 2
+#define ARF_SLOT1 2
+#define ARF_SLOT2 3
+// This function indirects the choice of buffers for arfs.
+// At the moment the values are fixed but this may change as part of
+// the integration process with other codec features that swap buffers around.
+static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
+  arf_buffer_indices[0] = ARF_SLOT1;
+  arf_buffer_indices[1] = ARF_SLOT2;
+}
+
+static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
+                                   double group_error, int gf_arf_bits) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  TWO_PASS *const twopass = &cpi->twopass;
+  GF_GROUP *const gf_group = &twopass->gf_group;
+  FIRSTPASS_STATS frame_stats;
+  int i;
+  int frame_index = 1;
+  int target_frame_size;
+  int key_frame;
+  const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
+  int64_t total_group_bits = gf_group_bits;
+  double modified_err = 0.0;
+  double err_fraction;
+  int mid_boost_bits = 0;
+  int mid_frame_idx;
+  unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
+  int alt_frame_index = frame_index;
+
+  key_frame = cpi->common.frame_type == KEY_FRAME;
+
+  get_arf_buffer_indices(arf_buffer_indices);
+
+  // For key frames the frame target rate is already set and it
+  // is also the golden frame.
+  if (!key_frame) {
+    if (rc->source_alt_ref_active) {
+      gf_group->update_type[0] = OVERLAY_UPDATE;
+      gf_group->rf_level[0] = INTER_NORMAL;
+      gf_group->bit_allocation[0] = 0;
+      gf_group->arf_update_idx[0] = arf_buffer_indices[0];
+      gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
+    } else {
+      gf_group->update_type[0] = GF_UPDATE;
+      gf_group->rf_level[0] = GF_ARF_STD;
+      gf_group->bit_allocation[0] = gf_arf_bits;
+      gf_group->arf_update_idx[0] = arf_buffer_indices[0];
+      gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
+    }
+
+    // Step over the golden frame / overlay frame
+    if (EOF == input_stats(twopass, &frame_stats)) return;
+  }
+
+  // Deduct the boost bits for arf (or gf if it is not a key frame)
+  // from the group total.
+  if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
+
+  // Store the bits to spend on the ARF if there is one.
+  if (rc->source_alt_ref_pending) {
+    gf_group->update_type[alt_frame_index] = ARF_UPDATE;
+    gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
+    gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
+
+    gf_group->arf_src_offset[alt_frame_index] =
+        (unsigned char)(rc->baseline_gf_interval - 1);
+
+    gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
+    gf_group->arf_ref_idx[alt_frame_index] =
+        arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
+                           rc->source_alt_ref_active];
+    ++frame_index;
+
+    if (cpi->multi_arf_enabled) {
+      // Set aside a slot for a level 1 arf.
+      gf_group->update_type[frame_index] = ARF_UPDATE;
+      gf_group->rf_level[frame_index] = GF_ARF_LOW;
+      gf_group->arf_src_offset[frame_index] =
+          (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
+      gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
+      gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
+      ++frame_index;
+    }
+  }
+
+  // Define middle frame
+  mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
+
+  // Allocate bits to the other frames in the group.
+  for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
+    int arf_idx = 0;
+    if (EOF == input_stats(twopass, &frame_stats)) break;
+
+    modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
+
+    if (group_error > 0)
+      err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
+    else
+      err_fraction = 0.0;
+
+    target_frame_size = (int)((double)total_group_bits * err_fraction);
+
+    if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
+      mid_boost_bits += (target_frame_size >> 4);
+      target_frame_size -= (target_frame_size >> 4);
+
+      if (frame_index <= mid_frame_idx) arf_idx = 1;
+    }
+    gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
+    gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
+
+    target_frame_size =
+        clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
+
+    gf_group->update_type[frame_index] = LF_UPDATE;
+    gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+    gf_group->bit_allocation[frame_index] = target_frame_size;
+    ++frame_index;
+  }
+
+  // Note:
+  // We need to configure the frame at the end of the sequence + 1 that will be
+  // the start frame for the next group. Otherwise prior to the call to
+  // vp10_rc_get_second_pass_params() the data will be undefined.
+  gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
+  gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
+
+  if (rc->source_alt_ref_pending) {
+    gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+    gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+    // Final setup for second arf and its overlay.
+    if (cpi->multi_arf_enabled) {
+      gf_group->bit_allocation[2] =
+          gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
+      gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
+      gf_group->bit_allocation[mid_frame_idx] = 0;
+    }
+  } else {
+    gf_group->update_type[frame_index] = GF_UPDATE;
+    gf_group->rf_level[frame_index] = GF_ARF_STD;
+  }
+
+  // Note whether multi-arf was enabled this group for next time.
+  cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
+}
+
+// Analyse and define a gf/arf group.
+static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  TWO_PASS *const twopass = &cpi->twopass;
+  FIRSTPASS_STATS next_frame;
+  const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
+  int i;
+
+  double boost_score = 0.0;
+  double old_boost_score = 0.0;
+  double gf_group_err = 0.0;
+#if GROUP_ADAPTIVE_MAXQ
+  double gf_group_raw_error = 0.0;
+#endif
+  double gf_group_skip_pct = 0.0;
+  double gf_group_inactive_zone_rows = 0.0;
+  double gf_first_frame_err = 0.0;
+  double mod_frame_err = 0.0;
+
+  double mv_ratio_accumulator = 0.0;
+  double decay_accumulator = 1.0;
+  double zero_motion_accumulator = 1.0;
+
+  double loop_decay_rate = 1.00;
+  double last_loop_decay_rate = 1.00;
+
+  double this_frame_mv_in_out = 0.0;
+  double mv_in_out_accumulator = 0.0;
+  double abs_mv_in_out_accumulator = 0.0;
+  double mv_ratio_accumulator_thresh;
+  unsigned int allow_alt_ref = is_altref_enabled(cpi);
+
+  int f_boost = 0;
+  int b_boost = 0;
+  int flash_detected;
+  int active_max_gf_interval;
+  int active_min_gf_interval;
+  int64_t gf_group_bits;
+  double gf_group_error_left;
+  int gf_arf_bits;
+  const int is_key_frame = frame_is_intra_only(cm);
+  const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
+
+  // Reset the GF group data structures unless this is a key
+  // frame in which case it will already have been done.
+  if (is_key_frame == 0) {
+    vp10_zero(twopass->gf_group);
+  }
+
+  vpx_clear_system_state();
+  vp10_zero(next_frame);
+
+  // Load stats for the current frame.
+  mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+  // Note the error of the frame at the start of the group. This will be
+  // the GF frame error if we code a normal gf.
+  gf_first_frame_err = mod_frame_err;
+
+  // If this is a key frame or the overlay from a previous arf then
+  // the error score / cost of this frame has already been accounted for.
+  if (arf_active_or_kf) {
+    gf_group_err -= gf_first_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+    gf_group_raw_error -= this_frame->coded_error;
+#endif
+    gf_group_skip_pct -= this_frame->intra_skip_pct;
+    gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
+  }
+
+  // Motion breakout threshold for loop below depends on image size.
+  mv_ratio_accumulator_thresh =
+      (cpi->initial_height + cpi->initial_width) / 4.0;
+
+  // Set a maximum and minimum interval for the GF group.
+  // If the image appears almost completely static we can extend beyond this.
+  {
+    int int_max_q = (int)(vp10_convert_qindex_to_q(
+        twopass->active_worst_quality, cpi->common.bit_depth));
+    int int_lbq = (int)(vp10_convert_qindex_to_q(rc->last_boosted_qindex,
+                                                 cpi->common.bit_depth));
+    active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200);
+    if (active_min_gf_interval > rc->max_gf_interval)
+      active_min_gf_interval = rc->max_gf_interval;
+
+    if (cpi->multi_arf_allowed) {
+      active_max_gf_interval = rc->max_gf_interval;
+    } else {
+      // The value chosen depends on the active Q range. At low Q we have
+      // bits to spare and are better with a smaller interval and smaller boost.
+      // At high Q when there are few bits to spare we are better with a longer
+      // interval to spread the cost of the GF.
+      active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6));
+      if (active_max_gf_interval < active_min_gf_interval)
+        active_max_gf_interval = active_min_gf_interval;
+
+      if (active_max_gf_interval > rc->max_gf_interval)
+        active_max_gf_interval = rc->max_gf_interval;
+      if (active_max_gf_interval < active_min_gf_interval)
+        active_max_gf_interval = active_min_gf_interval;
+    }
+  }
+
+  i = 0;
+  while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
+    ++i;
+
+    // Accumulate error score of frames in this gf group.
+    mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+    gf_group_err += mod_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+    gf_group_raw_error += this_frame->coded_error;
+#endif
+    gf_group_skip_pct += this_frame->intra_skip_pct;
+    gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
+
+    if (EOF == input_stats(twopass, &next_frame)) break;
+
+    // Test for the case where there is a brief flash but the prediction
+    // quality back to an earlier frame is then restored.
+    flash_detected = detect_flash(twopass, 0);
+
+    // Update the motion related elements to the boost calculation.
+    accumulate_frame_motion_stats(
+        &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+        &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+    // Accumulate the effect of prediction quality decay.
+    if (!flash_detected) {
+      last_loop_decay_rate = loop_decay_rate;
+      loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+
+      decay_accumulator = decay_accumulator * loop_decay_rate;
+
+      // Monitor for static sections.
+      zero_motion_accumulator = VPXMIN(
+          zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
+
+      // Break clause to detect very still sections after motion. For example,
+      // a static image after a fade or other transition.
+      if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+                                     last_loop_decay_rate)) {
+        allow_alt_ref = 0;
+        break;
+      }
+    }
+
+    // Calculate a boost number for this frame.
+    boost_score +=
+        decay_accumulator *
+        calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+
+    // Break out conditions.
+    if (
+        // Break at active_max_gf_interval unless almost totally static.
+        (i >= (active_max_gf_interval + arf_active_or_kf) &&
+         zero_motion_accumulator < 0.995) ||
+        (
+            // Don't break out with a very short interval.
+            (i >= active_min_gf_interval + arf_active_or_kf) &&
+            (!flash_detected) &&
+            ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
+             (abs_mv_in_out_accumulator > 3.0) ||
+             (mv_in_out_accumulator < -2.0) ||
+             ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
+      boost_score = old_boost_score;
+      break;
+    }
+
+    *this_frame = next_frame;
+    old_boost_score = boost_score;
+  }
+
+  twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
+
+  // Was the group length constrained by the requirement for a new KF?
+  rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
+
+  // Should we use the alternate reference frame.
+  if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
+      (i >= rc->min_gf_interval)) {
+    // Calculate the boost for alt ref.
+    rc->gfu_boost =
+        calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
+    rc->source_alt_ref_pending = 1;
+
+    // Test to see if multi arf is appropriate.
+    cpi->multi_arf_enabled =
+        (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
+         (zero_motion_accumulator < 0.995))
+            ? 1
+            : 0;
+  } else {
+    rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
+    rc->source_alt_ref_pending = 0;
+  }
+
+  // Set the interval until the next gf.
+  rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
+
+  rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+  // Reset the file position.
+  reset_fpf_position(twopass, start_pos);
+
+  // Calculate the bits to be allocated to the gf/arf group as a whole
+  gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
+
+#if GROUP_ADAPTIVE_MAXQ
+  // Calculate an estimate of the maxq needed for the group.
+  // We are more agressive about correcting for sections
+  // where there could be significant overshoot than for easier
+  // sections where we do not wish to risk creating an overshoot
+  // of the allocated bit budget.
+  if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
+    const int vbr_group_bits_per_frame =
+        (int)(gf_group_bits / rc->baseline_gf_interval);
+    const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
+    const double group_av_skip_pct =
+        gf_group_skip_pct / rc->baseline_gf_interval;
+    const double group_av_inactive_zone =
+        ((gf_group_inactive_zone_rows * 2) /
+         (rc->baseline_gf_interval * (double)cm->mb_rows));
+
+    int tmp_q;
+    // rc factor is a weight factor that corrects for local rate control drift.
+    double rc_factor = 1.0;
+    if (rc->rate_error_estimate > 0) {
+      rc_factor = VPXMAX(RC_FACTOR_MIN,
+                         (double)(100 - rc->rate_error_estimate) / 100.0);
+    } else {
+      rc_factor = VPXMIN(RC_FACTOR_MAX,
+                         (double)(100 - rc->rate_error_estimate) / 100.0);
+    }
+    tmp_q = get_twopass_worst_quality(
+        cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
+        vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor);
+    twopass->active_worst_quality =
+        VPXMAX(tmp_q, twopass->active_worst_quality >> 1);
+  }
+#endif
+
+  // Calculate the extra bits to be used for boosted frame(s)
+  gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
+                                     gf_group_bits);
+
+  // Adjust KF group bits and error remaining.
+  twopass->kf_group_error_left -= (int64_t)gf_group_err;
+
+  // If this is an arf update we want to remove the score for the overlay
+  // frame at the end which will usually be very cheap to code.
+  // The overlay frame has already, in effect, been coded so we want to spread
+  // the remaining bits among the other frames.
+  // For normal GFs remove the score for the GF itself unless this is
+  // also a key frame in which case it has already been accounted for.
+  if (rc->source_alt_ref_pending) {
+    gf_group_error_left = gf_group_err - mod_frame_err;
+  } else if (is_key_frame == 0) {
+    gf_group_error_left = gf_group_err - gf_first_frame_err;
+  } else {
+    gf_group_error_left = gf_group_err;
+  }
+
+  // Allocate bits to each of the frames in the GF group.
+  allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
+
+  // Reset the file position.
+  reset_fpf_position(twopass, start_pos);
+
+  // Calculate a section intra ratio used in setting max loop filter.
+  if (cpi->common.frame_type != KEY_FRAME) {
+    twopass->section_intra_rating = calculate_section_intra_ratio(
+        start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
+  }
+
+  if (oxcf->resize_mode == RESIZE_DYNAMIC) {
+    // Default to starting GF groups at normal frame size.
+    cpi->rc.next_frame_size_selector = UNSCALED;
+  }
+}
+
+// Threshold for use of the lagging second reference frame. High second ref
+// usage may point to a transient event like a flash or occlusion rather than
+// a real scene cut.
+#define SECOND_REF_USEAGE_THRESH 0.1
+// Minimum % intra coding observed in first pass (1.0 = 100%)
+#define MIN_INTRA_LEVEL 0.25
+// Minimum ratio between the % of intra coding and inter coding in the first
+// pass after discounting neutral blocks (discounting neutral blocks in this
+// way helps catch scene cuts in clips with very flat areas or letter box
+// format clips with image padding.
+#define INTRA_VS_INTER_THRESH 2.0
+// Hard threshold where the first pass chooses intra for almost all blocks.
+// In such a case even if the frame is not a scene cut coding a key frame
+// may be a good option.
+#define VERY_LOW_INTER_THRESH 0.05
+// Maximum threshold for the relative ratio of intra error score vs best
+// inter error score.
+#define KF_II_ERR_THRESHOLD 2.5
+// In real scene cuts there is almost always a sharp change in the intra
+// or inter error score.
+#define ERR_CHANGE_THRESHOLD 0.4
+// For real scene cuts we expect an improvment in the intra inter error
+// ratio in the next frame.
+#define II_IMPROVEMENT_THRESHOLD 3.5
+#define KF_II_MAX 128.0
+
+static int test_candidate_kf(TWO_PASS *twopass,
+                             const FIRSTPASS_STATS *last_frame,
+                             const FIRSTPASS_STATS *this_frame,
+                             const FIRSTPASS_STATS *next_frame) {
+  int is_viable_kf = 0;
+  double pcnt_intra = 1.0 - this_frame->pcnt_inter;
+  double modified_pcnt_inter =
+      this_frame->pcnt_inter - this_frame->pcnt_neutral;
+
+  // Does the frame satisfy the primary criteria of a key frame?
+  // See above for an explanation of the test criteria.
+  // If so, then examine how well it predicts subsequent frames.
+  if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+      (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+      ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
+       ((pcnt_intra > MIN_INTRA_LEVEL) &&
+        (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
+        ((this_frame->intra_error /
+          DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
+         KF_II_ERR_THRESHOLD) &&
+        ((fabs(last_frame->coded_error - this_frame->coded_error) /
+              DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
+          ERR_CHANGE_THRESHOLD) ||
+         (fabs(last_frame->intra_error - this_frame->intra_error) /
+              DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
+          ERR_CHANGE_THRESHOLD) ||
+         ((next_frame->intra_error /
+           DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
+          II_IMPROVEMENT_THRESHOLD))))) {
+    int i;
+    const FIRSTPASS_STATS *start_pos = twopass->stats_in;
+    FIRSTPASS_STATS local_next_frame = *next_frame;
+    double boost_score = 0.0;
+    double old_boost_score = 0.0;
+    double decay_accumulator = 1.0;
+
+    // Examine how well the key frame predicts subsequent frames.
+    for (i = 0; i < 16; ++i) {
+      double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
+                             DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+
+      if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
+
+      // Cumulative effect of decay in prediction quality.
+      if (local_next_frame.pcnt_inter > 0.85)
+        decay_accumulator *= local_next_frame.pcnt_inter;
+      else
+        decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
+
+      // Keep a running total.
+      boost_score += (decay_accumulator * next_iiratio);
+
+      // Test various breakout clauses.
+      if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
+          (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
+            0.20) &&
+           (next_iiratio < 3.0)) ||
+          ((boost_score - old_boost_score) < 3.0) ||
+          (local_next_frame.intra_error < 200)) {
+        break;
+      }
+
+      old_boost_score = boost_score;
+
+      // Get the next frame details
+      if (EOF == input_stats(twopass, &local_next_frame)) break;
+    }
+
+    // If there is tolerable prediction for at least the next 3 frames then
+    // break out else discard this potential key frame and move on
+    if (boost_score > 30.0 && (i > 3)) {
+      is_viable_kf = 1;
+    } else {
+      // Reset the file position
+      reset_fpf_position(twopass, start_pos);
+
+      is_viable_kf = 0;
+    }
+  }
+
+  return is_viable_kf;
+}
+
+static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+  int i, j;
+  RATE_CONTROL *const rc = &cpi->rc;
+  TWO_PASS *const twopass = &cpi->twopass;
+  GF_GROUP *const gf_group = &twopass->gf_group;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  const FIRSTPASS_STATS first_frame = *this_frame;
+  const FIRSTPASS_STATS *const start_position = twopass->stats_in;
+  FIRSTPASS_STATS next_frame;
+  FIRSTPASS_STATS last_frame;
+  int kf_bits = 0;
+  int loop_decay_counter = 0;
+  double decay_accumulator = 1.0;
+  double av_decay_accumulator = 0.0;
+  double zero_motion_accumulator = 1.0;
+  double boost_score = 0.0;
+  double kf_mod_err = 0.0;
+  double kf_group_err = 0.0;
+  double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
+
+  vp10_zero(next_frame);
+
+  cpi->common.frame_type = KEY_FRAME;
+
+  // Reset the GF group data structures.
+  vp10_zero(*gf_group);
+
+  // Is this a forced key frame by interval.
+  rc->this_key_frame_forced = rc->next_key_frame_forced;
+
+  // Clear the alt ref active flag and last group multi arf flags as they
+  // can never be set for a key frame.
+  rc->source_alt_ref_active = 0;
+  cpi->multi_arf_last_grp_enabled = 0;
+
+  // KF is always a GF so clear frames till next gf counter.
+  rc->frames_till_gf_update_due = 0;
+
+  rc->frames_to_key = 1;
+
+  twopass->kf_group_bits = 0;        // Total bits available to kf group
+  twopass->kf_group_error_left = 0;  // Group modified error score.
+
+  kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+  // Find the next keyframe.
+  i = 0;
+  while (twopass->stats_in < twopass->stats_in_end &&
+         rc->frames_to_key < cpi->oxcf.key_freq) {
+    // Accumulate kf group error.
+    kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+    // Load the next frame's stats.
+    last_frame = *this_frame;
+    input_stats(twopass, this_frame);
+
+    // Provided that we are not at the end of the file...
+    if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
+      double loop_decay_rate;
+
+      // Check for a scene cut.
+      if (test_candidate_kf(twopass, &last_frame, this_frame,
+                            twopass->stats_in))
+        break;
+
+      // How fast is the prediction quality decaying?
+      loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
+
+      // We want to know something about the recent past... rather than
+      // as used elsewhere where we are concerned with decay in prediction
+      // quality since the last GF or KF.
+      recent_loop_decay[i % 8] = loop_decay_rate;
+      decay_accumulator = 1.0;
+      for (j = 0; j < 8; ++j) decay_accumulator *= recent_loop_decay[j];
+
+      // Special check for transition or high motion followed by a
+      // static scene.
+      if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
+                                     loop_decay_rate, decay_accumulator))
+        break;
+
+      // Step on to the next frame.
+      ++rc->frames_to_key;
+
+      // If we don't have a real key frame within the next two
+      // key_freq intervals then break out of the loop.
+      if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
+    } else {
+      ++rc->frames_to_key;
+    }
+    ++i;
+  }
+
+  // If there is a max kf interval set by the user we must obey it.
+  // We already breakout of the loop above at 2x max.
+  // This code centers the extra kf if the actual natural interval
+  // is between 1x and 2x.
+  if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
+    FIRSTPASS_STATS tmp_frame = first_frame;
+
+    rc->frames_to_key /= 2;
+
+    // Reset to the start of the group.
+    reset_fpf_position(twopass, start_position);
+
+    kf_group_err = 0.0;
+
+    // Rescan to get the correct error data for the forced kf group.
+    for (i = 0; i < rc->frames_to_key; ++i) {
+      kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
+      input_stats(twopass, &tmp_frame);
+    }
+    rc->next_key_frame_forced = 1;
+  } else if (twopass->stats_in == twopass->stats_in_end ||
+             rc->frames_to_key >= cpi->oxcf.key_freq) {
+    rc->next_key_frame_forced = 1;
+  } else {
+    rc->next_key_frame_forced = 0;
+  }
+
+  // Special case for the last key frame of the file.
+  if (twopass->stats_in >= twopass->stats_in_end) {
+    // Accumulate kf group error.
+    kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
+  }
+
+  // Calculate the number of bits that should be assigned to the kf group.
+  if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
+    // Maximum number of bits for a single normal frame (not key frame).
+    const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+
+    // Maximum number of bits allocated to the key frame group.
+    int64_t max_grp_bits;
+
+    // Default allocation based on bits left and relative
+    // complexity of the section.
+    twopass->kf_group_bits = (int64_t)(
+        twopass->bits_left * (kf_group_err / twopass->modified_error_left));
+
+    // Clip based on maximum per frame rate defined by the user.
+    max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
+    if (twopass->kf_group_bits > max_grp_bits)
+      twopass->kf_group_bits = max_grp_bits;
+  } else {
+    twopass->kf_group_bits = 0;
+  }
+  twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
+
+  // Reset the first pass file position.
+  reset_fpf_position(twopass, start_position);
+
+  // Scan through the kf group collating various stats used to determine
+  // how many bits to spend on it.
+  decay_accumulator = 1.0;
+  boost_score = 0.0;
+  for (i = 0; i < (rc->frames_to_key - 1); ++i) {
+    if (EOF == input_stats(twopass, &next_frame)) break;
+
+    // Monitor for static sections.
+    zero_motion_accumulator = VPXMIN(zero_motion_accumulator,
+                                     get_zero_motion_factor(cpi, &next_frame));
+
+    // Not all frames in the group are necessarily used in calculating boost.
+    if ((i <= rc->max_gf_interval) ||
+        ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
+      const double frame_boost =
+          calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST);
+
+      // How fast is prediction quality decaying.
+      if (!detect_flash(twopass, 0)) {
+        const double loop_decay_rate =
+            get_prediction_decay_rate(cpi, &next_frame);
+        decay_accumulator *= loop_decay_rate;
+        decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR);
+        av_decay_accumulator += decay_accumulator;
+        ++loop_decay_counter;
+      }
+      boost_score += (decay_accumulator * frame_boost);
+    }
+  }
+  av_decay_accumulator /= (double)loop_decay_counter;
+
+  reset_fpf_position(twopass, start_position);
+
+  // Store the zero motion percentage
+  twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+  // Calculate a section intra ratio used in setting max loop filter.
+  twopass->section_intra_rating = calculate_section_intra_ratio(
+      start_position, twopass->stats_in_end, rc->frames_to_key);
+
+  // Apply various clamps for min and max boost
+  rc->kf_boost = (int)(av_decay_accumulator * boost_score);
+  rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3));
+  rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST);
+
+  // Work out how many bits to allocate for the key frame itself.
+  kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
+                                 twopass->kf_group_bits);
+
+  // Work out the fraction of the kf group bits reserved for the inter frames
+  // within the group after discounting the bits for the kf itself.
+  if (twopass->kf_group_bits) {
+    twopass->kfgroup_inter_fraction =
+        (double)(twopass->kf_group_bits - kf_bits) /
+        (double)twopass->kf_group_bits;
+  } else {
+    twopass->kfgroup_inter_fraction = 1.0;
+  }
+
+  twopass->kf_group_bits -= kf_bits;
+
+  // Save the bits to spend on the key frame.
+  gf_group->bit_allocation[0] = kf_bits;
+  gf_group->update_type[0] = KF_UPDATE;
+  gf_group->rf_level[0] = KF_STD;
+
+  // Note the total error score of the kf group minus the key frame itself.
+  twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+
+  // Adjust the count of total modified error left.
+  // The count of bits left is adjusted elsewhere based on real coded frame
+  // sizes.
+  twopass->modified_error_left -= kf_group_err;
+
+  if (oxcf->resize_mode == RESIZE_DYNAMIC) {
+    // Default to normal-sized frame on keyframes.
+    cpi->rc.next_frame_size_selector = UNSCALED;
+  }
+}
+
+// Define the reference buffers that will be updated post encode.
+static void configure_buffer_updates(VP10_COMP *cpi) {
+  TWO_PASS *const twopass = &cpi->twopass;
+
+  cpi->rc.is_src_frame_alt_ref = 0;
+  switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
+    case KF_UPDATE:
+      cpi->refresh_last_frame = 1;
+      cpi->refresh_golden_frame = 1;
+      cpi->refresh_alt_ref_frame = 1;
+      break;
+    case LF_UPDATE:
+      cpi->refresh_last_frame = 1;
+      cpi->refresh_golden_frame = 0;
+      cpi->refresh_alt_ref_frame = 0;
+      break;
+    case GF_UPDATE:
+      cpi->refresh_last_frame = 1;
+      cpi->refresh_golden_frame = 1;
+      cpi->refresh_alt_ref_frame = 0;
+      break;
+    case OVERLAY_UPDATE:
+      cpi->refresh_last_frame = 0;
+      cpi->refresh_golden_frame = 1;
+      cpi->refresh_alt_ref_frame = 0;
+      cpi->rc.is_src_frame_alt_ref = 1;
+      break;
+    case ARF_UPDATE:
+      cpi->refresh_last_frame = 0;
+      cpi->refresh_golden_frame = 0;
+      cpi->refresh_alt_ref_frame = 1;
+      break;
+    default: assert(0); break;
+  }
+}
+
+static int is_skippable_frame(const VP10_COMP *cpi) {
+  // If the current frame does not have non-zero motion vector detected in the
+  // first  pass, and so do its previous and forward frames, then this frame
+  // can be skipped for partition check, and the partition size is assigned
+  // according to the variance
+  const TWO_PASS *const twopass = &cpi->twopass;
+
+  return (!frame_is_intra_only(&cpi->common) &&
+          twopass->stats_in - 2 > twopass->stats_in_start &&
+          twopass->stats_in < twopass->stats_in_end &&
+          (twopass->stats_in - 1)->pcnt_inter -
+                  (twopass->stats_in - 1)->pcnt_motion ==
+              1 &&
+          (twopass->stats_in - 2)->pcnt_inter -
+                  (twopass->stats_in - 2)->pcnt_motion ==
+              1 &&
+          twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
+}
+
+void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  TWO_PASS *const twopass = &cpi->twopass;
+  GF_GROUP *const gf_group = &twopass->gf_group;
+  int frames_left;
+  FIRSTPASS_STATS this_frame;
+
+  int target_rate;
+
+  frames_left = (int)(twopass->total_stats.count - cm->current_video_frame);
+
+  if (!twopass->stats_in) return;
+
+  // If this is an arf frame then we dont want to read the stats file or
+  // advance the input pointer as we already have what we need.
+  if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
+    int target_rate;
+    configure_buffer_updates(cpi);
+    target_rate = gf_group->bit_allocation[gf_group->index];
+    target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate);
+    rc->base_frame_target = target_rate;
+
+    cm->frame_type = INTER_FRAME;
+
+    // Do the firstpass stats indicate that this frame is skippable for the
+    // partition search?
+    if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
+      cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+    }
+
+    return;
+  }
+
+  vpx_clear_system_state();
+
+  if (cpi->oxcf.rc_mode == VPX_Q) {
+    twopass->active_worst_quality = cpi->oxcf.cq_level;
+  } else if (cm->current_video_frame == 0) {
+    // Special case code for first frame.
+    const int section_target_bandwidth =
+        (int)(twopass->bits_left / frames_left);
+    const double section_length = twopass->total_left_stats.count;
+    const double section_error =
+        twopass->total_left_stats.coded_error / section_length;
+    const double section_intra_skip =
+        twopass->total_left_stats.intra_skip_pct / section_length;
+    const double section_inactive_zone =
+        (twopass->total_left_stats.inactive_zone_rows * 2) /
+        ((double)cm->mb_rows * section_length);
+    const int tmp_q = get_twopass_worst_quality(
+        cpi, section_error, section_intra_skip + section_inactive_zone,
+        section_target_bandwidth, DEFAULT_GRP_WEIGHT);
+
+    twopass->active_worst_quality = tmp_q;
+    twopass->baseline_active_worst_quality = tmp_q;
+    rc->ni_av_qi = tmp_q;
+    rc->last_q[INTER_FRAME] = tmp_q;
+    rc->avg_q = vp10_convert_qindex_to_q(tmp_q, cm->bit_depth);
+    rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
+    rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
+    rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
+  }
+  vp10_zero(this_frame);
+  if (EOF == input_stats(twopass, &this_frame)) return;
+
+  // Set the frame content type flag.
+  if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
+    twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
+  else
+    twopass->fr_content_type = FC_NORMAL;
+
+  // Keyframe and section processing.
+  if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
+    FIRSTPASS_STATS this_frame_copy;
+    this_frame_copy = this_frame;
+    // Define next KF group and assign bits to it.
+    find_next_key_frame(cpi, &this_frame);
+    this_frame = this_frame_copy;
+  } else {
+    cm->frame_type = INTER_FRAME;
+  }
+
+  // Define a new GF/ARF group. (Should always enter here for key frames).
+  if (rc->frames_till_gf_update_due == 0) {
+    define_gf_group(cpi, &this_frame);
+
+    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+#if ARF_STATS_OUTPUT
+    {
+      FILE *fpfile;
+      fpfile = fopen("arf.stt", "a");
+      ++arf_count;
+      fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame,
+              rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
+              rc->gfu_boost);
+
+      fclose(fpfile);
+    }
+#endif
+  }
+
+  configure_buffer_updates(cpi);
+
+  // Do the firstpass stats indicate that this frame is skippable for the
+  // partition search?
+  if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
+    cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+  }
+
+  target_rate = gf_group->bit_allocation[gf_group->index];
+  if (cpi->common.frame_type == KEY_FRAME)
+    target_rate = vp10_rc_clamp_iframe_target_size(cpi, target_rate);
+  else
+    target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate);
+
+  rc->base_frame_target = target_rate;
+
+  {
+    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+                            ? cpi->initial_mbs
+                            : cpi->common.MBs;
+    // The multiplication by 256 reverses a scaling factor of (>> 8)
+    // applied when combining MB error values for the frame.
+    twopass->mb_av_energy =
+        log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0);
+  }
+
+  // Update the total stats remaining structure.
+  subtract_stats(&twopass->total_left_stats, &this_frame);
+}
+
+#define MINQ_ADJ_LIMIT 48
+#define MINQ_ADJ_LIMIT_CQ 20
+#define HIGH_UNDERSHOOT_RATIO 2
+void vp10_twopass_postencode_update(VP10_COMP *cpi) {
+  TWO_PASS *const twopass = &cpi->twopass;
+  RATE_CONTROL *const rc = &cpi->rc;
+  const int bits_used = rc->base_frame_target;
+
+  // VBR correction is done through rc->vbr_bits_off_target. Based on the
+  // sign of this value, a limited % adjustment is made to the target rate
+  // of subsequent frames, to try and push it back towards 0. This method
+  // is designed to prevent extreme behaviour at the end of a clip
+  // or group of frames.
+  rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
+  twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
+
+  // Calculate the pct rc error.
+  if (rc->total_actual_bits) {
+    rc->rate_error_estimate =
+        (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
+    rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
+  } else {
+    rc->rate_error_estimate = 0;
+  }
+
+  if (cpi->common.frame_type != KEY_FRAME) {
+    twopass->kf_group_bits -= bits_used;
+    twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
+  }
+  twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
+
+  // Increment the gf group index ready for the next frame.
+  ++twopass->gf_group.index;
+
+  // If the rate control is drifting consider adjustment to min or maxq.
+  if ((cpi->oxcf.rc_mode != VPX_Q) &&
+      (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
+      !cpi->rc.is_src_frame_alt_ref) {
+    const int maxq_adj_limit =
+        rc->worst_quality - twopass->active_worst_quality;
+    const int minq_adj_limit =
+        (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
+
+    // Undershoot.
+    if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
+      --twopass->extend_maxq;
+      if (rc->rolling_target_bits >= rc->rolling_actual_bits)
+        ++twopass->extend_minq;
+      // Overshoot.
+    } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
+      --twopass->extend_minq;
+      if (rc->rolling_target_bits < rc->rolling_actual_bits)
+        ++twopass->extend_maxq;
+    } else {
+      // Adjustment for extreme local overshoot.
+      if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
+          rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
+        ++twopass->extend_maxq;
+
+      // Unwind undershoot or overshoot adjustment.
+      if (rc->rolling_target_bits < rc->rolling_actual_bits)
+        --twopass->extend_minq;
+      else if (rc->rolling_target_bits > rc->rolling_actual_bits)
+        --twopass->extend_maxq;
+    }
+
+    twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
+    twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
+
+    // If there is a big and undexpected undershoot then feed the extra
+    // bits back in quickly. One situation where this may happen is if a
+    // frame is unexpectedly almost perfectly predicted by the ARF or GF
+    // but not very well predcited by the previous frame.
+    if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
+      int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
+      if (rc->projected_frame_size < fast_extra_thresh) {
+        rc->vbr_bits_off_target_fast +=
+            fast_extra_thresh - rc->projected_frame_size;
+        rc->vbr_bits_off_target_fast =
+            VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
+
+        // Fast adaptation of minQ if necessary to use up the extra bits.
+        if (rc->avg_frame_bandwidth) {
+          twopass->extend_minq_fast =
+              (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
+        }
+        twopass->extend_minq_fast = VPXMIN(
+            twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
+      } else if (rc->vbr_bits_off_target_fast) {
+        twopass->extend_minq_fast = VPXMIN(
+            twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
+      } else {
+        twopass->extend_minq_fast = 0;
+      }
+    }
+  }
+}
diff --git a/av1/encoder/firstpass.h b/av1/encoder/firstpass.h
new file mode 100644
index 0000000..c08c285
--- /dev/null
+++ b/av1/encoder/firstpass.h
@@ -0,0 +1,165 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_FIRSTPASS_H_
+#define VP10_ENCODER_FIRSTPASS_H_
+
+#include "av1/encoder/lookahead.h"
+#include "av1/encoder/ratectrl.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if CONFIG_FP_MB_STATS
+
+#define FPMB_DCINTRA_MASK 0x01
+
+#define FPMB_MOTION_ZERO_MASK 0x02
+#define FPMB_MOTION_LEFT_MASK 0x04
+#define FPMB_MOTION_RIGHT_MASK 0x08
+#define FPMB_MOTION_UP_MASK 0x10
+#define FPMB_MOTION_DOWN_MASK 0x20
+
+#define FPMB_ERROR_SMALL_MASK 0x40
+#define FPMB_ERROR_LARGE_MASK 0x80
+#define FPMB_ERROR_SMALL_TH 2000
+#define FPMB_ERROR_LARGE_TH 48000
+
+typedef struct {
+  uint8_t *mb_stats_start;
+  uint8_t *mb_stats_end;
+} FIRSTPASS_MB_STATS;
+#endif
+
+#define VLOW_MOTION_THRESHOLD 950
+
+typedef struct {
+  double frame;
+  double weight;
+  double intra_error;
+  double coded_error;
+  double sr_coded_error;
+  double pcnt_inter;
+  double pcnt_motion;
+  double pcnt_second_ref;
+  double pcnt_neutral;
+  double intra_skip_pct;
+  double inactive_zone_rows;  // Image mask rows top and bottom.
+  double inactive_zone_cols;  // Image mask columns at left and right edges.
+  double MVr;
+  double mvr_abs;
+  double MVc;
+  double mvc_abs;
+  double MVrv;
+  double MVcv;
+  double mv_in_out_count;
+  double new_mv_count;
+  double duration;
+  double count;
+} FIRSTPASS_STATS;
+
+typedef enum {
+  KF_UPDATE = 0,
+  LF_UPDATE = 1,
+  GF_UPDATE = 2,
+  ARF_UPDATE = 3,
+  OVERLAY_UPDATE = 4,
+  FRAME_UPDATE_TYPES = 5
+} FRAME_UPDATE_TYPE;
+
+#define FC_ANIMATION_THRESH 0.15
+typedef enum {
+  FC_NORMAL = 0,
+  FC_GRAPHICS_ANIMATION = 1,
+  FRAME_CONTENT_TYPES = 2
+} FRAME_CONTENT_TYPE;
+
+typedef struct {
+  unsigned char index;
+  RATE_FACTOR_LEVEL rf_level[(MAX_LAG_BUFFERS * 2) + 1];
+  FRAME_UPDATE_TYPE update_type[(MAX_LAG_BUFFERS * 2) + 1];
+  unsigned char arf_src_offset[(MAX_LAG_BUFFERS * 2) + 1];
+  unsigned char arf_update_idx[(MAX_LAG_BUFFERS * 2) + 1];
+  unsigned char arf_ref_idx[(MAX_LAG_BUFFERS * 2) + 1];
+  int bit_allocation[(MAX_LAG_BUFFERS * 2) + 1];
+} GF_GROUP;
+
+typedef struct {
+  unsigned int section_intra_rating;
+  FIRSTPASS_STATS total_stats;
+  FIRSTPASS_STATS this_frame_stats;
+  const FIRSTPASS_STATS *stats_in;
+  const FIRSTPASS_STATS *stats_in_start;
+  const FIRSTPASS_STATS *stats_in_end;
+  FIRSTPASS_STATS total_left_stats;
+  int first_pass_done;
+  int64_t bits_left;
+  double modified_error_min;
+  double modified_error_max;
+  double modified_error_left;
+  double mb_av_energy;
+
+#if CONFIG_FP_MB_STATS
+  uint8_t *frame_mb_stats_buf;
+  uint8_t *this_frame_mb_stats;
+  FIRSTPASS_MB_STATS firstpass_mb_stats;
+#endif
+  // An indication of the content type of the current frame
+  FRAME_CONTENT_TYPE fr_content_type;
+
+  // Projected total bits available for a key frame group of frames
+  int64_t kf_group_bits;
+
+  // Error score of frames still to be coded in kf group
+  int64_t kf_group_error_left;
+
+  // The fraction for a kf groups total bits allocated to the inter frames
+  double kfgroup_inter_fraction;
+
+  int sr_update_lag;
+
+  int kf_zeromotion_pct;
+  int last_kfgroup_zeromotion_pct;
+  int gf_zeromotion_pct;
+  int active_worst_quality;
+  int baseline_active_worst_quality;
+  int extend_minq;
+  int extend_maxq;
+  int extend_minq_fast;
+
+  GF_GROUP gf_group;
+} TWO_PASS;
+
+struct VP10_COMP;
+
+void vp10_init_first_pass(struct VP10_COMP *cpi);
+void vp10_rc_get_first_pass_params(struct VP10_COMP *cpi);
+void vp10_first_pass(struct VP10_COMP *cpi,
+                     const struct lookahead_entry *source);
+void vp10_end_first_pass(struct VP10_COMP *cpi);
+
+void vp10_init_second_pass(struct VP10_COMP *cpi);
+void vp10_rc_get_second_pass_params(struct VP10_COMP *cpi);
+void vp10_twopass_postencode_update(struct VP10_COMP *cpi);
+
+// Post encode update of the rate control parameters for 2-pass
+void vp10_twopass_postencode_update(struct VP10_COMP *cpi);
+
+void vp10_init_subsampling(struct VP10_COMP *cpi);
+
+void vp10_calculate_coded_size(struct VP10_COMP *cpi, int *scaled_frame_width,
+                               int *scaled_frame_height);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_FIRSTPASS_H_
diff --git a/av1/encoder/lookahead.c b/av1/encoder/lookahead.c
new file mode 100644
index 0000000..3f62c98
--- /dev/null
+++ b/av1/encoder/lookahead.c
@@ -0,0 +1,225 @@
+/*
+ *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+#include <assert.h>
+#include <stdlib.h>
+
+#include "./vpx_config.h"
+
+#include "av1/common/common.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/lookahead.h"
+
+/* Return the buffer at the given absolute index and increment the index */
+static struct lookahead_entry *pop(struct lookahead_ctx *ctx,
+                                   unsigned int *idx) {
+  unsigned int index = *idx;
+  struct lookahead_entry *buf = ctx->buf + index;
+
+  assert(index < ctx->max_sz);
+  if (++index >= ctx->max_sz) index -= ctx->max_sz;
+  *idx = index;
+  return buf;
+}
+
+void vp10_lookahead_destroy(struct lookahead_ctx *ctx) {
+  if (ctx) {
+    if (ctx->buf) {
+      unsigned int i;
+
+      for (i = 0; i < ctx->max_sz; i++) vpx_free_frame_buffer(&ctx->buf[i].img);
+      free(ctx->buf);
+    }
+    free(ctx);
+  }
+}
+
+struct lookahead_ctx *vp10_lookahead_init(unsigned int width,
+                                          unsigned int height,
+                                          unsigned int subsampling_x,
+                                          unsigned int subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                          int use_highbitdepth,
+#endif
+                                          unsigned int depth) {
+  struct lookahead_ctx *ctx = NULL;
+
+  // Clamp the lookahead queue depth
+  depth = clamp(depth, 1, MAX_LAG_BUFFERS);
+
+  // Allocate memory to keep previous source frames available.
+  depth += MAX_PRE_FRAMES;
+
+  // Allocate the lookahead structures
+  ctx = calloc(1, sizeof(*ctx));
+  if (ctx) {
+    const int legacy_byte_alignment = 0;
+    unsigned int i;
+    ctx->max_sz = depth;
+    ctx->buf = calloc(depth, sizeof(*ctx->buf));
+    if (!ctx->buf) goto bail;
+    for (i = 0; i < depth; i++)
+      if (vpx_alloc_frame_buffer(
+              &ctx->buf[i].img, width, height, subsampling_x, subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+              use_highbitdepth,
+#endif
+              VPX_ENC_BORDER_IN_PIXELS, legacy_byte_alignment))
+        goto bail;
+  }
+  return ctx;
+bail:
+  vp10_lookahead_destroy(ctx);
+  return NULL;
+}
+
+#define USE_PARTIAL_COPY 0
+
+int vp10_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
+                        int64_t ts_start, int64_t ts_end,
+#if CONFIG_VPX_HIGHBITDEPTH
+                        int use_highbitdepth,
+#endif
+                        unsigned int flags) {
+  struct lookahead_entry *buf;
+#if USE_PARTIAL_COPY
+  int row, col, active_end;
+  int mb_rows = (src->y_height + 15) >> 4;
+  int mb_cols = (src->y_width + 15) >> 4;
+#endif
+  int width = src->y_crop_width;
+  int height = src->y_crop_height;
+  int uv_width = src->uv_crop_width;
+  int uv_height = src->uv_crop_height;
+  int subsampling_x = src->subsampling_x;
+  int subsampling_y = src->subsampling_y;
+  int larger_dimensions, new_dimensions;
+
+  if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz) return 1;
+  ctx->sz++;
+  buf = pop(ctx, &ctx->write_idx);
+
+  new_dimensions = width != buf->img.y_crop_width ||
+                   height != buf->img.y_crop_height ||
+                   uv_width != buf->img.uv_crop_width ||
+                   uv_height != buf->img.uv_crop_height;
+  larger_dimensions = width > buf->img.y_width || height > buf->img.y_height ||
+                      uv_width > buf->img.uv_width ||
+                      uv_height > buf->img.uv_height;
+  assert(!larger_dimensions || new_dimensions);
+
+#if USE_PARTIAL_COPY
+  // TODO(jkoleszar): This is disabled for now, as
+  // vp10_copy_and_extend_frame_with_rect is not subsampling/alpha aware.
+
+  // Only do this partial copy if the following conditions are all met:
+  // 1. Lookahead queue has has size of 1.
+  // 2. Active map is provided.
+  // 3. This is not a key frame, golden nor altref frame.
+  if (!new_dimensions && ctx->max_sz == 1 && active_map && !flags) {
+    for (row = 0; row < mb_rows; ++row) {
+      col = 0;
+
+      while (1) {
+        // Find the first active macroblock in this row.
+        for (; col < mb_cols; ++col) {
+          if (active_map[col]) break;
+        }
+
+        // No more active macroblock in this row.
+        if (col == mb_cols) break;
+
+        // Find the end of active region in this row.
+        active_end = col;
+
+        for (; active_end < mb_cols; ++active_end) {
+          if (!active_map[active_end]) break;
+        }
+
+        // Only copy this active region.
+        vp10_copy_and_extend_frame_with_rect(src, &buf->img, row << 4, col << 4,
+                                             16, (active_end - col) << 4);
+
+        // Start again from the end of this active region.
+        col = active_end;
+      }
+
+      active_map += mb_cols;
+    }
+  } else {
+#endif
+    if (larger_dimensions) {
+      YV12_BUFFER_CONFIG new_img;
+      memset(&new_img, 0, sizeof(new_img));
+      if (vpx_alloc_frame_buffer(&new_img, width, height, subsampling_x,
+                                 subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                 use_highbitdepth,
+#endif
+                                 VPX_ENC_BORDER_IN_PIXELS, 0))
+        return 1;
+      vpx_free_frame_buffer(&buf->img);
+      buf->img = new_img;
+    } else if (new_dimensions) {
+      buf->img.y_crop_width = src->y_crop_width;
+      buf->img.y_crop_height = src->y_crop_height;
+      buf->img.uv_crop_width = src->uv_crop_width;
+      buf->img.uv_crop_height = src->uv_crop_height;
+      buf->img.subsampling_x = src->subsampling_x;
+      buf->img.subsampling_y = src->subsampling_y;
+    }
+    // Partial copy not implemented yet
+    vp10_copy_and_extend_frame(src, &buf->img);
+#if USE_PARTIAL_COPY
+  }
+#endif
+
+  buf->ts_start = ts_start;
+  buf->ts_end = ts_end;
+  buf->flags = flags;
+  return 0;
+}
+
+struct lookahead_entry *vp10_lookahead_pop(struct lookahead_ctx *ctx,
+                                           int drain) {
+  struct lookahead_entry *buf = NULL;
+
+  if (ctx && ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
+    buf = pop(ctx, &ctx->read_idx);
+    ctx->sz--;
+  }
+  return buf;
+}
+
+struct lookahead_entry *vp10_lookahead_peek(struct lookahead_ctx *ctx,
+                                            int index) {
+  struct lookahead_entry *buf = NULL;
+
+  if (index >= 0) {
+    // Forward peek
+    if (index < (int)ctx->sz) {
+      index += ctx->read_idx;
+      if (index >= (int)ctx->max_sz) index -= ctx->max_sz;
+      buf = ctx->buf + index;
+    }
+  } else if (index < 0) {
+    // Backward peek
+    if (-index <= MAX_PRE_FRAMES) {
+      index += ctx->read_idx;
+      if (index < 0) index += ctx->max_sz;
+      buf = ctx->buf + index;
+    }
+  }
+
+  return buf;
+}
+
+unsigned int vp10_lookahead_depth(struct lookahead_ctx *ctx) { return ctx->sz; }
diff --git a/av1/encoder/lookahead.h b/av1/encoder/lookahead.h
new file mode 100644
index 0000000..3a03ced
--- /dev/null
+++ b/av1/encoder/lookahead.h
@@ -0,0 +1,114 @@
+/*
+ *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_LOOKAHEAD_H_
+#define VP10_ENCODER_LOOKAHEAD_H_
+
+#include "aom_scale/yv12config.h"
+#include "aom/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define MAX_LAG_BUFFERS 25
+
+struct lookahead_entry {
+  YV12_BUFFER_CONFIG img;
+  int64_t ts_start;
+  int64_t ts_end;
+  unsigned int flags;
+};
+
+// The max of past frames we want to keep in the queue.
+#define MAX_PRE_FRAMES 1
+
+struct lookahead_ctx {
+  unsigned int max_sz;         /* Absolute size of the queue */
+  unsigned int sz;             /* Number of buffers currently in the queue */
+  unsigned int read_idx;       /* Read index */
+  unsigned int write_idx;      /* Write index */
+  struct lookahead_entry *buf; /* Buffer list */
+};
+
+/**\brief Initializes the lookahead stage
+ *
+ * The lookahead stage is a queue of frame buffers on which some analysis
+ * may be done when buffers are enqueued.
+ */
+struct lookahead_ctx *vp10_lookahead_init(unsigned int width,
+                                          unsigned int height,
+                                          unsigned int subsampling_x,
+                                          unsigned int subsampling_y,
+#if CONFIG_VPX_HIGHBITDEPTH
+                                          int use_highbitdepth,
+#endif
+                                          unsigned int depth);
+
+/**\brief Destroys the lookahead stage
+ */
+void vp10_lookahead_destroy(struct lookahead_ctx *ctx);
+
+/**\brief Enqueue a source buffer
+ *
+ * This function will copy the source image into a new framebuffer with
+ * the expected stride/border.
+ *
+ * If active_map is non-NULL and there is only one frame in the queue, then copy
+ * only active macroblocks.
+ *
+ * \param[in] ctx         Pointer to the lookahead context
+ * \param[in] src         Pointer to the image to enqueue
+ * \param[in] ts_start    Timestamp for the start of this frame
+ * \param[in] ts_end      Timestamp for the end of this frame
+ * \param[in] flags       Flags set on this frame
+ * \param[in] active_map  Map that specifies which macroblock is active
+ */
+int vp10_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
+                        int64_t ts_start, int64_t ts_end,
+#if CONFIG_VPX_HIGHBITDEPTH
+                        int use_highbitdepth,
+#endif
+                        unsigned int flags);
+
+/**\brief Get the next source buffer to encode
+ *
+ *
+ * \param[in] ctx       Pointer to the lookahead context
+ * \param[in] drain     Flag indicating the buffer should be drained
+ *                      (return a buffer regardless of the current queue depth)
+ *
+ * \retval NULL, if drain set and queue is empty
+ * \retval NULL, if drain not set and queue not of the configured depth
+ */
+struct lookahead_entry *vp10_lookahead_pop(struct lookahead_ctx *ctx,
+                                           int drain);
+
+/**\brief Get a future source buffer to encode
+ *
+ * \param[in] ctx       Pointer to the lookahead context
+ * \param[in] index     Index of the frame to be returned, 0 == next frame
+ *
+ * \retval NULL, if no buffer exists at the specified index
+ */
+struct lookahead_entry *vp10_lookahead_peek(struct lookahead_ctx *ctx,
+                                            int index);
+
+/**\brief Get the number of frames currently in the lookahead queue
+ *
+ * \param[in] ctx       Pointer to the lookahead context
+ */
+unsigned int vp10_lookahead_depth(struct lookahead_ctx *ctx);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_LOOKAHEAD_H_
diff --git a/av1/encoder/mbgraph.c b/av1/encoder/mbgraph.c
new file mode 100644
index 0000000..278875b
--- /dev/null
+++ b/av1/encoder/mbgraph.c
@@ -0,0 +1,396 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "./vp10_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/system_state.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/common/blockd.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+
+static unsigned int do_16x16_motion_iteration(VP10_COMP *cpi, const MV *ref_mv,
+                                              MV *dst_mv, int mb_row,
+                                              int mb_col) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
+  const vpx_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
+
+  const int tmp_col_min = x->mv_col_min;
+  const int tmp_col_max = x->mv_col_max;
+  const int tmp_row_min = x->mv_row_min;
+  const int tmp_row_max = x->mv_row_max;
+  MV ref_full;
+  int cost_list[5];
+
+  // Further step/diamond searches as necessary
+  int step_param = mv_sf->reduce_first_step_size;
+  step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+  vp10_set_mv_search_range(x, ref_mv);
+
+  ref_full.col = ref_mv->col >> 3;
+  ref_full.row = ref_mv->row >> 3;
+
+  /*cpi->sf.search_method == HEX*/
+  vp10_hex_search(x, &ref_full, step_param, x->errorperbit, 0,
+                  cond_cost_list(cpi, cost_list), &v_fn_ptr, 0, ref_mv, dst_mv);
+
+  // Try sub-pixel MC
+  // if (bestsme > error_thresh && bestsme < INT_MAX)
+  {
+    int distortion;
+    unsigned int sse;
+    cpi->find_fractional_mv_step(
+        x, dst_mv, ref_mv, cpi->common.allow_high_precision_mv, x->errorperbit,
+        &v_fn_ptr, 0, mv_sf->subpel_iters_per_step,
+        cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, 0,
+        0);
+  }
+
+  xd->mi[0]->mbmi.mode = NEWMV;
+  xd->mi[0]->mbmi.mv[0].as_mv = *dst_mv;
+
+  vp10_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_16X16);
+
+  /* restore UMV window */
+  x->mv_col_min = tmp_col_min;
+  x->mv_col_max = tmp_col_max;
+  x->mv_row_min = tmp_row_min;
+  x->mv_row_max = tmp_row_max;
+
+  return vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+                      xd->plane[0].dst.buf, xd->plane[0].dst.stride);
+}
+
+static int do_16x16_motion_search(VP10_COMP *cpi, const MV *ref_mv,
+                                  int_mv *dst_mv, int mb_row, int mb_col) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  unsigned int err, tmp_err;
+  MV tmp_mv;
+
+  // Try zero MV first
+  // FIXME should really use something like near/nearest MV and/or MV prediction
+  err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+                     xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride);
+  dst_mv->as_int = 0;
+
+  // Test last reference frame using the previous best mv as the
+  // starting point (best reference) for the search
+  tmp_err = do_16x16_motion_iteration(cpi, ref_mv, &tmp_mv, mb_row, mb_col);
+  if (tmp_err < err) {
+    err = tmp_err;
+    dst_mv->as_mv = tmp_mv;
+  }
+
+  // If the current best reference mv is not centered on 0,0 then do a 0,0
+  // based search as well.
+  if (ref_mv->row != 0 || ref_mv->col != 0) {
+    unsigned int tmp_err;
+    MV zero_ref_mv = { 0, 0 }, tmp_mv;
+
+    tmp_err =
+        do_16x16_motion_iteration(cpi, &zero_ref_mv, &tmp_mv, mb_row, mb_col);
+    if (tmp_err < err) {
+      dst_mv->as_mv = tmp_mv;
+      err = tmp_err;
+    }
+  }
+
+  return err;
+}
+
+static int do_16x16_zerozero_search(VP10_COMP *cpi, int_mv *dst_mv) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  unsigned int err;
+
+  // Try zero MV first
+  // FIXME should really use something like near/nearest MV and/or MV prediction
+  err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+                     xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride);
+
+  dst_mv->as_int = 0;
+
+  return err;
+}
+static int find_best_16x16_intra(VP10_COMP *cpi, PREDICTION_MODE *pbest_mode) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  PREDICTION_MODE best_mode = -1, mode;
+  unsigned int best_err = INT_MAX;
+
+  // calculate SATD for each intra prediction mode;
+  // we're intentionally not doing 4x4, we just want a rough estimate
+  for (mode = DC_PRED; mode <= TM_PRED; mode++) {
+    unsigned int err;
+
+    xd->mi[0]->mbmi.mode = mode;
+    vp10_predict_intra_block(xd, 2, 2, TX_16X16, mode, x->plane[0].src.buf,
+                             x->plane[0].src.stride, xd->plane[0].dst.buf,
+                             xd->plane[0].dst.stride, 0, 0, 0);
+    err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+                       xd->plane[0].dst.buf, xd->plane[0].dst.stride);
+
+    // find best
+    if (err < best_err) {
+      best_err = err;
+      best_mode = mode;
+    }
+  }
+
+  if (pbest_mode) *pbest_mode = best_mode;
+
+  return best_err;
+}
+
+static void update_mbgraph_mb_stats(VP10_COMP *cpi, MBGRAPH_MB_STATS *stats,
+                                    YV12_BUFFER_CONFIG *buf, int mb_y_offset,
+                                    YV12_BUFFER_CONFIG *golden_ref,
+                                    const MV *prev_golden_ref_mv,
+                                    YV12_BUFFER_CONFIG *alt_ref, int mb_row,
+                                    int mb_col) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  int intra_error;
+  VP10_COMMON *cm = &cpi->common;
+
+  // FIXME in practice we're completely ignoring chroma here
+  x->plane[0].src.buf = buf->y_buffer + mb_y_offset;
+  x->plane[0].src.stride = buf->y_stride;
+
+  xd->plane[0].dst.buf = get_frame_new_buffer(cm)->y_buffer + mb_y_offset;
+  xd->plane[0].dst.stride = get_frame_new_buffer(cm)->y_stride;
+
+  // do intra 16x16 prediction
+  intra_error = find_best_16x16_intra(cpi, &stats->ref[INTRA_FRAME].m.mode);
+  if (intra_error <= 0) intra_error = 1;
+  stats->ref[INTRA_FRAME].err = intra_error;
+
+  // Golden frame MV search, if it exists and is different than last frame
+  if (golden_ref) {
+    int g_motion_error;
+    xd->plane[0].pre[0].buf = golden_ref->y_buffer + mb_y_offset;
+    xd->plane[0].pre[0].stride = golden_ref->y_stride;
+    g_motion_error =
+        do_16x16_motion_search(cpi, prev_golden_ref_mv,
+                               &stats->ref[GOLDEN_FRAME].m.mv, mb_row, mb_col);
+    stats->ref[GOLDEN_FRAME].err = g_motion_error;
+  } else {
+    stats->ref[GOLDEN_FRAME].err = INT_MAX;
+    stats->ref[GOLDEN_FRAME].m.mv.as_int = 0;
+  }
+
+  // Do an Alt-ref frame MV search, if it exists and is different than
+  // last/golden frame.
+  if (alt_ref) {
+    int a_motion_error;
+    xd->plane[0].pre[0].buf = alt_ref->y_buffer + mb_y_offset;
+    xd->plane[0].pre[0].stride = alt_ref->y_stride;
+    a_motion_error =
+        do_16x16_zerozero_search(cpi, &stats->ref[ALTREF_FRAME].m.mv);
+
+    stats->ref[ALTREF_FRAME].err = a_motion_error;
+  } else {
+    stats->ref[ALTREF_FRAME].err = INT_MAX;
+    stats->ref[ALTREF_FRAME].m.mv.as_int = 0;
+  }
+}
+
+static void update_mbgraph_frame_stats(VP10_COMP *cpi,
+                                       MBGRAPH_FRAME_STATS *stats,
+                                       YV12_BUFFER_CONFIG *buf,
+                                       YV12_BUFFER_CONFIG *golden_ref,
+                                       YV12_BUFFER_CONFIG *alt_ref) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  VP10_COMMON *const cm = &cpi->common;
+
+  int mb_col, mb_row, offset = 0;
+  int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0;
+  MV gld_top_mv = { 0, 0 };
+  MODE_INFO mi_local;
+
+  vp10_zero(mi_local);
+  // Set up limit values for motion vectors to prevent them extending outside
+  // the UMV borders.
+  x->mv_row_min = -BORDER_MV_PIXELS_B16;
+  x->mv_row_max = (cm->mb_rows - 1) * 8 + BORDER_MV_PIXELS_B16;
+  xd->up_available = 0;
+  xd->plane[0].dst.stride = buf->y_stride;
+  xd->plane[0].pre[0].stride = buf->y_stride;
+  xd->plane[1].dst.stride = buf->uv_stride;
+  xd->mi[0] = &mi_local;
+  mi_local.mbmi.sb_type = BLOCK_16X16;
+  mi_local.mbmi.ref_frame[0] = LAST_FRAME;
+  mi_local.mbmi.ref_frame[1] = NONE;
+
+  for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
+    MV gld_left_mv = gld_top_mv;
+    int mb_y_in_offset = mb_y_offset;
+    int arf_y_in_offset = arf_y_offset;
+    int gld_y_in_offset = gld_y_offset;
+
+    // Set up limit values for motion vectors to prevent them extending outside
+    // the UMV borders.
+    x->mv_col_min = -BORDER_MV_PIXELS_B16;
+    x->mv_col_max = (cm->mb_cols - 1) * 8 + BORDER_MV_PIXELS_B16;
+    xd->left_available = 0;
+
+    for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+      MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col];
+
+      update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset, golden_ref,
+                              &gld_left_mv, alt_ref, mb_row, mb_col);
+      gld_left_mv = mb_stats->ref[GOLDEN_FRAME].m.mv.as_mv;
+      if (mb_col == 0) {
+        gld_top_mv = gld_left_mv;
+      }
+      xd->left_available = 1;
+      mb_y_in_offset += 16;
+      gld_y_in_offset += 16;
+      arf_y_in_offset += 16;
+      x->mv_col_min -= 16;
+      x->mv_col_max -= 16;
+    }
+    xd->up_available = 1;
+    mb_y_offset += buf->y_stride * 16;
+    gld_y_offset += golden_ref->y_stride * 16;
+    if (alt_ref) arf_y_offset += alt_ref->y_stride * 16;
+    x->mv_row_min -= 16;
+    x->mv_row_max -= 16;
+    offset += cm->mb_cols;
+  }
+}
+
+// void separate_arf_mbs_byzz
+static void separate_arf_mbs(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  int mb_col, mb_row, offset, i;
+  int mi_row, mi_col;
+  int ncnt[4] = { 0 };
+  int n_frames = cpi->mbgraph_n_frames;
+
+  int *arf_not_zz;
+
+  CHECK_MEM_ERROR(
+      cm, arf_not_zz,
+      vpx_calloc(cm->mb_rows * cm->mb_cols * sizeof(*arf_not_zz), 1));
+
+  // We are not interested in results beyond the alt ref itself.
+  if (n_frames > cpi->rc.frames_till_gf_update_due)
+    n_frames = cpi->rc.frames_till_gf_update_due;
+
+  // defer cost to reference frames
+  for (i = n_frames - 1; i >= 0; i--) {
+    MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+
+    for (offset = 0, mb_row = 0; mb_row < cm->mb_rows;
+         offset += cm->mb_cols, mb_row++) {
+      for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+        MBGRAPH_MB_STATS *mb_stats = &frame_stats->mb_stats[offset + mb_col];
+
+        int altref_err = mb_stats->ref[ALTREF_FRAME].err;
+        int intra_err = mb_stats->ref[INTRA_FRAME].err;
+        int golden_err = mb_stats->ref[GOLDEN_FRAME].err;
+
+        // Test for altref vs intra and gf and that its mv was 0,0.
+        if (altref_err > 1000 || altref_err > intra_err ||
+            altref_err > golden_err) {
+          arf_not_zz[offset + mb_col]++;
+        }
+      }
+    }
+  }
+
+  // arf_not_zz is indexed by MB, but this loop is indexed by MI to avoid out
+  // of bound access in segmentation_map
+  for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
+    for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
+      // If any of the blocks in the sequence failed then the MB
+      // goes in segment 0
+      if (arf_not_zz[mi_row / 2 * cm->mb_cols + mi_col / 2]) {
+        ncnt[0]++;
+        cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 0;
+      } else {
+        cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 1;
+        ncnt[1]++;
+      }
+    }
+  }
+
+  // Only bother with segmentation if over 10% of the MBs in static segment
+  // if ( ncnt[1] && (ncnt[0] / ncnt[1] < 10) )
+  if (1) {
+    // Note % of blocks that are marked as static
+    if (cm->MBs)
+      cpi->static_mb_pct = (ncnt[1] * 100) / (cm->mi_rows * cm->mi_cols);
+
+    // This error case should not be reachable as this function should
+    // never be called with the common data structure uninitialized.
+    else
+      cpi->static_mb_pct = 0;
+
+    vp10_enable_segmentation(&cm->seg);
+  } else {
+    cpi->static_mb_pct = 0;
+    vp10_disable_segmentation(&cm->seg);
+  }
+
+  // Free localy allocated storage
+  vpx_free(arf_not_zz);
+}
+
+void vp10_update_mbgraph_stats(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  int i, n_frames = vp10_lookahead_depth(cpi->lookahead);
+  YV12_BUFFER_CONFIG *golden_ref = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+
+  assert(golden_ref != NULL);
+
+  // we need to look ahead beyond where the ARF transitions into
+  // being a GF - so exit if we don't look ahead beyond that
+  if (n_frames <= cpi->rc.frames_till_gf_update_due) return;
+
+  if (n_frames > MAX_LAG_BUFFERS) n_frames = MAX_LAG_BUFFERS;
+
+  cpi->mbgraph_n_frames = n_frames;
+  for (i = 0; i < n_frames; i++) {
+    MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+    memset(frame_stats->mb_stats, 0,
+           cm->mb_rows * cm->mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats));
+  }
+
+  // do motion search to find contribution of each reference to data
+  // later on in this GF group
+  // FIXME really, the GF/last MC search should be done forward, and
+  // the ARF MC search backwards, to get optimal results for MV caching
+  for (i = 0; i < n_frames; i++) {
+    MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+    struct lookahead_entry *q_cur = vp10_lookahead_peek(cpi->lookahead, i);
+
+    assert(q_cur != NULL);
+
+    update_mbgraph_frame_stats(cpi, frame_stats, &q_cur->img, golden_ref,
+                               cpi->Source);
+  }
+
+  vpx_clear_system_state();
+
+  separate_arf_mbs(cpi);
+}
diff --git a/av1/encoder/mbgraph.h b/av1/encoder/mbgraph.h
new file mode 100644
index 0000000..e2daae5
--- /dev/null
+++ b/av1/encoder/mbgraph.h
@@ -0,0 +1,38 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_MBGRAPH_H_
+#define VP10_ENCODER_MBGRAPH_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+  struct {
+    int err;
+    union {
+      int_mv mv;
+      PREDICTION_MODE mode;
+    } m;
+  } ref[MAX_REF_FRAMES];
+} MBGRAPH_MB_STATS;
+
+typedef struct { MBGRAPH_MB_STATS *mb_stats; } MBGRAPH_FRAME_STATS;
+
+struct VP10_COMP;
+
+void vp10_update_mbgraph_stats(struct VP10_COMP *cpi);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_MBGRAPH_H_
diff --git a/av1/encoder/mcomp.c b/av1/encoder/mcomp.c
new file mode 100644
index 0000000..3b57ed1
--- /dev/null
+++ b/av1/encoder/mcomp.c
@@ -0,0 +1,2520 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/common.h"
+#include "av1/common/reconinter.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/mcomp.h"
+
+// #define NEW_DIAMOND_SEARCH
+
+static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
+                                             const MV *mv) {
+  return &buf->buf[mv->row * buf->stride + mv->col];
+}
+
+void vp10_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
+  int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
+  int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
+  int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
+  int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
+
+  col_min = VPXMAX(col_min, (MV_LOW >> 3) + 1);
+  row_min = VPXMAX(row_min, (MV_LOW >> 3) + 1);
+  col_max = VPXMIN(col_max, (MV_UPP >> 3) - 1);
+  row_max = VPXMIN(row_max, (MV_UPP >> 3) - 1);
+
+  // Get intersection of UMV window and valid MV window to reduce # of checks
+  // in diamond search.
+  if (x->mv_col_min < col_min) x->mv_col_min = col_min;
+  if (x->mv_col_max > col_max) x->mv_col_max = col_max;
+  if (x->mv_row_min < row_min) x->mv_row_min = row_min;
+  if (x->mv_row_max > row_max) x->mv_row_max = row_max;
+}
+
+int vp10_init_search_range(int size) {
+  int sr = 0;
+  // Minimum search size no matter what the passed in value.
+  size = VPXMAX(16, size);
+
+  while ((size << sr) < MAX_FULL_PEL_VAL) sr++;
+
+  sr = VPXMIN(sr, MAX_MVSEARCH_STEPS - 2);
+  return sr;
+}
+
+static INLINE int mv_cost(const MV *mv, const int *joint_cost,
+                          int *const comp_cost[2]) {
+  return joint_cost[vp10_get_mv_joint(mv)] + comp_cost[0][mv->row] +
+         comp_cost[1][mv->col];
+}
+
+int vp10_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost,
+                     int *mvcost[2], int weight) {
+  const MV diff = { mv->row - ref->row, mv->col - ref->col };
+  return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7);
+}
+
+#define PIXEL_TRANSFORM_ERROR_SCALE 4
+static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost,
+                       int *mvcost[2], int error_per_bit) {
+  if (mvcost) {
+    const MV diff = { mv->row - ref->row, mv->col - ref->col };
+    // This product sits at a 32-bit ceiling right now and any additional
+    // accuracy in either bit cost or error cost will cause it to overflow.
+    return ROUND_POWER_OF_TWO(
+        (unsigned)mv_cost(&diff, mvjcost, mvcost) * error_per_bit,
+        RDDIV_BITS + VP9_PROB_COST_SHIFT - RD_EPB_SHIFT +
+            PIXEL_TRANSFORM_ERROR_SCALE);
+  }
+  return 0;
+}
+
+static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref,
+                          int sad_per_bit) {
+  const MV diff = { mv->row - ref->row, mv->col - ref->col };
+  return ROUND_POWER_OF_TWO(
+      (unsigned)mv_cost(&diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit,
+      VP9_PROB_COST_SHIFT);
+}
+
+void vp10_init_dsmotion_compensation(search_site_config *cfg, int stride) {
+  int len, ss_count = 1;
+
+  cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+  cfg->ss[0].offset = 0;
+
+  for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
+    // Generate offsets for 4 search sites per step.
+    const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } };
+    int i;
+    for (i = 0; i < 4; ++i) {
+      search_site *const ss = &cfg->ss[ss_count++];
+      ss->mv = ss_mvs[i];
+      ss->offset = ss->mv.row * stride + ss->mv.col;
+    }
+  }
+
+  cfg->ss_count = ss_count;
+  cfg->searches_per_step = 4;
+}
+
+void vp10_init3smotion_compensation(search_site_config *cfg, int stride) {
+  int len, ss_count = 1;
+
+  cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+  cfg->ss[0].offset = 0;
+
+  for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
+    // Generate offsets for 8 search sites per step.
+    const MV ss_mvs[8] = { { -len, 0 },   { len, 0 },     { 0, -len },
+                           { 0, len },    { -len, -len }, { -len, len },
+                           { len, -len }, { len, len } };
+    int i;
+    for (i = 0; i < 8; ++i) {
+      search_site *const ss = &cfg->ss[ss_count++];
+      ss->mv = ss_mvs[i];
+      ss->offset = ss->mv.row * stride + ss->mv.col;
+    }
+  }
+
+  cfg->ss_count = ss_count;
+  cfg->searches_per_step = 8;
+}
+
+/*
+ * To avoid the penalty for crossing cache-line read, preload the reference
+ * area in a small buffer, which is aligned to make sure there won't be crossing
+ * cache-line read while reading from this buffer. This reduced the cpu
+ * cycles spent on reading ref data in sub-pixel filter functions.
+ * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x
+ * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we
+ * could reduce the area.
+ */
+
+/* Estimated (square) error cost of a motion vector (r,c). The 14 scale comes
+ * from the same math as in mv_err_cost(). */
+#define MVC(r, c)                                                 \
+  (mvcost                                                         \
+       ? ((unsigned)(mvjcost[((r) != rr) * 2 + ((c) != rc)] +     \
+                     mvcost[0][((r)-rr)] + mvcost[1][((c)-rc)]) * \
+              error_per_bit +                                     \
+          8192) >>                                                \
+             14                                                   \
+       : 0)
+
+// convert motion vector component to offset for sv[a]f calc
+static INLINE int sp(int x) { return x & 7; }
+
+static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
+  return &buf[(r >> 3) * stride + (c >> 3)];
+}
+
+/* checks if (r, c) has better score than previous best */
+#define CHECK_BETTER(v, r, c)                                                \
+  if (c >= minc && c <= maxc && r >= minr && r <= maxr) {                    \
+    if (second_pred == NULL)                                                 \
+      thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z,  \
+                         src_stride, &sse);                                  \
+    else                                                                     \
+      thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
+                          src_stride, &sse, second_pred);                    \
+    if ((v = MVC(r, c) + thismse) < besterr) {                               \
+      besterr = v;                                                           \
+      br = r;                                                                \
+      bc = c;                                                                \
+      *distortion = thismse;                                                 \
+      *sse1 = sse;                                                           \
+    }                                                                        \
+  } else {                                                                   \
+    v = INT_MAX;                                                             \
+  }
+
+#define FIRST_LEVEL_CHECKS                                       \
+  {                                                              \
+    unsigned int left, right, up, down, diag;                    \
+    CHECK_BETTER(left, tr, tc - hstep);                          \
+    CHECK_BETTER(right, tr, tc + hstep);                         \
+    CHECK_BETTER(up, tr - hstep, tc);                            \
+    CHECK_BETTER(down, tr + hstep, tc);                          \
+    whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2);     \
+    switch (whichdir) {                                          \
+      case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \
+      case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \
+      case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \
+      case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \
+    }                                                            \
+  }
+
+#define SECOND_LEVEL_CHECKS                                       \
+  {                                                               \
+    int kr, kc;                                                   \
+    unsigned int second;                                          \
+    if (tr != br && tc != bc) {                                   \
+      kr = br - tr;                                               \
+      kc = bc - tc;                                               \
+      CHECK_BETTER(second, tr + kr, tc + 2 * kc);                 \
+      CHECK_BETTER(second, tr + 2 * kr, tc + kc);                 \
+    } else if (tr == br && tc != bc) {                            \
+      kc = bc - tc;                                               \
+      CHECK_BETTER(second, tr + hstep, tc + 2 * kc);              \
+      CHECK_BETTER(second, tr - hstep, tc + 2 * kc);              \
+      switch (whichdir) {                                         \
+        case 0:                                                   \
+        case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \
+        case 2:                                                   \
+        case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \
+      }                                                           \
+    } else if (tr != br && tc == bc) {                            \
+      kr = br - tr;                                               \
+      CHECK_BETTER(second, tr + 2 * kr, tc + hstep);              \
+      CHECK_BETTER(second, tr + 2 * kr, tc - hstep);              \
+      switch (whichdir) {                                         \
+        case 0:                                                   \
+        case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \
+        case 1:                                                   \
+        case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \
+      }                                                           \
+    }                                                             \
+  }
+
+// TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of
+// SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten
+// later in the same way.
+#define SECOND_LEVEL_CHECKS_BEST                \
+  {                                             \
+    unsigned int second;                        \
+    int br0 = br;                               \
+    int bc0 = bc;                               \
+    assert(tr == br || tc == bc);               \
+    if (tr == br && tc != bc) {                 \
+      kc = bc - tc;                             \
+    } else if (tr != br && tc == bc) {          \
+      kr = br - tr;                             \
+    }                                           \
+    CHECK_BETTER(second, br0 + kr, bc0);        \
+    CHECK_BETTER(second, br0, bc0 + kc);        \
+    if (br0 != br || bc0 != bc) {               \
+      CHECK_BETTER(second, br0 + kr, bc0 + kc); \
+    }                                           \
+  }
+
+#define SETUP_SUBPEL_SEARCH                                         \
+  const uint8_t *const z = x->plane[0].src.buf;                     \
+  const int src_stride = x->plane[0].src.stride;                    \
+  const MACROBLOCKD *xd = &x->e_mbd;                                \
+  unsigned int besterr = INT_MAX;                                   \
+  unsigned int sse;                                                 \
+  unsigned int whichdir;                                            \
+  int thismse;                                                      \
+  const unsigned int halfiters = iters_per_step;                    \
+  const unsigned int quarteriters = iters_per_step;                 \
+  const unsigned int eighthiters = iters_per_step;                  \
+  const int y_stride = xd->plane[0].pre[0].stride;                  \
+  const int offset = bestmv->row * y_stride + bestmv->col;          \
+  const uint8_t *const y = xd->plane[0].pre[0].buf;                 \
+                                                                    \
+  int rr = ref_mv->row;                                             \
+  int rc = ref_mv->col;                                             \
+  int br = bestmv->row * 8;                                         \
+  int bc = bestmv->col * 8;                                         \
+  int hstep = 4;                                                    \
+  const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
+  const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
+  const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
+  const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
+  int tr = br;                                                      \
+  int tc = bc;                                                      \
+                                                                    \
+  bestmv->row *= 8;                                                 \
+  bestmv->col *= 8;
+
+static unsigned int setup_center_error(
+    const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv,
+    int error_per_bit, const vpx_variance_fn_ptr_t *vfp,
+    const uint8_t *const src, const int src_stride, const uint8_t *const y,
+    int y_stride, const uint8_t *second_pred, int w, int h, int offset,
+    int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion) {
+  unsigned int besterr;
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (second_pred != NULL) {
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      DECLARE_ALIGNED(16, uint16_t, comp_pred16[64 * 64]);
+      vpx_highbd_comp_avg_pred(comp_pred16, second_pred, w, h, y + offset,
+                               y_stride);
+      besterr =
+          vfp->vf(CONVERT_TO_BYTEPTR(comp_pred16), w, src, src_stride, sse1);
+    } else {
+      DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
+      vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
+      besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
+    }
+  } else {
+    besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
+  }
+  *distortion = besterr;
+  besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
+#else
+  (void)xd;
+  if (second_pred != NULL) {
+    DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
+    vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
+    besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
+  } else {
+    besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
+  }
+  *distortion = besterr;
+  besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  return besterr;
+}
+
+static INLINE int divide_and_round(const int n, const int d) {
+  return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
+}
+
+static INLINE int is_cost_list_wellbehaved(int *cost_list) {
+  return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] &&
+         cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4];
+}
+
+// Returns surface minima estimate at given precision in 1/2^n bits.
+// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
+// For a given set of costs S0, S1, S2, S3, S4 at points
+// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
+// the solution for the location of the minima (x0, y0) is given by:
+// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
+// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
+// The code below is an integerized version of that.
+static void get_cost_surf_min(int *cost_list, int *ir, int *ic, int bits) {
+  *ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
+                         (cost_list[1] - 2 * cost_list[0] + cost_list[3]));
+  *ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
+                         (cost_list[4] - 2 * cost_list[0] + cost_list[2]));
+}
+
+int vp10_find_best_sub_pixel_tree_pruned_evenmore(
+    const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
+    int error_per_bit, const vpx_variance_fn_ptr_t *vfp, int forced_stop,
+    int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
+    int *distortion, unsigned int *sse1, const uint8_t *second_pred, int w,
+    int h) {
+  SETUP_SUBPEL_SEARCH;
+  besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
+                               src_stride, y, y_stride, second_pred, w, h,
+                               offset, mvjcost, mvcost, sse1, distortion);
+  (void)halfiters;
+  (void)quarteriters;
+  (void)eighthiters;
+  (void)whichdir;
+  (void)allow_hp;
+  (void)forced_stop;
+  (void)hstep;
+
+  if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+      cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+      cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
+    int ir, ic;
+    unsigned int minpt;
+    get_cost_surf_min(cost_list, &ir, &ic, 2);
+    if (ir != 0 || ic != 0) {
+      CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic);
+    }
+  } else {
+    FIRST_LEVEL_CHECKS;
+    if (halfiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+
+    tr = br;
+    tc = bc;
+
+    // Each subsequent iteration checks at least one point in common with
+    // the last iteration could be 2 ( if diag selected) 1/4 pel
+    // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+    if (forced_stop != 2) {
+      hstep >>= 1;
+      FIRST_LEVEL_CHECKS;
+      if (quarteriters > 1) {
+        SECOND_LEVEL_CHECKS;
+      }
+    }
+  }
+
+  tr = br;
+  tc = bc;
+
+  if (allow_hp && vp10_use_mv_hp(ref_mv) && forced_stop == 0) {
+    hstep >>= 1;
+    FIRST_LEVEL_CHECKS;
+    if (eighthiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+  }
+
+  bestmv->row = br;
+  bestmv->col = bc;
+
+  if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+      (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+    return INT_MAX;
+
+  return besterr;
+}
+
+int vp10_find_best_sub_pixel_tree_pruned_more(
+    const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
+    int error_per_bit, const vpx_variance_fn_ptr_t *vfp, int forced_stop,
+    int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
+    int *distortion, unsigned int *sse1, const uint8_t *second_pred, int w,
+    int h) {
+  SETUP_SUBPEL_SEARCH;
+  besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
+                               src_stride, y, y_stride, second_pred, w, h,
+                               offset, mvjcost, mvcost, sse1, distortion);
+  if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+      cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+      cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
+    unsigned int minpt;
+    int ir, ic;
+    get_cost_surf_min(cost_list, &ir, &ic, 1);
+    if (ir != 0 || ic != 0) {
+      CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep);
+    }
+  } else {
+    FIRST_LEVEL_CHECKS;
+    if (halfiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+  }
+
+  // Each subsequent iteration checks at least one point in common with
+  // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+  // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+  if (forced_stop != 2) {
+    tr = br;
+    tc = bc;
+    hstep >>= 1;
+    FIRST_LEVEL_CHECKS;
+    if (quarteriters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+  }
+
+  if (allow_hp && vp10_use_mv_hp(ref_mv) && forced_stop == 0) {
+    tr = br;
+    tc = bc;
+    hstep >>= 1;
+    FIRST_LEVEL_CHECKS;
+    if (eighthiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+  }
+  // These lines insure static analysis doesn't warn that
+  // tr and tc aren't used after the above point.
+  (void)tr;
+  (void)tc;
+
+  bestmv->row = br;
+  bestmv->col = bc;
+
+  if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+      (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+    return INT_MAX;
+
+  return besterr;
+}
+
+int vp10_find_best_sub_pixel_tree_pruned(
+    const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
+    int error_per_bit, const vpx_variance_fn_ptr_t *vfp, int forced_stop,
+    int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
+    int *distortion, unsigned int *sse1, const uint8_t *second_pred, int w,
+    int h) {
+  SETUP_SUBPEL_SEARCH;
+  besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
+                               src_stride, y, y_stride, second_pred, w, h,
+                               offset, mvjcost, mvcost, sse1, distortion);
+  if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+      cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+      cost_list[4] != INT_MAX) {
+    unsigned int left, right, up, down, diag;
+    whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
+               (cost_list[2] < cost_list[4] ? 0 : 2);
+    switch (whichdir) {
+      case 0:
+        CHECK_BETTER(left, tr, tc - hstep);
+        CHECK_BETTER(down, tr + hstep, tc);
+        CHECK_BETTER(diag, tr + hstep, tc - hstep);
+        break;
+      case 1:
+        CHECK_BETTER(right, tr, tc + hstep);
+        CHECK_BETTER(down, tr + hstep, tc);
+        CHECK_BETTER(diag, tr + hstep, tc + hstep);
+        break;
+      case 2:
+        CHECK_BETTER(left, tr, tc - hstep);
+        CHECK_BETTER(up, tr - hstep, tc);
+        CHECK_BETTER(diag, tr - hstep, tc - hstep);
+        break;
+      case 3:
+        CHECK_BETTER(right, tr, tc + hstep);
+        CHECK_BETTER(up, tr - hstep, tc);
+        CHECK_BETTER(diag, tr - hstep, tc + hstep);
+        break;
+    }
+  } else {
+    FIRST_LEVEL_CHECKS;
+    if (halfiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+  }
+
+  tr = br;
+  tc = bc;
+
+  // Each subsequent iteration checks at least one point in common with
+  // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+  // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+  if (forced_stop != 2) {
+    hstep >>= 1;
+    FIRST_LEVEL_CHECKS;
+    if (quarteriters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+    tr = br;
+    tc = bc;
+  }
+
+  if (allow_hp && vp10_use_mv_hp(ref_mv) && forced_stop == 0) {
+    hstep >>= 1;
+    FIRST_LEVEL_CHECKS;
+    if (eighthiters > 1) {
+      SECOND_LEVEL_CHECKS;
+    }
+    tr = br;
+    tc = bc;
+  }
+  // These lines insure static analysis doesn't warn that
+  // tr and tc aren't used after the above point.
+  (void)tr;
+  (void)tc;
+
+  bestmv->row = br;
+  bestmv->col = bc;
+
+  if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+      (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+    return INT_MAX;
+
+  return besterr;
+}
+
+static const MV search_step_table[12] = {
+  // left, right, up, down
+  { 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 }, { 0, -2 }, { 0, 2 },
+  { -2, 0 }, { 2, 0 }, { 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 }
+};
+
+int vp10_find_best_sub_pixel_tree(const MACROBLOCK *x, MV *bestmv,
+                                  const MV *ref_mv, int allow_hp,
+                                  int error_per_bit,
+                                  const vpx_variance_fn_ptr_t *vfp,
+                                  int forced_stop, int iters_per_step,
+                                  int *cost_list, int *mvjcost, int *mvcost[2],
+                                  int *distortion, unsigned int *sse1,
+                                  const uint8_t *second_pred, int w, int h) {
+  const uint8_t *const z = x->plane[0].src.buf;
+  const uint8_t *const src_address = z;
+  const int src_stride = x->plane[0].src.stride;
+  const MACROBLOCKD *xd = &x->e_mbd;
+  unsigned int besterr = INT_MAX;
+  unsigned int sse;
+  int thismse;
+  const int y_stride = xd->plane[0].pre[0].stride;
+  const int offset = bestmv->row * y_stride + bestmv->col;
+  const uint8_t *const y = xd->plane[0].pre[0].buf;
+
+  int rr = ref_mv->row;
+  int rc = ref_mv->col;
+  int br = bestmv->row * 8;
+  int bc = bestmv->col * 8;
+  int hstep = 4;
+  int iter, round = 3 - forced_stop;
+  const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
+  const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
+  const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
+  const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
+  int tr = br;
+  int tc = bc;
+  const MV *search_step = search_step_table;
+  int idx, best_idx = -1;
+  unsigned int cost_array[5];
+  int kr, kc;
+
+  if (!(allow_hp && vp10_use_mv_hp(ref_mv)))
+    if (round == 3) round = 2;
+
+  bestmv->row *= 8;
+  bestmv->col *= 8;
+
+  besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
+                               src_stride, y, y_stride, second_pred, w, h,
+                               offset, mvjcost, mvcost, sse1, distortion);
+
+  (void)cost_list;  // to silence compiler warning
+
+  for (iter = 0; iter < round; ++iter) {
+    // Check vertical and horizontal sub-pixel positions.
+    for (idx = 0; idx < 4; ++idx) {
+      tr = br + search_step[idx].row;
+      tc = bc + search_step[idx].col;
+      if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
+        const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
+        MV this_mv;
+        this_mv.row = tr;
+        this_mv.col = tc;
+        if (second_pred == NULL)
+          thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address,
+                             src_stride, &sse);
+        else
+          thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr),
+                              src_address, src_stride, &sse, second_pred);
+        cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost,
+                                                mvcost, error_per_bit);
+
+        if (cost_array[idx] < besterr) {
+          best_idx = idx;
+          besterr = cost_array[idx];
+          *distortion = thismse;
+          *sse1 = sse;
+        }
+      } else {
+        cost_array[idx] = INT_MAX;
+      }
+    }
+
+    // Check diagonal sub-pixel position
+    kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep);
+    kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep);
+
+    tc = bc + kc;
+    tr = br + kr;
+    if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
+      const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
+      MV this_mv = { tr, tc };
+      if (second_pred == NULL)
+        thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address,
+                           src_stride, &sse);
+      else
+        thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr), src_address,
+                            src_stride, &sse, second_pred);
+      cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost,
+                                            error_per_bit);
+
+      if (cost_array[4] < besterr) {
+        best_idx = 4;
+        besterr = cost_array[4];
+        *distortion = thismse;
+        *sse1 = sse;
+      }
+    } else {
+      cost_array[idx] = INT_MAX;
+    }
+
+    if (best_idx < 4 && best_idx >= 0) {
+      br += search_step[best_idx].row;
+      bc += search_step[best_idx].col;
+    } else if (best_idx == 4) {
+      br = tr;
+      bc = tc;
+    }
+
+    if (iters_per_step > 1 && best_idx != -1) SECOND_LEVEL_CHECKS_BEST;
+
+    tr = br;
+    tc = bc;
+
+    search_step += 4;
+    hstep >>= 1;
+    best_idx = -1;
+  }
+
+  // Each subsequent iteration checks at least one point in common with
+  // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+  // These lines insure static analysis doesn't warn that
+  // tr and tc aren't used after the above point.
+  (void)tr;
+  (void)tc;
+
+  bestmv->row = br;
+  bestmv->col = bc;
+
+  if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+      (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+    return INT_MAX;
+
+  return besterr;
+}
+
+#undef MVC
+#undef PRE
+#undef CHECK_BETTER
+
+static INLINE int check_bounds(const MACROBLOCK *x, int row, int col,
+                               int range) {
+  return ((row - range) >= x->mv_row_min) & ((row + range) <= x->mv_row_max) &
+         ((col - range) >= x->mv_col_min) & ((col + range) <= x->mv_col_max);
+}
+
+static INLINE int is_mv_in(const MACROBLOCK *x, const MV *mv) {
+  return (mv->col >= x->mv_col_min) && (mv->col <= x->mv_col_max) &&
+         (mv->row >= x->mv_row_min) && (mv->row <= x->mv_row_max);
+}
+
+#define CHECK_BETTER                                                      \
+  {                                                                       \
+    if (thissad < bestsad) {                                              \
+      if (use_mvcost)                                                     \
+        thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \
+      if (thissad < bestsad) {                                            \
+        bestsad = thissad;                                                \
+        best_site = i;                                                    \
+      }                                                                   \
+    }                                                                     \
+  }
+
+#define MAX_PATTERN_SCALES 11
+#define MAX_PATTERN_CANDIDATES 8  // max number of canddiates per scale
+#define PATTERN_CANDIDATES_REF 3  // number of refinement candidates
+
+// Calculate and return a sad+mvcost list around an integer best pel.
+static INLINE void calc_int_cost_list(const MACROBLOCK *x, const MV *ref_mv,
+                                      int sadpb,
+                                      const vpx_variance_fn_ptr_t *fn_ptr,
+                                      const MV *best_mv, int *cost_list) {
+  static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0];
+  const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
+  int br = best_mv->row;
+  int bc = best_mv->col;
+  MV this_mv;
+  int i;
+  unsigned int sse;
+
+  this_mv.row = br;
+  this_mv.col = bc;
+  cost_list[0] =
+      fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv),
+                 in_what->stride, &sse) +
+      mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
+  if (check_bounds(x, br, bc, 1)) {
+    for (i = 0; i < 4; i++) {
+      const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
+      cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
+                                    get_buf_from_mv(in_what, &this_mv),
+                                    in_what->stride, &sse) +
+                         mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost,
+                                     x->mvcost, x->errorperbit);
+    }
+  } else {
+    for (i = 0; i < 4; i++) {
+      const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
+      if (!is_mv_in(x, &this_mv))
+        cost_list[i + 1] = INT_MAX;
+      else
+        cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
+                                      get_buf_from_mv(in_what, &this_mv),
+                                      in_what->stride, &sse) +
+                           mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost,
+                                       x->mvcost, x->errorperbit);
+    }
+  }
+}
+
+// Generic pattern search function that searches over multiple scales.
+// Each scale can have a different number of candidates and shape of
+// candidates as indicated in the num_candidates and candidates arrays
+// passed into this function
+//
+static int vp10_pattern_search(
+    const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit,
+    int do_init_search, int *cost_list, const vpx_variance_fn_ptr_t *vfp,
+    int use_mvcost, const MV *center_mv, MV *best_mv,
+    const int num_candidates[MAX_PATTERN_SCALES],
+    const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
+    10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+  };
+  int i, s, t;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  int br, bc;
+  int bestsad = INT_MAX;
+  int thissad;
+  int k = -1;
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  int best_init_s = search_param_to_steps[search_param];
+  // adjust ref_mv to make sure it is within MV range
+  clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+  br = ref_mv->row;
+  bc = ref_mv->col;
+
+  // Work out the start point for the search
+  bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                     in_what->stride) +
+            mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+
+  // Search all possible scales upto the search param around the center point
+  // pick the scale of the point that is best as the starting scale of
+  // further steps around it.
+  if (do_init_search) {
+    s = best_init_s;
+    best_init_s = -1;
+    for (t = 0; t <= s; ++t) {
+      int best_site = -1;
+      if (check_bounds(x, br, bc, 1 << t)) {
+        for (i = 0; i < num_candidates[t]; i++) {
+          const MV this_mv = { br + candidates[t][i].row,
+                               bc + candidates[t][i].col };
+          thissad =
+              vfp->sdf(what->buf, what->stride,
+                       get_buf_from_mv(in_what, &this_mv), in_what->stride);
+          CHECK_BETTER
+        }
+      } else {
+        for (i = 0; i < num_candidates[t]; i++) {
+          const MV this_mv = { br + candidates[t][i].row,
+                               bc + candidates[t][i].col };
+          if (!is_mv_in(x, &this_mv)) continue;
+          thissad =
+              vfp->sdf(what->buf, what->stride,
+                       get_buf_from_mv(in_what, &this_mv), in_what->stride);
+          CHECK_BETTER
+        }
+      }
+      if (best_site == -1) {
+        continue;
+      } else {
+        best_init_s = t;
+        k = best_site;
+      }
+    }
+    if (best_init_s != -1) {
+      br += candidates[best_init_s][k].row;
+      bc += candidates[best_init_s][k].col;
+    }
+  }
+
+  // If the center point is still the best, just skip this and move to
+  // the refinement step.
+  if (best_init_s != -1) {
+    int best_site = -1;
+    s = best_init_s;
+
+    do {
+      // No need to search all 6 points the 1st time if initial search was used
+      if (!do_init_search || s != best_init_s) {
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            if (!is_mv_in(x, &this_mv)) continue;
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site == -1) {
+          continue;
+        } else {
+          br += candidates[s][best_site].row;
+          bc += candidates[s][best_site].col;
+          k = best_site;
+        }
+      }
+
+      do {
+        int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+        best_site = -1;
+        next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+        next_chkpts_indices[1] = k;
+        next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            if (!is_mv_in(x, &this_mv)) continue;
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site != -1) {
+          k = next_chkpts_indices[best_site];
+          br += candidates[s][k].row;
+          bc += candidates[s][k].col;
+        }
+      } while (best_site != -1);
+    } while (s--);
+  }
+
+  // Returns the one-away integer pel sad values around the best as follows:
+  // cost_list[0]: cost at the best integer pel
+  // cost_list[1]: cost at delta {0, -1} (left)   from the best integer pel
+  // cost_list[2]: cost at delta { 1, 0} (bottom) from the best integer pel
+  // cost_list[3]: cost at delta { 0, 1} (right)  from the best integer pel
+  // cost_list[4]: cost at delta {-1, 0} (top)    from the best integer pel
+  if (cost_list) {
+    const MV best_mv = { br, bc };
+    calc_int_cost_list(x, &fcenter_mv, sad_per_bit, vfp, &best_mv, cost_list);
+  }
+  best_mv->row = br;
+  best_mv->col = bc;
+  return bestsad;
+}
+
+// A specialized function where the smallest scale search candidates
+// are 4 1-away neighbors, and cost_list is non-null
+// TODO(debargha): Merge this function with the one above. Also remove
+// use_mvcost option since it is always 1, to save unnecessary branches.
+static int vp10_pattern_search_sad(
+    const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit,
+    int do_init_search, int *cost_list, const vpx_variance_fn_ptr_t *vfp,
+    int use_mvcost, const MV *center_mv, MV *best_mv,
+    const int num_candidates[MAX_PATTERN_SCALES],
+    const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
+    10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+  };
+  int i, s, t;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  int br, bc;
+  int bestsad = INT_MAX;
+  int thissad;
+  int k = -1;
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  int best_init_s = search_param_to_steps[search_param];
+  // adjust ref_mv to make sure it is within MV range
+  clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+  br = ref_mv->row;
+  bc = ref_mv->col;
+  if (cost_list != NULL) {
+    cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
+        INT_MAX;
+  }
+
+  // Work out the start point for the search
+  bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                     in_what->stride) +
+            mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+
+  // Search all possible scales upto the search param around the center point
+  // pick the scale of the point that is best as the starting scale of
+  // further steps around it.
+  if (do_init_search) {
+    s = best_init_s;
+    best_init_s = -1;
+    for (t = 0; t <= s; ++t) {
+      int best_site = -1;
+      if (check_bounds(x, br, bc, 1 << t)) {
+        for (i = 0; i < num_candidates[t]; i++) {
+          const MV this_mv = { br + candidates[t][i].row,
+                               bc + candidates[t][i].col };
+          thissad =
+              vfp->sdf(what->buf, what->stride,
+                       get_buf_from_mv(in_what, &this_mv), in_what->stride);
+          CHECK_BETTER
+        }
+      } else {
+        for (i = 0; i < num_candidates[t]; i++) {
+          const MV this_mv = { br + candidates[t][i].row,
+                               bc + candidates[t][i].col };
+          if (!is_mv_in(x, &this_mv)) continue;
+          thissad =
+              vfp->sdf(what->buf, what->stride,
+                       get_buf_from_mv(in_what, &this_mv), in_what->stride);
+          CHECK_BETTER
+        }
+      }
+      if (best_site == -1) {
+        continue;
+      } else {
+        best_init_s = t;
+        k = best_site;
+      }
+    }
+    if (best_init_s != -1) {
+      br += candidates[best_init_s][k].row;
+      bc += candidates[best_init_s][k].col;
+    }
+  }
+
+  // If the center point is still the best, just skip this and move to
+  // the refinement step.
+  if (best_init_s != -1) {
+    int do_sad = (num_candidates[0] == 4 && cost_list != NULL);
+    int best_site = -1;
+    s = best_init_s;
+
+    for (; s >= do_sad; s--) {
+      if (!do_init_search || s != best_init_s) {
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            if (!is_mv_in(x, &this_mv)) continue;
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site == -1) {
+          continue;
+        } else {
+          br += candidates[s][best_site].row;
+          bc += candidates[s][best_site].col;
+          k = best_site;
+        }
+      }
+
+      do {
+        int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+        best_site = -1;
+        next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+        next_chkpts_indices[1] = k;
+        next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            if (!is_mv_in(x, &this_mv)) continue;
+            thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site != -1) {
+          k = next_chkpts_indices[best_site];
+          br += candidates[s][k].row;
+          bc += candidates[s][k].col;
+        }
+      } while (best_site != -1);
+    }
+
+    // Note: If we enter the if below, then cost_list must be non-NULL.
+    if (s == 0) {
+      cost_list[0] = bestsad;
+      if (!do_init_search || s != best_init_s) {
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            cost_list[i + 1] = thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < num_candidates[s]; i++) {
+            const MV this_mv = { br + candidates[s][i].row,
+                                 bc + candidates[s][i].col };
+            if (!is_mv_in(x, &this_mv)) continue;
+            cost_list[i + 1] = thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site != -1) {
+          br += candidates[s][best_site].row;
+          bc += candidates[s][best_site].col;
+          k = best_site;
+        }
+      }
+      while (best_site != -1) {
+        int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+        best_site = -1;
+        next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+        next_chkpts_indices[1] = k;
+        next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+        cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
+        cost_list[((k + 2) % 4) + 1] = cost_list[0];
+        cost_list[0] = bestsad;
+
+        if (check_bounds(x, br, bc, 1 << s)) {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            cost_list[next_chkpts_indices[i] + 1] = thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        } else {
+          for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+            const MV this_mv = {
+              br + candidates[s][next_chkpts_indices[i]].row,
+              bc + candidates[s][next_chkpts_indices[i]].col
+            };
+            if (!is_mv_in(x, &this_mv)) {
+              cost_list[next_chkpts_indices[i] + 1] = INT_MAX;
+              continue;
+            }
+            cost_list[next_chkpts_indices[i] + 1] = thissad =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+            CHECK_BETTER
+          }
+        }
+
+        if (best_site != -1) {
+          k = next_chkpts_indices[best_site];
+          br += candidates[s][k].row;
+          bc += candidates[s][k].col;
+        }
+      }
+    }
+  }
+
+  // Returns the one-away integer pel sad values around the best as follows:
+  // cost_list[0]: sad at the best integer pel
+  // cost_list[1]: sad at delta {0, -1} (left)   from the best integer pel
+  // cost_list[2]: sad at delta { 1, 0} (bottom) from the best integer pel
+  // cost_list[3]: sad at delta { 0, 1} (right)  from the best integer pel
+  // cost_list[4]: sad at delta {-1, 0} (top)    from the best integer pel
+  if (cost_list) {
+    static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
+    if (cost_list[0] == INT_MAX) {
+      cost_list[0] = bestsad;
+      if (check_bounds(x, br, bc, 1)) {
+        for (i = 0; i < 4; i++) {
+          const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
+          cost_list[i + 1] =
+              vfp->sdf(what->buf, what->stride,
+                       get_buf_from_mv(in_what, &this_mv), in_what->stride);
+        }
+      } else {
+        for (i = 0; i < 4; i++) {
+          const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
+          if (!is_mv_in(x, &this_mv))
+            cost_list[i + 1] = INT_MAX;
+          else
+            cost_list[i + 1] =
+                vfp->sdf(what->buf, what->stride,
+                         get_buf_from_mv(in_what, &this_mv), in_what->stride);
+        }
+      }
+    } else {
+      if (use_mvcost) {
+        for (i = 0; i < 4; i++) {
+          const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
+          if (cost_list[i + 1] != INT_MAX) {
+            cost_list[i + 1] +=
+                mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+          }
+        }
+      }
+    }
+  }
+  best_mv->row = br;
+  best_mv->col = bc;
+  return bestsad;
+}
+
+int vp10_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv,
+                        const MV *center_mv, const vpx_variance_fn_ptr_t *vfp,
+                        int use_mvcost) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const MV mv = { best_mv->row * 8, best_mv->col * 8 };
+  unsigned int unused;
+
+  return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv),
+                 in_what->stride, &unused) +
+         (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost,
+                                   x->errorperbit)
+                     : 0);
+}
+
+int vp10_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv,
+                           const MV *center_mv, const uint8_t *second_pred,
+                           const vpx_variance_fn_ptr_t *vfp, int use_mvcost) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const MV mv = { best_mv->row * 8, best_mv->col * 8 };
+  unsigned int unused;
+
+  return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0,
+                   what->buf, what->stride, &unused, second_pred) +
+         (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost,
+                                   x->errorperbit)
+                     : 0);
+}
+
+int vp10_hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
+                    int sad_per_bit, int do_init_search, int *cost_list,
+                    const vpx_variance_fn_ptr_t *vfp, int use_mvcost,
+                    const MV *center_mv, MV *best_mv) {
+  // First scale has 8-closest points, the rest have 6 points in hex shape
+  // at increasing scales
+  static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6,
+                                                              6, 6, 6, 6, 6 };
+  // Note that the largest candidate step at each scale is 2^scale
+  static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
+    { { -1, -1 },
+      { 0, -1 },
+      { 1, -1 },
+      { 1, 0 },
+      { 1, 1 },
+      { 0, 1 },
+      { -1, 1 },
+      { -1, 0 } },
+    { { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } },
+    { { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } },
+    { { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } },
+    { { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } },
+    { { -16, -32 },
+      { 16, -32 },
+      { 32, 0 },
+      { 16, 32 },
+      { -16, 32 },
+      { -32, 0 } },
+    { { -32, -64 },
+      { 32, -64 },
+      { 64, 0 },
+      { 32, 64 },
+      { -32, 64 },
+      { -64, 0 } },
+    { { -64, -128 },
+      { 64, -128 },
+      { 128, 0 },
+      { 64, 128 },
+      { -64, 128 },
+      { -128, 0 } },
+    { { -128, -256 },
+      { 128, -256 },
+      { 256, 0 },
+      { 128, 256 },
+      { -128, 256 },
+      { -256, 0 } },
+    { { -256, -512 },
+      { 256, -512 },
+      { 512, 0 },
+      { 256, 512 },
+      { -256, 512 },
+      { -512, 0 } },
+    { { -512, -1024 },
+      { 512, -1024 },
+      { 1024, 0 },
+      { 512, 1024 },
+      { -512, 1024 },
+      { -1024, 0 } },
+  };
+  return vp10_pattern_search(
+      x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
+      use_mvcost, center_mv, best_mv, hex_num_candidates, hex_candidates);
+}
+
+int vp10_bigdia_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
+                       int sad_per_bit, int do_init_search, int *cost_list,
+                       const vpx_variance_fn_ptr_t *vfp, int use_mvcost,
+                       const MV *center_mv, MV *best_mv) {
+  // First scale has 4-closest points, the rest have 8 points in diamond
+  // shape at increasing scales
+  static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
+    4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  };
+  // Note that the largest candidate step at each scale is 2^scale
+  static const MV
+      bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
+        { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } },
+        { { -1, -1 },
+          { 0, -2 },
+          { 1, -1 },
+          { 2, 0 },
+          { 1, 1 },
+          { 0, 2 },
+          { -1, 1 },
+          { -2, 0 } },
+        { { -2, -2 },
+          { 0, -4 },
+          { 2, -2 },
+          { 4, 0 },
+          { 2, 2 },
+          { 0, 4 },
+          { -2, 2 },
+          { -4, 0 } },
+        { { -4, -4 },
+          { 0, -8 },
+          { 4, -4 },
+          { 8, 0 },
+          { 4, 4 },
+          { 0, 8 },
+          { -4, 4 },
+          { -8, 0 } },
+        { { -8, -8 },
+          { 0, -16 },
+          { 8, -8 },
+          { 16, 0 },
+          { 8, 8 },
+          { 0, 16 },
+          { -8, 8 },
+          { -16, 0 } },
+        { { -16, -16 },
+          { 0, -32 },
+          { 16, -16 },
+          { 32, 0 },
+          { 16, 16 },
+          { 0, 32 },
+          { -16, 16 },
+          { -32, 0 } },
+        { { -32, -32 },
+          { 0, -64 },
+          { 32, -32 },
+          { 64, 0 },
+          { 32, 32 },
+          { 0, 64 },
+          { -32, 32 },
+          { -64, 0 } },
+        { { -64, -64 },
+          { 0, -128 },
+          { 64, -64 },
+          { 128, 0 },
+          { 64, 64 },
+          { 0, 128 },
+          { -64, 64 },
+          { -128, 0 } },
+        { { -128, -128 },
+          { 0, -256 },
+          { 128, -128 },
+          { 256, 0 },
+          { 128, 128 },
+          { 0, 256 },
+          { -128, 128 },
+          { -256, 0 } },
+        { { -256, -256 },
+          { 0, -512 },
+          { 256, -256 },
+          { 512, 0 },
+          { 256, 256 },
+          { 0, 512 },
+          { -256, 256 },
+          { -512, 0 } },
+        { { -512, -512 },
+          { 0, -1024 },
+          { 512, -512 },
+          { 1024, 0 },
+          { 512, 512 },
+          { 0, 1024 },
+          { -512, 512 },
+          { -1024, 0 } },
+      };
+  return vp10_pattern_search_sad(
+      x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
+      use_mvcost, center_mv, best_mv, bigdia_num_candidates, bigdia_candidates);
+}
+
+int vp10_square_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
+                       int sad_per_bit, int do_init_search, int *cost_list,
+                       const vpx_variance_fn_ptr_t *vfp, int use_mvcost,
+                       const MV *center_mv, MV *best_mv) {
+  // All scales have 8 closest points in square shape
+  static const int square_num_candidates[MAX_PATTERN_SCALES] = {
+    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+  };
+  // Note that the largest candidate step at each scale is 2^scale
+  static const MV
+      square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
+        { { -1, -1 },
+          { 0, -1 },
+          { 1, -1 },
+          { 1, 0 },
+          { 1, 1 },
+          { 0, 1 },
+          { -1, 1 },
+          { -1, 0 } },
+        { { -2, -2 },
+          { 0, -2 },
+          { 2, -2 },
+          { 2, 0 },
+          { 2, 2 },
+          { 0, 2 },
+          { -2, 2 },
+          { -2, 0 } },
+        { { -4, -4 },
+          { 0, -4 },
+          { 4, -4 },
+          { 4, 0 },
+          { 4, 4 },
+          { 0, 4 },
+          { -4, 4 },
+          { -4, 0 } },
+        { { -8, -8 },
+          { 0, -8 },
+          { 8, -8 },
+          { 8, 0 },
+          { 8, 8 },
+          { 0, 8 },
+          { -8, 8 },
+          { -8, 0 } },
+        { { -16, -16 },
+          { 0, -16 },
+          { 16, -16 },
+          { 16, 0 },
+          { 16, 16 },
+          { 0, 16 },
+          { -16, 16 },
+          { -16, 0 } },
+        { { -32, -32 },
+          { 0, -32 },
+          { 32, -32 },
+          { 32, 0 },
+          { 32, 32 },
+          { 0, 32 },
+          { -32, 32 },
+          { -32, 0 } },
+        { { -64, -64 },
+          { 0, -64 },
+          { 64, -64 },
+          { 64, 0 },
+          { 64, 64 },
+          { 0, 64 },
+          { -64, 64 },
+          { -64, 0 } },
+        { { -128, -128 },
+          { 0, -128 },
+          { 128, -128 },
+          { 128, 0 },
+          { 128, 128 },
+          { 0, 128 },
+          { -128, 128 },
+          { -128, 0 } },
+        { { -256, -256 },
+          { 0, -256 },
+          { 256, -256 },
+          { 256, 0 },
+          { 256, 256 },
+          { 0, 256 },
+          { -256, 256 },
+          { -256, 0 } },
+        { { -512, -512 },
+          { 0, -512 },
+          { 512, -512 },
+          { 512, 0 },
+          { 512, 512 },
+          { 0, 512 },
+          { -512, 512 },
+          { -512, 0 } },
+        { { -1024, -1024 },
+          { 0, -1024 },
+          { 1024, -1024 },
+          { 1024, 0 },
+          { 1024, 1024 },
+          { 0, 1024 },
+          { -1024, 1024 },
+          { -1024, 0 } },
+      };
+  return vp10_pattern_search(
+      x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
+      use_mvcost, center_mv, best_mv, square_num_candidates, square_candidates);
+}
+
+int vp10_fast_hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
+                         int sad_per_bit,
+                         int do_init_search,  // must be zero for fast_hex
+                         int *cost_list, const vpx_variance_fn_ptr_t *vfp,
+                         int use_mvcost, const MV *center_mv, MV *best_mv) {
+  return vp10_hex_search(
+      x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit,
+      do_init_search, cost_list, vfp, use_mvcost, center_mv, best_mv);
+}
+
+int vp10_fast_dia_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
+                         int sad_per_bit, int do_init_search, int *cost_list,
+                         const vpx_variance_fn_ptr_t *vfp, int use_mvcost,
+                         const MV *center_mv, MV *best_mv) {
+  return vp10_bigdia_search(
+      x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit,
+      do_init_search, cost_list, vfp, use_mvcost, center_mv, best_mv);
+}
+
+#undef CHECK_BETTER
+
+// Exhuastive motion search around a given centre position with a given
+// step size.
+static int exhuastive_mesh_search(const MACROBLOCK *x, MV *ref_mv, MV *best_mv,
+                                  int range, int step, int sad_per_bit,
+                                  const vpx_variance_fn_ptr_t *fn_ptr,
+                                  const MV *center_mv) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  MV fcenter_mv = { center_mv->row, center_mv->col };
+  unsigned int best_sad = INT_MAX;
+  int r, c, i;
+  int start_col, end_col, start_row, end_row;
+  int col_step = (step > 1) ? step : 4;
+
+  assert(step >= 1);
+
+  clamp_mv(&fcenter_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min,
+           x->mv_row_max);
+  *best_mv = fcenter_mv;
+  best_sad =
+      fn_ptr->sdf(what->buf, what->stride,
+                  get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) +
+      mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit);
+  start_row = VPXMAX(-range, x->mv_row_min - fcenter_mv.row);
+  start_col = VPXMAX(-range, x->mv_col_min - fcenter_mv.col);
+  end_row = VPXMIN(range, x->mv_row_max - fcenter_mv.row);
+  end_col = VPXMIN(range, x->mv_col_max - fcenter_mv.col);
+
+  for (r = start_row; r <= end_row; r += step) {
+    for (c = start_col; c <= end_col; c += col_step) {
+      // Step > 1 means we are not checking every location in this pass.
+      if (step > 1) {
+        const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c };
+        unsigned int sad =
+            fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
+                        in_what->stride);
+        if (sad < best_sad) {
+          sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
+          if (sad < best_sad) {
+            best_sad = sad;
+            *best_mv = mv;
+          }
+        }
+      } else {
+        // 4 sads in a single call if we are checking every location
+        if (c + 3 <= end_col) {
+          unsigned int sads[4];
+          const uint8_t *addrs[4];
+          for (i = 0; i < 4; ++i) {
+            const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
+            addrs[i] = get_buf_from_mv(in_what, &mv);
+          }
+          fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads);
+
+          for (i = 0; i < 4; ++i) {
+            if (sads[i] < best_sad) {
+              const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
+              const unsigned int sad =
+                  sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
+              if (sad < best_sad) {
+                best_sad = sad;
+                *best_mv = mv;
+              }
+            }
+          }
+        } else {
+          for (i = 0; i < end_col - c; ++i) {
+            const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
+            unsigned int sad =
+                fn_ptr->sdf(what->buf, what->stride,
+                            get_buf_from_mv(in_what, &mv), in_what->stride);
+            if (sad < best_sad) {
+              sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
+              if (sad < best_sad) {
+                best_sad = sad;
+                *best_mv = mv;
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+
+  return best_sad;
+}
+
+int vp10_diamond_search_sad_c(const MACROBLOCK *x,
+                              const search_site_config *cfg, MV *ref_mv,
+                              MV *best_mv, int search_param, int sad_per_bit,
+                              int *num00, const vpx_variance_fn_ptr_t *fn_ptr,
+                              const MV *center_mv) {
+  int i, j, step;
+
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  uint8_t *what = x->plane[0].src.buf;
+  const int what_stride = x->plane[0].src.stride;
+  const uint8_t *in_what;
+  const int in_what_stride = xd->plane[0].pre[0].stride;
+  const uint8_t *best_address;
+
+  unsigned int bestsad = INT_MAX;
+  int best_site = 0;
+  int last_site = 0;
+
+  int ref_row;
+  int ref_col;
+
+  // search_param determines the length of the initial step and hence the number
+  // of iterations.
+  // 0 = initial step (MAX_FIRST_STEP) pel
+  // 1 = (MAX_FIRST_STEP/2) pel,
+  // 2 = (MAX_FIRST_STEP/4) pel...
+  const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step];
+  const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
+
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+  ref_row = ref_mv->row;
+  ref_col = ref_mv->col;
+  *num00 = 0;
+  best_mv->row = ref_row;
+  best_mv->col = ref_col;
+
+  // Work out the start point for the search
+  in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
+  best_address = in_what;
+
+  // Check the starting position
+  bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) +
+            mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
+
+  i = 1;
+
+  for (step = 0; step < tot_steps; step++) {
+    int all_in = 1, t;
+
+    // All_in is true if every one of the points we are checking are within
+    // the bounds of the image.
+    all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_row_min);
+    all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_row_max);
+    all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_col_min);
+    all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_col_max);
+
+    // If all the pixels are within the bounds we don't check whether the
+    // search point is valid in this loop,  otherwise we check each point
+    // for validity..
+    if (all_in) {
+      unsigned int sad_array[4];
+
+      for (j = 0; j < cfg->searches_per_step; j += 4) {
+        unsigned char const *block_offset[4];
+
+        for (t = 0; t < 4; t++)
+          block_offset[t] = ss[i + t].offset + best_address;
+
+        fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride,
+                       sad_array);
+
+        for (t = 0; t < 4; t++, i++) {
+          if (sad_array[t] < bestsad) {
+            const MV this_mv = { best_mv->row + ss[i].mv.row,
+                                 best_mv->col + ss[i].mv.col };
+            sad_array[t] +=
+                mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+            if (sad_array[t] < bestsad) {
+              bestsad = sad_array[t];
+              best_site = i;
+            }
+          }
+        }
+      }
+    } else {
+      for (j = 0; j < cfg->searches_per_step; j++) {
+        // Trap illegal vectors
+        const MV this_mv = { best_mv->row + ss[i].mv.row,
+                             best_mv->col + ss[i].mv.col };
+
+        if (is_mv_in(x, &this_mv)) {
+          const uint8_t *const check_here = ss[i].offset + best_address;
+          unsigned int thissad =
+              fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
+
+          if (thissad < bestsad) {
+            thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+            if (thissad < bestsad) {
+              bestsad = thissad;
+              best_site = i;
+            }
+          }
+        }
+        i++;
+      }
+    }
+    if (best_site != last_site) {
+      best_mv->row += ss[best_site].mv.row;
+      best_mv->col += ss[best_site].mv.col;
+      best_address += ss[best_site].offset;
+      last_site = best_site;
+#if defined(NEW_DIAMOND_SEARCH)
+      while (1) {
+        const MV this_mv = { best_mv->row + ss[best_site].mv.row,
+                             best_mv->col + ss[best_site].mv.col };
+        if (is_mv_in(x, &this_mv)) {
+          const uint8_t *const check_here = ss[best_site].offset + best_address;
+          unsigned int thissad =
+              fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
+          if (thissad < bestsad) {
+            thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+            if (thissad < bestsad) {
+              bestsad = thissad;
+              best_mv->row += ss[best_site].mv.row;
+              best_mv->col += ss[best_site].mv.col;
+              best_address += ss[best_site].offset;
+              continue;
+            }
+          }
+        }
+        break;
+      }
+#endif
+    } else if (best_address == in_what) {
+      (*num00)++;
+    }
+  }
+  return bestsad;
+}
+
+static int vector_match(int16_t *ref, int16_t *src, int bwl) {
+  int best_sad = INT_MAX;
+  int this_sad;
+  int d;
+  int center, offset = 0;
+  int bw = 4 << bwl;  // redundant variable, to be changed in the experiments.
+  for (d = 0; d <= bw; d += 16) {
+    this_sad = vpx_vector_var(&ref[d], src, bwl);
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      offset = d;
+    }
+  }
+  center = offset;
+
+  for (d = -8; d <= 8; d += 16) {
+    int this_pos = offset + d;
+    // check limit
+    if (this_pos < 0 || this_pos > bw) continue;
+    this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      center = this_pos;
+    }
+  }
+  offset = center;
+
+  for (d = -4; d <= 4; d += 8) {
+    int this_pos = offset + d;
+    // check limit
+    if (this_pos < 0 || this_pos > bw) continue;
+    this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      center = this_pos;
+    }
+  }
+  offset = center;
+
+  for (d = -2; d <= 2; d += 4) {
+    int this_pos = offset + d;
+    // check limit
+    if (this_pos < 0 || this_pos > bw) continue;
+    this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      center = this_pos;
+    }
+  }
+  offset = center;
+
+  for (d = -1; d <= 1; d += 2) {
+    int this_pos = offset + d;
+    // check limit
+    if (this_pos < 0 || this_pos > bw) continue;
+    this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      center = this_pos;
+    }
+  }
+
+  return (center - (bw >> 1));
+}
+
+static const MV search_pos[4] = {
+  { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 },
+};
+
+unsigned int vp10_int_pro_motion_estimation(const VP10_COMP *cpi, MACROBLOCK *x,
+                                            BLOCK_SIZE bsize, int mi_row,
+                                            int mi_col) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
+  DECLARE_ALIGNED(16, int16_t, hbuf[128]);
+  DECLARE_ALIGNED(16, int16_t, vbuf[128]);
+  DECLARE_ALIGNED(16, int16_t, src_hbuf[64]);
+  DECLARE_ALIGNED(16, int16_t, src_vbuf[64]);
+  int idx;
+  const int bw = 4 << b_width_log2_lookup[bsize];
+  const int bh = 4 << b_height_log2_lookup[bsize];
+  const int search_width = bw << 1;
+  const int search_height = bh << 1;
+  const int src_stride = x->plane[0].src.stride;
+  const int ref_stride = xd->plane[0].pre[0].stride;
+  uint8_t const *ref_buf, *src_buf;
+  MV *tmp_mv = &xd->mi[0]->mbmi.mv[0].as_mv;
+  unsigned int best_sad, tmp_sad, this_sad[4];
+  MV this_mv;
+  const int norm_factor = 3 + (bw >> 5);
+  const YV12_BUFFER_CONFIG *scaled_ref_frame =
+      vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
+
+  if (scaled_ref_frame) {
+    int i;
+    // Swap out the reference frame for a version that's been scaled to
+    // match the resolution of the current frame, allowing the existing
+    // motion search code to be used without additional modifications.
+    for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
+    vp10_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+  }
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  {
+    unsigned int this_sad;
+    tmp_mv->row = 0;
+    tmp_mv->col = 0;
+    this_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride,
+                                      xd->plane[0].pre[0].buf, ref_stride);
+
+    if (scaled_ref_frame) {
+      int i;
+      for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
+    }
+    return this_sad;
+  }
+#endif
+
+  // Set up prediction 1-D reference set
+  ref_buf = xd->plane[0].pre[0].buf - (bw >> 1);
+  for (idx = 0; idx < search_width; idx += 16) {
+    vpx_int_pro_row(&hbuf[idx], ref_buf, ref_stride, bh);
+    ref_buf += 16;
+  }
+
+  ref_buf = xd->plane[0].pre[0].buf - (bh >> 1) * ref_stride;
+  for (idx = 0; idx < search_height; ++idx) {
+    vbuf[idx] = vpx_int_pro_col(ref_buf, bw) >> norm_factor;
+    ref_buf += ref_stride;
+  }
+
+  // Set up src 1-D reference set
+  for (idx = 0; idx < bw; idx += 16) {
+    src_buf = x->plane[0].src.buf + idx;
+    vpx_int_pro_row(&src_hbuf[idx], src_buf, src_stride, bh);
+  }
+
+  src_buf = x->plane[0].src.buf;
+  for (idx = 0; idx < bh; ++idx) {
+    src_vbuf[idx] = vpx_int_pro_col(src_buf, bw) >> norm_factor;
+    src_buf += src_stride;
+  }
+
+  // Find the best match per 1-D search
+  tmp_mv->col = vector_match(hbuf, src_hbuf, b_width_log2_lookup[bsize]);
+  tmp_mv->row = vector_match(vbuf, src_vbuf, b_height_log2_lookup[bsize]);
+
+  this_mv = *tmp_mv;
+  src_buf = x->plane[0].src.buf;
+  ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
+  best_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
+
+  {
+    const uint8_t *const pos[4] = {
+      ref_buf - ref_stride, ref_buf - 1, ref_buf + 1, ref_buf + ref_stride,
+    };
+
+    cpi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride, this_sad);
+  }
+
+  for (idx = 0; idx < 4; ++idx) {
+    if (this_sad[idx] < best_sad) {
+      best_sad = this_sad[idx];
+      tmp_mv->row = search_pos[idx].row + this_mv.row;
+      tmp_mv->col = search_pos[idx].col + this_mv.col;
+    }
+  }
+
+  if (this_sad[0] < this_sad[3])
+    this_mv.row -= 1;
+  else
+    this_mv.row += 1;
+
+  if (this_sad[1] < this_sad[2])
+    this_mv.col -= 1;
+  else
+    this_mv.col += 1;
+
+  ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
+
+  tmp_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
+  if (best_sad > tmp_sad) {
+    *tmp_mv = this_mv;
+    best_sad = tmp_sad;
+  }
+
+  tmp_mv->row *= 8;
+  tmp_mv->col *= 8;
+
+  if (scaled_ref_frame) {
+    int i;
+    for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
+  }
+
+  return best_sad;
+}
+
+/* do_refine: If last step (1-away) of n-step search doesn't pick the center
+              point as the best match, we will do a final 1-away diamond
+              refining search  */
+int vp10_full_pixel_diamond(const VP10_COMP *cpi, MACROBLOCK *x, MV *mvp_full,
+                            int step_param, int sadpb, int further_steps,
+                            int do_refine, int *cost_list,
+                            const vpx_variance_fn_ptr_t *fn_ptr,
+                            const MV *ref_mv, MV *dst_mv) {
+  MV temp_mv;
+  int thissme, n, num00 = 0;
+  int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
+                                        step_param, sadpb, &n, fn_ptr, ref_mv);
+  if (bestsme < INT_MAX)
+    bestsme = vp10_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+  *dst_mv = temp_mv;
+
+  // If there won't be more n-step search, check to see if refining search is
+  // needed.
+  if (n > further_steps) do_refine = 0;
+
+  while (n < further_steps) {
+    ++n;
+
+    if (num00) {
+      num00--;
+    } else {
+      thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
+                                        step_param + n, sadpb, &num00, fn_ptr,
+                                        ref_mv);
+      if (thissme < INT_MAX)
+        thissme = vp10_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+
+      // check to see if refining search is needed.
+      if (num00 > further_steps - n) do_refine = 0;
+
+      if (thissme < bestsme) {
+        bestsme = thissme;
+        *dst_mv = temp_mv;
+      }
+    }
+  }
+
+  // final 1-away diamond refining search
+  if (do_refine) {
+    const int search_range = 8;
+    MV best_mv = *dst_mv;
+    thissme = vp10_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr,
+                                       ref_mv);
+    if (thissme < INT_MAX)
+      thissme = vp10_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1);
+    if (thissme < bestsme) {
+      bestsme = thissme;
+      *dst_mv = best_mv;
+    }
+  }
+
+  // Return cost list.
+  if (cost_list) {
+    calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
+  }
+  return bestsme;
+}
+
+#define MIN_RANGE 7
+#define MAX_RANGE 256
+#define MIN_INTERVAL 1
+// Runs an limited range exhaustive mesh search using a pattern set
+// according to the encode speed profile.
+static int full_pixel_exhaustive(VP10_COMP *cpi, MACROBLOCK *x,
+                                 MV *centre_mv_full, int sadpb, int *cost_list,
+                                 const vpx_variance_fn_ptr_t *fn_ptr,
+                                 const MV *ref_mv, MV *dst_mv) {
+  const SPEED_FEATURES *const sf = &cpi->sf;
+  MV temp_mv = { centre_mv_full->row, centre_mv_full->col };
+  MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
+  int bestsme;
+  int i;
+  int interval = sf->mesh_patterns[0].interval;
+  int range = sf->mesh_patterns[0].range;
+  int baseline_interval_divisor;
+
+  // Keep track of number of exhaustive calls (this frame in this thread).
+  ++(*x->ex_search_count_ptr);
+
+  // Trap illegal values for interval and range for this function.
+  if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) ||
+      (interval > range))
+    return INT_MAX;
+
+  baseline_interval_divisor = range / interval;
+
+  // Check size of proposed first range against magnitude of the centre
+  // value used as a starting point.
+  range = VPXMAX(range, (5 * VPXMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4);
+  range = VPXMIN(range, MAX_RANGE);
+  interval = VPXMAX(interval, range / baseline_interval_divisor);
+
+  // initial search
+  bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval,
+                                   sadpb, fn_ptr, &temp_mv);
+
+  if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) {
+    // Progressive searches with range and step size decreasing each time
+    // till we reach a step size of 1. Then break out.
+    for (i = 1; i < MAX_MESH_STEP; ++i) {
+      // First pass with coarser step and longer range
+      bestsme = exhuastive_mesh_search(
+          x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range,
+          sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv);
+
+      if (sf->mesh_patterns[i].interval == 1) break;
+    }
+  }
+
+  if (bestsme < INT_MAX)
+    bestsme = vp10_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+  *dst_mv = temp_mv;
+
+  // Return cost list.
+  if (cost_list) {
+    calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
+  }
+  return bestsme;
+}
+
+int vp10_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
+                           int sad_per_bit, int distance,
+                           const vpx_variance_fn_ptr_t *fn_ptr,
+                           const MV *center_mv, MV *best_mv) {
+  int r, c;
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
+  const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
+  const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
+  const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  int best_sad =
+      fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                  in_what->stride) +
+      mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+  *best_mv = *ref_mv;
+
+  for (r = row_min; r < row_max; ++r) {
+    for (c = col_min; c < col_max; ++c) {
+      const MV mv = { r, c };
+      const int sad =
+          fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
+                      in_what->stride) +
+          mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+      if (sad < best_sad) {
+        best_sad = sad;
+        *best_mv = mv;
+      }
+    }
+  }
+  return best_sad;
+}
+
+int vp10_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
+                           int sad_per_bit, int distance,
+                           const vpx_variance_fn_ptr_t *fn_ptr,
+                           const MV *center_mv, MV *best_mv) {
+  int r;
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
+  const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
+  const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
+  const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  unsigned int best_sad =
+      fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                  in_what->stride) +
+      mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+  *best_mv = *ref_mv;
+
+  for (r = row_min; r < row_max; ++r) {
+    int c = col_min;
+    const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+    if (fn_ptr->sdx3f != NULL) {
+      while ((c + 2) < col_max) {
+        int i;
+        DECLARE_ALIGNED(16, uint32_t, sads[3]);
+
+        fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+                      sads);
+
+        for (i = 0; i < 3; ++i) {
+          unsigned int sad = sads[i];
+          if (sad < best_sad) {
+            const MV mv = { r, c };
+            sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+            if (sad < best_sad) {
+              best_sad = sad;
+              *best_mv = mv;
+            }
+          }
+          ++check_here;
+          ++c;
+        }
+      }
+    }
+
+    while (c < col_max) {
+      unsigned int sad =
+          fn_ptr->sdf(what->buf, what->stride, check_here, in_what->stride);
+      if (sad < best_sad) {
+        const MV mv = { r, c };
+        sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+        if (sad < best_sad) {
+          best_sad = sad;
+          *best_mv = mv;
+        }
+      }
+      ++check_here;
+      ++c;
+    }
+  }
+
+  return best_sad;
+}
+
+int vp10_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
+                           int sad_per_bit, int distance,
+                           const vpx_variance_fn_ptr_t *fn_ptr,
+                           const MV *center_mv, MV *best_mv) {
+  int r;
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
+  const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
+  const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
+  const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  unsigned int best_sad =
+      fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                  in_what->stride) +
+      mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+  *best_mv = *ref_mv;
+
+  for (r = row_min; r < row_max; ++r) {
+    int c = col_min;
+    const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+    if (fn_ptr->sdx8f != NULL) {
+      while ((c + 7) < col_max) {
+        int i;
+        DECLARE_ALIGNED(16, uint32_t, sads[8]);
+
+        fn_ptr->sdx8f(what->buf, what->stride, check_here, in_what->stride,
+                      sads);
+
+        for (i = 0; i < 8; ++i) {
+          unsigned int sad = sads[i];
+          if (sad < best_sad) {
+            const MV mv = { r, c };
+            sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+            if (sad < best_sad) {
+              best_sad = sad;
+              *best_mv = mv;
+            }
+          }
+          ++check_here;
+          ++c;
+        }
+      }
+    }
+
+    if (fn_ptr->sdx3f != NULL) {
+      while ((c + 2) < col_max) {
+        int i;
+        DECLARE_ALIGNED(16, uint32_t, sads[3]);
+
+        fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+                      sads);
+
+        for (i = 0; i < 3; ++i) {
+          unsigned int sad = sads[i];
+          if (sad < best_sad) {
+            const MV mv = { r, c };
+            sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+            if (sad < best_sad) {
+              best_sad = sad;
+              *best_mv = mv;
+            }
+          }
+          ++check_here;
+          ++c;
+        }
+      }
+    }
+
+    while (c < col_max) {
+      unsigned int sad =
+          fn_ptr->sdf(what->buf, what->stride, check_here, in_what->stride);
+      if (sad < best_sad) {
+        const MV mv = { r, c };
+        sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+        if (sad < best_sad) {
+          best_sad = sad;
+          *best_mv = mv;
+        }
+      }
+      ++check_here;
+      ++c;
+    }
+  }
+
+  return best_sad;
+}
+
+int vp10_refining_search_sad(const MACROBLOCK *x, MV *ref_mv, int error_per_bit,
+                             int search_range,
+                             const vpx_variance_fn_ptr_t *fn_ptr,
+                             const MV *center_mv) {
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } };
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv);
+  unsigned int best_sad =
+      fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) +
+      mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
+  int i, j;
+
+  for (i = 0; i < search_range; i++) {
+    int best_site = -1;
+    const int all_in = ((ref_mv->row - 1) > x->mv_row_min) &
+                       ((ref_mv->row + 1) < x->mv_row_max) &
+                       ((ref_mv->col - 1) > x->mv_col_min) &
+                       ((ref_mv->col + 1) < x->mv_col_max);
+
+    if (all_in) {
+      unsigned int sads[4];
+      const uint8_t *const positions[4] = { best_address - in_what->stride,
+                                            best_address - 1, best_address + 1,
+                                            best_address + in_what->stride };
+
+      fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads);
+
+      for (j = 0; j < 4; ++j) {
+        if (sads[j] < best_sad) {
+          const MV mv = { ref_mv->row + neighbors[j].row,
+                          ref_mv->col + neighbors[j].col };
+          sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+          if (sads[j] < best_sad) {
+            best_sad = sads[j];
+            best_site = j;
+          }
+        }
+      }
+    } else {
+      for (j = 0; j < 4; ++j) {
+        const MV mv = { ref_mv->row + neighbors[j].row,
+                        ref_mv->col + neighbors[j].col };
+
+        if (is_mv_in(x, &mv)) {
+          unsigned int sad =
+              fn_ptr->sdf(what->buf, what->stride,
+                          get_buf_from_mv(in_what, &mv), in_what->stride);
+          if (sad < best_sad) {
+            sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+            if (sad < best_sad) {
+              best_sad = sad;
+              best_site = j;
+            }
+          }
+        }
+      }
+    }
+
+    if (best_site == -1) {
+      break;
+    } else {
+      ref_mv->row += neighbors[best_site].row;
+      ref_mv->col += neighbors[best_site].col;
+      best_address = get_buf_from_mv(in_what, ref_mv);
+    }
+  }
+
+  return best_sad;
+}
+
+// This function is called when we do joint motion search in comp_inter_inter
+// mode.
+int vp10_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv,
+                              int error_per_bit, int search_range,
+                              const vpx_variance_fn_ptr_t *fn_ptr,
+                              const MV *center_mv, const uint8_t *second_pred) {
+  const MV neighbors[8] = { { -1, 0 },  { 0, -1 }, { 0, 1 },  { 1, 0 },
+                            { -1, -1 }, { 1, -1 }, { -1, 1 }, { 1, 1 } };
+  const MACROBLOCKD *const xd = &x->e_mbd;
+  const struct buf_2d *const what = &x->plane[0].src;
+  const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+  const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
+  unsigned int best_sad =
+      fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
+                   in_what->stride, second_pred) +
+      mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
+  int i, j;
+
+  for (i = 0; i < search_range; ++i) {
+    int best_site = -1;
+
+    for (j = 0; j < 8; ++j) {
+      const MV mv = { ref_mv->row + neighbors[j].row,
+                      ref_mv->col + neighbors[j].col };
+
+      if (is_mv_in(x, &mv)) {
+        unsigned int sad =
+            fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
+                         in_what->stride, second_pred);
+        if (sad < best_sad) {
+          sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+          if (sad < best_sad) {
+            best_sad = sad;
+            best_site = j;
+          }
+        }
+      }
+    }
+
+    if (best_site == -1) {
+      break;
+    } else {
+      ref_mv->row += neighbors[best_site].row;
+      ref_mv->col += neighbors[best_site].col;
+    }
+  }
+  return best_sad;
+}
+
+#define MIN_EX_SEARCH_LIMIT 128
+static int is_exhaustive_allowed(VP10_COMP *cpi, MACROBLOCK *x) {
+  const SPEED_FEATURES *const sf = &cpi->sf;
+  const int max_ex =
+      VPXMAX(MIN_EX_SEARCH_LIMIT,
+             (*x->m_search_count_ptr * sf->max_exaustive_pct) / 100);
+
+  return sf->allow_exhaustive_searches &&
+         (sf->exhaustive_searches_thresh < INT_MAX) &&
+         (*x->ex_search_count_ptr <= max_ex) && !cpi->rc.is_src_frame_alt_ref;
+}
+
+int vp10_full_pixel_search(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+                           MV *mvp_full, int step_param, int error_per_bit,
+                           int *cost_list, const MV *ref_mv, MV *tmp_mv,
+                           int var_max, int rd) {
+  const SPEED_FEATURES *const sf = &cpi->sf;
+  const SEARCH_METHODS method = sf->mv.search_method;
+  vpx_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize];
+  int var = 0;
+  if (cost_list) {
+    cost_list[0] = INT_MAX;
+    cost_list[1] = INT_MAX;
+    cost_list[2] = INT_MAX;
+    cost_list[3] = INT_MAX;
+    cost_list[4] = INT_MAX;
+  }
+
+  // Keep track of number of searches (this frame in this thread).
+  ++(*x->m_search_count_ptr);
+
+  switch (method) {
+    case FAST_DIAMOND:
+      var = vp10_fast_dia_search(x, mvp_full, step_param, error_per_bit, 0,
+                                 cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+      break;
+    case FAST_HEX:
+      var = vp10_fast_hex_search(x, mvp_full, step_param, error_per_bit, 0,
+                                 cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+      break;
+    case HEX:
+      var = vp10_hex_search(x, mvp_full, step_param, error_per_bit, 1,
+                            cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+      break;
+    case SQUARE:
+      var = vp10_square_search(x, mvp_full, step_param, error_per_bit, 1,
+                               cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+      break;
+    case BIGDIA:
+      var = vp10_bigdia_search(x, mvp_full, step_param, error_per_bit, 1,
+                               cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+      break;
+    case NSTEP:
+      var = vp10_full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit,
+                                    MAX_MVSEARCH_STEPS - 1 - step_param, 1,
+                                    cost_list, fn_ptr, ref_mv, tmp_mv);
+
+      // Should we allow a follow on exhaustive search?
+      if (is_exhaustive_allowed(cpi, x)) {
+        int64_t exhuastive_thr = sf->exhaustive_searches_thresh;
+        exhuastive_thr >>=
+            8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
+
+        // Threshold variance for an exhaustive full search.
+        if (var > exhuastive_thr) {
+          int var_ex;
+          MV tmp_mv_ex;
+          var_ex = full_pixel_exhaustive(cpi, x, tmp_mv, error_per_bit,
+                                         cost_list, fn_ptr, ref_mv, &tmp_mv_ex);
+
+          if (var_ex < var) {
+            var = var_ex;
+            *tmp_mv = tmp_mv_ex;
+          }
+        }
+      }
+      break;
+
+      break;
+    default: assert(0 && "Invalid search method.");
+  }
+
+  if (method != NSTEP && rd && var < var_max)
+    var = vp10_get_mvpred_var(x, tmp_mv, ref_mv, fn_ptr, 1);
+
+  return var;
+}
diff --git a/av1/encoder/mcomp.h b/av1/encoder/mcomp.h
new file mode 100644
index 0000000..c112061
--- /dev/null
+++ b/av1/encoder/mcomp.h
@@ -0,0 +1,139 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_MCOMP_H_
+#define VP10_ENCODER_MCOMP_H_
+
+#include "av1/encoder/block.h"
+#include "aom_dsp/variance.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// The maximum number of steps in a step search given the largest
+// allowed initial step
+#define MAX_MVSEARCH_STEPS 11
+// Max full pel mv specified in the unit of full pixel
+// Enable the use of motion vector in range [-1023, 1023].
+#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS - 1)) - 1)
+// Maximum size of the first step in full pel units
+#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS - 1))
+// Allowed motion vector pixel distance outside image border
+// for Block_16x16
+#define BORDER_MV_PIXELS_B16 (16 + VPX_INTERP_EXTEND)
+
+// motion search site
+typedef struct search_site {
+  MV mv;
+  int offset;
+} search_site;
+
+typedef struct search_site_config {
+  search_site ss[8 * MAX_MVSEARCH_STEPS + 1];
+  int ss_count;
+  int searches_per_step;
+} search_site_config;
+
+void vp10_init_dsmotion_compensation(search_site_config *cfg, int stride);
+void vp10_init3smotion_compensation(search_site_config *cfg, int stride);
+
+void vp10_set_mv_search_range(MACROBLOCK *x, const MV *mv);
+int vp10_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost,
+                     int *mvcost[2], int weight);
+
+// Utility to compute variance + MV rate cost for a given MV
+int vp10_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv,
+                        const MV *center_mv, const vpx_variance_fn_ptr_t *vfp,
+                        int use_mvcost);
+int vp10_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv,
+                           const MV *center_mv, const uint8_t *second_pred,
+                           const vpx_variance_fn_ptr_t *vfp, int use_mvcost);
+
+struct VP10_COMP;
+struct SPEED_FEATURES;
+
+int vp10_init_search_range(int size);
+
+int vp10_refining_search_sad(const struct macroblock *x, struct mv *ref_mv,
+                             int sad_per_bit, int distance,
+                             const struct vpx_variance_vtable *fn_ptr,
+                             const struct mv *center_mv);
+
+// Runs sequence of diamond searches in smaller steps for RD.
+int vp10_full_pixel_diamond(const struct VP10_COMP *cpi, MACROBLOCK *x,
+                            MV *mvp_full, int step_param, int sadpb,
+                            int further_steps, int do_refine, int *cost_list,
+                            const vpx_variance_fn_ptr_t *fn_ptr,
+                            const MV *ref_mv, MV *dst_mv);
+
+// Perform integral projection based motion estimation.
+unsigned int vp10_int_pro_motion_estimation(const struct VP10_COMP *cpi,
+                                            MACROBLOCK *x, BLOCK_SIZE bsize,
+                                            int mi_row, int mi_col);
+
+typedef int(integer_mv_pattern_search_fn)(const MACROBLOCK *x, MV *ref_mv,
+                                          int search_param, int error_per_bit,
+                                          int do_init_search, int *cost_list,
+                                          const vpx_variance_fn_ptr_t *vf,
+                                          int use_mvcost, const MV *center_mv,
+                                          MV *best_mv);
+
+integer_mv_pattern_search_fn vp10_hex_search;
+integer_mv_pattern_search_fn vp10_bigdia_search;
+integer_mv_pattern_search_fn vp10_square_search;
+integer_mv_pattern_search_fn vp10_fast_hex_search;
+integer_mv_pattern_search_fn vp10_fast_dia_search;
+
+typedef int(fractional_mv_step_fp)(
+    const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
+    int error_per_bit, const vpx_variance_fn_ptr_t *vfp,
+    int forced_stop,  // 0 - full, 1 - qtr only, 2 - half only
+    int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
+    int *distortion, unsigned int *sse1, const uint8_t *second_pred, int w,
+    int h);
+
+extern fractional_mv_step_fp vp10_find_best_sub_pixel_tree;
+extern fractional_mv_step_fp vp10_find_best_sub_pixel_tree_pruned;
+extern fractional_mv_step_fp vp10_find_best_sub_pixel_tree_pruned_more;
+extern fractional_mv_step_fp vp10_find_best_sub_pixel_tree_pruned_evenmore;
+
+typedef int (*vp10_full_search_fn_t)(const MACROBLOCK *x, const MV *ref_mv,
+                                     int sad_per_bit, int distance,
+                                     const vpx_variance_fn_ptr_t *fn_ptr,
+                                     const MV *center_mv, MV *best_mv);
+
+typedef int (*vp10_refining_search_fn_t)(const MACROBLOCK *x, MV *ref_mv,
+                                         int sad_per_bit, int distance,
+                                         const vpx_variance_fn_ptr_t *fn_ptr,
+                                         const MV *center_mv);
+
+typedef int (*vp10_diamond_search_fn_t)(
+    const MACROBLOCK *x, const search_site_config *cfg, MV *ref_mv, MV *best_mv,
+    int search_param, int sad_per_bit, int *num00,
+    const vpx_variance_fn_ptr_t *fn_ptr, const MV *center_mv);
+
+int vp10_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv,
+                              int error_per_bit, int search_range,
+                              const vpx_variance_fn_ptr_t *fn_ptr,
+                              const MV *center_mv, const uint8_t *second_pred);
+
+struct VP10_COMP;
+
+int vp10_full_pixel_search(struct VP10_COMP *cpi, MACROBLOCK *x,
+                           BLOCK_SIZE bsize, MV *mvp_full, int step_param,
+                           int error_per_bit, int *cost_list, const MV *ref_mv,
+                           MV *tmp_mv, int var_max, int rd);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_MCOMP_H_
diff --git a/av1/encoder/mips/msa/error_msa.c b/av1/encoder/mips/msa/error_msa.c
new file mode 100644
index 0000000..71c5ad3
--- /dev/null
+++ b/av1/encoder/mips/msa/error_msa.c
@@ -0,0 +1,107 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp10_rtcd.h"
+#include "aom_dsp/mips/macros_msa.h"
+
+#define BLOCK_ERROR_BLOCKSIZE_MSA(BSize)                                     \
+  static int64_t block_error_##BSize##size_msa(                              \
+      const int16_t *coeff_ptr, const int16_t *dq_coeff_ptr, int64_t *ssz) { \
+    int64_t err = 0;                                                         \
+    uint32_t loop_cnt;                                                       \
+    v8i16 coeff, dq_coeff, coeff_r_h, coeff_l_h;                             \
+    v4i32 diff_r, diff_l, coeff_r_w, coeff_l_w;                              \
+    v2i64 sq_coeff_r, sq_coeff_l;                                            \
+    v2i64 err0, err_dup0, err1, err_dup1;                                    \
+                                                                             \
+    coeff = LD_SH(coeff_ptr);                                                \
+    dq_coeff = LD_SH(dq_coeff_ptr);                                          \
+    UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w);                                \
+    ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h);                      \
+    HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l);                       \
+    DOTP_SW2_SD(coeff_r_w, coeff_l_w, coeff_r_w, coeff_l_w, sq_coeff_r,      \
+                sq_coeff_l);                                                 \
+    DOTP_SW2_SD(diff_r, diff_l, diff_r, diff_l, err0, err1);                 \
+                                                                             \
+    coeff = LD_SH(coeff_ptr + 8);                                            \
+    dq_coeff = LD_SH(dq_coeff_ptr + 8);                                      \
+    UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w);                                \
+    ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h);                      \
+    HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l);                       \
+    DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l);              \
+    DPADD_SD2_SD(diff_r, diff_l, err0, err1);                                \
+                                                                             \
+    coeff_ptr += 16;                                                         \
+    dq_coeff_ptr += 16;                                                      \
+                                                                             \
+    for (loop_cnt = ((BSize >> 4) - 1); loop_cnt--;) {                       \
+      coeff = LD_SH(coeff_ptr);                                              \
+      dq_coeff = LD_SH(dq_coeff_ptr);                                        \
+      UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w);                              \
+      ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h);                    \
+      HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l);                     \
+      DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l);            \
+      DPADD_SD2_SD(diff_r, diff_l, err0, err1);                              \
+                                                                             \
+      coeff = LD_SH(coeff_ptr + 8);                                          \
+      dq_coeff = LD_SH(dq_coeff_ptr + 8);                                    \
+      UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w);                              \
+      ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h);                    \
+      HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l);                     \
+      DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l);            \
+      DPADD_SD2_SD(diff_r, diff_l, err0, err1);                              \
+                                                                             \
+      coeff_ptr += 16;                                                       \
+      dq_coeff_ptr += 16;                                                    \
+    }                                                                        \
+                                                                             \
+    err_dup0 = __msa_splati_d(sq_coeff_r, 1);                                \
+    err_dup1 = __msa_splati_d(sq_coeff_l, 1);                                \
+    sq_coeff_r += err_dup0;                                                  \
+    sq_coeff_l += err_dup1;                                                  \
+    *ssz = __msa_copy_s_d(sq_coeff_r, 0);                                    \
+    *ssz += __msa_copy_s_d(sq_coeff_l, 0);                                   \
+                                                                             \
+    err_dup0 = __msa_splati_d(err0, 1);                                      \
+    err_dup1 = __msa_splati_d(err1, 1);                                      \
+    err0 += err_dup0;                                                        \
+    err1 += err_dup1;                                                        \
+    err = __msa_copy_s_d(err0, 0);                                           \
+    err += __msa_copy_s_d(err1, 0);                                          \
+                                                                             \
+    return err;                                                              \
+  }
+
+/* clang-format off */
+BLOCK_ERROR_BLOCKSIZE_MSA(16)
+BLOCK_ERROR_BLOCKSIZE_MSA(64)
+BLOCK_ERROR_BLOCKSIZE_MSA(256)
+BLOCK_ERROR_BLOCKSIZE_MSA(1024)
+/* clang-format on */
+
+int64_t vp10_block_error_msa(const tran_low_t *coeff_ptr,
+                             const tran_low_t *dq_coeff_ptr, intptr_t blk_size,
+                             int64_t *ssz) {
+  int64_t err;
+  const int16_t *coeff = (const int16_t *)coeff_ptr;
+  const int16_t *dq_coeff = (const int16_t *)dq_coeff_ptr;
+
+  switch (blk_size) {
+    case 16: err = block_error_16size_msa(coeff, dq_coeff, ssz); break;
+    case 64: err = block_error_64size_msa(coeff, dq_coeff, ssz); break;
+    case 256: err = block_error_256size_msa(coeff, dq_coeff, ssz); break;
+    case 1024: err = block_error_1024size_msa(coeff, dq_coeff, ssz); break;
+    default:
+      err = vp10_block_error_c(coeff_ptr, dq_coeff_ptr, blk_size, ssz);
+      break;
+  }
+
+  return err;
+}
diff --git a/av1/encoder/mips/msa/fdct16x16_msa.c b/av1/encoder/mips/msa/fdct16x16_msa.c
new file mode 100644
index 0000000..cda2138
--- /dev/null
+++ b/av1/encoder/mips/msa/fdct16x16_msa.c
@@ -0,0 +1,500 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+
+#include "av1/common/enums.h"
+#include "av1/encoder/mips/msa/fdct_msa.h"
+#include "aom_dsp/mips/fwd_txfm_msa.h"
+
+static void fadst16_cols_step1_msa(const int16_t *input, int32_t stride,
+                                   const int32_t *const0, int16_t *int_buf) {
+  v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15;
+  v8i16 tp0, tp1, tp2, tp3, g0, g1, g2, g3, g8, g9, g10, g11, h0, h1, h2, h3;
+  v4i32 k0, k1, k2, k3;
+
+  /* load input data */
+  r0 = LD_SH(input);
+  r15 = LD_SH(input + 15 * stride);
+  r7 = LD_SH(input + 7 * stride);
+  r8 = LD_SH(input + 8 * stride);
+  SLLI_4V(r0, r15, r7, r8, 2);
+
+  /* stage 1 */
+  LD_SW2(const0, 4, k0, k1);
+  LD_SW2(const0 + 8, 4, k2, k3);
+  MADD_BF(r15, r0, r7, r8, k0, k1, k2, k3, g0, g1, g2, g3);
+
+  r3 = LD_SH(input + 3 * stride);
+  r4 = LD_SH(input + 4 * stride);
+  r11 = LD_SH(input + 11 * stride);
+  r12 = LD_SH(input + 12 * stride);
+  SLLI_4V(r3, r4, r11, r12, 2);
+
+  LD_SW2(const0 + 4 * 4, 4, k0, k1);
+  LD_SW2(const0 + 4 * 6, 4, k2, k3);
+  MADD_BF(r11, r4, r3, r12, k0, k1, k2, k3, g8, g9, g10, g11);
+
+  /* stage 2 */
+  BUTTERFLY_4(g0, g2, g10, g8, tp0, tp2, tp3, tp1);
+  ST_SH2(tp0, tp2, int_buf, 8);
+  ST_SH2(tp1, tp3, int_buf + 4 * 8, 8);
+
+  LD_SW2(const0 + 4 * 8, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 10);
+  MADD_BF(g1, g3, g9, g11, k0, k1, k2, k0, h0, h1, h2, h3);
+
+  ST_SH2(h0, h1, int_buf + 8 * 8, 8);
+  ST_SH2(h3, h2, int_buf + 12 * 8, 8);
+
+  r9 = LD_SH(input + 9 * stride);
+  r6 = LD_SH(input + 6 * stride);
+  r1 = LD_SH(input + stride);
+  r14 = LD_SH(input + 14 * stride);
+  SLLI_4V(r9, r6, r1, r14, 2);
+
+  LD_SW2(const0 + 4 * 11, 4, k0, k1);
+  LD_SW2(const0 + 4 * 13, 4, k2, k3);
+  MADD_BF(r9, r6, r1, r14, k0, k1, k2, k3, g0, g1, g2, g3);
+
+  ST_SH2(g1, g3, int_buf + 3 * 8, 4 * 8);
+
+  r13 = LD_SH(input + 13 * stride);
+  r2 = LD_SH(input + 2 * stride);
+  r5 = LD_SH(input + 5 * stride);
+  r10 = LD_SH(input + 10 * stride);
+  SLLI_4V(r13, r2, r5, r10, 2);
+
+  LD_SW2(const0 + 4 * 15, 4, k0, k1);
+  LD_SW2(const0 + 4 * 17, 4, k2, k3);
+  MADD_BF(r13, r2, r5, r10, k0, k1, k2, k3, h0, h1, h2, h3);
+
+  ST_SH2(h1, h3, int_buf + 11 * 8, 4 * 8);
+
+  BUTTERFLY_4(h0, h2, g2, g0, tp0, tp1, tp2, tp3);
+  ST_SH4(tp0, tp1, tp2, tp3, int_buf + 2 * 8, 4 * 8);
+}
+
+static void fadst16_cols_step2_msa(int16_t *int_buf, const int32_t *const0,
+                                   int16_t *out) {
+  int16_t *out_ptr = out + 128;
+  v8i16 tp0, tp1, tp2, tp3, g5, g7, g13, g15;
+  v8i16 h0, h1, h2, h3, h4, h5, h6, h7, h10, h11;
+  v8i16 out0, out1, out2, out3, out4, out5, out6, out7;
+  v8i16 out8, out9, out10, out11, out12, out13, out14, out15;
+  v4i32 k0, k1, k2, k3;
+
+  LD_SH2(int_buf + 3 * 8, 4 * 8, g13, g15);
+  LD_SH2(int_buf + 11 * 8, 4 * 8, g5, g7);
+  LD_SW2(const0 + 4 * 19, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 21);
+  MADD_BF(g7, g5, g15, g13, k0, k1, k2, k0, h4, h5, h6, h7);
+
+  tp0 = LD_SH(int_buf + 4 * 8);
+  tp1 = LD_SH(int_buf + 5 * 8);
+  tp3 = LD_SH(int_buf + 10 * 8);
+  tp2 = LD_SH(int_buf + 14 * 8);
+  LD_SW2(const0 + 4 * 22, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 24);
+  MADD_BF(tp0, tp1, tp2, tp3, k0, k1, k2, k0, out4, out6, out5, out7);
+  out4 = -out4;
+  ST_SH(out4, (out + 3 * 16));
+  ST_SH(out5, (out_ptr + 4 * 16));
+
+  h1 = LD_SH(int_buf + 9 * 8);
+  h3 = LD_SH(int_buf + 12 * 8);
+  MADD_BF(h1, h3, h5, h7, k0, k1, k2, k0, out12, out14, out13, out15);
+  out13 = -out13;
+  ST_SH(out12, (out + 2 * 16));
+  ST_SH(out13, (out_ptr + 5 * 16));
+
+  tp0 = LD_SH(int_buf);
+  tp1 = LD_SH(int_buf + 8);
+  tp2 = LD_SH(int_buf + 2 * 8);
+  tp3 = LD_SH(int_buf + 6 * 8);
+
+  BUTTERFLY_4(tp0, tp1, tp3, tp2, out0, out1, h11, h10);
+  out1 = -out1;
+  ST_SH(out0, (out));
+  ST_SH(out1, (out_ptr + 7 * 16));
+
+  h0 = LD_SH(int_buf + 8 * 8);
+  h2 = LD_SH(int_buf + 13 * 8);
+
+  BUTTERFLY_4(h0, h2, h6, h4, out8, out9, out11, out10);
+  out8 = -out8;
+  ST_SH(out8, (out + 16));
+  ST_SH(out9, (out_ptr + 6 * 16));
+
+  /* stage 4 */
+  LD_SW2(const0 + 4 * 25, 4, k0, k1);
+  LD_SW2(const0 + 4 * 27, 4, k2, k3);
+  MADD_SHORT(h10, h11, k1, k2, out2, out3);
+  ST_SH(out2, (out + 7 * 16));
+  ST_SH(out3, (out_ptr));
+
+  MADD_SHORT(out6, out7, k0, k3, out6, out7);
+  ST_SH(out6, (out + 4 * 16));
+  ST_SH(out7, (out_ptr + 3 * 16));
+
+  MADD_SHORT(out10, out11, k0, k3, out10, out11);
+  ST_SH(out10, (out + 6 * 16));
+  ST_SH(out11, (out_ptr + 16));
+
+  MADD_SHORT(out14, out15, k1, k2, out14, out15);
+  ST_SH(out14, (out + 5 * 16));
+  ST_SH(out15, (out_ptr + 2 * 16));
+}
+
+static void fadst16_transpose_postproc_msa(int16_t *input, int16_t *out) {
+  v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15;
+  v8i16 l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15;
+
+  /* load input data */
+  LD_SH8(input, 16, l0, l1, l2, l3, l4, l5, l6, l7);
+  TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6,
+                     r7);
+  FDCT_POSTPROC_2V_NEG_H(r0, r1);
+  FDCT_POSTPROC_2V_NEG_H(r2, r3);
+  FDCT_POSTPROC_2V_NEG_H(r4, r5);
+  FDCT_POSTPROC_2V_NEG_H(r6, r7);
+  ST_SH8(r0, r1, r2, r3, r4, r5, r6, r7, out, 8);
+  out += 64;
+
+  LD_SH8(input + 8, 16, l8, l9, l10, l11, l12, l13, l14, l15);
+  TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11,
+                     r12, r13, r14, r15);
+  FDCT_POSTPROC_2V_NEG_H(r8, r9);
+  FDCT_POSTPROC_2V_NEG_H(r10, r11);
+  FDCT_POSTPROC_2V_NEG_H(r12, r13);
+  FDCT_POSTPROC_2V_NEG_H(r14, r15);
+  ST_SH8(r8, r9, r10, r11, r12, r13, r14, r15, out, 8);
+  out += 64;
+
+  /* load input data */
+  input += 128;
+  LD_SH8(input, 16, l0, l1, l2, l3, l4, l5, l6, l7);
+  TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6,
+                     r7);
+  FDCT_POSTPROC_2V_NEG_H(r0, r1);
+  FDCT_POSTPROC_2V_NEG_H(r2, r3);
+  FDCT_POSTPROC_2V_NEG_H(r4, r5);
+  FDCT_POSTPROC_2V_NEG_H(r6, r7);
+  ST_SH8(r0, r1, r2, r3, r4, r5, r6, r7, out, 8);
+  out += 64;
+
+  LD_SH8(input + 8, 16, l8, l9, l10, l11, l12, l13, l14, l15);
+  TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11,
+                     r12, r13, r14, r15);
+  FDCT_POSTPROC_2V_NEG_H(r8, r9);
+  FDCT_POSTPROC_2V_NEG_H(r10, r11);
+  FDCT_POSTPROC_2V_NEG_H(r12, r13);
+  FDCT_POSTPROC_2V_NEG_H(r14, r15);
+  ST_SH8(r8, r9, r10, r11, r12, r13, r14, r15, out, 8);
+}
+
+static void fadst16_rows_step1_msa(int16_t *input, const int32_t *const0,
+                                   int16_t *int_buf) {
+  v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15;
+  v8i16 tp0, tp1, tp2, tp3, g0, g1, g2, g3, g8, g9, g10, g11, h0, h1, h2, h3;
+  v4i32 k0, k1, k2, k3;
+
+  /* load input data */
+  r0 = LD_SH(input);
+  r7 = LD_SH(input + 7 * 8);
+  r8 = LD_SH(input + 8 * 8);
+  r15 = LD_SH(input + 15 * 8);
+
+  /* stage 1 */
+  LD_SW2(const0, 4, k0, k1);
+  LD_SW2(const0 + 4 * 2, 4, k2, k3);
+  MADD_BF(r15, r0, r7, r8, k0, k1, k2, k3, g0, g1, g2, g3);
+
+  r3 = LD_SH(input + 3 * 8);
+  r4 = LD_SH(input + 4 * 8);
+  r11 = LD_SH(input + 11 * 8);
+  r12 = LD_SH(input + 12 * 8);
+
+  LD_SW2(const0 + 4 * 4, 4, k0, k1);
+  LD_SW2(const0 + 4 * 6, 4, k2, k3);
+  MADD_BF(r11, r4, r3, r12, k0, k1, k2, k3, g8, g9, g10, g11);
+
+  /* stage 2 */
+  BUTTERFLY_4(g0, g2, g10, g8, tp0, tp2, tp3, tp1);
+  ST_SH2(tp0, tp1, int_buf, 4 * 8);
+  ST_SH2(tp2, tp3, int_buf + 8, 4 * 8);
+
+  LD_SW2(const0 + 4 * 8, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 10);
+  MADD_BF(g1, g3, g9, g11, k0, k1, k2, k0, h0, h1, h2, h3);
+  ST_SH2(h0, h3, int_buf + 8 * 8, 4 * 8);
+  ST_SH2(h1, h2, int_buf + 9 * 8, 4 * 8);
+
+  r1 = LD_SH(input + 8);
+  r6 = LD_SH(input + 6 * 8);
+  r9 = LD_SH(input + 9 * 8);
+  r14 = LD_SH(input + 14 * 8);
+
+  LD_SW2(const0 + 4 * 11, 4, k0, k1);
+  LD_SW2(const0 + 4 * 13, 4, k2, k3);
+  MADD_BF(r9, r6, r1, r14, k0, k1, k2, k3, g0, g1, g2, g3);
+  ST_SH2(g1, g3, int_buf + 3 * 8, 4 * 8);
+
+  r2 = LD_SH(input + 2 * 8);
+  r5 = LD_SH(input + 5 * 8);
+  r10 = LD_SH(input + 10 * 8);
+  r13 = LD_SH(input + 13 * 8);
+
+  LD_SW2(const0 + 4 * 15, 4, k0, k1);
+  LD_SW2(const0 + 4 * 17, 4, k2, k3);
+  MADD_BF(r13, r2, r5, r10, k0, k1, k2, k3, h0, h1, h2, h3);
+  ST_SH2(h1, h3, int_buf + 11 * 8, 4 * 8);
+  BUTTERFLY_4(h0, h2, g2, g0, tp0, tp1, tp2, tp3);
+  ST_SH4(tp0, tp1, tp2, tp3, int_buf + 2 * 8, 4 * 8);
+}
+
+static void fadst16_rows_step2_msa(int16_t *int_buf, const int32_t *const0,
+                                   int16_t *out) {
+  int16_t *out_ptr = out + 8;
+  v8i16 tp0, tp1, tp2, tp3, g5, g7, g13, g15;
+  v8i16 h0, h1, h2, h3, h4, h5, h6, h7, h10, h11;
+  v8i16 out0, out1, out2, out3, out4, out5, out6, out7;
+  v8i16 out8, out9, out10, out11, out12, out13, out14, out15;
+  v4i32 k0, k1, k2, k3;
+
+  g13 = LD_SH(int_buf + 3 * 8);
+  g15 = LD_SH(int_buf + 7 * 8);
+  g5 = LD_SH(int_buf + 11 * 8);
+  g7 = LD_SH(int_buf + 15 * 8);
+
+  LD_SW2(const0 + 4 * 19, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 21);
+  MADD_BF(g7, g5, g15, g13, k0, k1, k2, k0, h4, h5, h6, h7);
+
+  tp0 = LD_SH(int_buf + 4 * 8);
+  tp1 = LD_SH(int_buf + 5 * 8);
+  tp3 = LD_SH(int_buf + 10 * 8);
+  tp2 = LD_SH(int_buf + 14 * 8);
+
+  LD_SW2(const0 + 4 * 22, 4, k0, k1);
+  k2 = LD_SW(const0 + 4 * 24);
+  MADD_BF(tp0, tp1, tp2, tp3, k0, k1, k2, k0, out4, out6, out5, out7);
+  out4 = -out4;
+  ST_SH(out4, (out + 3 * 16));
+  ST_SH(out5, (out_ptr + 4 * 16));
+
+  h1 = LD_SH(int_buf + 9 * 8);
+  h3 = LD_SH(int_buf + 12 * 8);
+  MADD_BF(h1, h3, h5, h7, k0, k1, k2, k0, out12, out14, out13, out15);
+  out13 = -out13;
+  ST_SH(out12, (out + 2 * 16));
+  ST_SH(out13, (out_ptr + 5 * 16));
+
+  tp0 = LD_SH(int_buf);
+  tp1 = LD_SH(int_buf + 8);
+  tp2 = LD_SH(int_buf + 2 * 8);
+  tp3 = LD_SH(int_buf + 6 * 8);
+
+  BUTTERFLY_4(tp0, tp1, tp3, tp2, out0, out1, h11, h10);
+  out1 = -out1;
+  ST_SH(out0, (out));
+  ST_SH(out1, (out_ptr + 7 * 16));
+
+  h0 = LD_SH(int_buf + 8 * 8);
+  h2 = LD_SH(int_buf + 13 * 8);
+  BUTTERFLY_4(h0, h2, h6, h4, out8, out9, out11, out10);
+  out8 = -out8;
+  ST_SH(out8, (out + 16));
+  ST_SH(out9, (out_ptr + 6 * 16));
+
+  /* stage 4 */
+  LD_SW2(const0 + 4 * 25, 4, k0, k1);
+  LD_SW2(const0 + 4 * 27, 4, k2, k3);
+  MADD_SHORT(h10, h11, k1, k2, out2, out3);
+  ST_SH(out2, (out + 7 * 16));
+  ST_SH(out3, (out_ptr));
+
+  MADD_SHORT(out6, out7, k0, k3, out6, out7);
+  ST_SH(out6, (out + 4 * 16));
+  ST_SH(out7, (out_ptr + 3 * 16));
+
+  MADD_SHORT(out10, out11, k0, k3, out10, out11);
+  ST_SH(out10, (out + 6 * 16));
+  ST_SH(out11, (out_ptr + 16));
+
+  MADD_SHORT(out14, out15, k1, k2, out14, out15);
+  ST_SH(out14, (out + 5 * 16));
+  ST_SH(out15, (out_ptr + 2 * 16));
+}
+
+static void fadst16_transpose_msa(int16_t *input, int16_t *out) {
+  v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15;
+  v8i16 l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15;
+
+  /* load input data */
+  LD_SH16(input, 8, l0, l8, l1, l9, l2, l10, l3, l11, l4, l12, l5, l13, l6, l14,
+          l7, l15);
+  TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6,
+                     r7);
+  TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11,
+                     r12, r13, r14, r15);
+  ST_SH8(r0, r8, r1, r9, r2, r10, r3, r11, out, 8);
+  ST_SH8(r4, r12, r5, r13, r6, r14, r7, r15, (out + 64), 8);
+  out += 16 * 8;
+
+  /* load input data */
+  input += 128;
+  LD_SH16(input, 8, l0, l8, l1, l9, l2, l10, l3, l11, l4, l12, l5, l13, l6, l14,
+          l7, l15);
+  TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6,
+                     r7);
+  TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11,
+                     r12, r13, r14, r15);
+  ST_SH8(r0, r8, r1, r9, r2, r10, r3, r11, out, 8);
+  ST_SH8(r4, r12, r5, r13, r6, r14, r7, r15, (out + 64), 8);
+}
+
+static void postproc_fdct16x8_1d_row(int16_t *intermediate, int16_t *output) {
+  int16_t *temp = intermediate;
+  int16_t *out = output;
+  v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  v8i16 in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11;
+  v8i16 in12, in13, in14, in15;
+
+  LD_SH8(temp, 16, in0, in1, in2, in3, in4, in5, in6, in7);
+  temp = intermediate + 8;
+  LD_SH8(temp, 16, in8, in9, in10, in11, in12, in13, in14, in15);
+  TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3,
+                     in4, in5, in6, in7);
+  TRANSPOSE8x8_SH_SH(in8, in9, in10, in11, in12, in13, in14, in15, in8, in9,
+                     in10, in11, in12, in13, in14, in15);
+  FDCT_POSTPROC_2V_NEG_H(in0, in1);
+  FDCT_POSTPROC_2V_NEG_H(in2, in3);
+  FDCT_POSTPROC_2V_NEG_H(in4, in5);
+  FDCT_POSTPROC_2V_NEG_H(in6, in7);
+  FDCT_POSTPROC_2V_NEG_H(in8, in9);
+  FDCT_POSTPROC_2V_NEG_H(in10, in11);
+  FDCT_POSTPROC_2V_NEG_H(in12, in13);
+  FDCT_POSTPROC_2V_NEG_H(in14, in15);
+  BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11,
+               in12, in13, in14, in15, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6,
+               tmp7, in8, in9, in10, in11, in12, in13, in14, in15);
+  temp = intermediate;
+  ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, temp, 16);
+  FDCT8x16_EVEN(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp0, tmp1,
+                tmp2, tmp3, tmp4, tmp5, tmp6, tmp7);
+  temp = intermediate;
+  LD_SH8(temp, 16, in8, in9, in10, in11, in12, in13, in14, in15);
+  FDCT8x16_ODD(in8, in9, in10, in11, in12, in13, in14, in15, in0, in1, in2, in3,
+               in4, in5, in6, in7);
+  TRANSPOSE8x8_SH_SH(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, tmp0, in0,
+                     tmp1, in1, tmp2, in2, tmp3, in3);
+  ST_SH8(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, out, 16);
+  TRANSPOSE8x8_SH_SH(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, tmp4, in4,
+                     tmp5, in5, tmp6, in6, tmp7, in7);
+  out = output + 8;
+  ST_SH8(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, out, 16);
+}
+
+void vp10_fht16x16_msa(const int16_t *input, int16_t *output, int32_t stride,
+                       int32_t tx_type) {
+  DECLARE_ALIGNED(32, int16_t, tmp[256]);
+  DECLARE_ALIGNED(32, int16_t, trans_buf[256]);
+  DECLARE_ALIGNED(32, int16_t, tmp_buf[128]);
+  int32_t i;
+  int16_t *ptmpbuf = &tmp_buf[0];
+  int16_t *trans = &trans_buf[0];
+  const int32_t const_arr[29 * 4] = {
+    52707308,    52707308,    52707308,    52707308,    -1072430300,
+    -1072430300, -1072430300, -1072430300, 795618043,   795618043,
+    795618043,   795618043,   -721080468,  -721080468,  -721080468,
+    -721080468,  459094491,   459094491,   459094491,   459094491,
+    -970646691,  -970646691,  -970646691,  -970646691,  1010963856,
+    1010963856,  1010963856,  1010963856,  -361743294,  -361743294,
+    -361743294,  -361743294,  209469125,   209469125,   209469125,
+    209469125,   -1053094788, -1053094788, -1053094788, -1053094788,
+    1053160324,  1053160324,  1053160324,  1053160324,  639644520,
+    639644520,   639644520,   639644520,   -862444000,  -862444000,
+    -862444000,  -862444000,  1062144356,  1062144356,  1062144356,
+    1062144356,  -157532337,  -157532337,  -157532337,  -157532337,
+    260914709,   260914709,   260914709,   260914709,   -1041559667,
+    -1041559667, -1041559667, -1041559667, 920985831,   920985831,
+    920985831,   920985831,   -551995675,  -551995675,  -551995675,
+    -551995675,  596522295,   596522295,   596522295,   596522295,
+    892853362,   892853362,   892853362,   892853362,   -892787826,
+    -892787826,  -892787826,  -892787826,  410925857,   410925857,
+    410925857,   410925857,   -992012162,  -992012162,  -992012162,
+    -992012162,  992077698,   992077698,   992077698,   992077698,
+    759246145,   759246145,   759246145,   759246145,   -759180609,
+    -759180609,  -759180609,  -759180609,  -759222975,  -759222975,
+    -759222975,  -759222975,  759288511,   759288511,   759288511,
+    759288511
+  };
+
+  switch (tx_type) {
+    case DCT_DCT:
+      /* column transform */
+      for (i = 0; i < 2; ++i) {
+        fdct8x16_1d_column(input + 8 * i, tmp + 8 * i, stride);
+      }
+
+      /* row transform */
+      for (i = 0; i < 2; ++i) {
+        fdct16x8_1d_row(tmp + (128 * i), output + (128 * i));
+      }
+      break;
+    case ADST_DCT:
+      /* column transform */
+      for (i = 0; i < 2; ++i) {
+        fadst16_cols_step1_msa(input + (i << 3), stride, const_arr, ptmpbuf);
+        fadst16_cols_step2_msa(ptmpbuf, const_arr, tmp + (i << 3));
+      }
+
+      /* row transform */
+      for (i = 0; i < 2; ++i) {
+        postproc_fdct16x8_1d_row(tmp + (128 * i), output + (128 * i));
+      }
+      break;
+    case DCT_ADST:
+      /* column transform */
+      for (i = 0; i < 2; ++i) {
+        fdct8x16_1d_column(input + 8 * i, tmp + 8 * i, stride);
+      }
+
+      fadst16_transpose_postproc_msa(tmp, trans);
+
+      /* row transform */
+      for (i = 0; i < 2; ++i) {
+        fadst16_rows_step1_msa(trans + (i << 7), const_arr, ptmpbuf);
+        fadst16_rows_step2_msa(ptmpbuf, const_arr, tmp + (i << 7));
+      }
+
+      fadst16_transpose_msa(tmp, output);
+      break;
+    case ADST_ADST:
+      /* column transform */
+      for (i = 0; i < 2; ++i) {
+        fadst16_cols_step1_msa(input + (i << 3), stride, const_arr, ptmpbuf);
+        fadst16_cols_step2_msa(ptmpbuf, const_arr, tmp + (i << 3));
+      }
+
+      fadst16_transpose_postproc_msa(tmp, trans);
+
+      /* row transform */
+      for (i = 0; i < 2; ++i) {
+        fadst16_rows_step1_msa(trans + (i << 7), const_arr, ptmpbuf);
+        fadst16_rows_step2_msa(ptmpbuf, const_arr, tmp + (i << 7));
+      }
+
+      fadst16_transpose_msa(tmp, output);
+      break;
+    default: assert(0); break;
+  }
+}
diff --git a/av1/encoder/mips/msa/fdct4x4_msa.c b/av1/encoder/mips/msa/fdct4x4_msa.c
new file mode 100644
index 0000000..a3731c3
--- /dev/null
+++ b/av1/encoder/mips/msa/fdct4x4_msa.c
@@ -0,0 +1,97 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+
+#include "av1/common/enums.h"
+#include "av1/encoder/mips/msa/fdct_msa.h"
+
+void vp10_fwht4x4_msa(const int16_t *input, int16_t *output,
+                      int32_t src_stride) {
+  v8i16 in0, in1, in2, in3, in4;
+
+  LD_SH4(input, src_stride, in0, in1, in2, in3);
+
+  in0 += in1;
+  in3 -= in2;
+  in4 = (in0 - in3) >> 1;
+  SUB2(in4, in1, in4, in2, in1, in2);
+  in0 -= in2;
+  in3 += in1;
+
+  TRANSPOSE4x4_SH_SH(in0, in2, in3, in1, in0, in2, in3, in1);
+
+  in0 += in2;
+  in1 -= in3;
+  in4 = (in0 - in1) >> 1;
+  SUB2(in4, in2, in4, in3, in2, in3);
+  in0 -= in3;
+  in1 += in2;
+
+  SLLI_4V(in0, in1, in2, in3, 2);
+
+  TRANSPOSE4x4_SH_SH(in0, in3, in1, in2, in0, in3, in1, in2);
+
+  ST4x2_UB(in0, output, 4);
+  ST4x2_UB(in3, output + 4, 4);
+  ST4x2_UB(in1, output + 8, 4);
+  ST4x2_UB(in2, output + 12, 4);
+}
+
+void vp10_fht4x4_msa(const int16_t *input, int16_t *output, int32_t stride,
+                     int32_t tx_type) {
+  v8i16 in0, in1, in2, in3;
+
+  LD_SH4(input, stride, in0, in1, in2, in3);
+
+  /* fdct4 pre-process */
+  {
+    v8i16 temp, mask;
+    v16i8 zero = { 0 };
+    v16i8 one = __msa_ldi_b(1);
+
+    mask = (v8i16)__msa_sldi_b(zero, one, 15);
+    SLLI_4V(in0, in1, in2, in3, 4);
+    temp = __msa_ceqi_h(in0, 0);
+    temp = (v8i16)__msa_xori_b((v16u8)temp, 255);
+    temp = mask & temp;
+    in0 += temp;
+  }
+
+  switch (tx_type) {
+    case DCT_DCT:
+      VPX_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3);
+      TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3);
+      VPX_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3);
+      break;
+    case ADST_DCT:
+      VPX_FADST4(in0, in1, in2, in3, in0, in1, in2, in3);
+      TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3);
+      VPX_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3);
+      break;
+    case DCT_ADST:
+      VPX_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3);
+      TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3);
+      VPX_FADST4(in0, in1, in2, in3, in0, in1, in2, in3);
+      break;
+    case ADST_ADST:
+      VPX_FADST4(in0, in1, in2, in3, in0, in1, in2, in3);
+      TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3);
+      VPX_FADST4(in0, in1, in2, in3, in0, in1, in2, in3);
+      break;
+    default: assert(0); break;
+  }
+
+  TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3);
+  ADD4(in0, 1, in1, 1, in2, 1, in3, 1, in0, in1, in2, in3);
+  SRA_4V(in0, in1, in2, in3, 2);
+  PCKEV_D2_SH(in1, in0, in3, in2, in0, in2);
+  ST_SH2(in0, in2, output, 8);
+}
diff --git a/av1/encoder/mips/msa/fdct8x8_msa.c b/av1/encoder/mips/msa/fdct8x8_msa.c
new file mode 100644
index 0000000..3b6532a
--- /dev/null
+++ b/av1/encoder/mips/msa/fdct8x8_msa.c
@@ -0,0 +1,64 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+
+#include "av1/common/enums.h"
+#include "av1/encoder/mips/msa/fdct_msa.h"
+
+void vp10_fht8x8_msa(const int16_t *input, int16_t *output, int32_t stride,
+                     int32_t tx_type) {
+  v8i16 in0, in1, in2, in3, in4, in5, in6, in7;
+
+  LD_SH8(input, stride, in0, in1, in2, in3, in4, in5, in6, in7);
+  SLLI_4V(in0, in1, in2, in3, 2);
+  SLLI_4V(in4, in5, in6, in7, 2);
+
+  switch (tx_type) {
+    case DCT_DCT:
+      VPX_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2,
+                         in3, in4, in5, in6, in7);
+      VPX_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      break;
+    case ADST_DCT:
+      VPX_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2,
+                         in3, in4, in5, in6, in7);
+      VPX_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      break;
+    case DCT_ADST:
+      VPX_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2,
+                         in3, in4, in5, in6, in7);
+      VPX_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      break;
+    case ADST_ADST:
+      VPX_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2,
+                         in3, in4, in5, in6, in7);
+      VPX_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4,
+                in5, in6, in7);
+      break;
+    default: assert(0); break;
+  }
+
+  TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3,
+                     in4, in5, in6, in7);
+  SRLI_AVE_S_4V_H(in0, in1, in2, in3, in4, in5, in6, in7);
+  ST_SH8(in0, in1, in2, in3, in4, in5, in6, in7, output, 8);
+}
diff --git a/av1/encoder/mips/msa/fdct_msa.h b/av1/encoder/mips/msa/fdct_msa.h
new file mode 100644
index 0000000..07471d0
--- /dev/null
+++ b/av1/encoder/mips/msa/fdct_msa.h
@@ -0,0 +1,116 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_MIPS_MSA_VP10_FDCT_MSA_H_
+#define VP10_ENCODER_MIPS_MSA_VP10_FDCT_MSA_H_
+
+#include "aom_dsp/mips/fwd_txfm_msa.h"
+#include "aom_dsp/mips/txfm_macros_msa.h"
+#include "aom_ports/mem.h"
+
+#define VPX_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2,  \
+                  out3, out4, out5, out6, out7)                              \
+  {                                                                          \
+    v8i16 cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst4_m;                       \
+    v8i16 vec0_m, vec1_m, vec2_m, vec3_m, s0_m, s1_m;                        \
+    v8i16 coeff0_m = { cospi_2_64,  cospi_6_64,  cospi_10_64, cospi_14_64,   \
+                       cospi_18_64, cospi_22_64, cospi_26_64, cospi_30_64 }; \
+    v8i16 coeff1_m = { cospi_8_64,  -cospi_8_64,  cospi_16_64, -cospi_16_64, \
+                       cospi_24_64, -cospi_24_64, 0,           0 };          \
+                                                                             \
+    SPLATI_H2_SH(coeff0_m, 0, 7, cnst0_m, cnst1_m);                          \
+    cnst2_m = -cnst0_m;                                                      \
+    ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m);       \
+    SPLATI_H2_SH(coeff0_m, 4, 3, cnst2_m, cnst3_m);                          \
+    cnst4_m = -cnst2_m;                                                      \
+    ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m);       \
+                                                                             \
+    ILVRL_H2_SH(in0, in7, vec1_m, vec0_m);                                   \
+    ILVRL_H2_SH(in4, in3, vec3_m, vec2_m);                                   \
+    DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m,  \
+                          cnst2_m, cnst3_m, in7, in0, in4, in3);             \
+                                                                             \
+    SPLATI_H2_SH(coeff0_m, 2, 5, cnst0_m, cnst1_m);                          \
+    cnst2_m = -cnst0_m;                                                      \
+    ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m);       \
+    SPLATI_H2_SH(coeff0_m, 6, 1, cnst2_m, cnst3_m);                          \
+    cnst4_m = -cnst2_m;                                                      \
+    ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m);       \
+                                                                             \
+    ILVRL_H2_SH(in2, in5, vec1_m, vec0_m);                                   \
+    ILVRL_H2_SH(in6, in1, vec3_m, vec2_m);                                   \
+                                                                             \
+    DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m,  \
+                          cnst2_m, cnst3_m, in5, in2, in6, in1);             \
+    BUTTERFLY_4(in7, in0, in2, in5, s1_m, s0_m, in2, in5);                   \
+    out7 = -s0_m;                                                            \
+    out0 = s1_m;                                                             \
+                                                                             \
+    SPLATI_H4_SH(coeff1_m, 0, 4, 1, 5, cnst0_m, cnst1_m, cnst2_m, cnst3_m);  \
+                                                                             \
+    ILVEV_H2_SH(cnst3_m, cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst2_m);       \
+    cnst0_m = __msa_ilvev_h(cnst1_m, cnst0_m);                               \
+    cnst1_m = cnst0_m;                                                       \
+                                                                             \
+    ILVRL_H2_SH(in4, in3, vec1_m, vec0_m);                                   \
+    ILVRL_H2_SH(in6, in1, vec3_m, vec2_m);                                   \
+    DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst2_m,  \
+                          cnst3_m, cnst1_m, out1, out6, s0_m, s1_m);         \
+                                                                             \
+    SPLATI_H2_SH(coeff1_m, 2, 3, cnst0_m, cnst1_m);                          \
+    cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m);                               \
+                                                                             \
+    ILVRL_H2_SH(in2, in5, vec1_m, vec0_m);                                   \
+    ILVRL_H2_SH(s0_m, s1_m, vec3_m, vec2_m);                                 \
+    out3 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m);                   \
+    out4 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst1_m);                   \
+    out2 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst0_m);                   \
+    out5 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst1_m);                   \
+                                                                             \
+    out1 = -out1;                                                            \
+    out3 = -out3;                                                            \
+    out5 = -out5;                                                            \
+  }
+
+#define VPX_FADST4(in0, in1, in2, in3, out0, out1, out2, out3)              \
+  {                                                                         \
+    v4i32 s0_m, s1_m, s2_m, s3_m, constant_m;                               \
+    v4i32 in0_r_m, in1_r_m, in2_r_m, in3_r_m;                               \
+                                                                            \
+    UNPCK_R_SH_SW(in0, in0_r_m);                                            \
+    UNPCK_R_SH_SW(in1, in1_r_m);                                            \
+    UNPCK_R_SH_SW(in2, in2_r_m);                                            \
+    UNPCK_R_SH_SW(in3, in3_r_m);                                            \
+                                                                            \
+    constant_m = __msa_fill_w(sinpi_4_9);                                   \
+    MUL2(in0_r_m, constant_m, in3_r_m, constant_m, s1_m, s0_m);             \
+                                                                            \
+    constant_m = __msa_fill_w(sinpi_1_9);                                   \
+    s0_m += in0_r_m * constant_m;                                           \
+    s1_m -= in1_r_m * constant_m;                                           \
+                                                                            \
+    constant_m = __msa_fill_w(sinpi_2_9);                                   \
+    s0_m += in1_r_m * constant_m;                                           \
+    s1_m += in3_r_m * constant_m;                                           \
+                                                                            \
+    s2_m = in0_r_m + in1_r_m - in3_r_m;                                     \
+                                                                            \
+    constant_m = __msa_fill_w(sinpi_3_9);                                   \
+    MUL2(in2_r_m, constant_m, s2_m, constant_m, s3_m, in1_r_m);             \
+                                                                            \
+    in0_r_m = s0_m + s3_m;                                                  \
+    s2_m = s1_m - s3_m;                                                     \
+    s3_m = s1_m - s0_m + s3_m;                                              \
+                                                                            \
+    SRARI_W4_SW(in0_r_m, in1_r_m, s2_m, s3_m, DCT_CONST_BITS);              \
+    PCKEV_H4_SH(in0_r_m, in0_r_m, in1_r_m, in1_r_m, s2_m, s2_m, s3_m, s3_m, \
+                out0, out1, out2, out3);                                    \
+  }
+#endif  // VP10_ENCODER_MIPS_MSA_VP10_FDCT_MSA_H_
diff --git a/av1/encoder/mips/msa/temporal_filter_msa.c b/av1/encoder/mips/msa/temporal_filter_msa.c
new file mode 100644
index 0000000..4d60d37
--- /dev/null
+++ b/av1/encoder/mips/msa/temporal_filter_msa.c
@@ -0,0 +1,283 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp10_rtcd.h"
+#include "aom_dsp/mips/macros_msa.h"
+
+static void temporal_filter_apply_8size_msa(uint8_t *frm1_ptr, uint32_t stride,
+                                            uint8_t *frm2_ptr, int32_t filt_sth,
+                                            int32_t filt_wgt, uint32_t *acc,
+                                            uint16_t *cnt) {
+  uint32_t row;
+  uint64_t f0, f1, f2, f3;
+  v16i8 frm2, frm1 = { 0 };
+  v16i8 frm4, frm3 = { 0 };
+  v16u8 frm_r, frm_l;
+  v8i16 frm2_r, frm2_l;
+  v8i16 diff0, diff1, mod0_h, mod1_h;
+  v4i32 cnst3, cnst16, filt_wt, strength;
+  v4i32 mod0_w, mod1_w, mod2_w, mod3_w;
+  v4i32 diff0_r, diff0_l, diff1_r, diff1_l;
+  v4i32 frm2_rr, frm2_rl, frm2_lr, frm2_ll;
+  v4i32 acc0, acc1, acc2, acc3;
+  v8i16 cnt0, cnt1;
+
+  filt_wt = __msa_fill_w(filt_wgt);
+  strength = __msa_fill_w(filt_sth);
+  cnst3 = __msa_ldi_w(3);
+  cnst16 = __msa_ldi_w(16);
+
+  for (row = 2; row--;) {
+    LD4(frm1_ptr, stride, f0, f1, f2, f3);
+    frm1_ptr += (4 * stride);
+
+    LD_SB2(frm2_ptr, 16, frm2, frm4);
+    frm2_ptr += 32;
+
+    LD_SW2(acc, 4, acc0, acc1);
+    LD_SW2(acc + 8, 4, acc2, acc3);
+    LD_SH2(cnt, 8, cnt0, cnt1);
+
+    INSERT_D2_SB(f0, f1, frm1);
+    INSERT_D2_SB(f2, f3, frm3);
+    ILVRL_B2_UB(frm1, frm2, frm_r, frm_l);
+    HSUB_UB2_SH(frm_r, frm_l, diff0, diff1);
+    UNPCK_SH_SW(diff0, diff0_r, diff0_l);
+    UNPCK_SH_SW(diff1, diff1_r, diff1_l);
+    MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+    SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength);
+
+    diff0_r = (mod0_w < cnst16);
+    diff0_l = (mod1_w < cnst16);
+    diff1_r = (mod2_w < cnst16);
+    diff1_l = (mod3_w < cnst16);
+
+    SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+
+    mod0_w = diff0_r & mod0_w;
+    mod1_w = diff0_l & mod1_w;
+    mod2_w = diff1_r & mod2_w;
+    mod3_w = diff1_l & mod3_w;
+
+    MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h);
+    ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h);
+    ST_SH2(mod0_h, mod1_h, cnt, 8);
+    cnt += 16;
+
+    UNPCK_UB_SH(frm2, frm2_r, frm2_l);
+    UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl);
+    UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll);
+    MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w,
+         mod2_w, mod3_w);
+
+    ST_SW2(mod0_w, mod1_w, acc, 4);
+    acc += 8;
+    ST_SW2(mod2_w, mod3_w, acc, 4);
+    acc += 8;
+
+    LD_SW2(acc, 4, acc0, acc1);
+    LD_SW2(acc + 8, 4, acc2, acc3);
+    LD_SH2(cnt, 8, cnt0, cnt1);
+
+    ILVRL_B2_UB(frm3, frm4, frm_r, frm_l);
+    HSUB_UB2_SH(frm_r, frm_l, diff0, diff1);
+    UNPCK_SH_SW(diff0, diff0_r, diff0_l);
+    UNPCK_SH_SW(diff1, diff1_r, diff1_l);
+    MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+    SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength);
+
+    diff0_r = (mod0_w < cnst16);
+    diff0_l = (mod1_w < cnst16);
+    diff1_r = (mod2_w < cnst16);
+    diff1_l = (mod3_w < cnst16);
+
+    SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+
+    mod0_w = diff0_r & mod0_w;
+    mod1_w = diff0_l & mod1_w;
+    mod2_w = diff1_r & mod2_w;
+    mod3_w = diff1_l & mod3_w;
+
+    MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h);
+    ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h);
+    ST_SH2(mod0_h, mod1_h, cnt, 8);
+    cnt += 16;
+    UNPCK_UB_SH(frm4, frm2_r, frm2_l);
+    UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl);
+    UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll);
+    MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w,
+         mod2_w, mod3_w);
+
+    ST_SW2(mod0_w, mod1_w, acc, 4);
+    acc += 8;
+    ST_SW2(mod2_w, mod3_w, acc, 4);
+    acc += 8;
+  }
+}
+
+static void temporal_filter_apply_16size_msa(uint8_t *frm1_ptr, uint32_t stride,
+                                             uint8_t *frm2_ptr,
+                                             int32_t filt_sth, int32_t filt_wgt,
+                                             uint32_t *acc, uint16_t *cnt) {
+  uint32_t row;
+  v16i8 frm1, frm2, frm3, frm4;
+  v16u8 frm_r, frm_l;
+  v16i8 zero = { 0 };
+  v8u16 frm2_r, frm2_l;
+  v8i16 diff0, diff1, mod0_h, mod1_h;
+  v4i32 cnst3, cnst16, filt_wt, strength;
+  v4i32 mod0_w, mod1_w, mod2_w, mod3_w;
+  v4i32 diff0_r, diff0_l, diff1_r, diff1_l;
+  v4i32 frm2_rr, frm2_rl, frm2_lr, frm2_ll;
+  v4i32 acc0, acc1, acc2, acc3;
+  v8i16 cnt0, cnt1;
+
+  filt_wt = __msa_fill_w(filt_wgt);
+  strength = __msa_fill_w(filt_sth);
+  cnst3 = __msa_ldi_w(3);
+  cnst16 = __msa_ldi_w(16);
+
+  for (row = 8; row--;) {
+    LD_SB2(frm1_ptr, stride, frm1, frm3);
+    frm1_ptr += stride;
+
+    LD_SB2(frm2_ptr, 16, frm2, frm4);
+    frm2_ptr += 16;
+
+    LD_SW2(acc, 4, acc0, acc1);
+    LD_SW2(acc, 4, acc2, acc3);
+    LD_SH2(cnt, 8, cnt0, cnt1);
+
+    ILVRL_B2_UB(frm1, frm2, frm_r, frm_l);
+    HSUB_UB2_SH(frm_r, frm_l, diff0, diff1);
+    UNPCK_SH_SW(diff0, diff0_r, diff0_l);
+    UNPCK_SH_SW(diff1, diff1_r, diff1_l);
+    MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+    SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength);
+
+    diff0_r = (mod0_w < cnst16);
+    diff0_l = (mod1_w < cnst16);
+    diff1_r = (mod2_w < cnst16);
+    diff1_l = (mod3_w < cnst16);
+
+    SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+
+    mod0_w = diff0_r & mod0_w;
+    mod1_w = diff0_l & mod1_w;
+    mod2_w = diff1_r & mod2_w;
+    mod3_w = diff1_l & mod3_w;
+
+    MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h);
+    ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h);
+    ST_SH2(mod0_h, mod1_h, cnt, 8);
+    cnt += 16;
+
+    ILVRL_B2_UH(zero, frm2, frm2_r, frm2_l);
+    UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl);
+    UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll);
+    MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w,
+         mod2_w, mod3_w);
+
+    ST_SW2(mod0_w, mod1_w, acc, 4);
+    acc += 8;
+    ST_SW2(mod2_w, mod3_w, acc, 4);
+    acc += 8;
+
+    LD_SW2(acc, 4, acc0, acc1);
+    LD_SW2(acc + 8, 4, acc2, acc3);
+    LD_SH2(cnt, 8, cnt0, cnt1);
+
+    ILVRL_B2_UB(frm3, frm4, frm_r, frm_l);
+    HSUB_UB2_SH(frm_r, frm_l, diff0, diff1);
+    UNPCK_SH_SW(diff0, diff0_r, diff0_l);
+    UNPCK_SH_SW(diff1, diff1_r, diff1_l);
+    MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+    SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength);
+
+    diff0_r = (mod0_w < cnst16);
+    diff0_l = (mod1_w < cnst16);
+    diff1_r = (mod2_w < cnst16);
+    diff1_l = (mod3_w < cnst16);
+
+    SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w,
+         mod1_w, mod2_w, mod3_w);
+
+    mod0_w = diff0_r & mod0_w;
+    mod1_w = diff0_l & mod1_w;
+    mod2_w = diff1_r & mod2_w;
+    mod3_w = diff1_l & mod3_w;
+
+    MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h);
+    ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h);
+    ST_SH2(mod0_h, mod1_h, cnt, 8);
+    cnt += 16;
+
+    ILVRL_B2_UH(zero, frm4, frm2_r, frm2_l);
+    UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl);
+    UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll);
+    MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll,
+         mod0_w, mod1_w, mod2_w, mod3_w);
+    ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w,
+         mod2_w, mod3_w);
+    ST_SW2(mod0_w, mod1_w, acc, 4);
+    acc += 8;
+    ST_SW2(mod2_w, mod3_w, acc, 4);
+    acc += 8;
+
+    frm1_ptr += stride;
+    frm2_ptr += 16;
+  }
+}
+
+void vp10_temporal_filter_apply_msa(uint8_t *frame1_ptr, uint32_t stride,
+                                    uint8_t *frame2_ptr, uint32_t blk_w,
+                                    uint32_t blk_h, int32_t strength,
+                                    int32_t filt_wgt, uint32_t *accu,
+                                    uint16_t *cnt) {
+  if (8 == (blk_w * blk_h)) {
+    temporal_filter_apply_8size_msa(frame1_ptr, stride, frame2_ptr, strength,
+                                    filt_wgt, accu, cnt);
+  } else if (16 == (blk_w * blk_h)) {
+    temporal_filter_apply_16size_msa(frame1_ptr, stride, frame2_ptr, strength,
+                                     filt_wgt, accu, cnt);
+  } else {
+    vp10_temporal_filter_apply_c(frame1_ptr, stride, frame2_ptr, blk_w, blk_h,
+                                 strength, filt_wgt, accu, cnt);
+  }
+}
diff --git a/av1/encoder/pickdering.c b/av1/encoder/pickdering.c
new file mode 100644
index 0000000..b5399e5
--- /dev/null
+++ b/av1/encoder/pickdering.c
@@ -0,0 +1,180 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <string.h>
+
+#include "./vpx_scale_rtcd.h"
+#include "av1/common/dering.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/reconinter.h"
+#include "av1/encoder/encoder.h"
+#include "aom/vpx_integer.h"
+
+static double compute_dist(int16_t *x, int xstride, int16_t *y, int ystride,
+    int nhb, int nvb, int coeff_shift) {
+  int i, j;
+  double sum;
+  sum = 0;
+  for (i = 0; i < nvb << 3; i++) {
+    for (j = 0; j < nhb << 3; j++) {
+      double tmp;
+      tmp = x[i*xstride + j] - y[i*ystride + j];
+      sum += tmp*tmp;
+    }
+  }
+  return sum/(double)(1 << 2*coeff_shift);
+}
+
+int vp10_dering_search(YV12_BUFFER_CONFIG *frame, const YV12_BUFFER_CONFIG *ref,
+                       VP10_COMMON *cm,
+                       MACROBLOCKD *xd) {
+  int r, c;
+  int sbr, sbc;
+  int nhsb, nvsb;
+  od_dering_in *src;
+  int16_t *ref_coeff;
+  unsigned char *bskip;
+  int dir[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS] = {{0}};
+  int stride;
+  int bsize[3];
+  int dec[3];
+  int pli;
+  int (*mse)[MAX_DERING_LEVEL];
+  int best_count[MAX_DERING_LEVEL] = {0};
+  double tot_mse[MAX_DERING_LEVEL] = {0};
+  int level;
+  int best_level;
+  int global_level;
+  double best_tot_mse = 1e15;
+  int coeff_shift = VPXMAX(cm->bit_depth - 8, 0);
+  src = vpx_malloc(sizeof(*src)*cm->mi_rows*cm->mi_cols*64);
+  ref_coeff = vpx_malloc(sizeof(*ref_coeff)*cm->mi_rows*cm->mi_cols*64);
+  bskip = vpx_malloc(sizeof(*bskip)*cm->mi_rows*cm->mi_cols);
+  vp10_setup_dst_planes(xd->plane, frame, 0, 0);
+  for (pli = 0; pli < 3; pli++) {
+    dec[pli] = xd->plane[pli].subsampling_x;
+    bsize[pli] = 8 >> dec[pli];
+  }
+  stride = bsize[0]*cm->mi_cols;
+  for (r = 0; r < bsize[0]*cm->mi_rows; ++r) {
+    for (c = 0; c < bsize[0]*cm->mi_cols; ++c) {
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (cm->use_highbitdepth) {
+        src[r * stride + c] =
+            CONVERT_TO_SHORTPTR(xd->plane[0].dst.buf)
+            [r*xd->plane[0].dst.stride + c];
+        ref_coeff[r * stride + c] =
+            CONVERT_TO_SHORTPTR(ref->y_buffer)[r * ref->y_stride + c];
+      } else {
+#endif
+        src[r * stride + c] =
+            xd->plane[0].dst.buf[r*xd->plane[0].dst.stride + c];
+        ref_coeff[r * stride + c] = ref->y_buffer[r * ref->y_stride + c];
+#if CONFIG_VPX_HIGHBITDEPTH
+      }
+#endif
+    }
+  }
+  for (r = 0; r < cm->mi_rows; ++r) {
+    for (c = 0; c < cm->mi_cols; ++c) {
+      const MB_MODE_INFO *mbmi =
+          &cm->mi_grid_visible[r * cm->mi_stride + c]->mbmi;
+      bskip[r * cm->mi_cols + c] = mbmi->skip;
+    }
+  }
+  nvsb = (cm->mi_rows + MI_BLOCK_SIZE - 1)/MI_BLOCK_SIZE;
+  nhsb = (cm->mi_cols + MI_BLOCK_SIZE - 1)/MI_BLOCK_SIZE;
+  mse = vpx_malloc(nvsb*nhsb*sizeof(*mse));
+  for (sbr = 0; sbr < nvsb; sbr++) {
+    for (sbc = 0; sbc < nhsb; sbc++) {
+      int best_mse = 1000000000;
+      int nvb, nhb;
+      int16_t dst[MI_BLOCK_SIZE*MI_BLOCK_SIZE*8*8];
+      best_level = 0;
+      nhb = VPXMIN(MI_BLOCK_SIZE, cm->mi_cols - MI_BLOCK_SIZE*sbc);
+      nvb = VPXMIN(MI_BLOCK_SIZE, cm->mi_rows - MI_BLOCK_SIZE*sbr);
+      for (level = 0; level < 64; level++) {
+        int threshold;
+        threshold = level << coeff_shift;
+        od_dering(
+            &OD_DERING_VTBL_C,
+            dst,
+            MI_BLOCK_SIZE*bsize[0],
+            &src[sbr*stride*bsize[0]*MI_BLOCK_SIZE +
+            sbc*bsize[0]*MI_BLOCK_SIZE],
+            cm->mi_cols*bsize[0], nhb, nvb, sbc, sbr, nhsb, nvsb, 0, dir, 0,
+            &bskip[MI_BLOCK_SIZE*sbr*cm->mi_cols + MI_BLOCK_SIZE*sbc],
+            cm->mi_cols, threshold, OD_DERING_NO_CHECK_OVERLAP, coeff_shift);
+        mse[nhsb*sbr+sbc][level] = compute_dist(
+            dst, MI_BLOCK_SIZE*bsize[0],
+            &ref_coeff[sbr*stride*bsize[0]*MI_BLOCK_SIZE +
+            sbc*bsize[0]*MI_BLOCK_SIZE],
+            stride, nhb, nvb, coeff_shift);
+        tot_mse[level] += mse[nhsb*sbr+sbc][level];
+        if (mse[nhsb*sbr+sbc][level] < best_mse) {
+          best_mse = mse[nhsb*sbr+sbc][level];
+          best_level = level;
+        }
+      }
+      best_count[best_level]++;
+    }
+  }
+#if DERING_REFINEMENT
+  best_level = 0;
+  /* Search for the best global level one value at a time. */
+  for (global_level = 2; global_level < MAX_DERING_LEVEL; global_level++) {
+    double tot_mse = 0;
+    for (sbr = 0; sbr < nvsb; sbr++) {
+      for (sbc = 0; sbc < nhsb; sbc++) {
+        int gi;
+        int best_mse = mse[nhsb*sbr+sbc][0];
+        for (gi = 1; gi < 4; gi++) {
+          level = compute_level_from_index(global_level, gi);
+          if (mse[nhsb*sbr+sbc][level] < best_mse) {
+            best_mse = mse[nhsb*sbr+sbc][level];
+          }
+        }
+        tot_mse += best_mse;
+      }
+    }
+    if (tot_mse < best_tot_mse) {
+      best_level = global_level;
+      best_tot_mse = tot_mse;
+    }
+  }
+  for (sbr = 0; sbr < nvsb; sbr++) {
+    for (sbc = 0; sbc < nhsb; sbc++) {
+      int gi;
+      int best_gi;
+      int best_mse = mse[nhsb*sbr+sbc][0];
+      best_gi = 0;
+      for (gi = 1; gi < DERING_REFINEMENT_LEVELS; gi++) {
+        level = compute_level_from_index(best_level, gi);
+        if (mse[nhsb*sbr+sbc][level] < best_mse) {
+          best_gi = gi;
+          best_mse = mse[nhsb*sbr+sbc][level];
+        }
+      }
+      cm->mi_grid_visible[MI_BLOCK_SIZE*sbr*cm->mi_stride + MI_BLOCK_SIZE*sbc]->
+          mbmi.dering_gain = best_gi;
+    }
+  }
+#else
+  best_level = 0;
+  for (level = 0; level < MAX_DERING_LEVEL; level++) {
+    if (tot_mse[level] < tot_mse[best_level]) best_level = level;
+  }
+#endif
+  vpx_free(src);
+  vpx_free(ref_coeff);
+  vpx_free(bskip);
+  vpx_free(mse);
+  return best_level;
+}
diff --git a/av1/encoder/picklpf.c b/av1/encoder/picklpf.c
new file mode 100644
index 0000000..f1610fa
--- /dev/null
+++ b/av1/encoder/picklpf.c
@@ -0,0 +1,189 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+
+#include "./vpx_scale_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/loopfilter.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/quant_common.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/picklpf.h"
+#include "av1/encoder/quantize.h"
+
+static int get_max_filter_level(const VP10_COMP *cpi) {
+  if (cpi->oxcf.pass == 2) {
+    return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
+                                                 : MAX_LOOP_FILTER;
+  } else {
+    return MAX_LOOP_FILTER;
+  }
+}
+
+static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
+                                VP10_COMP *const cpi, int filt_level,
+                                int partial_frame) {
+  VP10_COMMON *const cm = &cpi->common;
+  int64_t filt_err;
+
+  if (cpi->num_workers > 1)
+    vp10_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane,
+                              filt_level, 1, partial_frame, cpi->workers,
+                              cpi->num_workers, &cpi->lf_row_sync);
+  else
+    vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level,
+                           1, partial_frame);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (cm->use_highbitdepth) {
+    filt_err = vp10_highbd_get_y_sse(sd, cm->frame_to_show);
+  } else {
+    filt_err = vp10_get_y_sse(sd, cm->frame_to_show);
+  }
+#else
+  filt_err = vp10_get_y_sse(sd, cm->frame_to_show);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  // Re-instate the unfiltered frame
+  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
+
+  return filt_err;
+}
+
+static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
+                               int partial_frame) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const struct loopfilter *const lf = &cm->lf;
+  const int min_filter_level = 0;
+  const int max_filter_level = get_max_filter_level(cpi);
+  int filt_direction = 0;
+  int64_t best_err;
+  int filt_best;
+
+  // Start the search at the previous frame filter level unless it is now out of
+  // range.
+  int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
+  int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
+  // Sum squared error at each filter level
+  int64_t ss_err[MAX_LOOP_FILTER + 1];
+
+  // Set each entry to -1
+  memset(ss_err, 0xFF, sizeof(ss_err));
+
+  //  Make a copy of the unfiltered / processed recon buffer
+  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
+
+  best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame);
+  filt_best = filt_mid;
+  ss_err[filt_mid] = best_err;
+
+  while (filter_step > 0) {
+    const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
+    const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);
+
+    // Bias against raising loop filter in favor of lowering it.
+    int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
+
+    if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
+      bias = (bias * cpi->twopass.section_intra_rating) / 20;
+
+    // yx, bias less for large block size
+    if (cm->tx_mode != ONLY_4X4) bias >>= 1;
+
+    if (filt_direction <= 0 && filt_low != filt_mid) {
+      // Get Low filter error score
+      if (ss_err[filt_low] < 0) {
+        ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame);
+      }
+      // If value is close to the best so far then bias towards a lower loop
+      // filter value.
+      if ((ss_err[filt_low] - bias) < best_err) {
+        // Was it actually better than the previous best?
+        if (ss_err[filt_low] < best_err) best_err = ss_err[filt_low];
+
+        filt_best = filt_low;
+      }
+    }
+
+    // Now look at filt_high
+    if (filt_direction >= 0 && filt_high != filt_mid) {
+      if (ss_err[filt_high] < 0) {
+        ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame);
+      }
+      // Was it better than the previous best?
+      if (ss_err[filt_high] < (best_err - bias)) {
+        best_err = ss_err[filt_high];
+        filt_best = filt_high;
+      }
+    }
+
+    // Half the step distance if the best filter value was the same as last time
+    if (filt_best == filt_mid) {
+      filter_step /= 2;
+      filt_direction = 0;
+    } else {
+      filt_direction = (filt_best < filt_mid) ? -1 : 1;
+      filt_mid = filt_best;
+    }
+  }
+
+  return filt_best;
+}
+
+void vp10_pick_filter_level(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
+                            LPF_PICK_METHOD method) {
+  VP10_COMMON *const cm = &cpi->common;
+  struct loopfilter *const lf = &cm->lf;
+
+  lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
+
+  if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
+    lf->filter_level = 0;
+  } else if (method >= LPF_PICK_FROM_Q) {
+    const int min_filter_level = 0;
+    const int max_filter_level = get_max_filter_level(cpi);
+    const int q = vp10_ac_quant(cm->base_qindex, 0, cm->bit_depth);
+// These values were determined by linear fitting the result of the
+// searched level, filt_guess = q * 0.316206 + 3.87252
+#if CONFIG_VPX_HIGHBITDEPTH
+    int filt_guess;
+    switch (cm->bit_depth) {
+      case VPX_BITS_8:
+        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
+        break;
+      case VPX_BITS_10:
+        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
+        break;
+      case VPX_BITS_12:
+        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
+        break;
+      default:
+        assert(0 &&
+               "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
+               "or VPX_BITS_12");
+        return;
+    }
+#else
+    int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+    if (cm->frame_type == KEY_FRAME) filt_guess -= 4;
+    lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
+  } else {
+    lf->filter_level =
+        search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE);
+  }
+}
diff --git a/av1/encoder/picklpf.h b/av1/encoder/picklpf.h
new file mode 100644
index 0000000..dae0090
--- /dev/null
+++ b/av1/encoder/picklpf.h
@@ -0,0 +1,29 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_PICKLPF_H_
+#define VP10_ENCODER_PICKLPF_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "av1/encoder/encoder.h"
+
+struct yv12_buffer_config;
+struct VP10_COMP;
+
+void vp10_pick_filter_level(const struct yv12_buffer_config *sd,
+                            struct VP10_COMP *cpi, LPF_PICK_METHOD method);
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_PICKLPF_H_
diff --git a/av1/encoder/quantize.c b/av1/encoder/quantize.c
new file mode 100644
index 0000000..86af339
--- /dev/null
+++ b/av1/encoder/quantize.c
@@ -0,0 +1,483 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include "./vpx_dsp_rtcd.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/quant_common.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/rd.h"
+
+void vp10_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+                        int skip_block, const int16_t *zbin_ptr,
+                        const int16_t *round_ptr, const int16_t *quant_ptr,
+                        const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
+                        tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
+                        uint16_t *eob_ptr, const int16_t *scan,
+                        const int16_t *iscan
+#if CONFIG_AOM_QM
+                        ,
+                        const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
+#endif
+                        ) {
+  int i, eob = -1;
+  // TODO(jingning) Decide the need of these arguments after the
+  // quantization process is completed.
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)iscan;
+
+  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+  if (!skip_block) {
+    // Quantization pass: All coefficients with index >= zero_flag are
+    // skippable. Note: zero_flag can be zero.
+    for (i = 0; i < n_coeffs; i++) {
+      const int rc = scan[i];
+      const int coeff = coeff_ptr[rc];
+#if CONFIG_AOM_QM
+      const qm_val_t wt = qm_ptr[rc];
+      const qm_val_t iwt = iqm_ptr[rc];
+      const int dequant =
+          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
+          AOM_QM_BITS;
+#endif
+      const int coeff_sign = (coeff >> 31);
+      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+      int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+      int tmp32;
+#if CONFIG_AOM_QM
+      tmp32 = (tmp * wt * quant_ptr[rc != 0]) >> (16 + AOM_QM_BITS);
+      qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant;
+#else
+      tmp32 = (tmp * quant_ptr[rc != 0]) >> 16;
+      qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+#endif
+
+      if (tmp32) eob = i;
+    }
+  }
+  *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
+                               int skip_block, const int16_t *zbin_ptr,
+                               const int16_t *round_ptr,
+                               const int16_t *quant_ptr,
+                               const int16_t *quant_shift_ptr,
+                               tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+                               const int16_t *dequant_ptr, uint16_t *eob_ptr,
+                               const int16_t *scan, const int16_t *iscan
+#if CONFIG_AOM_QM
+                               ,
+                               const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
+#endif
+                               ) {
+  int i;
+  int eob = -1;
+  // TODO(jingning) Decide the need of these arguments after the
+  // quantization process is completed.
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)iscan;
+
+  memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr));
+  memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr));
+
+  if (!skip_block) {
+    // Quantization pass: All coefficients with index >= zero_flag are
+    // skippable. Note: zero_flag can be zero.
+    for (i = 0; i < count; i++) {
+      const int rc = scan[i];
+      const int coeff = coeff_ptr[rc];
+#if CONFIG_AOM_QM
+      const qm_val_t wt = qm_ptr[rc];
+      const qm_val_t iwt = iqm_ptr[rc];
+      const int dequant =
+          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
+          AOM_QM_BITS;
+#endif
+      const int coeff_sign = (coeff >> 31);
+      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+      const int64_t tmp = abs_coeff + round_ptr[rc != 0];
+#if CONFIG_AOM_QM
+      const uint32_t abs_qcoeff =
+          (uint32_t)((tmp * quant_ptr[rc != 0] * wt) >> (16 + AOM_QM_BITS));
+      qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant;
+#else
+      const uint32_t abs_qcoeff = (uint32_t)((tmp * quant_ptr[rc != 0]) >> 16);
+      qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
+      dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+#endif
+      if (abs_qcoeff) eob = i;
+    }
+  }
+  *eob_ptr = eob + 1;
+}
+#endif
+
+// TODO(jingning) Refactor this file and combine functions with similar
+// operations.
+void vp10_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+                              int skip_block, const int16_t *zbin_ptr,
+                              const int16_t *round_ptr,
+                              const int16_t *quant_ptr,
+                              const int16_t *quant_shift_ptr,
+                              tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+                              const int16_t *dequant_ptr, uint16_t *eob_ptr,
+                              const int16_t *scan, const int16_t *iscan
+#if CONFIG_AOM_QM
+                              ,
+                              const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
+#endif
+                              ) {
+  int i, eob = -1;
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)iscan;
+
+  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+  if (!skip_block) {
+    for (i = 0; i < n_coeffs; i++) {
+      const int rc = scan[i];
+      const int coeff = coeff_ptr[rc];
+#if CONFIG_AOM_QM
+      const qm_val_t wt = qm_ptr[rc];
+      const qm_val_t iwt = iqm_ptr[rc];
+      const int dequant =
+          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
+          AOM_QM_BITS;
+      int64_t tmp = 0;
+#endif
+      const int coeff_sign = (coeff >> 31);
+      int tmp32 = 0;
+      int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+#if CONFIG_AOM_QM
+      if (abs_coeff * wt >= (dequant_ptr[rc != 0] << (AOM_QM_BITS - 2))) {
+#else
+      if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) {
+#endif
+        abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
+        abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX);
+#if CONFIG_AOM_QM
+        tmp = abs_coeff * wt;
+        tmp32 = (int)(tmp * quant_ptr[rc != 0]) >> (AOM_QM_BITS + 15);
+        qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+        dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant) / 2;
+#else
+        tmp32 = (abs_coeff * quant_ptr[rc != 0]) >> 15;
+        qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
+        dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant_ptr[rc != 0]) / 2;
+#endif
+      }
+
+      if (tmp32) eob = i;
+    }
+  }
+  *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_quantize_fp_32x32_c(
+    const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
+    const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr,
+    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
+    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
+    const int16_t *scan, const int16_t *iscan
+#if CONFIG_AOM_QM
+    ,
+    const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
+#endif
+    ) {
+  int i, eob = -1;
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)iscan;
+
+  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+  if (!skip_block) {
+    for (i = 0; i < n_coeffs; i++) {
+      uint32_t abs_qcoeff = 0;
+      const int rc = scan[i];
+      const int coeff = coeff_ptr[rc];
+#if CONFIG_AOM_QM
+      const qm_val_t wt = qm_ptr[rc];
+      const qm_val_t iwt = iqm_ptr[rc];
+      const int dequant =
+          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
+          AOM_QM_BITS;
+#endif
+      const int coeff_sign = (coeff >> 31);
+      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+#if CONFIG_AOM_QM
+      if (abs_coeff * wt >= (dequant_ptr[rc != 0] << (AOM_QM_BITS - 2))) {
+#else
+      if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) {
+#endif
+        const int64_t tmp =
+            abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
+#if CONFIG_AOM_QM
+        abs_qcoeff =
+            (uint32_t)((tmp * wt * quant_ptr[rc != 0]) >> (AOM_QM_BITS + 15));
+        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
+        dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant) / 2;
+#else
+        abs_qcoeff = (uint32_t)((tmp * quant_ptr[rc != 0]) >> 15);
+        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
+        dqcoeff_ptr[rc] = (qcoeff_ptr[rc] * dequant_ptr[rc != 0]) / 2;
+#endif
+      }
+
+      if (abs_qcoeff) eob = i;
+    }
+  }
+  *eob_ptr = eob + 1;
+}
+#endif
+
+void vp10_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
+                                 const int16_t *scan, const int16_t *iscan) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblock_plane *p = &x->plane[plane];
+  struct macroblockd_plane *pd = &xd->plane[plane];
+#if CONFIG_AOM_QM
+  int seg_id = xd->mi[0]->mbmi.segment_id;
+  int is_intra = is_inter_block(&xd->mi[0]->mbmi);
+  const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][0];
+  const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][0];
+#endif
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    vpx_highbd_quantize_b(BLOCK_OFFSET(p->coeff, block), 16, x->skip_block,
+                          p->zbin, p->round, p->quant, p->quant_shift,
+                          BLOCK_OFFSET(p->qcoeff, block),
+                          BLOCK_OFFSET(pd->dqcoeff, block), pd->dequant,
+#if !CONFIG_AOM_QM
+                          &p->eobs[block], scan, iscan);
+#else
+                          &p->eobs[block], scan, iscan,
+                          qmatrix, iqmatrix);
+#endif
+    return;
+  }
+#endif
+  vpx_quantize_b(BLOCK_OFFSET(p->coeff, block), 16, x->skip_block, p->zbin,
+                 p->round, p->quant, p->quant_shift,
+                 BLOCK_OFFSET(p->qcoeff, block),
+                 BLOCK_OFFSET(pd->dqcoeff, block), pd->dequant, &p->eobs[block],
+#if !CONFIG_AOM_QM
+                          scan, iscan);
+#else
+                          scan, iscan,
+                          qmatrix, iqmatrix);
+#endif
+}
+
+static void invert_quant(int16_t *quant, int16_t *shift, int d) {
+  unsigned t;
+  int l;
+  t = d;
+  for (l = 0; t > 1; l++) t >>= 1;
+  t = 1 + (1 << (16 + l)) / d;
+  *quant = (int16_t)(t - (1 << 16));
+  *shift = 1 << (16 - l);
+}
+
+static int get_qzbin_factor(int q, vpx_bit_depth_t bit_depth) {
+  const int quant = vp10_dc_quant(q, 0, bit_depth);
+#if CONFIG_VPX_HIGHBITDEPTH
+  switch (bit_depth) {
+    case VPX_BITS_8:
+      return q == 0 ? 64 : (quant < 148 ? 84 : 80);
+    case VPX_BITS_10:
+      return q == 0 ? 64 : (quant < 592 ? 84 : 80);
+    case VPX_BITS_12:
+      return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+      return -1;
+  }
+#else
+  (void)bit_depth;
+  return q == 0 ? 64 : (quant < 148 ? 84 : 80);
+#endif
+}
+
+void vp10_init_quantizer(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  QUANTS *const quants = &cpi->quants;
+  int i, q, quant;
+
+  for (q = 0; q < QINDEX_RANGE; q++) {
+    const int qzbin_factor = get_qzbin_factor(q, cm->bit_depth);
+    const int qrounding_factor = q == 0 ? 64 : 48;
+
+    for (i = 0; i < 2; ++i) {
+      int qrounding_factor_fp = i == 0 ? 48 : 42;
+      if (q == 0) qrounding_factor_fp = 64;
+
+      // y
+      quant = i == 0 ? vp10_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth)
+                     : vp10_ac_quant(q, 0, cm->bit_depth);
+      invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant);
+      quants->y_quant_fp[q][i] = (1 << 16) / quant;
+      quants->y_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
+      quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+      quants->y_round[q][i] = (qrounding_factor * quant) >> 7;
+      cpi->y_dequant[q][i] = quant;
+
+      // uv
+      quant = i == 0 ? vp10_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth)
+                     : vp10_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth);
+      invert_quant(&quants->uv_quant[q][i], &quants->uv_quant_shift[q][i],
+                   quant);
+      quants->uv_quant_fp[q][i] = (1 << 16) / quant;
+      quants->uv_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
+      quants->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+      quants->uv_round[q][i] = (qrounding_factor * quant) >> 7;
+      cpi->uv_dequant[q][i] = quant;
+    }
+
+    for (i = 2; i < 8; i++) {
+      quants->y_quant[q][i] = quants->y_quant[q][1];
+      quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
+      quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
+      quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
+      quants->y_zbin[q][i] = quants->y_zbin[q][1];
+      quants->y_round[q][i] = quants->y_round[q][1];
+      cpi->y_dequant[q][i] = cpi->y_dequant[q][1];
+
+      quants->uv_quant[q][i] = quants->uv_quant[q][1];
+      quants->uv_quant_fp[q][i] = quants->uv_quant_fp[q][1];
+      quants->uv_round_fp[q][i] = quants->uv_round_fp[q][1];
+      quants->uv_quant_shift[q][i] = quants->uv_quant_shift[q][1];
+      quants->uv_zbin[q][i] = quants->uv_zbin[q][1];
+      quants->uv_round[q][i] = quants->uv_round[q][1];
+      cpi->uv_dequant[q][i] = cpi->uv_dequant[q][1];
+    }
+  }
+}
+
+void vp10_init_plane_quantizers(VP10_COMP *cpi, MACROBLOCK *x) {
+  const VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  QUANTS *const quants = &cpi->quants;
+  const int segment_id = xd->mi[0]->mbmi.segment_id;
+  const int qindex = vp10_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+  const int rdmult = vp10_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
+  const int lossless = xd->lossless[segment_id];
+  int i;
+#if CONFIG_AOM_QM
+  int minqm = cm->min_qmlevel;
+  int maxqm = cm->max_qmlevel;
+  // Quant matrix only depends on the base QP so there is only one set per frame
+  int qmlevel = (lossless || cm->using_qmatrix == 0)
+                    ? NUM_QM_LEVELS - 1
+                    : aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
+#endif
+
+  // Y
+  x->plane[0].quant = quants->y_quant[qindex];
+  x->plane[0].quant_fp = quants->y_quant_fp[qindex];
+  x->plane[0].round_fp = quants->y_round_fp[qindex];
+  x->plane[0].quant_shift = quants->y_quant_shift[qindex];
+  x->plane[0].zbin = quants->y_zbin[qindex];
+  x->plane[0].round = quants->y_round[qindex];
+#if CONFIG_AOM_QM
+  memcpy(&xd->plane[0].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][0],
+         sizeof(cm->gqmatrix[qmlevel][0]));
+  memcpy(&xd->plane[0].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][0],
+         sizeof(cm->giqmatrix[qmlevel][0]));
+#endif
+  xd->plane[0].dequant = cpi->y_dequant[qindex];
+
+  x->plane[0].quant_thred[0] = x->plane[0].zbin[0] * x->plane[0].zbin[0];
+  x->plane[0].quant_thred[1] = x->plane[0].zbin[1] * x->plane[0].zbin[1];
+
+  // UV
+  for (i = 1; i < 3; i++) {
+    x->plane[i].quant = quants->uv_quant[qindex];
+    x->plane[i].quant_fp = quants->uv_quant_fp[qindex];
+    x->plane[i].round_fp = quants->uv_round_fp[qindex];
+    x->plane[i].quant_shift = quants->uv_quant_shift[qindex];
+    x->plane[i].zbin = quants->uv_zbin[qindex];
+    x->plane[i].round = quants->uv_round[qindex];
+#if CONFIG_AOM_QM
+    memcpy(&xd->plane[i].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][1],
+           sizeof(cm->gqmatrix[qmlevel][1]));
+    memcpy(&xd->plane[i].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][1],
+           sizeof(cm->giqmatrix[qmlevel][1]));
+#endif
+    xd->plane[i].dequant = cpi->uv_dequant[qindex];
+
+    x->plane[i].quant_thred[0] = x->plane[i].zbin[0] * x->plane[i].zbin[0];
+    x->plane[i].quant_thred[1] = x->plane[i].zbin[1] * x->plane[i].zbin[1];
+  }
+
+  x->skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
+  x->q_index = qindex;
+
+  set_error_per_bit(x, rdmult);
+
+  vp10_initialize_me_consts(cpi, x, x->q_index);
+}
+
+void vp10_frame_init_quantizer(VP10_COMP *cpi) {
+  vp10_init_plane_quantizers(cpi, &cpi->td.mb);
+}
+
+void vp10_set_quantizer(VP10_COMMON *cm, int q) {
+  // quantizer has to be reinitialized with vp10_init_quantizer() if any
+  // delta_q changes.
+  cm->base_qindex = q;
+  cm->y_dc_delta_q = 0;
+  cm->uv_dc_delta_q = 0;
+  cm->uv_ac_delta_q = 0;
+}
+
+// Table that converts 0-63 Q-range values passed in outside to the Qindex
+// range used internally.
+static const int quantizer_to_qindex[] = {
+  0,   4,   8,   12,  16,  20,  24,  28,  32,  36,  40,  44,  48,
+  52,  56,  60,  64,  68,  72,  76,  80,  84,  88,  92,  96,  100,
+  104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
+  156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
+  208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
+};
+
+int vp10_quantizer_to_qindex(int quantizer) {
+  return quantizer_to_qindex[quantizer];
+}
+
+int vp10_qindex_to_quantizer(int qindex) {
+  int quantizer;
+
+  for (quantizer = 0; quantizer < 64; ++quantizer)
+    if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
+
+  return 63;
+}
diff --git a/av1/encoder/quantize.h b/av1/encoder/quantize.h
new file mode 100644
index 0000000..848b13d
--- /dev/null
+++ b/av1/encoder/quantize.h
@@ -0,0 +1,63 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_QUANTIZE_H_
+#define VP10_ENCODER_QUANTIZE_H_
+
+#include "./vpx_config.h"
+#include "av1/common/quant_common.h"
+#include "av1/encoder/block.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+  DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]);
+
+  // TODO(jingning): in progress of re-working the quantization. will decide
+  // if we want to deprecate the current use of y_quant.
+  DECLARE_ALIGNED(16, int16_t, y_quant_fp[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_quant_fp[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, y_round_fp[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_round_fp[QINDEX_RANGE][8]);
+
+  DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]);
+  DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]);
+} QUANTS;
+
+void vp10_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
+                                 const int16_t *scan, const int16_t *iscan);
+
+struct VP10_COMP;
+struct VP10Common;
+
+void vp10_frame_init_quantizer(struct VP10_COMP *cpi);
+
+void vp10_init_plane_quantizers(struct VP10_COMP *cpi, MACROBLOCK *x);
+
+void vp10_init_quantizer(struct VP10_COMP *cpi);
+
+void vp10_set_quantizer(struct VP10Common *cm, int q);
+
+int vp10_quantizer_to_qindex(int quantizer);
+
+int vp10_qindex_to_quantizer(int qindex);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_QUANTIZE_H_
diff --git a/av1/encoder/ratectrl.c b/av1/encoder/ratectrl.c
new file mode 100644
index 0000000..8512e98
--- /dev/null
+++ b/av1/encoder/ratectrl.c
@@ -0,0 +1,1720 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/alloccommon.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/common/common.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/ratectrl.h"
+
+// Max rate target for 1080P and below encodes under normal circumstances
+// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 2025000
+
+#define DEFAULT_KF_BOOST 2000
+#define DEFAULT_GF_BOOST 2000
+
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
+
+#define MIN_BPB_FACTOR 0.005
+#define MAX_BPB_FACTOR 50
+
+#define FRAME_OVERHEAD_BITS 200
+
+#if CONFIG_VPX_HIGHBITDEPTH
+#define ASSIGN_MINQ_TABLE(bit_depth, name)                   \
+  do {                                                       \
+    switch (bit_depth) {                                     \
+      case VPX_BITS_8: name = name##_8; break;               \
+      case VPX_BITS_10: name = name##_10; break;             \
+      case VPX_BITS_12: name = name##_12; break;             \
+      default:                                               \
+        assert(0 &&                                          \
+               "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
+               " or VPX_BITS_12");                           \
+        name = NULL;                                         \
+    }                                                        \
+  } while (0)
+#else
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+  do {                                     \
+    (void) bit_depth;                      \
+    name = name##_8;                       \
+  } while (0)
+#endif
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq_8[QINDEX_RANGE];
+static int kf_high_motion_minq_8[QINDEX_RANGE];
+static int arfgf_low_motion_minq_8[QINDEX_RANGE];
+static int arfgf_high_motion_minq_8[QINDEX_RANGE];
+static int inter_minq_8[QINDEX_RANGE];
+static int rtc_minq_8[QINDEX_RANGE];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static int kf_low_motion_minq_10[QINDEX_RANGE];
+static int kf_high_motion_minq_10[QINDEX_RANGE];
+static int arfgf_low_motion_minq_10[QINDEX_RANGE];
+static int arfgf_high_motion_minq_10[QINDEX_RANGE];
+static int inter_minq_10[QINDEX_RANGE];
+static int rtc_minq_10[QINDEX_RANGE];
+static int kf_low_motion_minq_12[QINDEX_RANGE];
+static int kf_high_motion_minq_12[QINDEX_RANGE];
+static int arfgf_low_motion_minq_12[QINDEX_RANGE];
+static int arfgf_high_motion_minq_12[QINDEX_RANGE];
+static int inter_minq_12[QINDEX_RANGE];
+static int rtc_minq_12[QINDEX_RANGE];
+#endif
+
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 5000;
+static int kf_low = 400;
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1,
+                          vpx_bit_depth_t bit_depth) {
+  int i;
+  const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
+
+  // Special case handling to deal with the step from q2.0
+  // down to lossless mode represented by q 1.0.
+  if (minqtarget <= 2.0) return 0;
+
+  for (i = 0; i < QINDEX_RANGE; i++) {
+    if (minqtarget <= vp10_convert_qindex_to_q(i, bit_depth)) return i;
+  }
+
+  return QINDEX_RANGE - 1;
+}
+
+static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
+                           int *arfgf_high, int *inter, int *rtc,
+                           vpx_bit_depth_t bit_depth) {
+  int i;
+  for (i = 0; i < QINDEX_RANGE; i++) {
+    const double maxq = vp10_convert_qindex_to_q(i, bit_depth);
+    kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
+    kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+    arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
+    arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+    inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
+    rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+  }
+}
+
+void vp10_rc_init_minq_luts(void) {
+  init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
+                 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
+                 inter_minq_8, rtc_minq_8, VPX_BITS_8);
+#if CONFIG_VPX_HIGHBITDEPTH
+  init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
+                 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
+                 inter_minq_10, rtc_minq_10, VPX_BITS_10);
+  init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
+                 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
+                 inter_minq_12, rtc_minq_12, VPX_BITS_12);
+#endif
+}
+
+// These functions use formulaic calculations to make playing with the
+// quantizer tables easier. If necessary they can be replaced by lookup
+// tables if and when things settle down in the experimental bitstream
+double vp10_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
+// Convert the index to a real Q value (scaled down to match old Q values)
+#if CONFIG_VPX_HIGHBITDEPTH
+  switch (bit_depth) {
+    case VPX_BITS_8: return vp10_ac_quant(qindex, 0, bit_depth) / 4.0;
+    case VPX_BITS_10: return vp10_ac_quant(qindex, 0, bit_depth) / 16.0;
+    case VPX_BITS_12: return vp10_ac_quant(qindex, 0, bit_depth) / 64.0;
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+      return -1.0;
+  }
+#else
+  return vp10_ac_quant(qindex, 0, bit_depth) / 4.0;
+#endif
+}
+
+int vp10_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+                        double correction_factor, vpx_bit_depth_t bit_depth) {
+  const double q = vp10_convert_qindex_to_q(qindex, bit_depth);
+  int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
+
+  assert(correction_factor <= MAX_BPB_FACTOR &&
+         correction_factor >= MIN_BPB_FACTOR);
+
+  // q based adjustment to baseline enumerator
+  enumerator += (int)(enumerator * q) >> 12;
+  return (int)(enumerator * correction_factor / q);
+}
+
+int vp10_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
+                            double correction_factor,
+                            vpx_bit_depth_t bit_depth) {
+  const int bpm =
+      (int)(vp10_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
+  return VPXMAX(FRAME_OVERHEAD_BITS,
+                (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
+}
+
+int vp10_rc_clamp_pframe_target_size(const VP10_COMP *const cpi, int target) {
+  const RATE_CONTROL *rc = &cpi->rc;
+  const VP10EncoderConfig *oxcf = &cpi->oxcf;
+  const int min_frame_target =
+      VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
+  if (target < min_frame_target) target = min_frame_target;
+  if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
+    // If there is an active ARF at this location use the minimum
+    // bits on this frame even if it is a constructed arf.
+    // The active maximum quantizer insures that an appropriate
+    // number of bits will be spent if needed for constructed ARFs.
+    target = min_frame_target;
+  }
+  // Clip the frame target to the maximum allowed value.
+  if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+  if (oxcf->rc_max_inter_bitrate_pct) {
+    const int max_rate =
+        rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+    target = VPXMIN(target, max_rate);
+  }
+  return target;
+}
+
+int vp10_rc_clamp_iframe_target_size(const VP10_COMP *const cpi, int target) {
+  const RATE_CONTROL *rc = &cpi->rc;
+  const VP10EncoderConfig *oxcf = &cpi->oxcf;
+  if (oxcf->rc_max_intra_bitrate_pct) {
+    const int max_rate =
+        rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
+    target = VPXMIN(target, max_rate);
+  }
+  if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+  return target;
+}
+
+// Update the buffer level: leaky bucket model.
+static void update_buffer_level(VP10_COMP *cpi, int encoded_frame_size) {
+  const VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  // Non-viewable frames are a special case and are treated as pure overhead.
+  if (!cm->show_frame) {
+    rc->bits_off_target -= encoded_frame_size;
+  } else {
+    rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
+  }
+
+  // Clip the buffer level to the maximum specified buffer size.
+  rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
+  rc->buffer_level = rc->bits_off_target;
+}
+
+int vp10_rc_get_default_min_gf_interval(int width, int height,
+                                        double framerate) {
+  // Assume we do not need any constraint lower than 4K 20 fps
+  static const double factor_safe = 3840 * 2160 * 20.0;
+  const double factor = width * height * framerate;
+  const int default_interval =
+      clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
+
+  if (factor <= factor_safe)
+    return default_interval;
+  else
+    return VPXMAX(default_interval,
+                  (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
+  // Note this logic makes:
+  // 4K24: 5
+  // 4K30: 6
+  // 4K60: 12
+}
+
+int vp10_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
+  int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
+  interval += (interval & 0x01);  // Round to even value
+  return VPXMAX(interval, min_gf_interval);
+}
+
+void vp10_rc_init(const VP10EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
+  int i;
+
+  if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
+    rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
+    rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+  } else {
+    rc->avg_frame_qindex[KEY_FRAME] =
+        (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+    rc->avg_frame_qindex[INTER_FRAME] =
+        (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+  }
+
+  rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
+  rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+
+  rc->buffer_level = rc->starting_buffer_level;
+  rc->bits_off_target = rc->starting_buffer_level;
+
+  rc->rolling_target_bits = rc->avg_frame_bandwidth;
+  rc->rolling_actual_bits = rc->avg_frame_bandwidth;
+  rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
+  rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
+
+  rc->total_actual_bits = 0;
+  rc->total_target_bits = 0;
+  rc->total_target_vs_actual = 0;
+
+  rc->frames_since_key = 8;  // Sensible default for first frame.
+  rc->this_key_frame_forced = 0;
+  rc->next_key_frame_forced = 0;
+  rc->source_alt_ref_pending = 0;
+  rc->source_alt_ref_active = 0;
+
+  rc->frames_till_gf_update_due = 0;
+  rc->ni_av_qi = oxcf->worst_allowed_q;
+  rc->ni_tot_qi = 0;
+  rc->ni_frames = 0;
+
+  rc->tot_q = 0.0;
+  rc->avg_q = vp10_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
+
+  for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+    rc->rate_correction_factors[i] = 1.0;
+  }
+
+  rc->min_gf_interval = oxcf->min_gf_interval;
+  rc->max_gf_interval = oxcf->max_gf_interval;
+  if (rc->min_gf_interval == 0)
+    rc->min_gf_interval = vp10_rc_get_default_min_gf_interval(
+        oxcf->width, oxcf->height, oxcf->init_framerate);
+  if (rc->max_gf_interval == 0)
+    rc->max_gf_interval = vp10_rc_get_default_max_gf_interval(
+        oxcf->init_framerate, rc->min_gf_interval);
+  rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
+}
+
+int vp10_rc_drop_frame(VP10_COMP *cpi) {
+  const VP10EncoderConfig *oxcf = &cpi->oxcf;
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  if (!oxcf->drop_frames_water_mark) {
+    return 0;
+  } else {
+    if (rc->buffer_level < 0) {
+      // Always drop if buffer is below 0.
+      return 1;
+    } else {
+      // If buffer is below drop_mark, for now just drop every other frame
+      // (starting with the next frame) until it increases back over drop_mark.
+      int drop_mark =
+          (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
+      if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
+        --rc->decimation_factor;
+      } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
+        rc->decimation_factor = 1;
+      }
+      if (rc->decimation_factor > 0) {
+        if (rc->decimation_count > 0) {
+          --rc->decimation_count;
+          return 1;
+        } else {
+          rc->decimation_count = rc->decimation_factor;
+          return 0;
+        }
+      } else {
+        rc->decimation_count = 0;
+        return 0;
+      }
+    }
+  }
+}
+
+static double get_rate_correction_factor(const VP10_COMP *cpi) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  double rcf;
+
+  if (cpi->common.frame_type == KEY_FRAME) {
+    rcf = rc->rate_correction_factors[KF_STD];
+  } else if (cpi->oxcf.pass == 2) {
+    RATE_FACTOR_LEVEL rf_lvl =
+        cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+    rcf = rc->rate_correction_factors[rf_lvl];
+  } else {
+    if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+        !rc->is_src_frame_alt_ref &&
+        (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+      rcf = rc->rate_correction_factors[GF_ARF_STD];
+    else
+      rcf = rc->rate_correction_factors[INTER_NORMAL];
+  }
+  rcf *= rcf_mult[rc->frame_size_selector];
+  return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+}
+
+static void set_rate_correction_factor(VP10_COMP *cpi, double factor) {
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  // Normalize RCF to account for the size-dependent scaling factor.
+  factor /= rcf_mult[cpi->rc.frame_size_selector];
+
+  factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+
+  if (cpi->common.frame_type == KEY_FRAME) {
+    rc->rate_correction_factors[KF_STD] = factor;
+  } else if (cpi->oxcf.pass == 2) {
+    RATE_FACTOR_LEVEL rf_lvl =
+        cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+    rc->rate_correction_factors[rf_lvl] = factor;
+  } else {
+    if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+        !rc->is_src_frame_alt_ref &&
+        (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+      rc->rate_correction_factors[GF_ARF_STD] = factor;
+    else
+      rc->rate_correction_factors[INTER_NORMAL] = factor;
+  }
+}
+
+void vp10_rc_update_rate_correction_factors(VP10_COMP *cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  int correction_factor = 100;
+  double rate_correction_factor = get_rate_correction_factor(cpi);
+  double adjustment_limit;
+
+  int projected_size_based_on_q = 0;
+
+  // Do not update the rate factors for arf overlay frames.
+  if (cpi->rc.is_src_frame_alt_ref) return;
+
+  // Clear down mmx registers to allow floating point in what follows
+  vpx_clear_system_state();
+
+  // Work out how big we would have expected the frame to be at this Q given
+  // the current correction factor.
+  // Stay in double to avoid int overflow when values are large
+  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
+    projected_size_based_on_q =
+        vp10_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
+  } else {
+    projected_size_based_on_q =
+        vp10_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex,
+                                cm->MBs, rate_correction_factor, cm->bit_depth);
+  }
+  // Work out a size correction factor.
+  if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
+    correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
+                              projected_size_based_on_q);
+
+  // More heavily damped adjustment used if we have been oscillating either side
+  // of target.
+  adjustment_limit =
+      0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
+
+  cpi->rc.q_2_frame = cpi->rc.q_1_frame;
+  cpi->rc.q_1_frame = cm->base_qindex;
+  cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
+  if (correction_factor > 110)
+    cpi->rc.rc_1_frame = -1;
+  else if (correction_factor < 90)
+    cpi->rc.rc_1_frame = 1;
+  else
+    cpi->rc.rc_1_frame = 0;
+
+  if (correction_factor > 102) {
+    // We are not already at the worst allowable quality
+    correction_factor =
+        (int)(100 + ((correction_factor - 100) * adjustment_limit));
+    rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+    // Keep rate_correction_factor within limits
+    if (rate_correction_factor > MAX_BPB_FACTOR)
+      rate_correction_factor = MAX_BPB_FACTOR;
+  } else if (correction_factor < 99) {
+    // We are not already at the best allowable quality
+    correction_factor =
+        (int)(100 - ((100 - correction_factor) * adjustment_limit));
+    rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+
+    // Keep rate_correction_factor within limits
+    if (rate_correction_factor < MIN_BPB_FACTOR)
+      rate_correction_factor = MIN_BPB_FACTOR;
+  }
+
+  set_rate_correction_factor(cpi, rate_correction_factor);
+}
+
+int vp10_rc_regulate_q(const VP10_COMP *cpi, int target_bits_per_frame,
+                       int active_best_quality, int active_worst_quality) {
+  const VP10_COMMON *const cm = &cpi->common;
+  int q = active_worst_quality;
+  int last_error = INT_MAX;
+  int i, target_bits_per_mb, bits_per_mb_at_this_q;
+  const double correction_factor = get_rate_correction_factor(cpi);
+
+  // Calculate required scaling factor based on target frame size and size of
+  // frame produced using previous Q.
+  target_bits_per_mb =
+      ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
+
+  i = active_best_quality;
+
+  do {
+    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+      bits_per_mb_at_this_q =
+          (int)vp10_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
+    } else {
+      bits_per_mb_at_this_q = (int)vp10_rc_bits_per_mb(
+          cm->frame_type, i, correction_factor, cm->bit_depth);
+    }
+
+    if (bits_per_mb_at_this_q <= target_bits_per_mb) {
+      if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
+        q = i;
+      else
+        q = i - 1;
+
+      break;
+    } else {
+      last_error = bits_per_mb_at_this_q - target_bits_per_mb;
+    }
+  } while (++i <= active_worst_quality);
+
+  // In CBR mode, this makes sure q is between oscillating Qs to prevent
+  // resonance.
+  if (cpi->oxcf.rc_mode == VPX_CBR &&
+      (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
+      cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
+    q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
+              VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
+  }
+  return q;
+}
+
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+                              int *low_motion_minq, int *high_motion_minq) {
+  if (gfu_boost > high) {
+    return low_motion_minq[q];
+  } else if (gfu_boost < low) {
+    return high_motion_minq[q];
+  } else {
+    const int gap = high - low;
+    const int offset = high - gfu_boost;
+    const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+    const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+    return low_motion_minq[q] + adjustment;
+  }
+}
+
+static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
+                                 vpx_bit_depth_t bit_depth) {
+  int *kf_low_motion_minq;
+  int *kf_high_motion_minq;
+  ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
+  ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
+  return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
+                            kf_low_motion_minq, kf_high_motion_minq);
+}
+
+static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
+                                 vpx_bit_depth_t bit_depth) {
+  int *arfgf_low_motion_minq;
+  int *arfgf_high_motion_minq;
+  ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
+  ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+  return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
+                            arfgf_low_motion_minq, arfgf_high_motion_minq);
+}
+
+static int calc_active_worst_quality_one_pass_vbr(const VP10_COMP *cpi) {
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const unsigned int curr_frame = cpi->common.current_video_frame;
+  int active_worst_quality;
+
+  if (cpi->common.frame_type == KEY_FRAME) {
+    active_worst_quality =
+        curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
+  } else {
+    if (!rc->is_src_frame_alt_ref &&
+        (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+      active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
+                                             : rc->last_q[INTER_FRAME];
+    } else {
+      active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
+                                             : rc->last_q[INTER_FRAME] * 2;
+    }
+  }
+  return VPXMIN(active_worst_quality, rc->worst_quality);
+}
+
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_one_pass_cbr(const VP10_COMP *cpi) {
+  // Adjust active_worst_quality: If buffer is above the optimal/target level,
+  // bring active_worst_quality down depending on fullness of buffer.
+  // If buffer is below the optimal level, let the active_worst_quality go from
+  // ambient Q (at buffer = optimal level) to worst_quality level
+  // (at buffer = critical level).
+  const VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *rc = &cpi->rc;
+  // Buffer level below which we push active_worst to worst_quality.
+  int64_t critical_level = rc->optimal_buffer_level >> 3;
+  int64_t buff_lvl_step = 0;
+  int adjustment = 0;
+  int active_worst_quality;
+  int ambient_qp;
+  if (cm->frame_type == KEY_FRAME) return rc->worst_quality;
+  // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
+  // for the first few frames following key frame. These are both initialized
+  // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
+  // So for first few frames following key, the qp of that key frame is weighted
+  // into the active_worst_quality setting.
+  ambient_qp = (cm->current_video_frame < 5)
+                   ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
+                            rc->avg_frame_qindex[KEY_FRAME])
+                   : rc->avg_frame_qindex[INTER_FRAME];
+  active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 / 4);
+  if (rc->buffer_level > rc->optimal_buffer_level) {
+    // Adjust down.
+    // Maximum limit for down adjustment, ~30%.
+    int max_adjustment_down = active_worst_quality / 3;
+    if (max_adjustment_down) {
+      buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
+                       max_adjustment_down);
+      if (buff_lvl_step)
+        adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
+                           buff_lvl_step);
+      active_worst_quality -= adjustment;
+    }
+  } else if (rc->buffer_level > critical_level) {
+    // Adjust up from ambient Q.
+    if (critical_level) {
+      buff_lvl_step = (rc->optimal_buffer_level - critical_level);
+      if (buff_lvl_step) {
+        adjustment = (int)((rc->worst_quality - ambient_qp) *
+                           (rc->optimal_buffer_level - rc->buffer_level) /
+                           buff_lvl_step);
+      }
+      active_worst_quality = ambient_qp + adjustment;
+    }
+  } else {
+    // Set to worst_quality if buffer is below critical level.
+    active_worst_quality = rc->worst_quality;
+  }
+  return active_worst_quality;
+}
+
+static int rc_pick_q_and_bounds_one_pass_cbr(const VP10_COMP *cpi,
+                                             int *bottom_index,
+                                             int *top_index) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  int active_best_quality;
+  int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+  int q;
+  int *rtc_minq;
+  ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
+
+  if (frame_is_intra_only(cm)) {
+    active_best_quality = rc->best_quality;
+    // Handle the special case for key frames forced when we have reached
+    // the maximum key frame interval. Here force the Q to a range
+    // based on the ambient Q to reduce the risk of popping.
+    if (rc->this_key_frame_forced) {
+      int qindex = rc->last_boosted_qindex;
+      double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      int delta_qindex = vp10_compute_qdelta(
+          rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
+      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+    } else if (cm->current_video_frame > 0) {
+      // not first frame of one pass and kf_boost is set
+      double q_adj_factor = 1.0;
+      double q_val;
+
+      active_best_quality = get_kf_active_quality(
+          rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+      // Allow somewhat lower kf minq with small image formats.
+      if ((cm->width * cm->height) <= (352 * 288)) {
+        q_adj_factor -= 0.25;
+      }
+
+      // Convert the adjustment factor to a qindex delta
+      // on active_best_quality.
+      q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+      active_best_quality +=
+          vp10_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+    }
+  } else if (!rc->is_src_frame_alt_ref &&
+             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+    // Use the lower of active_worst_quality and recent
+    // average Q as basis for GF/ARF best Q limit unless last frame was
+    // a key frame.
+    if (rc->frames_since_key > 1 &&
+        rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+      q = rc->avg_frame_qindex[INTER_FRAME];
+    } else {
+      q = active_worst_quality;
+    }
+    active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+  } else {
+    // Use the lower of active_worst_quality and recent/average Q.
+    if (cm->current_video_frame > 1) {
+      if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+        active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
+      else
+        active_best_quality = rtc_minq[active_worst_quality];
+    } else {
+      if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
+        active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
+      else
+        active_best_quality = rtc_minq[active_worst_quality];
+    }
+  }
+
+  // Clip the active best and worst quality values to limits
+  active_best_quality =
+      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+  active_worst_quality =
+      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+  *top_index = active_worst_quality;
+  *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+  // Limit Q range for the adaptive loop.
+  if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
+      !(cm->current_video_frame == 0)) {
+    int qdelta = 0;
+    vpx_clear_system_state();
+    qdelta = vp10_compute_qdelta_by_rate(
+        &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
+    *top_index = active_worst_quality + qdelta;
+    *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+  }
+#endif
+
+  // Special case code to try and match quality with forced key frames
+  if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
+    q = rc->last_boosted_qindex;
+  } else {
+    q = vp10_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+                           active_worst_quality);
+    if (q > *top_index) {
+      // Special case when we are targeting the max allowed rate
+      if (rc->this_frame_target >= rc->max_frame_bandwidth)
+        *top_index = q;
+      else
+        q = *top_index;
+    }
+  }
+  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+  assert(*bottom_index <= rc->worst_quality &&
+         *bottom_index >= rc->best_quality);
+  assert(q <= rc->worst_quality && q >= rc->best_quality);
+  return q;
+}
+
+static int get_active_cq_level(const RATE_CONTROL *rc,
+                               const VP10EncoderConfig *const oxcf) {
+  static const double cq_adjust_threshold = 0.1;
+  int active_cq_level = oxcf->cq_level;
+  if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
+    const double x = (double)rc->total_actual_bits / rc->total_target_bits;
+    if (x < cq_adjust_threshold) {
+      active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+    }
+  }
+  return active_cq_level;
+}
+
+static int rc_pick_q_and_bounds_one_pass_vbr(const VP10_COMP *cpi,
+                                             int *bottom_index,
+                                             int *top_index) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  const int cq_level = get_active_cq_level(rc, oxcf);
+  int active_best_quality;
+  int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
+  int q;
+  int *inter_minq;
+  ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+  if (frame_is_intra_only(cm)) {
+    if (oxcf->rc_mode == VPX_Q) {
+      int qindex = cq_level;
+      double q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      int delta_qindex = vp10_compute_qdelta(rc, q, q * 0.25, cm->bit_depth);
+      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+    } else if (rc->this_key_frame_forced) {
+      int qindex = rc->last_boosted_qindex;
+      double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      int delta_qindex = vp10_compute_qdelta(
+          rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
+      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+    } else {
+      // not first frame of one pass and kf_boost is set
+      double q_adj_factor = 1.0;
+      double q_val;
+
+      active_best_quality = get_kf_active_quality(
+          rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+      // Allow somewhat lower kf minq with small image formats.
+      if ((cm->width * cm->height) <= (352 * 288)) {
+        q_adj_factor -= 0.25;
+      }
+
+      // Convert the adjustment factor to a qindex delta
+      // on active_best_quality.
+      q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+      active_best_quality +=
+          vp10_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+    }
+  } else if (!rc->is_src_frame_alt_ref &&
+             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+    // Use the lower of active_worst_quality and recent
+    // average Q as basis for GF/ARF best Q limit unless last frame was
+    // a key frame.
+    if (rc->frames_since_key > 1 &&
+        rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+      q = rc->avg_frame_qindex[INTER_FRAME];
+    } else {
+      q = rc->avg_frame_qindex[KEY_FRAME];
+    }
+    // For constrained quality dont allow Q less than the cq level
+    if (oxcf->rc_mode == VPX_CQ) {
+      if (q < cq_level) q = cq_level;
+
+      active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+      // Constrained quality use slightly lower active best.
+      active_best_quality = active_best_quality * 15 / 16;
+
+    } else if (oxcf->rc_mode == VPX_Q) {
+      int qindex = cq_level;
+      double q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      int delta_qindex;
+      if (cpi->refresh_alt_ref_frame)
+        delta_qindex = vp10_compute_qdelta(rc, q, q * 0.40, cm->bit_depth);
+      else
+        delta_qindex = vp10_compute_qdelta(rc, q, q * 0.50, cm->bit_depth);
+      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+    } else {
+      active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+    }
+  } else {
+    if (oxcf->rc_mode == VPX_Q) {
+      int qindex = cq_level;
+      double q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
+                                               0.70, 1.0, 0.85, 1.0 };
+      int delta_qindex = vp10_compute_qdelta(
+          rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
+          cm->bit_depth);
+      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+    } else {
+      // Use the lower of active_worst_quality and recent/average Q.
+      if (cm->current_video_frame > 1)
+        active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
+      else
+        active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
+      // For the constrained quality mode we don't want
+      // q to fall below the cq level.
+      if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
+        active_best_quality = cq_level;
+      }
+    }
+  }
+
+  // Clip the active best and worst quality values to limits
+  active_best_quality =
+      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+  active_worst_quality =
+      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+  *top_index = active_worst_quality;
+  *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+  {
+    int qdelta = 0;
+    vpx_clear_system_state();
+
+    // Limit Q range for the adaptive loop.
+    if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
+        !(cm->current_video_frame == 0)) {
+      qdelta = vp10_compute_qdelta_by_rate(
+          &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
+    } else if (!rc->is_src_frame_alt_ref &&
+               (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+      qdelta = vp10_compute_qdelta_by_rate(
+          &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
+    }
+    *top_index = active_worst_quality + qdelta;
+    *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+  }
+#endif
+
+  if (oxcf->rc_mode == VPX_Q) {
+    q = active_best_quality;
+    // Special case code to try and match quality with forced key frames
+  } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+    q = rc->last_boosted_qindex;
+  } else {
+    q = vp10_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+                           active_worst_quality);
+    if (q > *top_index) {
+      // Special case when we are targeting the max allowed rate
+      if (rc->this_frame_target >= rc->max_frame_bandwidth)
+        *top_index = q;
+      else
+        q = *top_index;
+    }
+  }
+
+  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+  assert(*bottom_index <= rc->worst_quality &&
+         *bottom_index >= rc->best_quality);
+  assert(q <= rc->worst_quality && q >= rc->best_quality);
+  return q;
+}
+
+int vp10_frame_type_qdelta(const VP10_COMP *cpi, int rf_level, int q) {
+  static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
+    1.00,  // INTER_NORMAL
+    1.00,  // INTER_HIGH
+    1.50,  // GF_ARF_LOW
+    1.75,  // GF_ARF_STD
+    2.00,  // KF_STD
+  };
+  static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = {
+    INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME
+  };
+  const VP10_COMMON *const cm = &cpi->common;
+  int qdelta =
+      vp10_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q,
+                                  rate_factor_deltas[rf_level], cm->bit_depth);
+  return qdelta;
+}
+
+#define STATIC_MOTION_THRESH 95
+static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
+                                         int *bottom_index, int *top_index) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+  const int cq_level = get_active_cq_level(rc, oxcf);
+  int active_best_quality;
+  int active_worst_quality = cpi->twopass.active_worst_quality;
+  int q;
+  int *inter_minq;
+  ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+  if (frame_is_intra_only(cm)) {
+    // Handle the special case for key frames forced when we have reached
+    // the maximum key frame interval. Here force the Q to a range
+    // based on the ambient Q to reduce the risk of popping.
+    if (rc->this_key_frame_forced) {
+      double last_boosted_q;
+      int delta_qindex;
+      int qindex;
+
+      if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+        qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+        active_best_quality = qindex;
+        last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+        delta_qindex = vp10_compute_qdelta(
+            rc, last_boosted_q, last_boosted_q * 1.25, cm->bit_depth);
+        active_worst_quality =
+            VPXMIN(qindex + delta_qindex, active_worst_quality);
+      } else {
+        qindex = rc->last_boosted_qindex;
+        last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+        delta_qindex = vp10_compute_qdelta(
+            rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
+        active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+      }
+    } else {
+      // Not forced keyframe.
+      double q_adj_factor = 1.0;
+      double q_val;
+      // Baseline value derived from cpi->active_worst_quality and kf boost.
+      active_best_quality =
+          get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
+
+      // Allow somewhat lower kf minq with small image formats.
+      if ((cm->width * cm->height) <= (352 * 288)) {
+        q_adj_factor -= 0.25;
+      }
+
+      // Make a further adjustment based on the kf zero motion measure.
+      q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
+
+      // Convert the adjustment factor to a qindex delta
+      // on active_best_quality.
+      q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+      active_best_quality +=
+          vp10_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+    }
+  } else if (!rc->is_src_frame_alt_ref &&
+             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+    // Use the lower of active_worst_quality and recent
+    // average Q as basis for GF/ARF best Q limit unless last frame was
+    // a key frame.
+    if (rc->frames_since_key > 1 &&
+        rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+      q = rc->avg_frame_qindex[INTER_FRAME];
+    } else {
+      q = active_worst_quality;
+    }
+    // For constrained quality dont allow Q less than the cq level
+    if (oxcf->rc_mode == VPX_CQ) {
+      if (q < cq_level) q = cq_level;
+
+      active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+      // Constrained quality use slightly lower active best.
+      active_best_quality = active_best_quality * 15 / 16;
+
+    } else if (oxcf->rc_mode == VPX_Q) {
+      if (!cpi->refresh_alt_ref_frame) {
+        active_best_quality = cq_level;
+      } else {
+        active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+        // Modify best quality for second level arfs. For mode VPX_Q this
+        // becomes the baseline frame q.
+        if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
+          active_best_quality = (active_best_quality + cq_level + 1) / 2;
+      }
+    } else {
+      active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+    }
+  } else {
+    if (oxcf->rc_mode == VPX_Q) {
+      active_best_quality = cq_level;
+    } else {
+      active_best_quality = inter_minq[active_worst_quality];
+
+      // For the constrained quality mode we don't want
+      // q to fall below the cq level.
+      if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
+        active_best_quality = cq_level;
+      }
+    }
+  }
+
+  // Extension to max or min Q if undershoot or overshoot is outside
+  // the permitted range.
+  if ((cpi->oxcf.rc_mode != VPX_Q) &&
+      (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
+    if (frame_is_intra_only(cm) ||
+        (!rc->is_src_frame_alt_ref &&
+         (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
+      active_best_quality -=
+          (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
+      active_worst_quality += (cpi->twopass.extend_maxq / 2);
+    } else {
+      active_best_quality -=
+          (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
+      active_worst_quality += cpi->twopass.extend_maxq;
+    }
+  }
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+  vpx_clear_system_state();
+  // Static forced key frames Q restrictions dealt with elsewhere.
+  if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
+      (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
+    int qdelta = vp10_frame_type_qdelta(
+        cpi, gf_group->rf_level[gf_group->index], active_worst_quality);
+    active_worst_quality =
+        VPXMAX(active_worst_quality + qdelta, active_best_quality);
+  }
+#endif
+
+  // Modify active_best_quality for downscaled normal frames.
+  if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
+    int qdelta = vp10_compute_qdelta_by_rate(
+        rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
+    active_best_quality =
+        VPXMAX(active_best_quality + qdelta, rc->best_quality);
+  }
+
+  active_best_quality =
+      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+  active_worst_quality =
+      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+  if (oxcf->rc_mode == VPX_Q) {
+    q = active_best_quality;
+    // Special case code to try and match quality with forced key frames.
+  } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
+    // If static since last kf use better of last boosted and last kf q.
+    if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+      q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+    } else {
+      q = rc->last_boosted_qindex;
+    }
+  } else {
+    q = vp10_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+                           active_worst_quality);
+    if (q > active_worst_quality) {
+      // Special case when we are targeting the max allowed rate.
+      if (rc->this_frame_target >= rc->max_frame_bandwidth)
+        active_worst_quality = q;
+      else
+        q = active_worst_quality;
+    }
+  }
+  clamp(q, active_best_quality, active_worst_quality);
+
+  *top_index = active_worst_quality;
+  *bottom_index = active_best_quality;
+
+  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+  assert(*bottom_index <= rc->worst_quality &&
+         *bottom_index >= rc->best_quality);
+  assert(q <= rc->worst_quality && q >= rc->best_quality);
+  return q;
+}
+
+int vp10_rc_pick_q_and_bounds(const VP10_COMP *cpi, int *bottom_index,
+                              int *top_index) {
+  int q;
+  if (cpi->oxcf.pass == 0) {
+    if (cpi->oxcf.rc_mode == VPX_CBR)
+      q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
+    else
+      q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
+  } else {
+    q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
+  }
+
+  return q;
+}
+
+void vp10_rc_compute_frame_size_bounds(const VP10_COMP *cpi, int frame_target,
+                                       int *frame_under_shoot_limit,
+                                       int *frame_over_shoot_limit) {
+  if (cpi->oxcf.rc_mode == VPX_Q) {
+    *frame_under_shoot_limit = 0;
+    *frame_over_shoot_limit = INT_MAX;
+  } else {
+    // For very small rate targets where the fractional adjustment
+    // may be tiny make sure there is at least a minimum range.
+    const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
+    *frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0);
+    *frame_over_shoot_limit =
+        VPXMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
+  }
+}
+
+void vp10_rc_set_frame_target(VP10_COMP *cpi, int target) {
+  const VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  rc->this_frame_target = target;
+
+  // Modify frame size target when down-scaling.
+  if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
+      rc->frame_size_selector != UNSCALED)
+    rc->this_frame_target = (int)(rc->this_frame_target *
+                                  rate_thresh_mult[rc->frame_size_selector]);
+
+  // Target rate per SB64 (including partial SB64s.
+  rc->sb64_target_rate =
+      ((int64_t)rc->this_frame_target * 64 * 64) / (cm->width * cm->height);
+}
+
+static void update_alt_ref_frame_stats(VP10_COMP *cpi) {
+  // this frame refreshes means next frames don't unless specified by user
+  RATE_CONTROL *const rc = &cpi->rc;
+  rc->frames_since_golden = 0;
+
+  // Mark the alt ref as done (setting to 0 means no further alt refs pending).
+  rc->source_alt_ref_pending = 0;
+
+  // Set the alternate reference frame active flag
+  rc->source_alt_ref_active = 1;
+}
+
+static void update_golden_frame_stats(VP10_COMP *cpi) {
+  RATE_CONTROL *const rc = &cpi->rc;
+
+  // Update the Golden frame usage counts.
+  if (cpi->refresh_golden_frame) {
+    // this frame refreshes means next frames don't unless specified by user
+    rc->frames_since_golden = 0;
+
+    // If we are not using alt ref in the up and coming group clear the arf
+    // active flag. In multi arf group case, if the index is not 0 then
+    // we are overlaying a mid group arf so should not reset the flag.
+    if (cpi->oxcf.pass == 2) {
+      if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
+        rc->source_alt_ref_active = 0;
+    } else if (!rc->source_alt_ref_pending) {
+      rc->source_alt_ref_active = 0;
+    }
+
+    // Decrement count down till next gf
+    if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+  } else if (!cpi->refresh_alt_ref_frame) {
+    // Decrement count down till next gf
+    if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+    rc->frames_since_golden++;
+  }
+}
+
+void vp10_rc_postencode_update(VP10_COMP *cpi, uint64_t bytes_used) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  RATE_CONTROL *const rc = &cpi->rc;
+  const int qindex = cm->base_qindex;
+
+  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+    vp10_cyclic_refresh_postencode(cpi);
+  }
+
+  // Update rate control heuristics
+  rc->projected_frame_size = (int)(bytes_used << 3);
+
+  // Post encode loop adjustment of Q prediction.
+  vp10_rc_update_rate_correction_factors(cpi);
+
+  // Keep a record of last Q and ambient average Q.
+  if (cm->frame_type == KEY_FRAME) {
+    rc->last_q[KEY_FRAME] = qindex;
+    rc->avg_frame_qindex[KEY_FRAME] =
+        ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+  } else {
+    if (!rc->is_src_frame_alt_ref &&
+        !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+      rc->last_q[INTER_FRAME] = qindex;
+      rc->avg_frame_qindex[INTER_FRAME] =
+          ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+      rc->ni_frames++;
+      rc->tot_q += vp10_convert_qindex_to_q(qindex, cm->bit_depth);
+      rc->avg_q = rc->tot_q / rc->ni_frames;
+      // Calculate the average Q for normal inter frames (not key or GFU
+      // frames).
+      rc->ni_tot_qi += qindex;
+      rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
+    }
+  }
+
+  // Keep record of last boosted (KF/KF/ARF) Q value.
+  // If the current frame is coded at a lower Q then we also update it.
+  // If all mbs in this group are skipped only update if the Q value is
+  // better than that already stored.
+  // This is used to help set quality in forced key frames to reduce popping
+  if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
+      (!rc->constrained_gf_group &&
+       (cpi->refresh_alt_ref_frame ||
+        (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+    rc->last_boosted_qindex = qindex;
+  }
+  if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
+
+  update_buffer_level(cpi, rc->projected_frame_size);
+
+  // Rolling monitors of whether we are over or underspending used to help
+  // regulate min and Max Q in two pass.
+  if (cm->frame_type != KEY_FRAME) {
+    rc->rolling_target_bits = ROUND_POWER_OF_TWO(
+        rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+    rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
+        rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+    rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
+        rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
+    rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
+        rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
+  }
+
+  // Actual bits spent
+  rc->total_actual_bits += rc->projected_frame_size;
+  rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+
+  rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
+
+  if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
+      (cm->frame_type != KEY_FRAME))
+    // Update the alternate reference frame stats as appropriate.
+    update_alt_ref_frame_stats(cpi);
+  else
+    // Update the Golden frame stats as appropriate.
+    update_golden_frame_stats(cpi);
+
+  if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0;
+  if (cm->show_frame) {
+    rc->frames_since_key++;
+    rc->frames_to_key--;
+  }
+
+  // Trigger the resizing of the next frame if it is scaled.
+  if (oxcf->pass != 0) {
+    cpi->resize_pending =
+        rc->next_frame_size_selector != rc->frame_size_selector;
+    rc->frame_size_selector = rc->next_frame_size_selector;
+  }
+}
+
+void vp10_rc_postencode_update_drop_frame(VP10_COMP *cpi) {
+  // Update buffer level with zero size, update frame counters, and return.
+  update_buffer_level(cpi, 0);
+  cpi->rc.frames_since_key++;
+  cpi->rc.frames_to_key--;
+  cpi->rc.rc_2_frame = 0;
+  cpi->rc.rc_1_frame = 0;
+}
+
+// Use this macro to turn on/off use of alt-refs in one-pass mode.
+#define USE_ALTREF_FOR_ONE_PASS 1
+
+static int calc_pframe_target_size_one_pass_vbr(const VP10_COMP *const cpi) {
+  static const int af_ratio = 10;
+  const RATE_CONTROL *const rc = &cpi->rc;
+  int target;
+#if USE_ALTREF_FOR_ONE_PASS
+  target =
+      (!rc->is_src_frame_alt_ref &&
+       (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
+          ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
+                (rc->baseline_gf_interval + af_ratio - 1)
+          : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
+                (rc->baseline_gf_interval + af_ratio - 1);
+#else
+  target = rc->avg_frame_bandwidth;
+#endif
+  return vp10_rc_clamp_pframe_target_size(cpi, target);
+}
+
+static int calc_iframe_target_size_one_pass_vbr(const VP10_COMP *const cpi) {
+  static const int kf_ratio = 25;
+  const RATE_CONTROL *rc = &cpi->rc;
+  const int target = rc->avg_frame_bandwidth * kf_ratio;
+  return vp10_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void vp10_rc_get_one_pass_vbr_params(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  int target;
+  // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+  if (!cpi->refresh_alt_ref_frame &&
+      (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+       rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
+    cm->frame_type = KEY_FRAME;
+    rc->this_key_frame_forced =
+        cm->current_video_frame != 0 && rc->frames_to_key == 0;
+    rc->frames_to_key = cpi->oxcf.key_freq;
+    rc->kf_boost = DEFAULT_KF_BOOST;
+    rc->source_alt_ref_active = 0;
+  } else {
+    cm->frame_type = INTER_FRAME;
+  }
+  if (rc->frames_till_gf_update_due == 0) {
+    rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
+    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+    // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+    if (rc->frames_till_gf_update_due > rc->frames_to_key) {
+      rc->frames_till_gf_update_due = rc->frames_to_key;
+      rc->constrained_gf_group = 1;
+    } else {
+      rc->constrained_gf_group = 0;
+    }
+    cpi->refresh_golden_frame = 1;
+    rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
+    rc->gfu_boost = DEFAULT_GF_BOOST;
+  }
+  if (cm->frame_type == KEY_FRAME)
+    target = calc_iframe_target_size_one_pass_vbr(cpi);
+  else
+    target = calc_pframe_target_size_one_pass_vbr(cpi);
+  vp10_rc_set_frame_target(cpi, target);
+}
+
+static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
+  const VP10EncoderConfig *oxcf = &cpi->oxcf;
+  const RATE_CONTROL *rc = &cpi->rc;
+  const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
+  const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
+  int min_frame_target =
+      VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+  int target;
+
+  if (oxcf->gf_cbr_boost_pct) {
+    const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
+    target = cpi->refresh_golden_frame
+                 ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
+                    af_ratio_pct) /
+                       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
+                 : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
+                       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+  } else {
+    target = rc->avg_frame_bandwidth;
+  }
+
+  if (diff > 0) {
+    // Lower the target bandwidth for this frame.
+    const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
+    target -= (target * pct_low) / 200;
+  } else if (diff < 0) {
+    // Increase the target bandwidth for this frame.
+    const int pct_high =
+        (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
+    target += (target * pct_high) / 200;
+  }
+  if (oxcf->rc_max_inter_bitrate_pct) {
+    const int max_rate =
+        rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+    target = VPXMIN(target, max_rate);
+  }
+  return VPXMAX(min_frame_target, target);
+}
+
+static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
+  const RATE_CONTROL *rc = &cpi->rc;
+  int target;
+  if (cpi->common.current_video_frame == 0) {
+    target = ((rc->starting_buffer_level / 2) > INT_MAX)
+                 ? INT_MAX
+                 : (int)(rc->starting_buffer_level / 2);
+  } else {
+    int kf_boost = 32;
+    double framerate = cpi->framerate;
+
+    kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
+    if (rc->frames_since_key < framerate / 2) {
+      kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
+    }
+    target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+  }
+  return vp10_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void vp10_rc_get_one_pass_cbr_params(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  int target;
+  // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+  if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+       rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
+    cm->frame_type = KEY_FRAME;
+    rc->this_key_frame_forced =
+        cm->current_video_frame != 0 && rc->frames_to_key == 0;
+    rc->frames_to_key = cpi->oxcf.key_freq;
+    rc->kf_boost = DEFAULT_KF_BOOST;
+    rc->source_alt_ref_active = 0;
+  } else {
+    cm->frame_type = INTER_FRAME;
+  }
+  if (rc->frames_till_gf_update_due == 0) {
+    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+      vp10_cyclic_refresh_set_golden_update(cpi);
+    else
+      rc->baseline_gf_interval =
+          (rc->min_gf_interval + rc->max_gf_interval) / 2;
+    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+    // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+    if (rc->frames_till_gf_update_due > rc->frames_to_key)
+      rc->frames_till_gf_update_due = rc->frames_to_key;
+    cpi->refresh_golden_frame = 1;
+    rc->gfu_boost = DEFAULT_GF_BOOST;
+  }
+
+  // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+  // should be done here, before the frame qp is selected.
+  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+    vp10_cyclic_refresh_update_parameters(cpi);
+
+  if (cm->frame_type == KEY_FRAME)
+    target = calc_iframe_target_size_one_pass_cbr(cpi);
+  else
+    target = calc_pframe_target_size_one_pass_cbr(cpi);
+
+  vp10_rc_set_frame_target(cpi, target);
+  if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
+    cpi->resize_pending = vp10_resize_one_pass_cbr(cpi);
+  else
+    cpi->resize_pending = 0;
+}
+
+int vp10_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+                        vpx_bit_depth_t bit_depth) {
+  int start_index = rc->worst_quality;
+  int target_index = rc->worst_quality;
+  int i;
+
+  // Convert the average q value to an index.
+  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+    start_index = i;
+    if (vp10_convert_qindex_to_q(i, bit_depth) >= qstart) break;
+  }
+
+  // Convert the q target to an index
+  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+    target_index = i;
+    if (vp10_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
+  }
+
+  return target_index - start_index;
+}
+
+int vp10_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+                                int qindex, double rate_target_ratio,
+                                vpx_bit_depth_t bit_depth) {
+  int target_index = rc->worst_quality;
+  int i;
+
+  // Look up the current projected bits per block for the base index
+  const int base_bits_per_mb =
+      vp10_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
+
+  // Find the target bits per mb based on the base value and given ratio.
+  const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+  // Convert the q target to an index
+  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+    if (vp10_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
+        target_bits_per_mb) {
+      target_index = i;
+      break;
+    }
+  }
+  return target_index - qindex;
+}
+
+void vp10_rc_set_gf_interval_range(const VP10_COMP *const cpi,
+                                   RATE_CONTROL *const rc) {
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+
+  // Special case code for 1 pass fixed Q mode tests
+  if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
+    rc->max_gf_interval = FIXED_GF_INTERVAL;
+    rc->min_gf_interval = FIXED_GF_INTERVAL;
+    rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
+  } else {
+    // Set Maximum gf/arf interval
+    rc->max_gf_interval = oxcf->max_gf_interval;
+    rc->min_gf_interval = oxcf->min_gf_interval;
+    if (rc->min_gf_interval == 0)
+      rc->min_gf_interval = vp10_rc_get_default_min_gf_interval(
+          oxcf->width, oxcf->height, cpi->framerate);
+    if (rc->max_gf_interval == 0)
+      rc->max_gf_interval = vp10_rc_get_default_max_gf_interval(
+          cpi->framerate, rc->min_gf_interval);
+
+    // Extended interval for genuinely static scenes
+    rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
+
+    if (is_altref_enabled(cpi)) {
+      if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
+        rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
+    }
+
+    if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+      rc->max_gf_interval = rc->static_scene_max_gf_interval;
+
+    // Clamp min to max
+    rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
+  }
+}
+
+void vp10_rc_update_framerate(VP10_COMP *cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  RATE_CONTROL *const rc = &cpi->rc;
+  int vbr_max_bits;
+
+  rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
+  rc->min_frame_bandwidth =
+      (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
+
+  rc->min_frame_bandwidth =
+      VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+  // A maximum bitrate for a frame is defined.
+  // The baseline for this aligns with HW implementations that
+  // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
+  // per 16x16 MB (averaged over a frame). However this limit is extended if
+  // a very high rate is given on the command line or the the rate cannnot
+  // be acheived because of a user specificed max q (e.g. when the user
+  // specifies lossless encode.
+  vbr_max_bits =
+      (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
+            100);
+  rc->max_frame_bandwidth =
+      VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
+
+  vp10_rc_set_gf_interval_range(cpi, rc);
+}
+
+#define VBR_PCT_ADJUSTMENT_LIMIT 50
+// For VBR...adjustment to the frame target based on error from previous frames
+static void vbr_rate_correction(VP10_COMP *cpi, int *this_frame_target) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
+  int max_delta;
+  double position_factor = 1.0;
+
+  // How far through the clip are we.
+  // This number is used to damp the per frame rate correction.
+  // Range 0 - 1.0
+  if (cpi->twopass.total_stats.count) {
+    position_factor = sqrt((double)cpi->common.current_video_frame /
+                           cpi->twopass.total_stats.count);
+  }
+  max_delta = (int)(position_factor *
+                    ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
+
+  // vbr_bits_off_target > 0 means we have extra bits to spend
+  if (vbr_bits_off_target > 0) {
+    *this_frame_target += (vbr_bits_off_target > max_delta)
+                              ? max_delta
+                              : (int)vbr_bits_off_target;
+  } else {
+    *this_frame_target -= (vbr_bits_off_target < -max_delta)
+                              ? max_delta
+                              : (int)-vbr_bits_off_target;
+  }
+
+  // Fast redistribution of bits arising from massive local undershoot.
+  // Dont do it for kf,arf,gf or overlay frames.
+  if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
+      rc->vbr_bits_off_target_fast) {
+    int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
+    int fast_extra_bits;
+    fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
+    fast_extra_bits = (int)VPXMIN(
+        fast_extra_bits,
+        VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
+    *this_frame_target += (int)fast_extra_bits;
+    rc->vbr_bits_off_target_fast -= fast_extra_bits;
+  }
+}
+
+void vp10_set_target_rate(VP10_COMP *cpi) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  int target_rate = rc->base_frame_target;
+
+  // Correction to rate target based on prior over or under shoot.
+  if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
+    vbr_rate_correction(cpi, &target_rate);
+  vp10_rc_set_frame_target(cpi, target_rate);
+}
+
+// Check if we should resize, based on average QP from past x frames.
+// Only allow for resize at most one scale down for now, scaling factor is 2.
+int vp10_resize_one_pass_cbr(VP10_COMP *cpi) {
+  const VP10_COMMON *const cm = &cpi->common;
+  RATE_CONTROL *const rc = &cpi->rc;
+  int resize_now = 0;
+  cpi->resize_scale_num = 1;
+  cpi->resize_scale_den = 1;
+  // Don't resize on key frame; reset the counters on key frame.
+  if (cm->frame_type == KEY_FRAME) {
+    cpi->resize_avg_qp = 0;
+    cpi->resize_count = 0;
+    return 0;
+  }
+  // Resize based on average buffer underflow and QP over some window.
+  // Ignore samples close to key frame, since QP is usually high after key.
+  if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
+    const int window = (int)(5 * cpi->framerate);
+    cpi->resize_avg_qp += cm->base_qindex;
+    if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
+      ++cpi->resize_buffer_underflow;
+    ++cpi->resize_count;
+    // Check for resize action every "window" frames.
+    if (cpi->resize_count >= window) {
+      int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
+      // Resize down if buffer level has underflowed sufficent amount in past
+      // window, and we are at original resolution.
+      // Resize back up if average QP is low, and we are currently in a resized
+      // down state.
+      if (cpi->resize_state == 0 &&
+          cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
+        resize_now = 1;
+        cpi->resize_state = 1;
+      } else if (cpi->resize_state == 1 &&
+                 avg_qp < 40 * cpi->rc.worst_quality / 100) {
+        resize_now = -1;
+        cpi->resize_state = 0;
+      }
+      // Reset for next window measurement.
+      cpi->resize_avg_qp = 0;
+      cpi->resize_count = 0;
+      cpi->resize_buffer_underflow = 0;
+    }
+  }
+  // If decision is to resize, reset some quantities, and check is we should
+  // reduce rate correction factor,
+  if (resize_now != 0) {
+    int target_bits_per_frame;
+    int active_worst_quality;
+    int qindex;
+    int tot_scale_change;
+    // For now, resize is by 1/2 x 1/2.
+    cpi->resize_scale_num = 1;
+    cpi->resize_scale_den = 2;
+    tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
+                       (cpi->resize_scale_num * cpi->resize_scale_num);
+    // Reset buffer level to optimal, update target size.
+    rc->buffer_level = rc->optimal_buffer_level;
+    rc->bits_off_target = rc->optimal_buffer_level;
+    rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
+    // Reset cyclic refresh parameters.
+    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
+      vp10_cyclic_refresh_reset_resize(cpi);
+    // Get the projected qindex, based on the scaled target frame size (scaled
+    // so target_bits_per_mb in vp10_rc_regulate_q will be correct target).
+    target_bits_per_frame = (resize_now == 1)
+                                ? rc->this_frame_target * tot_scale_change
+                                : rc->this_frame_target / tot_scale_change;
+    active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+    qindex = vp10_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
+                                active_worst_quality);
+    // If resize is down, check if projected q index is close to worst_quality,
+    // and if so, reduce the rate correction factor (since likely can afford
+    // lower q for resized frame).
+    if (resize_now == 1 && qindex > 90 * cpi->rc.worst_quality / 100) {
+      rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
+    }
+    // If resize is back up, check if projected q index is too much above the
+    // current base_qindex, and if so, reduce the rate correction factor
+    // (since prefer to keep q for resized frame at least close to previous q).
+    if (resize_now == -1 && qindex > 130 * cm->base_qindex / 100) {
+      rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
+    }
+  }
+  return resize_now;
+}
diff --git a/av1/encoder/ratectrl.h b/av1/encoder/ratectrl.h
new file mode 100644
index 0000000..cdb9973
--- /dev/null
+++ b/av1/encoder/ratectrl.h
@@ -0,0 +1,261 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_RATECTRL_H_
+#define VP10_ENCODER_RATECTRL_H_
+
+#include "aom/vpx_codec.h"
+#include "aom/vpx_integer.h"
+
+#include "av1/common/blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// Bits Per MB at different Q (Multiplied by 512)
+#define BPER_MB_NORMBITS 9
+
+#define MIN_GF_INTERVAL 4
+#define MAX_GF_INTERVAL 16
+#define FIXED_GF_INTERVAL 8  // Used in some testing modes only
+
+typedef enum {
+  INTER_NORMAL = 0,
+  INTER_HIGH = 1,
+  GF_ARF_LOW = 2,
+  GF_ARF_STD = 3,
+  KF_STD = 4,
+  RATE_FACTOR_LEVELS = 5
+} RATE_FACTOR_LEVEL;
+
+// Internal frame scaling level.
+typedef enum {
+  UNSCALED = 0,     // Frame is unscaled.
+  SCALE_STEP1 = 1,  // First-level down-scaling.
+  FRAME_SCALE_STEPS
+} FRAME_SCALE_LEVEL;
+
+// Frame dimensions multiplier wrt the native frame size, in 1/16ths,
+// specified for the scale-up case.
+// e.g. 24 => 16/24 = 2/3 of native size. The restriction to 1/16th is
+// intended to match the capabilities of the normative scaling filters,
+// giving precedence to the up-scaling accuracy.
+static const int frame_scale_factor[FRAME_SCALE_STEPS] = { 16, 24 };
+
+// Multiplier of the target rate to be used as threshold for triggering scaling.
+static const double rate_thresh_mult[FRAME_SCALE_STEPS] = { 1.0, 2.0 };
+
+// Scale dependent Rate Correction Factor multipliers. Compensates for the
+// greater number of bits per pixel generated in down-scaled frames.
+static const double rcf_mult[FRAME_SCALE_STEPS] = { 1.0, 2.0 };
+
+typedef struct {
+  // Rate targetting variables
+  int base_frame_target;  // A baseline frame target before adjustment
+                          // for previous under or over shoot.
+  int this_frame_target;  // Actual frame target after rc adjustment.
+  int projected_frame_size;
+  int sb64_target_rate;
+  int last_q[FRAME_TYPES];  // Separate values for Intra/Inter
+  int last_boosted_qindex;  // Last boosted GF/KF/ARF q
+  int last_kf_qindex;       // Q index of the last key frame coded.
+
+  int gfu_boost;
+  int last_boost;
+  int kf_boost;
+
+  double rate_correction_factors[RATE_FACTOR_LEVELS];
+
+  int frames_since_golden;
+  int frames_till_gf_update_due;
+  int min_gf_interval;
+  int max_gf_interval;
+  int static_scene_max_gf_interval;
+  int baseline_gf_interval;
+  int constrained_gf_group;
+  int frames_to_key;
+  int frames_since_key;
+  int this_key_frame_forced;
+  int next_key_frame_forced;
+  int source_alt_ref_pending;
+  int source_alt_ref_active;
+  int is_src_frame_alt_ref;
+
+  int avg_frame_bandwidth;  // Average frame size target for clip
+  int min_frame_bandwidth;  // Minimum allocation used for any frame
+  int max_frame_bandwidth;  // Maximum burst rate allowed for a frame.
+
+  int ni_av_qi;
+  int ni_tot_qi;
+  int ni_frames;
+  int avg_frame_qindex[FRAME_TYPES];
+  double tot_q;
+  double avg_q;
+
+  int64_t buffer_level;
+  int64_t bits_off_target;
+  int64_t vbr_bits_off_target;
+  int64_t vbr_bits_off_target_fast;
+
+  int decimation_factor;
+  int decimation_count;
+
+  int rolling_target_bits;
+  int rolling_actual_bits;
+
+  int long_rolling_target_bits;
+  int long_rolling_actual_bits;
+
+  int rate_error_estimate;
+
+  int64_t total_actual_bits;
+  int64_t total_target_bits;
+  int64_t total_target_vs_actual;
+
+  int worst_quality;
+  int best_quality;
+
+  int64_t starting_buffer_level;
+  int64_t optimal_buffer_level;
+  int64_t maximum_buffer_size;
+
+  // rate control history for last frame(1) and the frame before(2).
+  // -1: undershot
+  //  1: overshoot
+  //  0: not initialized.
+  int rc_1_frame;
+  int rc_2_frame;
+  int q_1_frame;
+  int q_2_frame;
+
+  // Auto frame-scaling variables.
+  FRAME_SCALE_LEVEL frame_size_selector;
+  FRAME_SCALE_LEVEL next_frame_size_selector;
+  int frame_width[FRAME_SCALE_STEPS];
+  int frame_height[FRAME_SCALE_STEPS];
+  int rf_level_maxq[RATE_FACTOR_LEVELS];
+} RATE_CONTROL;
+
+struct VP10_COMP;
+struct VP10EncoderConfig;
+
+void vp10_rc_init(const struct VP10EncoderConfig *oxcf, int pass,
+                  RATE_CONTROL *rc);
+
+int vp10_estimate_bits_at_q(FRAME_TYPE frame_kind, int q, int mbs,
+                            double correction_factor,
+                            vpx_bit_depth_t bit_depth);
+
+double vp10_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth);
+
+void vp10_rc_init_minq_luts(void);
+
+int vp10_rc_get_default_min_gf_interval(int width, int height,
+                                        double framerate);
+// Note vp10_rc_get_default_max_gf_interval() requires the min_gf_interval to
+// be passed in to ensure that the max_gf_interval returned is at least as bis
+// as that.
+int vp10_rc_get_default_max_gf_interval(double framerate, int min_frame_rate);
+
+// Generally at the high level, the following flow is expected
+// to be enforced for rate control:
+// First call per frame, one of:
+//   vp10_rc_get_one_pass_vbr_params()
+//   vp10_rc_get_one_pass_cbr_params()
+//   vp10_rc_get_first_pass_params()
+//   vp10_rc_get_second_pass_params()
+// depending on the usage to set the rate control encode parameters desired.
+//
+// Then, call encode_frame_to_data_rate() to perform the
+// actual encode. This function will in turn call encode_frame()
+// one or more times, followed by one of:
+//   vp10_rc_postencode_update()
+//   vp10_rc_postencode_update_drop_frame()
+//
+// The majority of rate control parameters are only expected
+// to be set in the vp10_rc_get_..._params() functions and
+// updated during the vp10_rc_postencode_update...() functions.
+// The only exceptions are vp10_rc_drop_frame() and
+// vp10_rc_update_rate_correction_factors() functions.
+
+// Functions to set parameters for encoding before the actual
+// encode_frame_to_data_rate() function.
+void vp10_rc_get_one_pass_vbr_params(struct VP10_COMP *cpi);
+void vp10_rc_get_one_pass_cbr_params(struct VP10_COMP *cpi);
+
+// Post encode update of the rate control parameters based
+// on bytes used
+void vp10_rc_postencode_update(struct VP10_COMP *cpi, uint64_t bytes_used);
+// Post encode update of the rate control parameters for dropped frames
+void vp10_rc_postencode_update_drop_frame(struct VP10_COMP *cpi);
+
+// Updates rate correction factors
+// Changes only the rate correction factors in the rate control structure.
+void vp10_rc_update_rate_correction_factors(struct VP10_COMP *cpi);
+
+// Decide if we should drop this frame: For 1-pass CBR.
+// Changes only the decimation count in the rate control structure
+int vp10_rc_drop_frame(struct VP10_COMP *cpi);
+
+// Computes frame size bounds.
+void vp10_rc_compute_frame_size_bounds(const struct VP10_COMP *cpi,
+                                       int this_frame_target,
+                                       int *frame_under_shoot_limit,
+                                       int *frame_over_shoot_limit);
+
+// Picks q and q bounds given the target for bits
+int vp10_rc_pick_q_and_bounds(const struct VP10_COMP *cpi, int *bottom_index,
+                              int *top_index);
+
+// Estimates q to achieve a target bits per frame
+int vp10_rc_regulate_q(const struct VP10_COMP *cpi, int target_bits_per_frame,
+                       int active_best_quality, int active_worst_quality);
+
+// Estimates bits per mb for a given qindex and correction factor.
+int vp10_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+                        double correction_factor, vpx_bit_depth_t bit_depth);
+
+// Clamping utilities for bitrate targets for iframes and pframes.
+int vp10_rc_clamp_iframe_target_size(const struct VP10_COMP *const cpi,
+                                     int target);
+int vp10_rc_clamp_pframe_target_size(const struct VP10_COMP *const cpi,
+                                     int target);
+// Utility to set frame_target into the RATE_CONTROL structure
+// This function is called only from the vp10_rc_get_..._params() functions.
+void vp10_rc_set_frame_target(struct VP10_COMP *cpi, int target);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a target q value
+int vp10_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+                        vpx_bit_depth_t bit_depth);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a value that should equate to the given rate ratio.
+int vp10_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+                                int qindex, double rate_target_ratio,
+                                vpx_bit_depth_t bit_depth);
+
+int vp10_frame_type_qdelta(const struct VP10_COMP *cpi, int rf_level, int q);
+
+void vp10_rc_update_framerate(struct VP10_COMP *cpi);
+
+void vp10_rc_set_gf_interval_range(const struct VP10_COMP *const cpi,
+                                   RATE_CONTROL *const rc);
+
+void vp10_set_target_rate(struct VP10_COMP *cpi);
+
+int vp10_resize_one_pass_cbr(struct VP10_COMP *cpi);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_RATECTRL_H_
diff --git a/av1/encoder/rd.c b/av1/encoder/rd.c
new file mode 100644
index 0000000..1352f07
--- /dev/null
+++ b/av1/encoder/rd.c
@@ -0,0 +1,636 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp10_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/bitops.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/tokenize.h"
+
+#define RD_THRESH_POW 1.25
+
+// Factor to weigh the rate for switchable interp filters.
+#define SWITCHABLE_INTERP_RATE_FACTOR 1
+
+void vp10_rd_cost_reset(RD_COST *rd_cost) {
+  rd_cost->rate = INT_MAX;
+  rd_cost->dist = INT64_MAX;
+  rd_cost->rdcost = INT64_MAX;
+}
+
+void vp10_rd_cost_init(RD_COST *rd_cost) {
+  rd_cost->rate = 0;
+  rd_cost->dist = 0;
+  rd_cost->rdcost = 0;
+}
+
+// The baseline rd thresholds for breaking out of the rd loop for
+// certain modes are assumed to be based on 8x8 blocks.
+// This table is used to correct for block size.
+// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
+static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
+  2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
+};
+
+static void fill_mode_costs(VP10_COMP *cpi) {
+  const FRAME_CONTEXT *const fc = cpi->common.fc;
+  int i, j;
+
+  for (i = 0; i < INTRA_MODES; ++i)
+    for (j = 0; j < INTRA_MODES; ++j)
+      vp10_cost_tokens(cpi->y_mode_costs[i][j], vp10_kf_y_mode_prob[i][j],
+                       vp10_intra_mode_tree);
+
+  vp10_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp10_intra_mode_tree);
+  for (i = 0; i < INTRA_MODES; ++i)
+    vp10_cost_tokens(cpi->intra_uv_mode_cost[i], fc->uv_mode_prob[i],
+                     vp10_intra_mode_tree);
+
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+    vp10_cost_tokens(cpi->switchable_interp_costs[i],
+                     fc->switchable_interp_prob[i],
+                     vp10_switchable_interp_tree);
+
+  for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+    for (j = 0; j < TX_TYPES; ++j)
+      vp10_cost_tokens(cpi->intra_tx_type_costs[i][j],
+                       fc->intra_ext_tx_prob[i][j], vp10_ext_tx_tree);
+  }
+  for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+    vp10_cost_tokens(cpi->inter_tx_type_costs[i], fc->inter_ext_tx_prob[i],
+                     vp10_ext_tx_tree);
+  }
+}
+
+static void fill_token_costs(vp10_coeff_cost *c,
+                             vp10_coeff_probs_model (*p)[PLANE_TYPES]) {
+  int i, j, k, l;
+  TX_SIZE t;
+  for (t = TX_4X4; t <= TX_32X32; ++t)
+    for (i = 0; i < PLANE_TYPES; ++i)
+      for (j = 0; j < REF_TYPES; ++j)
+        for (k = 0; k < COEF_BANDS; ++k)
+          for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+            vpx_prob probs[ENTROPY_NODES];
+            vp10_model_to_full_probs(p[t][i][j][k][l], probs);
+            vp10_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp10_coef_tree);
+            vp10_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
+                                  vp10_coef_tree);
+            assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
+                   c[t][i][j][k][1][l][EOB_TOKEN]);
+          }
+}
+
+// Values are now correlated to quantizer.
+static int sad_per_bit16lut_8[QINDEX_RANGE];
+static int sad_per_bit4lut_8[QINDEX_RANGE];
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static int sad_per_bit16lut_10[QINDEX_RANGE];
+static int sad_per_bit4lut_10[QINDEX_RANGE];
+static int sad_per_bit16lut_12[QINDEX_RANGE];
+static int sad_per_bit4lut_12[QINDEX_RANGE];
+#endif
+
+static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
+                            vpx_bit_depth_t bit_depth) {
+  int i;
+  // Initialize the sad lut tables using a formulaic calculation for now.
+  // This is to make it easier to resolve the impact of experimental changes
+  // to the quantizer tables.
+  for (i = 0; i < range; i++) {
+    const double q = vp10_convert_qindex_to_q(i, bit_depth);
+    bit16lut[i] = (int)(0.0418 * q + 2.4107);
+    bit4lut[i] = (int)(0.063 * q + 2.742);
+  }
+}
+
+void vp10_init_me_luts(void) {
+  init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
+                  VPX_BITS_8);
+#if CONFIG_VPX_HIGHBITDEPTH
+  init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
+                  VPX_BITS_10);
+  init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
+                  VPX_BITS_12);
+#endif
+}
+
+static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
+                                         8,  8,  4,  4,  2,  2,  1,  0 };
+static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128,
+                                                              128, 144 };
+
+int vp10_compute_rd_mult(const VP10_COMP *cpi, int qindex) {
+  const int64_t q = vp10_dc_quant(qindex, 0, cpi->common.bit_depth);
+#if CONFIG_VPX_HIGHBITDEPTH
+  int64_t rdmult = 0;
+  switch (cpi->common.bit_depth) {
+    case VPX_BITS_8: rdmult = 88 * q * q / 24; break;
+    case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break;
+    case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break;
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+      return -1;
+  }
+#else
+  int64_t rdmult = 88 * q * q / 24;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
+    const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+    const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
+    const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100));
+
+    rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
+    rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
+  }
+  if (rdmult < 1) rdmult = 1;
+  return (int)rdmult;
+}
+
+static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
+  double q;
+#if CONFIG_VPX_HIGHBITDEPTH
+  switch (bit_depth) {
+    case VPX_BITS_8: q = vp10_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break;
+    case VPX_BITS_10: q = vp10_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break;
+    case VPX_BITS_12: q = vp10_dc_quant(qindex, 0, VPX_BITS_12) / 64.0; break;
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+      return -1;
+  }
+#else
+  (void)bit_depth;
+  q = vp10_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  // TODO(debargha): Adjust the function below.
+  return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
+}
+
+void vp10_initialize_me_consts(VP10_COMP *cpi, MACROBLOCK *x, int qindex) {
+#if CONFIG_VPX_HIGHBITDEPTH
+  switch (cpi->common.bit_depth) {
+    case VPX_BITS_8:
+      x->sadperbit16 = sad_per_bit16lut_8[qindex];
+      x->sadperbit4 = sad_per_bit4lut_8[qindex];
+      break;
+    case VPX_BITS_10:
+      x->sadperbit16 = sad_per_bit16lut_10[qindex];
+      x->sadperbit4 = sad_per_bit4lut_10[qindex];
+      break;
+    case VPX_BITS_12:
+      x->sadperbit16 = sad_per_bit16lut_12[qindex];
+      x->sadperbit4 = sad_per_bit4lut_12[qindex];
+      break;
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+  }
+#else
+  (void)cpi;
+  x->sadperbit16 = sad_per_bit16lut_8[qindex];
+  x->sadperbit4 = sad_per_bit4lut_8[qindex];
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+}
+
+static void set_block_thresholds(const VP10_COMMON *cm, RD_OPT *rd) {
+  int i, bsize, segment_id;
+
+  for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
+    const int qindex =
+        clamp(vp10_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
+                  cm->y_dc_delta_q,
+              0, MAXQ);
+    const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
+
+    for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
+      // Threshold here seems unnecessarily harsh but fine given actual
+      // range of values used for cpi->sf.thresh_mult[].
+      const int t = q * rd_thresh_block_size_factor[bsize];
+      const int thresh_max = INT_MAX / t;
+
+      if (bsize >= BLOCK_8X8) {
+        for (i = 0; i < MAX_MODES; ++i)
+          rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
+                                                   ? rd->thresh_mult[i] * t / 4
+                                                   : INT_MAX;
+      } else {
+        for (i = 0; i < MAX_REFS; ++i)
+          rd->threshes[segment_id][bsize][i] =
+              rd->thresh_mult_sub8x8[i] < thresh_max
+                  ? rd->thresh_mult_sub8x8[i] * t / 4
+                  : INT_MAX;
+      }
+    }
+  }
+}
+
+void vp10_initialize_rd_consts(VP10_COMP *cpi) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCK *const x = &cpi->td.mb;
+  RD_OPT *const rd = &cpi->rd;
+  int i;
+
+  vpx_clear_system_state();
+
+  rd->RDDIV = RDDIV_BITS;  // In bits (to multiply D by 128).
+  rd->RDMULT = vp10_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
+
+  set_error_per_bit(x, rd->RDMULT);
+
+  x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
+                       cm->frame_type != KEY_FRAME)
+                          ? 0
+                          : 1;
+
+  set_block_thresholds(cm, rd);
+
+  fill_token_costs(x->token_costs, cm->fc->coef_probs);
+
+  if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
+      cm->frame_type == KEY_FRAME) {
+    for (i = 0; i < PARTITION_CONTEXTS; ++i)
+      vp10_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i],
+                       vp10_partition_tree);
+  }
+
+  fill_mode_costs(cpi);
+
+  if (!frame_is_intra_only(cm)) {
+    vp10_build_nmv_cost_table(
+        x->nmvjointcost,
+        cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, &cm->fc->nmvc,
+        cm->allow_high_precision_mv);
+
+    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+      vp10_cost_tokens((int *)cpi->inter_mode_cost[i],
+                       cm->fc->inter_mode_probs[i], vp10_inter_mode_tree);
+  }
+}
+
+static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
+  // NOTE: The tables below must be of the same size.
+
+  // The functions described below are sampled at the four most significant
+  // bits of x^2 + 8 / 256.
+
+  // Normalized rate:
+  // This table models the rate for a Laplacian source with given variance
+  // when quantized with a uniform quantizer with given stepsize. The
+  // closed form expression is:
+  // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
+  // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
+  // and H(x) is the binary entropy function.
+  static const int rate_tab_q10[] = {
+    65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142,
+    4044,  3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
+    3133,  3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353,
+    2290,  2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
+    1608,  1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963,
+    911,   864,  821,  781,  745,  680,  623,  574,  530,  490,  455,  424,
+    395,   345,  304,  269,  239,  213,  190,  171,  154,  126,  104,  87,
+    73,    61,   52,   44,   38,   28,   21,   16,   12,   10,   8,    6,
+    5,     3,    2,    1,    1,    1,    0,    0,
+  };
+  // Normalized distortion:
+  // This table models the normalized distortion for a Laplacian source
+  // with given variance when quantized with a uniform quantizer
+  // with given stepsize. The closed form expression is:
+  // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
+  // where x = qpstep / sqrt(variance).
+  // Note the actual distortion is Dn * variance.
+  static const int dist_tab_q10[] = {
+    0,    0,    1,    1,    1,    2,    2,    2,    3,    3,    4,    5,
+    5,    6,    7,    7,    8,    9,    11,   12,   13,   15,   16,   17,
+    18,   21,   24,   26,   29,   31,   34,   36,   39,   44,   49,   54,
+    59,   64,   69,   73,   78,   88,   97,   106,  115,  124,  133,  142,
+    151,  167,  184,  200,  215,  231,  245,  260,  274,  301,  327,  351,
+    375,  397,  418,  439,  458,  495,  528,  559,  587,  613,  637,  659,
+    680,  717,  749,  777,  801,  823,  842,  859,  874,  899,  919,  936,
+    949,  960,  969,  977,  983,  994,  1001, 1006, 1010, 1013, 1015, 1017,
+    1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
+  };
+  static const int xsq_iq_q10[] = {
+    0,      4,      8,      12,     16,     20,     24,     28,     32,
+    40,     48,     56,     64,     72,     80,     88,     96,     112,
+    128,    144,    160,    176,    192,    208,    224,    256,    288,
+    320,    352,    384,    416,    448,    480,    544,    608,    672,
+    736,    800,    864,    928,    992,    1120,   1248,   1376,   1504,
+    1632,   1760,   1888,   2016,   2272,   2528,   2784,   3040,   3296,
+    3552,   3808,   4064,   4576,   5088,   5600,   6112,   6624,   7136,
+    7648,   8160,   9184,   10208,  11232,  12256,  13280,  14304,  15328,
+    16352,  18400,  20448,  22496,  24544,  26592,  28640,  30688,  32736,
+    36832,  40928,  45024,  49120,  53216,  57312,  61408,  65504,  73696,
+    81888,  90080,  98272,  106464, 114656, 122848, 131040, 147424, 163808,
+    180192, 196576, 212960, 229344, 245728,
+  };
+  const int tmp = (xsq_q10 >> 2) + 8;
+  const int k = get_msb(tmp) - 3;
+  const int xq = (k << 3) + ((tmp >> k) & 0x7);
+  const int one_q10 = 1 << 10;
+  const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
+  const int b_q10 = one_q10 - a_q10;
+  *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
+  *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
+}
+
+void vp10_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
+                                   unsigned int qstep, int *rate,
+                                   int64_t *dist) {
+  // This function models the rate and distortion for a Laplacian
+  // source with given variance when quantized with a uniform quantizer
+  // with given stepsize. The closed form expressions are in:
+  // Hang and Chen, "Source Model for transform video coder and its
+  // application - Part I: Fundamental Theory", IEEE Trans. Circ.
+  // Sys. for Video Tech., April 1997.
+  if (var == 0) {
+    *rate = 0;
+    *dist = 0;
+  } else {
+    int d_q10, r_q10;
+    static const uint32_t MAX_XSQ_Q10 = 245727;
+    const uint64_t xsq_q10_64 =
+        (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
+    const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
+    model_rd_norm(xsq_q10, &r_q10, &d_q10);
+    *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT);
+    *dist = (var * (int64_t)d_q10 + 512) >> 10;
+  }
+}
+
+void vp10_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+                               const struct macroblockd_plane *pd,
+                               ENTROPY_CONTEXT t_above[16],
+                               ENTROPY_CONTEXT t_left[16]) {
+  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+  const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
+  const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
+  const ENTROPY_CONTEXT *const above = pd->above_context;
+  const ENTROPY_CONTEXT *const left = pd->left_context;
+
+  int i;
+  switch (tx_size) {
+    case TX_4X4:
+      memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
+      memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
+      break;
+    case TX_8X8:
+      for (i = 0; i < num_4x4_w; i += 2)
+        t_above[i] = !!*(const uint16_t *)&above[i];
+      for (i = 0; i < num_4x4_h; i += 2)
+        t_left[i] = !!*(const uint16_t *)&left[i];
+      break;
+    case TX_16X16:
+      for (i = 0; i < num_4x4_w; i += 4)
+        t_above[i] = !!*(const uint32_t *)&above[i];
+      for (i = 0; i < num_4x4_h; i += 4)
+        t_left[i] = !!*(const uint32_t *)&left[i];
+      break;
+    case TX_32X32:
+      for (i = 0; i < num_4x4_w; i += 8)
+        t_above[i] = !!*(const uint64_t *)&above[i];
+      for (i = 0; i < num_4x4_h; i += 8)
+        t_left[i] = !!*(const uint64_t *)&left[i];
+      break;
+    default: assert(0 && "Invalid transform size."); break;
+  }
+}
+
+void vp10_mv_pred(VP10_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
+                  int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
+  int i;
+  int zero_seen = 0;
+  int best_index = 0;
+  int best_sad = INT_MAX;
+  int this_sad = INT_MAX;
+  int max_mv = 0;
+  int near_same_nearest;
+  uint8_t *src_y_ptr = x->plane[0].src.buf;
+  uint8_t *ref_y_ptr;
+  const int num_mv_refs =
+      MAX_MV_REF_CANDIDATES +
+      (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size);
+
+  MV pred_mv[3];
+  pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
+  pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
+  pred_mv[2] = x->pred_mv[ref_frame];
+  assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
+
+  near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int ==
+                      x->mbmi_ext->ref_mvs[ref_frame][1].as_int;
+  // Get the sad for each candidate reference mv.
+  for (i = 0; i < num_mv_refs; ++i) {
+    const MV *this_mv = &pred_mv[i];
+    int fp_row, fp_col;
+
+    if (i == 1 && near_same_nearest) continue;
+    fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
+    fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
+    max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
+
+    if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
+    zero_seen |= (fp_row == 0 && fp_col == 0);
+
+    ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
+    // Find sad for current vector.
+    this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
+                                           ref_y_ptr, ref_y_stride);
+    // Note if it is the best so far.
+    if (this_sad < best_sad) {
+      best_sad = this_sad;
+      best_index = i;
+    }
+  }
+
+  // Note the index of the mv that worked best in the reference list.
+  x->mv_best_ref_index[ref_frame] = best_index;
+  x->max_mv_context[ref_frame] = max_mv;
+  x->pred_mv_sad[ref_frame] = best_sad;
+}
+
+void vp10_setup_pred_block(const MACROBLOCKD *xd,
+                           struct buf_2d dst[MAX_MB_PLANE],
+                           const YV12_BUFFER_CONFIG *src, int mi_row,
+                           int mi_col, const struct scale_factors *scale,
+                           const struct scale_factors *scale_uv) {
+  int i;
+
+  dst[0].buf = src->y_buffer;
+  dst[0].stride = src->y_stride;
+  dst[1].buf = src->u_buffer;
+  dst[2].buf = src->v_buffer;
+  dst[1].stride = dst[2].stride = src->uv_stride;
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
+                     i ? scale_uv : scale, xd->plane[i].subsampling_x,
+                     xd->plane[i].subsampling_y);
+  }
+}
+
+int vp10_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
+                             int stride) {
+  const int bw = b_width_log2_lookup[plane_bsize];
+  const int y = 4 * (raster_block >> bw);
+  const int x = 4 * (raster_block & ((1 << bw) - 1));
+  return y * stride + x;
+}
+
+int16_t *vp10_raster_block_offset_int16(BLOCK_SIZE plane_bsize,
+                                        int raster_block, int16_t *base) {
+  const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+  return base + vp10_raster_block_offset(plane_bsize, raster_block, stride);
+}
+
+YV12_BUFFER_CONFIG *vp10_get_scaled_ref_frame(const VP10_COMP *cpi,
+                                              int ref_frame) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
+  const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+  return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
+             ? &cm->buffer_pool->frame_bufs[scaled_idx].buf
+             : NULL;
+}
+
+int vp10_get_switchable_rate(const VP10_COMP *cpi,
+                             const MACROBLOCKD *const xd) {
+  const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  const int ctx = vp10_get_pred_context_switchable_interp(xd);
+  return SWITCHABLE_INTERP_RATE_FACTOR *
+         cpi->switchable_interp_costs[ctx][mbmi->interp_filter];
+}
+
+void vp10_set_rd_speed_thresholds(VP10_COMP *cpi) {
+  int i;
+  RD_OPT *const rd = &cpi->rd;
+  SPEED_FEATURES *const sf = &cpi->sf;
+
+  // Set baseline threshold values.
+  for (i = 0; i < MAX_MODES; ++i)
+    rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
+
+  if (sf->adaptive_rd_thresh) {
+    rd->thresh_mult[THR_NEARESTMV] = 300;
+    rd->thresh_mult[THR_NEARESTG] = 300;
+    rd->thresh_mult[THR_NEARESTA] = 300;
+  } else {
+    rd->thresh_mult[THR_NEARESTMV] = 0;
+    rd->thresh_mult[THR_NEARESTG] = 0;
+    rd->thresh_mult[THR_NEARESTA] = 0;
+  }
+
+  rd->thresh_mult[THR_DC] += 1000;
+
+  rd->thresh_mult[THR_NEWMV] += 1000;
+  rd->thresh_mult[THR_NEWA] += 1000;
+  rd->thresh_mult[THR_NEWG] += 1000;
+
+  rd->thresh_mult[THR_NEARMV] += 1000;
+  rd->thresh_mult[THR_NEARA] += 1000;
+  rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
+  rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
+
+  rd->thresh_mult[THR_TM] += 1000;
+
+  rd->thresh_mult[THR_COMP_NEARLA] += 1500;
+  rd->thresh_mult[THR_COMP_NEWLA] += 2000;
+  rd->thresh_mult[THR_NEARG] += 1000;
+  rd->thresh_mult[THR_COMP_NEARGA] += 1500;
+  rd->thresh_mult[THR_COMP_NEWGA] += 2000;
+
+  rd->thresh_mult[THR_ZEROMV] += 2000;
+  rd->thresh_mult[THR_ZEROG] += 2000;
+  rd->thresh_mult[THR_ZEROA] += 2000;
+  rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
+  rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
+
+  rd->thresh_mult[THR_H_PRED] += 2000;
+  rd->thresh_mult[THR_V_PRED] += 2000;
+  rd->thresh_mult[THR_D45_PRED] += 2500;
+  rd->thresh_mult[THR_D135_PRED] += 2500;
+  rd->thresh_mult[THR_D117_PRED] += 2500;
+  rd->thresh_mult[THR_D153_PRED] += 2500;
+  rd->thresh_mult[THR_D207_PRED] += 2500;
+  rd->thresh_mult[THR_D63_PRED] += 2500;
+}
+
+void vp10_set_rd_speed_thresholds_sub8x8(VP10_COMP *cpi) {
+  static const int thresh_mult[2][MAX_REFS] = {
+    { 2500, 2500, 2500, 4500, 4500, 2500 },
+    { 2000, 2000, 2000, 4000, 4000, 2000 }
+  };
+  RD_OPT *const rd = &cpi->rd;
+  const int idx = cpi->oxcf.mode == BEST;
+  memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
+}
+
+void vp10_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
+                                int bsize, int best_mode_index) {
+  if (rd_thresh > 0) {
+    const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
+    int mode;
+    for (mode = 0; mode < top_mode; ++mode) {
+      const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
+      const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
+      BLOCK_SIZE bs;
+      for (bs = min_size; bs <= max_size; ++bs) {
+        int *const fact = &factor_buf[bs][mode];
+        if (mode == best_mode_index) {
+          *fact -= (*fact >> 4);
+        } else {
+          *fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
+        }
+      }
+    }
+  }
+}
+
+int vp10_get_intra_cost_penalty(int qindex, int qdelta,
+                                vpx_bit_depth_t bit_depth) {
+  const int q = vp10_dc_quant(qindex, qdelta, bit_depth);
+#if CONFIG_VPX_HIGHBITDEPTH
+  switch (bit_depth) {
+    case VPX_BITS_8: return 20 * q;
+    case VPX_BITS_10: return 5 * q;
+    case VPX_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2);
+    default:
+      assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+      return -1;
+  }
+#else
+  return 20 * q;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+}
diff --git a/av1/encoder/rd.h b/av1/encoder/rd.h
new file mode 100644
index 0000000..ffa9e47
--- /dev/null
+++ b/av1/encoder/rd.h
@@ -0,0 +1,194 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_RD_H_
+#define VP10_ENCODER_RD_H_
+
+#include <limits.h>
+
+#include "av1/common/blockd.h"
+
+#include "av1/encoder/block.h"
+#include "av1/encoder/context_tree.h"
+#include "av1/encoder/cost.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define RDDIV_BITS 7
+#define RD_EPB_SHIFT 6
+
+#define RDCOST(RM, DM, R, D) \
+  (ROUND_POWER_OF_TWO(((int64_t)R) * (RM), VP9_PROB_COST_SHIFT) + (D << DM))
+#define QIDX_SKIP_THRESH 115
+
+#define MV_COST_WEIGHT 108
+#define MV_COST_WEIGHT_SUB 120
+
+#define INVALID_MV 0x80008000
+
+#define MAX_MODES 30
+#define MAX_REFS 6
+
+#define RD_THRESH_MAX_FACT 64
+#define RD_THRESH_INC 1
+
+// This enumerator type needs to be kept aligned with the mode order in
+// const MODE_DEFINITION vp10_mode_order[MAX_MODES] used in the rd code.
+typedef enum {
+  THR_NEARESTMV,
+  THR_NEARESTA,
+  THR_NEARESTG,
+
+  THR_DC,
+
+  THR_NEWMV,
+  THR_NEWA,
+  THR_NEWG,
+
+  THR_NEARMV,
+  THR_NEARA,
+  THR_NEARG,
+
+  THR_ZEROMV,
+  THR_ZEROG,
+  THR_ZEROA,
+
+  THR_COMP_NEARESTLA,
+  THR_COMP_NEARESTGA,
+
+  THR_TM,
+
+  THR_COMP_NEARLA,
+  THR_COMP_NEWLA,
+  THR_COMP_NEARGA,
+  THR_COMP_NEWGA,
+
+  THR_COMP_ZEROLA,
+  THR_COMP_ZEROGA,
+
+  THR_H_PRED,
+  THR_V_PRED,
+  THR_D135_PRED,
+  THR_D207_PRED,
+  THR_D153_PRED,
+  THR_D63_PRED,
+  THR_D117_PRED,
+  THR_D45_PRED,
+} THR_MODES;
+
+typedef enum {
+  THR_LAST,
+  THR_GOLD,
+  THR_ALTR,
+  THR_COMP_LA,
+  THR_COMP_GA,
+  THR_INTRA,
+} THR_MODES_SUB8X8;
+
+typedef struct RD_OPT {
+  // Thresh_mult is used to set a threshold for the rd score. A higher value
+  // means that we will accept the best mode so far more often. This number
+  // is used in combination with the current block size, and thresh_freq_fact
+  // to pick a threshold.
+  int thresh_mult[MAX_MODES];
+  int thresh_mult_sub8x8[MAX_REFS];
+
+  int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
+
+  int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
+
+  int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
+
+  int RDMULT;
+  int RDDIV;
+} RD_OPT;
+
+typedef struct RD_COST {
+  int rate;
+  int64_t dist;
+  int64_t rdcost;
+} RD_COST;
+
+// Reset the rate distortion cost values to maximum (invalid) value.
+void vp10_rd_cost_reset(RD_COST *rd_cost);
+// Initialize the rate distortion cost values to zero.
+void vp10_rd_cost_init(RD_COST *rd_cost);
+
+struct TileInfo;
+struct TileDataEnc;
+struct VP10_COMP;
+struct macroblock;
+
+int vp10_compute_rd_mult(const struct VP10_COMP *cpi, int qindex);
+
+void vp10_initialize_rd_consts(struct VP10_COMP *cpi);
+
+void vp10_initialize_me_consts(struct VP10_COMP *cpi, MACROBLOCK *x,
+                               int qindex);
+
+void vp10_model_rd_from_var_lapndz(unsigned int var, unsigned int n,
+                                   unsigned int qstep, int *rate,
+                                   int64_t *dist);
+
+int vp10_get_switchable_rate(const struct VP10_COMP *cpi,
+                             const MACROBLOCKD *const xd);
+
+int vp10_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
+                             int stride);
+
+int16_t *vp10_raster_block_offset_int16(BLOCK_SIZE plane_bsize,
+                                        int raster_block, int16_t *base);
+
+YV12_BUFFER_CONFIG *vp10_get_scaled_ref_frame(const struct VP10_COMP *cpi,
+                                              int ref_frame);
+
+void vp10_init_me_luts(void);
+
+void vp10_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+                               const struct macroblockd_plane *pd,
+                               ENTROPY_CONTEXT t_above[16],
+                               ENTROPY_CONTEXT t_left[16]);
+
+void vp10_set_rd_speed_thresholds(struct VP10_COMP *cpi);
+
+void vp10_set_rd_speed_thresholds_sub8x8(struct VP10_COMP *cpi);
+
+void vp10_update_rd_thresh_fact(int (*fact)[MAX_MODES], int rd_thresh,
+                                int bsize, int best_mode_index);
+
+static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
+                                      int thresh_fact) {
+  return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
+}
+
+void vp10_mv_pred(struct VP10_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
+                  int ref_y_stride, int ref_frame, BLOCK_SIZE block_size);
+
+static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) {
+  x->errorperbit = rdmult >> RD_EPB_SHIFT;
+  x->errorperbit += (x->errorperbit == 0);
+}
+
+void vp10_setup_pred_block(const MACROBLOCKD *xd,
+                           struct buf_2d dst[MAX_MB_PLANE],
+                           const YV12_BUFFER_CONFIG *src, int mi_row,
+                           int mi_col, const struct scale_factors *scale,
+                           const struct scale_factors *scale_uv);
+
+int vp10_get_intra_cost_penalty(int qindex, int qdelta,
+                                vpx_bit_depth_t bit_depth);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_RD_H_
diff --git a/av1/encoder/rdopt.c b/av1/encoder/rdopt.c
new file mode 100644
index 0000000..d704510
--- /dev/null
+++ b/av1/encoder/rdopt.c
@@ -0,0 +1,4066 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "./vp10_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/idct.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/scan.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/aq_variance.h"
+
+#define LAST_FRAME_MODE_MASK \
+  ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
+#define GOLDEN_FRAME_MODE_MASK \
+  ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
+#define ALT_REF_MODE_MASK \
+  ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME))
+
+#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
+
+#define MIN_EARLY_TERM_INDEX 3
+#define NEW_MV_DISCOUNT_FACTOR 8
+
+const double ext_tx_th = 0.99;
+
+typedef struct {
+  PREDICTION_MODE mode;
+  MV_REFERENCE_FRAME ref_frame[2];
+} MODE_DEFINITION;
+
+typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
+
+struct rdcost_block_args {
+  MACROBLOCK *x;
+  ENTROPY_CONTEXT t_above[16];
+  ENTROPY_CONTEXT t_left[16];
+  int this_rate;
+  int64_t this_dist;
+  int64_t this_sse;
+  int64_t this_rd;
+  int64_t best_rd;
+  int exit_early;
+  int use_fast_coef_costing;
+  const scan_order *so;
+  uint8_t skippable;
+};
+
+#define LAST_NEW_MV_INDEX 6
+static const MODE_DEFINITION vp10_mode_order[MAX_MODES] = {
+  { NEARESTMV, { LAST_FRAME, NONE } },
+  { NEARESTMV, { ALTREF_FRAME, NONE } },
+  { NEARESTMV, { GOLDEN_FRAME, NONE } },
+
+  { DC_PRED, { INTRA_FRAME, NONE } },
+
+  { NEWMV, { LAST_FRAME, NONE } },
+  { NEWMV, { ALTREF_FRAME, NONE } },
+  { NEWMV, { GOLDEN_FRAME, NONE } },
+
+  { NEARMV, { LAST_FRAME, NONE } },
+  { NEARMV, { ALTREF_FRAME, NONE } },
+  { NEARMV, { GOLDEN_FRAME, NONE } },
+
+  { ZEROMV, { LAST_FRAME, NONE } },
+  { ZEROMV, { GOLDEN_FRAME, NONE } },
+  { ZEROMV, { ALTREF_FRAME, NONE } },
+
+  { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
+  { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+
+  { TM_PRED, { INTRA_FRAME, NONE } },
+
+  { NEARMV, { LAST_FRAME, ALTREF_FRAME } },
+  { NEWMV, { LAST_FRAME, ALTREF_FRAME } },
+  { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+  { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+
+  { ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
+  { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+
+  { H_PRED, { INTRA_FRAME, NONE } },
+  { V_PRED, { INTRA_FRAME, NONE } },
+  { D135_PRED, { INTRA_FRAME, NONE } },
+  { D207_PRED, { INTRA_FRAME, NONE } },
+  { D153_PRED, { INTRA_FRAME, NONE } },
+  { D63_PRED, { INTRA_FRAME, NONE } },
+  { D117_PRED, { INTRA_FRAME, NONE } },
+  { D45_PRED, { INTRA_FRAME, NONE } },
+};
+
+static const REF_DEFINITION vp10_ref_order[MAX_REFS] = {
+  { { LAST_FRAME, NONE } },           { { GOLDEN_FRAME, NONE } },
+  { { ALTREF_FRAME, NONE } },         { { LAST_FRAME, ALTREF_FRAME } },
+  { { GOLDEN_FRAME, ALTREF_FRAME } }, { { INTRA_FRAME, NONE } },
+};
+
+static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n,
+                           int min_plane, int max_plane) {
+  int i;
+
+  for (i = min_plane; i < max_plane; ++i) {
+    struct macroblock_plane *const p = &x->plane[i];
+    struct macroblockd_plane *const pd = &x->e_mbd.plane[i];
+
+    p->coeff = ctx->coeff_pbuf[i][m];
+    p->qcoeff = ctx->qcoeff_pbuf[i][m];
+    pd->dqcoeff = ctx->dqcoeff_pbuf[i][m];
+    p->eobs = ctx->eobs_pbuf[i][m];
+
+    ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n];
+    ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n];
+    ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n];
+    ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n];
+
+    ctx->coeff_pbuf[i][n] = p->coeff;
+    ctx->qcoeff_pbuf[i][n] = p->qcoeff;
+    ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff;
+    ctx->eobs_pbuf[i][n] = p->eobs;
+  }
+}
+
+static void model_rd_for_sb(VP10_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
+                            MACROBLOCKD *xd, int *out_rate_sum,
+                            int64_t *out_dist_sum, int *skip_txfm_sb,
+                            int64_t *skip_sse_sb) {
+  // Note our transform coeffs are 8 times an orthogonal transform.
+  // Hence quantizer step is also 8 times. To get effective quantizer
+  // we need to divide by 8 before sending to modeling function.
+  int i;
+  int64_t rate_sum = 0;
+  int64_t dist_sum = 0;
+  const int ref = xd->mi[0]->mbmi.ref_frame[0];
+  unsigned int sse;
+  unsigned int var = 0;
+  unsigned int sum_sse = 0;
+  int64_t total_sse = 0;
+  int skip_flag = 1;
+  const int shift = 6;
+  int rate;
+  int64_t dist;
+  const int dequant_shift =
+#if CONFIG_VPX_HIGHBITDEPTH
+      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+                                                    3;
+
+  x->pred_sse[ref] = 0;
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    struct macroblock_plane *const p = &x->plane[i];
+    struct macroblockd_plane *const pd = &xd->plane[i];
+    const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
+    const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+    const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size];
+    const int64_t dc_thr = p->quant_thred[0] >> shift;
+    const int64_t ac_thr = p->quant_thred[1] >> shift;
+    // The low thresholds are used to measure if the prediction errors are
+    // low enough so that we can skip the mode search.
+    const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2);
+    const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2);
+    int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
+    int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
+    int idx, idy;
+    int lw = b_width_log2_lookup[unit_size] + 2;
+    int lh = b_height_log2_lookup[unit_size] + 2;
+
+    sum_sse = 0;
+
+    for (idy = 0; idy < bh; ++idy) {
+      for (idx = 0; idx < bw; ++idx) {
+        uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw);
+        uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh);
+        int block_idx = (idy << 1) + idx;
+        int low_err_skip = 0;
+
+        var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride,
+                                        &sse);
+        x->bsse[(i << 2) + block_idx] = sse;
+        sum_sse += sse;
+
+        x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE;
+        if (!x->select_tx_size) {
+          // Check if all ac coefficients can be quantized to zero.
+          if (var < ac_thr || var == 0) {
+            x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY;
+
+            // Check if dc coefficient can be quantized to zero.
+            if (sse - var < dc_thr || sse == var) {
+              x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC;
+
+              if (!sse || (var < low_ac_thr && sse - var < low_dc_thr))
+                low_err_skip = 1;
+            }
+          }
+        }
+
+        if (skip_flag && !low_err_skip) skip_flag = 0;
+
+        if (i == 0) x->pred_sse[ref] += sse;
+      }
+    }
+
+    total_sse += sum_sse;
+
+    // Fast approximate the modelling function.
+    if (cpi->sf.simple_model_rd_from_var) {
+      int64_t rate;
+      const int64_t square_error = sum_sse;
+      int quantizer = (pd->dequant[1] >> dequant_shift);
+
+      if (quantizer < 120)
+        rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT);
+      else
+        rate = 0;
+      dist = (square_error * quantizer) >> 8;
+      rate_sum += rate;
+      dist_sum += dist;
+    } else {
+      vp10_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
+                                    pd->dequant[1] >> dequant_shift, &rate,
+                                    &dist);
+      rate_sum += rate;
+      dist_sum += dist;
+    }
+  }
+
+  *skip_txfm_sb = skip_flag;
+  *skip_sse_sb = total_sse << 4;
+  *out_rate_sum = (int)rate_sum;
+  *out_dist_sum = dist_sum << 4;
+}
+
+int64_t vp10_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
+                           intptr_t block_size, int64_t *ssz) {
+  int i;
+  int64_t error = 0, sqcoeff = 0;
+
+  for (i = 0; i < block_size; i++) {
+    const int diff = coeff[i] - dqcoeff[i];
+    error += diff * diff;
+    sqcoeff += coeff[i] * coeff[i];
+  }
+
+  *ssz = sqcoeff;
+  return error;
+}
+
+int64_t vp10_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
+                              int block_size) {
+  int i;
+  int64_t error = 0;
+
+  for (i = 0; i < block_size; i++) {
+    const int diff = coeff[i] - dqcoeff[i];
+    error += diff * diff;
+  }
+
+  return error;
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+int64_t vp10_highbd_block_error_c(const tran_low_t *coeff,
+                                  const tran_low_t *dqcoeff,
+                                  intptr_t block_size, int64_t *ssz, int bd) {
+  int i;
+  int64_t error = 0, sqcoeff = 0;
+  int shift = 2 * (bd - 8);
+  int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+  for (i = 0; i < block_size; i++) {
+    const int64_t diff = coeff[i] - dqcoeff[i];
+    error += diff * diff;
+    sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
+  }
+  assert(error >= 0 && sqcoeff >= 0);
+  error = (error + rounding) >> shift;
+  sqcoeff = (sqcoeff + rounding) >> shift;
+
+  *ssz = sqcoeff;
+  return error;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+/* The trailing '0' is a terminator which is used inside cost_coeffs() to
+ * decide whether to include cost of a trailing EOB node or not (i.e. we
+ * can skip this if the last coefficient in this transform block, e.g. the
+ * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
+ * were non-zero). */
+static const int16_t band_counts[TX_SIZES][8] = {
+  { 1, 2, 3, 4, 3, 16 - 13, 0 },
+  { 1, 2, 3, 4, 11, 64 - 21, 0 },
+  { 1, 2, 3, 4, 11, 256 - 21, 0 },
+  { 1, 2, 3, 4, 11, 1024 - 21, 0 },
+};
+static int cost_coeffs(MACROBLOCK *x, int plane, int block, ENTROPY_CONTEXT *A,
+                       ENTROPY_CONTEXT *L, TX_SIZE tx_size, const int16_t *scan,
+                       const int16_t *nb, int use_fast_coef_costing) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  const struct macroblock_plane *p = &x->plane[plane];
+  const struct macroblockd_plane *pd = &xd->plane[plane];
+  const PLANE_TYPE type = pd->plane_type;
+  const int16_t *band_count = &band_counts[tx_size][1];
+  const int eob = p->eobs[block];
+  const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+      x->token_costs[tx_size][type][is_inter_block(mbmi)];
+  uint8_t token_cache[32 * 32];
+  int pt = combine_entropy_contexts(*A, *L);
+  int c, cost;
+#if CONFIG_VPX_HIGHBITDEPTH
+  const int *cat6_high_cost = vp10_get_high_cost_table(xd->bd);
+#else
+  const int *cat6_high_cost = vp10_get_high_cost_table(8);
+#endif
+
+  // Check for consistency of tx_size with mode info
+  assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
+                              : get_uv_tx_size(mbmi, pd) == tx_size);
+
+  if (eob == 0) {
+    // single eob token
+    cost = token_costs[0][0][pt][EOB_TOKEN];
+    c = 0;
+  } else {
+    int band_left = *band_count++;
+
+    // dc token
+    int v = qcoeff[0];
+    int16_t prev_t;
+    EXTRABIT e;
+    vp10_get_token_extra(v, &prev_t, &e);
+    cost = (*token_costs)[0][pt][prev_t] +
+           vp10_get_cost(prev_t, e, cat6_high_cost);
+
+    token_cache[0] = vp10_pt_energy_class[prev_t];
+    ++token_costs;
+
+    // ac tokens
+    for (c = 1; c < eob; c++) {
+      const int rc = scan[c];
+      int16_t t;
+
+      v = qcoeff[rc];
+      vp10_get_token_extra(v, &t, &e);
+      if (use_fast_coef_costing) {
+        cost += (*token_costs)[!prev_t][!prev_t][t] +
+                vp10_get_cost(t, e, cat6_high_cost);
+      } else {
+        pt = get_coef_context(nb, token_cache, c);
+        cost += (*token_costs)[!prev_t][pt][t] +
+                vp10_get_cost(t, e, cat6_high_cost);
+        token_cache[rc] = vp10_pt_energy_class[t];
+      }
+      prev_t = t;
+      if (!--band_left) {
+        band_left = *band_count++;
+        ++token_costs;
+      }
+    }
+
+    // eob token
+    if (band_left) {
+      if (use_fast_coef_costing) {
+        cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
+      } else {
+        pt = get_coef_context(nb, token_cache, c);
+        cost += (*token_costs)[0][pt][EOB_TOKEN];
+      }
+    }
+  }
+
+  // is eob first coefficient;
+  *A = *L = (c > 0);
+
+  return cost;
+}
+
+static void dist_block(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
+                       int64_t *out_dist, int64_t *out_sse) {
+  const int ss_txfrm_size = tx_size << 1;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const struct macroblock_plane *const p = &x->plane[plane];
+  const struct macroblockd_plane *const pd = &xd->plane[plane];
+  int64_t this_sse;
+  int shift = tx_size == TX_32X32 ? 0 : 2;
+  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+#if CONFIG_VPX_HIGHBITDEPTH
+  const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
+  *out_dist = vp10_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
+                                      &this_sse, bd) >>
+              shift;
+#else
+  *out_dist =
+      vp10_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> shift;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  *out_sse = this_sse >> shift;
+}
+
+static int rate_block(int plane, int block, int blk_row, int blk_col,
+                      TX_SIZE tx_size, struct rdcost_block_args *args) {
+  return cost_coeffs(args->x, plane, block, args->t_above + blk_col,
+                     args->t_left + blk_row, tx_size, args->so->scan,
+                     args->so->neighbors, args->use_fast_coef_costing);
+}
+
+static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
+                          BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
+  struct rdcost_block_args *args = arg;
+  MACROBLOCK *const x = args->x;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  int64_t rd1, rd2, rd;
+  int rate;
+  int64_t dist;
+  int64_t sse;
+
+  if (args->exit_early) return;
+
+  if (!is_inter_block(mbmi)) {
+    struct encode_b_args arg = { x, NULL, &mbmi->skip };
+    vp10_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize,
+                            tx_size, &arg);
+    dist_block(x, plane, block, tx_size, &dist, &sse);
+  } else if (max_txsize_lookup[plane_bsize] == tx_size) {
+    if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
+        SKIP_TXFM_NONE) {
+      // full forward transform and quantization
+      vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
+      dist_block(x, plane, block, tx_size, &dist, &sse);
+    } else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
+               SKIP_TXFM_AC_ONLY) {
+      // compute DC coefficient
+      tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block);
+      tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block);
+      vp10_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize,
+                          tx_size);
+      sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
+      dist = sse;
+      if (x->plane[plane].eobs[block]) {
+        const int64_t orig_sse = (int64_t)coeff[0] * coeff[0];
+        const int64_t resd_sse = coeff[0] - dqcoeff[0];
+        int64_t dc_correct = orig_sse - resd_sse * resd_sse;
+#if CONFIG_VPX_HIGHBITDEPTH
+        dc_correct >>= ((xd->bd - 8) * 2);
+#endif
+        if (tx_size != TX_32X32) dc_correct >>= 2;
+
+        dist = VPXMAX(0, sse - dc_correct);
+      }
+    } else {
+      // SKIP_TXFM_AC_DC
+      // skip forward transform
+      x->plane[plane].eobs[block] = 0;
+      sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
+      dist = sse;
+    }
+  } else {
+    // full forward transform and quantization
+    vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
+    dist_block(x, plane, block, tx_size, &dist, &sse);
+  }
+
+  rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
+  if (args->this_rd + rd > args->best_rd) {
+    args->exit_early = 1;
+    return;
+  }
+
+  rate = rate_block(plane, block, blk_row, blk_col, tx_size, args);
+  rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
+  rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
+
+  // TODO(jingning): temporarily enabled only for luma component
+  rd = VPXMIN(rd1, rd2);
+  if (plane == 0)
+    x->zcoeff_blk[tx_size][block] =
+        !x->plane[plane].eobs[block] ||
+        (rd1 > rd2 && !xd->lossless[mbmi->segment_id]);
+
+  args->this_rate += rate;
+  args->this_dist += dist;
+  args->this_sse += sse;
+  args->this_rd += rd;
+
+  if (args->this_rd > args->best_rd) {
+    args->exit_early = 1;
+    return;
+  }
+
+  args->skippable &= !x->plane[plane].eobs[block];
+}
+
+static void txfm_rd_in_plane(MACROBLOCK *x, int *rate, int64_t *distortion,
+                             int *skippable, int64_t *sse, int64_t ref_best_rd,
+                             int plane, BLOCK_SIZE bsize, TX_SIZE tx_size,
+                             int use_fast_coef_casting) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const struct macroblockd_plane *const pd = &xd->plane[plane];
+  TX_TYPE tx_type;
+  struct rdcost_block_args args;
+  vp10_zero(args);
+  args.x = x;
+  args.best_rd = ref_best_rd;
+  args.use_fast_coef_costing = use_fast_coef_casting;
+  args.skippable = 1;
+
+  if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
+
+  vp10_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
+
+  tx_type = get_tx_type(pd->plane_type, xd, 0);
+  args.so = get_scan(tx_size, tx_type);
+
+  vp10_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
+                                          &args);
+  if (args.exit_early) {
+    *rate = INT_MAX;
+    *distortion = INT64_MAX;
+    *sse = INT64_MAX;
+    *skippable = 0;
+  } else {
+    *distortion = args.this_dist;
+    *rate = args.this_rate;
+    *sse = args.this_sse;
+    *skippable = args.skippable;
+  }
+}
+
+static void choose_largest_tx_size(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                                   int64_t *distortion, int *skip, int64_t *sse,
+                                   int64_t ref_best_rd, BLOCK_SIZE bs) {
+  const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+  VP10_COMMON *const cm = &cpi->common;
+  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+
+  TX_TYPE tx_type, best_tx_type = DCT_DCT;
+  int r, s;
+  int64_t d, psse, this_rd, best_rd = INT64_MAX;
+  vpx_prob skip_prob = vp10_get_skip_prob(cm, xd);
+  int s0 = vp10_cost_bit(skip_prob, 0);
+  int s1 = vp10_cost_bit(skip_prob, 1);
+  const int is_inter = is_inter_block(mbmi);
+
+  mbmi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
+  if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) {
+    for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
+      mbmi->tx_type = tx_type;
+      txfm_rd_in_plane(x, &r, &d, &s, &psse, ref_best_rd, 0, bs, mbmi->tx_size,
+                       cpi->sf.use_fast_coef_costing);
+      if (r == INT_MAX) continue;
+      if (is_inter)
+        r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
+      else
+        r += cpi->intra_tx_type_costs[mbmi->tx_size]
+                                     [intra_mode_to_tx_type_context[mbmi->mode]]
+                                     [mbmi->tx_type];
+      if (s)
+        this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
+      else
+        this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
+      if (is_inter && !xd->lossless[mbmi->segment_id] && !s)
+        this_rd = VPXMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
+
+      if (this_rd < ((best_tx_type == DCT_DCT) ? ext_tx_th : 1) * best_rd) {
+        best_rd = this_rd;
+        best_tx_type = mbmi->tx_type;
+      }
+    }
+  }
+  mbmi->tx_type = best_tx_type;
+  txfm_rd_in_plane(x, rate, distortion, skip, sse, ref_best_rd, 0, bs,
+                   mbmi->tx_size, cpi->sf.use_fast_coef_costing);
+  if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id] &&
+      *rate != INT_MAX) {
+    if (is_inter)
+      *rate += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
+    else
+      *rate += cpi->intra_tx_type_costs
+                   [mbmi->tx_size][intra_mode_to_tx_type_context[mbmi->mode]]
+                   [mbmi->tx_type];
+  }
+}
+
+static void choose_smallest_tx_size(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                                    int64_t *distortion, int *skip,
+                                    int64_t *sse, int64_t ref_best_rd,
+                                    BLOCK_SIZE bs) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+
+  mbmi->tx_size = TX_4X4;
+
+  txfm_rd_in_plane(x, rate, distortion, skip, sse, ref_best_rd, 0, bs,
+                   mbmi->tx_size, cpi->sf.use_fast_coef_costing);
+}
+
+static void choose_tx_size_from_rd(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                                   int64_t *distortion, int *skip,
+                                   int64_t *psse, int64_t ref_best_rd,
+                                   BLOCK_SIZE bs) {
+  const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  vpx_prob skip_prob = vp10_get_skip_prob(cm, xd);
+  int r, s;
+  int64_t d, sse;
+  int64_t rd = INT64_MAX;
+  int n, m;
+  int s0, s1;
+  int64_t best_rd = INT64_MAX, last_rd = INT64_MAX;
+  TX_SIZE best_tx = max_tx_size;
+  int start_tx, end_tx;
+  const int tx_select = cm->tx_mode == TX_MODE_SELECT;
+  TX_TYPE tx_type, best_tx_type = DCT_DCT;
+  const int is_inter = is_inter_block(mbmi);
+
+  const vpx_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
+  assert(skip_prob > 0);
+  s0 = vp10_cost_bit(skip_prob, 0);
+  s1 = vp10_cost_bit(skip_prob, 1);
+
+  if (tx_select) {
+    start_tx = max_tx_size;
+    end_tx = 0;
+  } else {
+    const TX_SIZE chosen_tx_size =
+        VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]);
+    start_tx = chosen_tx_size;
+    end_tx = chosen_tx_size;
+  }
+
+  *distortion = INT64_MAX;
+  *rate = INT_MAX;
+  *skip = 0;
+  *psse = INT64_MAX;
+
+  for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
+    last_rd = INT64_MAX;
+    for (n = start_tx; n >= end_tx; --n) {
+      int r_tx_size = 0;
+      for (m = 0; m <= n - (n == (int)max_tx_size); ++m) {
+        if (m == n)
+          r_tx_size += vp10_cost_zero(tx_probs[m]);
+        else
+          r_tx_size += vp10_cost_one(tx_probs[m]);
+      }
+
+      if (n >= TX_32X32 && tx_type != DCT_DCT) {
+        continue;
+      }
+      mbmi->tx_type = tx_type;
+      txfm_rd_in_plane(x, &r, &d, &s, &sse, ref_best_rd, 0, bs, n,
+                       cpi->sf.use_fast_coef_costing);
+      if (n < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
+          r != INT_MAX) {
+        if (is_inter)
+          r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
+        else
+          r += cpi->intra_tx_type_costs
+                   [mbmi->tx_size][intra_mode_to_tx_type_context[mbmi->mode]]
+                   [mbmi->tx_type];
+      }
+
+      if (r == INT_MAX) continue;
+
+      if (s) {
+        if (is_inter) {
+          rd = RDCOST(x->rdmult, x->rddiv, s1, sse);
+        } else {
+          rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, sse);
+        }
+      } else {
+        rd = RDCOST(x->rdmult, x->rddiv, r + s0 + r_tx_size * tx_select, d);
+      }
+
+      if (tx_select && !(s && is_inter)) r += r_tx_size;
+
+      if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !s)
+        rd = VPXMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, sse));
+
+      // Early termination in transform size search.
+      if (cpi->sf.tx_size_search_breakout &&
+          (rd == INT64_MAX || (s == 1 && tx_type != DCT_DCT && n < start_tx) ||
+           (n < (int)max_tx_size && rd > last_rd)))
+        break;
+
+      last_rd = rd;
+      if (rd <
+          (is_inter && best_tx_type == DCT_DCT ? ext_tx_th : 1) * best_rd) {
+        best_tx = n;
+        best_rd = rd;
+        *distortion = d;
+        *rate = r;
+        *skip = s;
+        *psse = sse;
+        best_tx_type = mbmi->tx_type;
+      }
+    }
+  }
+
+  mbmi->tx_size = best_tx;
+  mbmi->tx_type = best_tx_type;
+  if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT);
+  txfm_rd_in_plane(x, &r, &d, &s, &sse, ref_best_rd, 0, bs, best_tx,
+                   cpi->sf.use_fast_coef_costing);
+}
+
+static void super_block_yrd(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                            int64_t *distortion, int *skip, int64_t *psse,
+                            BLOCK_SIZE bs, int64_t ref_best_rd) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  int64_t sse;
+  int64_t *ret_sse = psse ? psse : &sse;
+
+  assert(bs == xd->mi[0]->mbmi.sb_type);
+
+  if (CONFIG_MISC_FIXES && xd->lossless[0]) {
+    choose_smallest_tx_size(cpi, x, rate, distortion, skip, ret_sse,
+                            ref_best_rd, bs);
+  } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL ||
+             xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+    choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
+                           bs);
+  } else {
+    choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
+                           bs);
+  }
+}
+
+static int conditional_skipintra(PREDICTION_MODE mode,
+                                 PREDICTION_MODE best_intra_mode) {
+  if (mode == D117_PRED && best_intra_mode != V_PRED &&
+      best_intra_mode != D135_PRED)
+    return 1;
+  if (mode == D63_PRED && best_intra_mode != V_PRED &&
+      best_intra_mode != D45_PRED)
+    return 1;
+  if (mode == D207_PRED && best_intra_mode != H_PRED &&
+      best_intra_mode != D45_PRED)
+    return 1;
+  if (mode == D153_PRED && best_intra_mode != H_PRED &&
+      best_intra_mode != D135_PRED)
+    return 1;
+  return 0;
+}
+
+static int64_t rd_pick_intra4x4block(VP10_COMP *cpi, MACROBLOCK *x, int row,
+                                     int col, PREDICTION_MODE *best_mode,
+                                     const int *bmode_costs, ENTROPY_CONTEXT *a,
+                                     ENTROPY_CONTEXT *l, int *bestrate,
+                                     int *bestratey, int64_t *bestdistortion,
+                                     BLOCK_SIZE bsize, int64_t rd_thresh) {
+  PREDICTION_MODE mode;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  int64_t best_rd = rd_thresh;
+  struct macroblock_plane *p = &x->plane[0];
+  struct macroblockd_plane *pd = &xd->plane[0];
+  const int src_stride = p->src.stride;
+  const int dst_stride = pd->dst.stride;
+  const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
+  uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
+  ENTROPY_CONTEXT ta[2], tempa[2];
+  ENTROPY_CONTEXT tl[2], templ[2];
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+  int idx, idy;
+  uint8_t best_dst[8 * 8];
+#if CONFIG_VPX_HIGHBITDEPTH
+  uint16_t best_dst16[8 * 8];
+#endif
+
+  memcpy(ta, a, sizeof(ta));
+  memcpy(tl, l, sizeof(tl));
+  xd->mi[0]->mbmi.tx_size = TX_4X4;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+      int64_t this_rd;
+      int ratey = 0;
+      int64_t distortion = 0;
+      int rate = bmode_costs[mode];
+
+      if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
+
+      // Only do the oblique modes if the best so far is
+      // one of the neighboring directional modes
+      if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+        if (conditional_skipintra(mode, *best_mode)) continue;
+      }
+
+      memcpy(tempa, ta, sizeof(ta));
+      memcpy(templ, tl, sizeof(tl));
+
+      for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
+        for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
+          const int block = (row + idy) * 2 + (col + idx);
+          const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
+          uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
+          int16_t *const src_diff =
+              vp10_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
+          tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+          xd->mi[0]->bmi[block].as_mode = mode;
+          vp10_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst,
+                                   dst_stride, col + idx, row + idy, 0);
+          vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst,
+                                    dst_stride, xd->bd);
+          if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+            TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
+            const scan_order *so = get_scan(TX_4X4, tx_type);
+            vp10_highbd_fwd_txfm_4x4(src_diff, coeff, 8, DCT_DCT, 1);
+            vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+            ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+                                 so->scan, so->neighbors,
+                                 cpi->sf.use_fast_coef_costing);
+            if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+              goto next_highbd;
+            vp10_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
+                                         dst_stride, p->eobs[block], xd->bd,
+                                         DCT_DCT, 1);
+          } else {
+            int64_t unused;
+            TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
+            const scan_order *so = get_scan(TX_4X4, tx_type);
+            vp10_highbd_fwd_txfm_4x4(src_diff, coeff, 8, tx_type, 0);
+            vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+            ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+                                 so->scan, so->neighbors,
+                                 cpi->sf.use_fast_coef_costing);
+            distortion +=
+                vp10_highbd_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
+                                        16, &unused, xd->bd) >>
+                2;
+            if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+              goto next_highbd;
+            vp10_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
+                                         dst_stride, p->eobs[block], xd->bd,
+                                         tx_type, 0);
+          }
+        }
+      }
+
+      rate += ratey;
+      this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
+
+      if (this_rd < best_rd) {
+        *bestrate = rate;
+        *bestratey = ratey;
+        *bestdistortion = distortion;
+        best_rd = this_rd;
+        *best_mode = mode;
+        memcpy(a, tempa, sizeof(tempa));
+        memcpy(l, templ, sizeof(templ));
+        for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
+          memcpy(best_dst16 + idy * 8,
+                 CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
+                 num_4x4_blocks_wide * 4 * sizeof(uint16_t));
+        }
+      }
+    next_highbd : {}
+    }
+    if (best_rd >= rd_thresh) return best_rd;
+
+    for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
+      memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
+             best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t));
+    }
+
+    return best_rd;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+    int64_t this_rd;
+    int ratey = 0;
+    int64_t distortion = 0;
+    int rate = bmode_costs[mode];
+
+    if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
+
+    // Only do the oblique modes if the best so far is
+    // one of the neighboring directional modes
+    if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+      if (conditional_skipintra(mode, *best_mode)) continue;
+    }
+
+    memcpy(tempa, ta, sizeof(ta));
+    memcpy(templ, tl, sizeof(tl));
+
+    for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
+      for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
+        const int block = (row + idy) * 2 + (col + idx);
+        const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
+        uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
+        int16_t *const src_diff =
+            vp10_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
+        tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+        xd->mi[0]->bmi[block].as_mode = mode;
+        vp10_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst,
+                                 dst_stride, col + idx, row + idy, 0);
+        vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
+
+        if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+          TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
+          const scan_order *so = get_scan(TX_4X4, tx_type);
+          vp10_fwd_txfm_4x4(src_diff, coeff, 8, DCT_DCT, 1);
+          vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+          ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+                               so->scan, so->neighbors,
+                               cpi->sf.use_fast_coef_costing);
+          if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+            goto next;
+          vp10_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
+                                dst_stride, p->eobs[block], DCT_DCT, 1);
+        } else {
+          int64_t unused;
+          TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
+          const scan_order *so = get_scan(TX_4X4, tx_type);
+          vp10_fwd_txfm_4x4(src_diff, coeff, 8, tx_type, 0);
+          vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+          ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+                               so->scan, so->neighbors,
+                               cpi->sf.use_fast_coef_costing);
+          distortion +=
+              vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16,
+                               &unused) >>
+              2;
+          if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+            goto next;
+          vp10_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
+                                dst_stride, p->eobs[block], tx_type, 0);
+        }
+      }
+    }
+
+    rate += ratey;
+    this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
+
+    if (this_rd < best_rd) {
+      *bestrate = rate;
+      *bestratey = ratey;
+      *bestdistortion = distortion;
+      best_rd = this_rd;
+      *best_mode = mode;
+      memcpy(a, tempa, sizeof(tempa));
+      memcpy(l, templ, sizeof(templ));
+      for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
+        memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
+               num_4x4_blocks_wide * 4);
+    }
+  next : {}
+  }
+
+  if (best_rd >= rd_thresh) return best_rd;
+
+  for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
+    memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
+           num_4x4_blocks_wide * 4);
+
+  return best_rd;
+}
+
+static int64_t rd_pick_intra_sub_8x8_y_mode(VP10_COMP *cpi, MACROBLOCK *mb,
+                                            int *rate, int *rate_y,
+                                            int64_t *distortion,
+                                            int64_t best_rd) {
+  int i, j;
+  const MACROBLOCKD *const xd = &mb->e_mbd;
+  MODE_INFO *const mic = xd->mi[0];
+  const MODE_INFO *above_mi = xd->above_mi;
+  const MODE_INFO *left_mi = xd->left_mi;
+  const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+  int idx, idy;
+  int cost = 0;
+  int64_t total_distortion = 0;
+  int tot_rate_y = 0;
+  int64_t total_rd = 0;
+  ENTROPY_CONTEXT t_above[4], t_left[4];
+  const int *bmode_costs = cpi->mbmode_cost;
+
+  memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
+  memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
+
+  // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
+  for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+    for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+      PREDICTION_MODE best_mode = DC_PRED;
+      int r = INT_MAX, ry = INT_MAX;
+      int64_t d = INT64_MAX, this_rd = INT64_MAX;
+      i = idy * 2 + idx;
+      if (cpi->common.frame_type == KEY_FRAME) {
+        const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, i);
+        const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, i);
+
+        bmode_costs = cpi->y_mode_costs[A][L];
+      }
+
+      this_rd = rd_pick_intra4x4block(cpi, mb, idy, idx, &best_mode,
+                                      bmode_costs, t_above + idx, t_left + idy,
+                                      &r, &ry, &d, bsize, best_rd - total_rd);
+      if (this_rd >= best_rd - total_rd) return INT64_MAX;
+
+      total_rd += this_rd;
+      cost += r;
+      total_distortion += d;
+      tot_rate_y += ry;
+
+      mic->bmi[i].as_mode = best_mode;
+      for (j = 1; j < num_4x4_blocks_high; ++j)
+        mic->bmi[i + j * 2].as_mode = best_mode;
+      for (j = 1; j < num_4x4_blocks_wide; ++j)
+        mic->bmi[i + j].as_mode = best_mode;
+
+      if (total_rd >= best_rd) return INT64_MAX;
+    }
+  }
+
+  *rate = cost;
+  *rate_y = tot_rate_y;
+  *distortion = total_distortion;
+  mic->mbmi.mode = mic->bmi[3].as_mode;
+
+  return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
+}
+
+// This function is used only for intra_only frames
+static int64_t rd_pick_intra_sby_mode(VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                                      int *rate_tokenonly, int64_t *distortion,
+                                      int *skippable, BLOCK_SIZE bsize,
+                                      int64_t best_rd) {
+  PREDICTION_MODE mode;
+  PREDICTION_MODE mode_selected = DC_PRED;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MODE_INFO *const mic = xd->mi[0];
+  int this_rate, this_rate_tokenonly, s;
+  int64_t this_distortion, this_rd;
+  TX_SIZE best_tx = TX_4X4;
+  TX_TYPE best_tx_type = DCT_DCT;
+  int *bmode_costs;
+  const MODE_INFO *above_mi = xd->above_mi;
+  const MODE_INFO *left_mi = xd->left_mi;
+  const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, 0);
+  const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, 0);
+  bmode_costs = cpi->y_mode_costs[A][L];
+
+  memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
+
+  /* Y Search for intra prediction mode */
+  for (mode = DC_PRED; mode <= TM_PRED; mode++) {
+    mic->mbmi.mode = mode;
+
+    super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
+                    bsize, best_rd);
+
+    if (this_rate_tokenonly == INT_MAX) continue;
+
+    this_rate = this_rate_tokenonly + bmode_costs[mode];
+    this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
+
+    if (this_rd < best_rd) {
+      mode_selected = mode;
+      best_rd = this_rd;
+      best_tx = mic->mbmi.tx_size;
+      best_tx_type = mic->mbmi.tx_type;
+      *rate = this_rate;
+      *rate_tokenonly = this_rate_tokenonly;
+      *distortion = this_distortion;
+      *skippable = s;
+    }
+  }
+
+  mic->mbmi.mode = mode_selected;
+  mic->mbmi.tx_size = best_tx;
+  mic->mbmi.tx_type = best_tx_type;
+
+  return best_rd;
+}
+
+// Return value 0: early termination triggered, no valid rd cost available;
+//              1: rd cost values are valid.
+static int super_block_uvrd(const VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                            int64_t *distortion, int *skippable, int64_t *sse,
+                            BLOCK_SIZE bsize, int64_t ref_best_rd) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
+  int plane;
+  int pnrate = 0, pnskip = 1;
+  int64_t pndist = 0, pnsse = 0;
+  int is_cost_valid = 1;
+
+  if (ref_best_rd < 0) is_cost_valid = 0;
+
+  if (is_inter_block(mbmi) && is_cost_valid) {
+    int plane;
+    for (plane = 1; plane < MAX_MB_PLANE; ++plane)
+      vp10_subtract_plane(x, bsize, plane);
+  }
+
+  *rate = 0;
+  *distortion = 0;
+  *sse = 0;
+  *skippable = 1;
+
+  for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
+    txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, plane,
+                     bsize, uv_tx_size, cpi->sf.use_fast_coef_costing);
+    if (pnrate == INT_MAX) {
+      is_cost_valid = 0;
+      break;
+    }
+    *rate += pnrate;
+    *distortion += pndist;
+    *sse += pnsse;
+    *skippable &= pnskip;
+  }
+
+  if (!is_cost_valid) {
+    // reset cost value
+    *rate = INT_MAX;
+    *distortion = INT64_MAX;
+    *sse = INT64_MAX;
+    *skippable = 0;
+  }
+
+  return is_cost_valid;
+}
+
+static int64_t rd_pick_intra_sbuv_mode(VP10_COMP *cpi, MACROBLOCK *x,
+                                       PICK_MODE_CONTEXT *ctx, int *rate,
+                                       int *rate_tokenonly, int64_t *distortion,
+                                       int *skippable, BLOCK_SIZE bsize,
+                                       TX_SIZE max_tx_size) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  PREDICTION_MODE mode;
+  PREDICTION_MODE mode_selected = DC_PRED;
+  int64_t best_rd = INT64_MAX, this_rd;
+  int this_rate_tokenonly, this_rate, s;
+  int64_t this_distortion, this_sse;
+
+  memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
+  for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+    if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue;
+
+    xd->mi[0]->mbmi.uv_mode = mode;
+
+    if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
+                          &this_sse, bsize, best_rd))
+      continue;
+    this_rate = this_rate_tokenonly +
+                cpi->intra_uv_mode_cost[xd->mi[0]->mbmi.mode][mode];
+    this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
+
+    if (this_rd < best_rd) {
+      mode_selected = mode;
+      best_rd = this_rd;
+      *rate = this_rate;
+      *rate_tokenonly = this_rate_tokenonly;
+      *distortion = this_distortion;
+      *skippable = s;
+      if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE);
+    }
+  }
+
+  xd->mi[0]->mbmi.uv_mode = mode_selected;
+  return best_rd;
+}
+
+static int64_t rd_sbuv_dcpred(const VP10_COMP *cpi, MACROBLOCK *x, int *rate,
+                              int *rate_tokenonly, int64_t *distortion,
+                              int *skippable, BLOCK_SIZE bsize) {
+  int64_t unused;
+
+  x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED;
+  memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
+  super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused,
+                   bsize, INT64_MAX);
+  *rate = *rate_tokenonly +
+          cpi->intra_uv_mode_cost[x->e_mbd.mi[0]->mbmi.mode][DC_PRED];
+  return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
+}
+
+static void choose_intra_uv_mode(VP10_COMP *cpi, MACROBLOCK *const x,
+                                 PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
+                                 TX_SIZE max_tx_size, int *rate_uv,
+                                 int *rate_uv_tokenonly, int64_t *dist_uv,
+                                 int *skip_uv, PREDICTION_MODE *mode_uv) {
+  // Use an estimated rd for uv_intra based on DC_PRED if the
+  // appropriate speed flag is set.
+  if (cpi->sf.use_uv_intra_rd_estimate) {
+    rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
+                   bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
+    // Else do a proper rd search for each possible transform size that may
+    // be considered in the main rd loop.
+  } else {
+    rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv,
+                            skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
+                            max_tx_size);
+  }
+  *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
+}
+
+static int cost_mv_ref(const VP10_COMP *cpi, PREDICTION_MODE mode,
+                       int mode_context) {
+  assert(is_inter_mode(mode));
+  return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
+}
+
+static int set_and_cost_bmi_mvs(VP10_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
+                                int i, PREDICTION_MODE mode, int_mv this_mv[2],
+                                int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
+                                int_mv seg_mvs[MAX_REF_FRAMES],
+                                int_mv *best_ref_mv[2], const int *mvjcost,
+                                int *mvcost[2]) {
+  MODE_INFO *const mic = xd->mi[0];
+  const MB_MODE_INFO *const mbmi = &mic->mbmi;
+  const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+  int thismvcost = 0;
+  int idx, idy;
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
+  const int is_compound = has_second_ref(mbmi);
+
+  switch (mode) {
+    case NEWMV:
+      this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
+      thismvcost += vp10_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
+                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB);
+      if (is_compound) {
+        this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
+        thismvcost +=
+            vp10_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, mvjcost,
+                             mvcost, MV_COST_WEIGHT_SUB);
+      }
+      break;
+    case NEARMV:
+    case NEARESTMV:
+      this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
+      if (is_compound)
+        this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
+      break;
+    case ZEROMV:
+      this_mv[0].as_int = 0;
+      if (is_compound) this_mv[1].as_int = 0;
+      break;
+    default: break;
+  }
+
+  mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
+  if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
+
+  mic->bmi[i].as_mode = mode;
+
+  for (idy = 0; idy < num_4x4_blocks_high; ++idy)
+    for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
+      memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
+
+  return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mbmi->ref_frame[0]]) +
+         thismvcost;
+}
+
+static int64_t encode_inter_mb_segment(VP10_COMP *cpi, MACROBLOCK *x,
+                                       int64_t best_yrd, int i, int *labelyrate,
+                                       int64_t *distortion, int64_t *sse,
+                                       ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
+                                       int ir, int ic, int mi_row, int mi_col) {
+  int k;
+  MACROBLOCKD *xd = &x->e_mbd;
+  struct macroblockd_plane *const pd = &xd->plane[0];
+  struct macroblock_plane *const p = &x->plane[0];
+  MODE_INFO *const mi = xd->mi[0];
+  const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
+  const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+  const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
+  int idx, idy;
+  void (*fwd_txm4x4)(const int16_t *input, tran_low_t *output, int stride);
+
+  const uint8_t *const src =
+      &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
+  uint8_t *const dst =
+      &pd->dst.buf[vp10_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
+  int64_t thisdistortion = 0, thissse = 0;
+  int thisrate = 0;
+  TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i);
+  const scan_order *so = get_scan(TX_4X4, tx_type);
+
+  vp10_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? vp10_highbd_fwht4x4
+                                                   : vpx_highbd_fdct4x4;
+  } else {
+    fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? vp10_fwht4x4 : vpx_fdct4x4;
+  }
+#else
+  fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? vp10_fwht4x4 : vpx_fdct4x4;
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    vpx_highbd_subtract_block(
+        height, width,
+        vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src,
+        p->src.stride, dst, pd->dst.stride, xd->bd);
+  } else {
+    vpx_subtract_block(height, width, vp10_raster_block_offset_int16(
+                                          BLOCK_8X8, i, p->src_diff),
+                       8, src, p->src.stride, dst, pd->dst.stride);
+  }
+#else
+  vpx_subtract_block(height, width,
+                     vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
+                     8, src, p->src.stride, dst, pd->dst.stride);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  k = i;
+  for (idy = 0; idy < height / 4; ++idy) {
+    for (idx = 0; idx < width / 4; ++idx) {
+      int64_t ssz, rd, rd1, rd2;
+      tran_low_t *coeff;
+
+      k += (idy * 2 + idx);
+      coeff = BLOCK_OFFSET(p->coeff, k);
+      fwd_txm4x4(vp10_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
+                 coeff, 8);
+      vp10_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+        thisdistortion += vp10_highbd_block_error(
+            coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, xd->bd);
+      } else {
+        thisdistortion +=
+            vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz);
+      }
+#else
+      thisdistortion +=
+          vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      thissse += ssz;
+      thisrate +=
+          cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4, so->scan,
+                      so->neighbors, cpi->sf.use_fast_coef_costing);
+      rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
+      rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
+      rd = VPXMIN(rd1, rd2);
+      if (rd >= best_yrd) return INT64_MAX;
+    }
+  }
+
+  *distortion = thisdistortion >> 2;
+  *labelyrate = thisrate;
+  *sse = thissse >> 2;
+
+  return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
+}
+
+typedef struct {
+  int eobs;
+  int brate;
+  int byrate;
+  int64_t bdist;
+  int64_t bsse;
+  int64_t brdcost;
+  int_mv mvs[2];
+  ENTROPY_CONTEXT ta[2];
+  ENTROPY_CONTEXT tl[2];
+} SEG_RDSTAT;
+
+typedef struct {
+  int_mv *ref_mv[2];
+  int_mv mvp;
+
+  int64_t segment_rd;
+  int r;
+  int64_t d;
+  int64_t sse;
+  int segment_yrate;
+  PREDICTION_MODE modes[4];
+  SEG_RDSTAT rdstat[4][INTER_MODES];
+  int mvthresh;
+} BEST_SEG_INFO;
+
+static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
+  return (mv->row >> 3) < x->mv_row_min || (mv->row >> 3) > x->mv_row_max ||
+         (mv->col >> 3) < x->mv_col_min || (mv->col >> 3) > x->mv_col_max;
+}
+
+static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
+  MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
+  struct macroblock_plane *const p = &x->plane[0];
+  struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
+
+  p->src.buf =
+      &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
+  assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
+  pd->pre[0].buf =
+      &pd->pre[0]
+           .buf[vp10_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
+  if (has_second_ref(mbmi))
+    pd->pre[1].buf =
+        &pd->pre[1]
+             .buf[vp10_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)];
+}
+
+static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
+                                  struct buf_2d orig_pre[2]) {
+  MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
+  x->plane[0].src = orig_src;
+  x->e_mbd.plane[0].pre[0] = orig_pre[0];
+  if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1];
+}
+
+static INLINE int mv_has_subpel(const MV *mv) {
+  return (mv->row & 0x0F) || (mv->col & 0x0F);
+}
+
+// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
+// TODO(aconverse): Find out if this is still productive then clean up or remove
+static int check_best_zero_mv(const VP10_COMP *cpi,
+                              const uint8_t mode_context[MAX_REF_FRAMES],
+                              int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
+                              int this_mode,
+                              const MV_REFERENCE_FRAME ref_frames[2]) {
+  if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
+      frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
+      (ref_frames[1] == NONE ||
+       frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
+    int rfc = mode_context[ref_frames[0]];
+    int c1 = cost_mv_ref(cpi, NEARMV, rfc);
+    int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
+    int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
+
+    if (this_mode == NEARMV) {
+      if (c1 > c3) return 0;
+    } else if (this_mode == NEARESTMV) {
+      if (c2 > c3) return 0;
+    } else {
+      assert(this_mode == ZEROMV);
+      if (ref_frames[1] == NONE) {
+        if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
+            (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
+          return 0;
+      } else {
+        if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
+             frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
+            (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
+             frame_mv[NEARMV][ref_frames[1]].as_int == 0))
+          return 0;
+      }
+    }
+  }
+  return 1;
+}
+
+static void joint_motion_search(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+                                int_mv *frame_mv, int mi_row, int mi_col,
+                                int_mv single_newmv[MAX_REF_FRAMES],
+                                int *rate_mv) {
+  const VP10_COMMON *const cm = &cpi->common;
+  const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
+  const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
+  MACROBLOCKD *xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  const int refs[2] = { mbmi->ref_frame[0],
+                        mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
+  int_mv ref_mv[2];
+  int ite, ref;
+  const InterpKernel *kernel = vp10_filter_kernels[mbmi->interp_filter];
+  struct scale_factors sf;
+
+  // Do joint motion search in compound mode to get more accurate mv.
+  struct buf_2d backup_yv12[2][MAX_MB_PLANE];
+  int last_besterr[2] = { INT_MAX, INT_MAX };
+  const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
+    vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
+    vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
+  };
+
+// Prediction buffer from second frame.
+#if CONFIG_VPX_HIGHBITDEPTH
+  DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]);
+  uint8_t *second_pred;
+#else
+  DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  for (ref = 0; ref < 2; ++ref) {
+    ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
+
+    if (scaled_ref_frame[ref]) {
+      int i;
+      // Swap out the reference frame for a version that's been scaled to
+      // match the resolution of the current frame, allowing the existing
+      // motion search code to be used without additional modifications.
+      for (i = 0; i < MAX_MB_PLANE; i++)
+        backup_yv12[ref][i] = xd->plane[i].pre[ref];
+      vp10_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
+                            NULL);
+    }
+
+    frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
+  }
+
+// Since we have scaled the reference frames to match the size of the current
+// frame we must use a unit scaling factor during mode selection.
+#if CONFIG_VPX_HIGHBITDEPTH
+  vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
+                                     cm->height, cm->use_highbitdepth);
+#else
+  vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
+                                     cm->height);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  // Allow joint search multiple times iteratively for each reference frame
+  // and break out of the search loop if it couldn't find a better mv.
+  for (ite = 0; ite < 4; ite++) {
+    struct buf_2d ref_yv12[2];
+    int bestsme = INT_MAX;
+    int sadpb = x->sadperbit16;
+    MV tmp_mv;
+    int search_range = 3;
+
+    int tmp_col_min = x->mv_col_min;
+    int tmp_col_max = x->mv_col_max;
+    int tmp_row_min = x->mv_row_min;
+    int tmp_row_max = x->mv_row_max;
+    int id = ite % 2;  // Even iterations search in the first reference frame,
+                       // odd iterations search in the second. The predictor
+                       // found for the 'other' reference frame is factored in.
+
+    // Initialized here because of compiler problem in Visual Studio.
+    ref_yv12[0] = xd->plane[0].pre[0];
+    ref_yv12[1] = xd->plane[0].pre[1];
+
+// Get the prediction block from the 'other' reference frame.
+#if CONFIG_VPX_HIGHBITDEPTH
+    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+      second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
+      vp10_highbd_build_inter_predictor(
+          ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
+          &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, kernel, MV_PRECISION_Q3,
+          mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd);
+    } else {
+      second_pred = (uint8_t *)second_pred_alloc_16;
+      vp10_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
+                                 second_pred, pw, &frame_mv[refs[!id]].as_mv,
+                                 &sf, pw, ph, 0, kernel, MV_PRECISION_Q3,
+                                 mi_col * MI_SIZE, mi_row * MI_SIZE);
+    }
+#else
+    vp10_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
+                               second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf,
+                               pw, ph, 0, kernel, MV_PRECISION_Q3,
+                               mi_col * MI_SIZE, mi_row * MI_SIZE);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+    // Do compound motion search on the current reference frame.
+    if (id) xd->plane[0].pre[0] = ref_yv12[id];
+    vp10_set_mv_search_range(x, &ref_mv[id].as_mv);
+
+    // Use the mv result from the single mode as mv predictor.
+    tmp_mv = frame_mv[refs[id]].as_mv;
+
+    tmp_mv.col >>= 3;
+    tmp_mv.row >>= 3;
+
+    // Small-range full-pixel motion search.
+    bestsme = vp10_refining_search_8p_c(x, &tmp_mv, sadpb, search_range,
+                                        &cpi->fn_ptr[bsize], &ref_mv[id].as_mv,
+                                        second_pred);
+    if (bestsme < INT_MAX)
+      bestsme = vp10_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
+                                       second_pred, &cpi->fn_ptr[bsize], 1);
+
+    x->mv_col_min = tmp_col_min;
+    x->mv_col_max = tmp_col_max;
+    x->mv_row_min = tmp_row_min;
+    x->mv_row_max = tmp_row_max;
+
+    if (bestsme < INT_MAX) {
+      int dis; /* TODO: use dis in distortion calculation later. */
+      unsigned int sse;
+      bestsme = cpi->find_fractional_mv_step(
+          x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
+          x->errorperbit, &cpi->fn_ptr[bsize], 0,
+          cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
+          &dis, &sse, second_pred, pw, ph);
+    }
+
+    // Restore the pointer to the first (possibly scaled) prediction buffer.
+    if (id) xd->plane[0].pre[0] = ref_yv12[0];
+
+    if (bestsme < last_besterr[id]) {
+      frame_mv[refs[id]].as_mv = tmp_mv;
+      last_besterr[id] = bestsme;
+    } else {
+      break;
+    }
+  }
+
+  *rate_mv = 0;
+
+  for (ref = 0; ref < 2; ++ref) {
+    if (scaled_ref_frame[ref]) {
+      // Restore the prediction frame pointers to their unscaled versions.
+      int i;
+      for (i = 0; i < MAX_MB_PLANE; i++)
+        xd->plane[i].pre[ref] = backup_yv12[ref][i];
+    }
+
+    *rate_mv += vp10_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
+                                 &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
+                                 x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+  }
+}
+
+static int64_t rd_pick_best_sub8x8_mode(
+    VP10_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv,
+    int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate,
+    int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse,
+    int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf,
+    int filter_idx, int mi_row, int mi_col) {
+  int i;
+  BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
+  MACROBLOCKD *xd = &x->e_mbd;
+  MODE_INFO *mi = xd->mi[0];
+  MB_MODE_INFO *mbmi = &mi->mbmi;
+  int mode_idx;
+  int k, br = 0, idx, idy;
+  int64_t bd = 0, block_sse = 0;
+  PREDICTION_MODE this_mode;
+  VP10_COMMON *cm = &cpi->common;
+  struct macroblock_plane *const p = &x->plane[0];
+  struct macroblockd_plane *const pd = &xd->plane[0];
+  const int label_count = 4;
+  int64_t this_segment_rd = 0;
+  int label_mv_thresh;
+  int segmentyrate = 0;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+  ENTROPY_CONTEXT t_above[2], t_left[2];
+  int subpelmv = 1, have_ref = 0;
+  const int has_second_rf = has_second_ref(mbmi);
+  const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
+  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+
+  vp10_zero(*bsi);
+
+  bsi->segment_rd = best_rd;
+  bsi->ref_mv[0] = best_ref_mv;
+  bsi->ref_mv[1] = second_best_ref_mv;
+  bsi->mvp.as_int = best_ref_mv->as_int;
+  bsi->mvthresh = mvthresh;
+
+  for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV;
+
+  memcpy(t_above, pd->above_context, sizeof(t_above));
+  memcpy(t_left, pd->left_context, sizeof(t_left));
+
+  // 64 makes this threshold really big effectively
+  // making it so that we very rarely check mvs on
+  // segments.   setting this to 1 would make mv thresh
+  // roughly equal to what it is for macroblocks
+  label_mv_thresh = 1 * bsi->mvthresh / label_count;
+
+  // Segmentation method overheads
+  for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+    for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+      // TODO(jingning,rbultje): rewrite the rate-distortion optimization
+      // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
+      int_mv mode_mv[MB_MODE_COUNT][2];
+      int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+      PREDICTION_MODE mode_selected = ZEROMV;
+      int64_t best_rd = INT64_MAX;
+      const int i = idy * 2 + idx;
+      int ref;
+
+      for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+        const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
+        frame_mv[ZEROMV][frame].as_int = 0;
+        vp10_append_sub8x8_mvs_for_idx(
+            cm, xd, i, ref, mi_row, mi_col, &frame_mv[NEARESTMV][frame],
+            &frame_mv[NEARMV][frame], mbmi_ext->mode_context);
+      }
+
+      // search for the best motion vector on this segment
+      for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
+        const struct buf_2d orig_src = x->plane[0].src;
+        struct buf_2d orig_pre[2];
+
+        mode_idx = INTER_OFFSET(this_mode);
+        bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
+        if (!(inter_mode_mask & (1 << this_mode))) continue;
+
+        if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv,
+                                this_mode, mbmi->ref_frame))
+          continue;
+
+        memcpy(orig_pre, pd->pre, sizeof(orig_pre));
+        memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
+               sizeof(bsi->rdstat[i][mode_idx].ta));
+        memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
+               sizeof(bsi->rdstat[i][mode_idx].tl));
+
+        // motion search for newmv (single predictor case only)
+        if (!has_second_rf && this_mode == NEWMV &&
+            seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) {
+          MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
+          int step_param = 0;
+          int bestsme = INT_MAX;
+          int sadpb = x->sadperbit4;
+          MV mvp_full;
+          int max_mv;
+          int cost_list[5];
+
+          /* Is the best so far sufficiently good that we cant justify doing
+           * and new motion search. */
+          if (best_rd < label_mv_thresh) break;
+
+          if (cpi->oxcf.mode != BEST) {
+            // use previous block's result as next block's MV predictor.
+            if (i > 0) {
+              bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
+              if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
+            }
+          }
+          if (i == 0)
+            max_mv = x->max_mv_context[mbmi->ref_frame[0]];
+          else
+            max_mv =
+                VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
+
+          if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
+            // Take wtd average of the step_params based on the last frame's
+            // max mv magnitude and the best ref mvs of the current block for
+            // the given reference.
+            step_param =
+                (vp10_init_search_range(max_mv) + cpi->mv_step_param) / 2;
+          } else {
+            step_param = cpi->mv_step_param;
+          }
+
+          mvp_full.row = bsi->mvp.as_mv.row >> 3;
+          mvp_full.col = bsi->mvp.as_mv.col >> 3;
+
+          if (cpi->sf.adaptive_motion_search) {
+            mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
+            mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
+            step_param = VPXMAX(step_param, 8);
+          }
+
+          // adjust src pointer for this block
+          mi_buf_shift(x, i);
+
+          vp10_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
+
+          bestsme = vp10_full_pixel_search(
+              cpi, x, bsize, &mvp_full, step_param, sadpb,
+              cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
+              &bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1);
+
+          if (bestsme < INT_MAX) {
+            int distortion;
+            cpi->find_fractional_mv_step(
+                x, new_mv, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
+                x->errorperbit, &cpi->fn_ptr[bsize],
+                cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
+                cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
+                &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0);
+
+            // save motion search result for use in compound prediction
+            seg_mvs[i][mbmi->ref_frame[0]].as_mv = *new_mv;
+          }
+
+          if (cpi->sf.adaptive_motion_search)
+            x->pred_mv[mbmi->ref_frame[0]] = *new_mv;
+
+          // restore src pointers
+          mi_buf_restore(x, orig_src, orig_pre);
+        }
+
+        if (has_second_rf) {
+          if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
+              seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
+            continue;
+        }
+
+        if (has_second_rf && this_mode == NEWMV &&
+            mbmi->interp_filter == EIGHTTAP) {
+          // adjust src pointers
+          mi_buf_shift(x, i);
+          if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+            int rate_mv;
+            joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row,
+                                mi_col, seg_mvs[i], &rate_mv);
+            seg_mvs[i][mbmi->ref_frame[0]].as_int =
+                frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
+            seg_mvs[i][mbmi->ref_frame[1]].as_int =
+                frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
+          }
+          // restore src pointers
+          mi_buf_restore(x, orig_src, orig_pre);
+        }
+
+        bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs(
+            cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i],
+            bsi->ref_mv, x->nmvjointcost, x->mvcost);
+
+        for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+          bsi->rdstat[i][mode_idx].mvs[ref].as_int =
+              mode_mv[this_mode][ref].as_int;
+          if (num_4x4_blocks_wide > 1)
+            bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
+                mode_mv[this_mode][ref].as_int;
+          if (num_4x4_blocks_high > 1)
+            bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
+                mode_mv[this_mode][ref].as_int;
+        }
+
+        // Trap vectors that reach beyond the UMV borders
+        if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
+            (has_second_rf && mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
+          continue;
+
+        if (filter_idx > 0) {
+          BEST_SEG_INFO *ref_bsi = bsi_buf;
+          subpelmv = 0;
+          have_ref = 1;
+
+          for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+            subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
+            have_ref &= mode_mv[this_mode][ref].as_int ==
+                        ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
+          }
+
+          if (filter_idx > 1 && !subpelmv && !have_ref) {
+            ref_bsi = bsi_buf + 1;
+            have_ref = 1;
+            for (ref = 0; ref < 1 + has_second_rf; ++ref)
+              have_ref &= mode_mv[this_mode][ref].as_int ==
+                          ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
+          }
+
+          if (!subpelmv && have_ref &&
+              ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
+            memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
+                   sizeof(SEG_RDSTAT));
+            if (num_4x4_blocks_wide > 1)
+              bsi->rdstat[i + 1][mode_idx].eobs =
+                  ref_bsi->rdstat[i + 1][mode_idx].eobs;
+            if (num_4x4_blocks_high > 1)
+              bsi->rdstat[i + 2][mode_idx].eobs =
+                  ref_bsi->rdstat[i + 2][mode_idx].eobs;
+
+            if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
+              mode_selected = this_mode;
+              best_rd = bsi->rdstat[i][mode_idx].brdcost;
+            }
+            continue;
+          }
+        }
+
+        bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment(
+            cpi, x, bsi->segment_rd - this_segment_rd, i,
+            &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist,
+            &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta,
+            bsi->rdstat[i][mode_idx].tl, idy, idx, mi_row, mi_col);
+        if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
+          bsi->rdstat[i][mode_idx].brdcost +=
+              RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0);
+          bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
+          bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
+          if (num_4x4_blocks_wide > 1)
+            bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
+          if (num_4x4_blocks_high > 1)
+            bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
+        }
+
+        if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
+          mode_selected = this_mode;
+          best_rd = bsi->rdstat[i][mode_idx].brdcost;
+        }
+      } /*for each 4x4 mode*/
+
+      if (best_rd == INT64_MAX) {
+        int iy, midx;
+        for (iy = i + 1; iy < 4; ++iy)
+          for (midx = 0; midx < INTER_MODES; ++midx)
+            bsi->rdstat[iy][midx].brdcost = INT64_MAX;
+        bsi->segment_rd = INT64_MAX;
+        return INT64_MAX;
+      }
+
+      mode_idx = INTER_OFFSET(mode_selected);
+      memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
+      memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
+
+      set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected],
+                           frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
+                           x->mvcost);
+
+      br += bsi->rdstat[i][mode_idx].brate;
+      bd += bsi->rdstat[i][mode_idx].bdist;
+      block_sse += bsi->rdstat[i][mode_idx].bsse;
+      segmentyrate += bsi->rdstat[i][mode_idx].byrate;
+      this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
+
+      if (this_segment_rd > bsi->segment_rd) {
+        int iy, midx;
+        for (iy = i + 1; iy < 4; ++iy)
+          for (midx = 0; midx < INTER_MODES; ++midx)
+            bsi->rdstat[iy][midx].brdcost = INT64_MAX;
+        bsi->segment_rd = INT64_MAX;
+        return INT64_MAX;
+      }
+    }
+  } /* for each label */
+
+  bsi->r = br;
+  bsi->d = bd;
+  bsi->segment_yrate = segmentyrate;
+  bsi->segment_rd = this_segment_rd;
+  bsi->sse = block_sse;
+
+  // update the coding decisions
+  for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode;
+
+  if (bsi->segment_rd > best_rd) return INT64_MAX;
+  /* set it to the best */
+  for (i = 0; i < 4; i++) {
+    mode_idx = INTER_OFFSET(bsi->modes[i]);
+    mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
+    if (has_second_ref(mbmi))
+      mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
+    x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
+    mi->bmi[i].as_mode = bsi->modes[i];
+  }
+
+  /*
+   * used to set mbmi->mv.as_int
+   */
+  *returntotrate = bsi->r;
+  *returndistortion = bsi->d;
+  *returnyrate = bsi->segment_yrate;
+  *skippable = vp10_is_skippable_in_plane(x, BLOCK_8X8, 0);
+  *psse = bsi->sse;
+  mbmi->mode = bsi->modes[3];
+
+  return bsi->segment_rd;
+}
+
+static void estimate_ref_frame_costs(const VP10_COMMON *cm,
+                                     const MACROBLOCKD *xd, int segment_id,
+                                     unsigned int *ref_costs_single,
+                                     unsigned int *ref_costs_comp,
+                                     vpx_prob *comp_mode_p) {
+  int seg_ref_active =
+      segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
+  if (seg_ref_active) {
+    memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
+    memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
+    *comp_mode_p = 128;
+  } else {
+    vpx_prob intra_inter_p = vp10_get_intra_inter_prob(cm, xd);
+    vpx_prob comp_inter_p = 128;
+
+    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+      comp_inter_p = vp10_get_reference_mode_prob(cm, xd);
+      *comp_mode_p = comp_inter_p;
+    } else {
+      *comp_mode_p = 128;
+    }
+
+    ref_costs_single[INTRA_FRAME] = vp10_cost_bit(intra_inter_p, 0);
+
+    if (cm->reference_mode != COMPOUND_REFERENCE) {
+      vpx_prob ref_single_p1 = vp10_get_pred_prob_single_ref_p1(cm, xd);
+      vpx_prob ref_single_p2 = vp10_get_pred_prob_single_ref_p2(cm, xd);
+      unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1);
+
+      if (cm->reference_mode == REFERENCE_MODE_SELECT)
+        base_cost += vp10_cost_bit(comp_inter_p, 0);
+
+      ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
+          ref_costs_single[ALTREF_FRAME] = base_cost;
+      ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p1, 0);
+      ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p1, 1);
+      ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p1, 1);
+      ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p2, 0);
+      ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p2, 1);
+    } else {
+      ref_costs_single[LAST_FRAME] = 512;
+      ref_costs_single[GOLDEN_FRAME] = 512;
+      ref_costs_single[ALTREF_FRAME] = 512;
+    }
+    if (cm->reference_mode != SINGLE_REFERENCE) {
+      vpx_prob ref_comp_p = vp10_get_pred_prob_comp_ref_p(cm, xd);
+      unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1);
+
+      if (cm->reference_mode == REFERENCE_MODE_SELECT)
+        base_cost += vp10_cost_bit(comp_inter_p, 1);
+
+      ref_costs_comp[LAST_FRAME] = base_cost + vp10_cost_bit(ref_comp_p, 0);
+      ref_costs_comp[GOLDEN_FRAME] = base_cost + vp10_cost_bit(ref_comp_p, 1);
+    } else {
+      ref_costs_comp[LAST_FRAME] = 512;
+      ref_costs_comp[GOLDEN_FRAME] = 512;
+    }
+  }
+}
+
+static void store_coding_context(
+    MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
+    int64_t comp_pred_diff[REFERENCE_MODES],
+    int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], int skippable) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+
+  // Take a snapshot of the coding context so it can be
+  // restored if we decide to encode this way
+  ctx->skip = x->skip;
+  ctx->skippable = skippable;
+  ctx->best_mode_index = mode_index;
+  ctx->mic = *xd->mi[0];
+  ctx->mbmi_ext = *x->mbmi_ext;
+  ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
+  ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
+  ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
+
+  memcpy(ctx->best_filter_diff, best_filter_diff,
+         sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS);
+}
+
+static void setup_buffer_inter(VP10_COMP *cpi, MACROBLOCK *x,
+                               MV_REFERENCE_FRAME ref_frame,
+                               BLOCK_SIZE block_size, int mi_row, int mi_col,
+                               int_mv frame_nearest_mv[MAX_REF_FRAMES],
+                               int_mv frame_near_mv[MAX_REF_FRAMES],
+                               struct buf_2d yv12_mb[4][MAX_MB_PLANE]) {
+  const VP10_COMMON *cm = &cpi->common;
+  const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MODE_INFO *const mi = xd->mi[0];
+  int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
+  const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
+  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+
+  assert(yv12 != NULL);
+
+  // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
+  // use the UV scaling factors.
+  vp10_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
+
+  // Gets an initial list of candidate vectors from neighbours and orders them
+  vp10_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col, NULL,
+                    NULL, mbmi_ext->mode_context);
+
+  // Candidate refinement carried out at encoder and decoder
+  vp10_find_best_ref_mvs(cm->allow_high_precision_mv, candidates,
+                         &frame_nearest_mv[ref_frame],
+                         &frame_near_mv[ref_frame]);
+
+  // Further refinement that is encode side only to test the top few candidates
+  // in full and choose the best as the centre point for subsequent searches.
+  // The current implementation doesn't support scaling.
+  if (!vp10_is_scaled(sf) && block_size >= BLOCK_8X8)
+    vp10_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
+                 block_size);
+}
+
+static void single_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
+                                 BLOCK_SIZE bsize, int mi_row, int mi_col,
+                                 int_mv *tmp_mv, int *rate_mv) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  const VP10_COMMON *cm = &cpi->common;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
+  int bestsme = INT_MAX;
+  int step_param;
+  int sadpb = x->sadperbit16;
+  MV mvp_full;
+  int ref = mbmi->ref_frame[0];
+  MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
+
+  int tmp_col_min = x->mv_col_min;
+  int tmp_col_max = x->mv_col_max;
+  int tmp_row_min = x->mv_row_min;
+  int tmp_row_max = x->mv_row_max;
+  int cost_list[5];
+
+  const YV12_BUFFER_CONFIG *scaled_ref_frame =
+      vp10_get_scaled_ref_frame(cpi, ref);
+
+  MV pred_mv[3];
+  pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
+  pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
+  pred_mv[2] = x->pred_mv[ref];
+
+  if (scaled_ref_frame) {
+    int i;
+    // Swap out the reference frame for a version that's been scaled to
+    // match the resolution of the current frame, allowing the existing
+    // motion search code to be used without additional modifications.
+    for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
+
+    vp10_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+  }
+
+  vp10_set_mv_search_range(x, &ref_mv);
+
+  // Work out the size of the first step in the mv step search.
+  // 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
+  if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
+    // Take wtd average of the step_params based on the last frame's
+    // max mv magnitude and that based on the best ref mvs of the current
+    // block for the given reference.
+    step_param =
+        (vp10_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
+        2;
+  } else {
+    step_param = cpi->mv_step_param;
+  }
+
+  if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
+    int boffset =
+        2 * (b_width_log2_lookup[BLOCK_64X64] -
+             VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
+    step_param = VPXMAX(step_param, boffset);
+  }
+
+  if (cpi->sf.adaptive_motion_search) {
+    int bwl = b_width_log2_lookup[bsize];
+    int bhl = b_height_log2_lookup[bsize];
+    int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
+
+    if (tlevel < 5) step_param += 2;
+
+    // prev_mv_sad is not setup for dynamically scaled frames.
+    if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
+      int i;
+      for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
+        if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
+          x->pred_mv[ref].row = 0;
+          x->pred_mv[ref].col = 0;
+          tmp_mv->as_int = INVALID_MV;
+
+          if (scaled_ref_frame) {
+            int i;
+            for (i = 0; i < MAX_MB_PLANE; ++i)
+              xd->plane[i].pre[0] = backup_yv12[i];
+          }
+          return;
+        }
+      }
+    }
+  }
+
+  mvp_full = pred_mv[x->mv_best_ref_index[ref]];
+
+  mvp_full.col >>= 3;
+  mvp_full.row >>= 3;
+
+  bestsme = vp10_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
+                                   cond_cost_list(cpi, cost_list), &ref_mv,
+                                   &tmp_mv->as_mv, INT_MAX, 1);
+
+  x->mv_col_min = tmp_col_min;
+  x->mv_col_max = tmp_col_max;
+  x->mv_row_min = tmp_row_min;
+  x->mv_row_max = tmp_row_max;
+
+  if (bestsme < INT_MAX) {
+    int dis; /* TODO: use dis in distortion calculation later. */
+    cpi->find_fractional_mv_step(
+        x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
+        &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
+        cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
+        x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0);
+  }
+  *rate_mv = vp10_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
+                              x->mvcost, MV_COST_WEIGHT);
+
+  if (cpi->sf.adaptive_motion_search) x->pred_mv[ref] = tmp_mv->as_mv;
+
+  if (scaled_ref_frame) {
+    int i;
+    for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
+  }
+}
+
+static INLINE void restore_dst_buf(MACROBLOCKD *xd,
+                                   uint8_t *orig_dst[MAX_MB_PLANE],
+                                   int orig_dst_stride[MAX_MB_PLANE]) {
+  int i;
+  for (i = 0; i < MAX_MB_PLANE; i++) {
+    xd->plane[i].dst.buf = orig_dst[i];
+    xd->plane[i].dst.stride = orig_dst_stride[i];
+  }
+}
+
+// In some situations we want to discount tha pparent cost of a new motion
+// vector. Where there is a subtle motion field and especially where there is
+// low spatial complexity then it can be hard to cover the cost of a new motion
+// vector in a single block, even if that motion vector reduces distortion.
+// However, once established that vector may be usable through the nearest and
+// near mv modes to reduce distortion in subsequent blocks and also improve
+// visual quality.
+static int discount_newmv_test(const VP10_COMP *cpi, int this_mode,
+                               int_mv this_mv,
+                               int_mv (*mode_mv)[MAX_REF_FRAMES],
+                               int ref_frame) {
+  return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) &&
+          (this_mv.as_int != 0) &&
+          ((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
+           (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
+          ((mode_mv[NEARMV][ref_frame].as_int == 0) ||
+           (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
+}
+
+#define LEFT_TOP_MARGIN ((VPX_ENC_BORDER_IN_PIXELS - VPX_INTERP_EXTEND) << 3)
+#define RIGHT_BOTTOM_MARGIN \
+  ((VPX_ENC_BORDER_IN_PIXELS - VPX_INTERP_EXTEND) << 3)
+
+// TODO(jingning): this mv clamping function should be block size dependent.
+static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
+  clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
+           xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
+           xd->mb_to_top_edge - LEFT_TOP_MARGIN,
+           xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
+}
+
+static int64_t handle_inter_mode(
+    VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2,
+    int64_t *distortion, int *skippable, int *rate_y, int *rate_uv,
+    int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row,
+    int mi_col, int_mv single_newmv[MAX_REF_FRAMES],
+    INTERP_FILTER (*single_filter)[MAX_REF_FRAMES],
+    int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse,
+    const int64_t ref_best_rd, int64_t *mask_filter, int64_t filter_cache[]) {
+  VP10_COMMON *cm = &cpi->common;
+  MACROBLOCKD *xd = &x->e_mbd;
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+  const int is_comp_pred = has_second_ref(mbmi);
+  const int this_mode = mbmi->mode;
+  int_mv *frame_mv = mode_mv[this_mode];
+  int i;
+  int refs[2] = { mbmi->ref_frame[0],
+                  (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+  int_mv cur_mv[2];
+#if CONFIG_VPX_HIGHBITDEPTH
+  DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]);
+  uint8_t *tmp_buf;
+#else
+  DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  int pred_exists = 0;
+  int intpel_mv;
+  int64_t rd, tmp_rd, best_rd = INT64_MAX;
+  int best_needs_copy = 0;
+  uint8_t *orig_dst[MAX_MB_PLANE];
+  int orig_dst_stride[MAX_MB_PLANE];
+  int rs = 0;
+  INTERP_FILTER best_filter = SWITCHABLE;
+  uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 };
+  int64_t bsse[MAX_MB_PLANE << 2] = { 0 };
+
+  int bsl = mi_width_log2_lookup[bsize];
+  int pred_filter_search =
+      cpi->sf.cb_pred_filter_search
+          ? (((mi_row + mi_col) >> bsl) +
+             get_chessboard_index(cm->current_video_frame)) &
+                0x1
+          : 0;
+
+  int skip_txfm_sb = 0;
+  int64_t skip_sse_sb = INT64_MAX;
+  int64_t distortion_y = 0, distortion_uv = 0;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
+  } else {
+    tmp_buf = (uint8_t *)tmp_buf16;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  if (pred_filter_search) {
+    INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE;
+    if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
+    if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter;
+
+    if ((this_mode != NEWMV) || (af == lf)) best_filter = af;
+  }
+
+  if (is_comp_pred) {
+    if (frame_mv[refs[0]].as_int == INVALID_MV ||
+        frame_mv[refs[1]].as_int == INVALID_MV)
+      return INT64_MAX;
+
+    if (cpi->sf.adaptive_mode_search) {
+      if (single_filter[this_mode][refs[0]] ==
+          single_filter[this_mode][refs[1]])
+        best_filter = single_filter[this_mode][refs[0]];
+    }
+  }
+
+  if (this_mode == NEWMV) {
+    int rate_mv;
+    if (is_comp_pred) {
+      // Initialize mv using single prediction mode result.
+      frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
+      frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
+
+      if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+        joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col,
+                            single_newmv, &rate_mv);
+      } else {
+        rate_mv = vp10_mv_bit_cost(&frame_mv[refs[0]].as_mv,
+                                   &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
+                                   x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+        rate_mv += vp10_mv_bit_cost(&frame_mv[refs[1]].as_mv,
+                                    &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
+                                    x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+      }
+      *rate2 += rate_mv;
+    } else {
+      int_mv tmp_mv;
+      single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv);
+      if (tmp_mv.as_int == INVALID_MV) return INT64_MAX;
+
+      frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int =
+          tmp_mv.as_int;
+      single_newmv[refs[0]].as_int = tmp_mv.as_int;
+
+      // Estimate the rate implications of a new mv but discount this
+      // under certain circumstances where we want to help initiate a weak
+      // motion field, where the distortion gain for a single block may not
+      // be enough to overcome the cost of a new mv.
+      if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
+        *rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
+      } else {
+        *rate2 += rate_mv;
+      }
+    }
+  }
+
+  for (i = 0; i < is_comp_pred + 1; ++i) {
+    cur_mv[i] = frame_mv[refs[i]];
+    // Clip "next_nearest" so that it does not extend to far out of image
+    if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd);
+
+    if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
+    mbmi->mv[i].as_int = cur_mv[i].as_int;
+  }
+
+  // do first prediction into the destination buffer. Do the next
+  // prediction into a temporary buffer. Then keep track of which one
+  // of these currently holds the best predictor, and use the other
+  // one for future predictions. In the end, copy from tmp_buf to
+  // dst if necessary.
+  for (i = 0; i < MAX_MB_PLANE; i++) {
+    orig_dst[i] = xd->plane[i].dst.buf;
+    orig_dst_stride[i] = xd->plane[i].dst.stride;
+  }
+
+  // We don't include the cost of the second reference here, because there
+  // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
+  // words if you present them in that order, the second one is always known
+  // if the first is known.
+  //
+  // Under some circumstances we discount the cost of new mv mode to encourage
+  // initiation of a motion field.
+  if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv,
+                          refs[0])) {
+    *rate2 +=
+        VPXMIN(cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]),
+               cost_mv_ref(cpi, NEARESTMV, mbmi_ext->mode_context[refs[0]]));
+  } else {
+    *rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]);
+  }
+
+  if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
+      mbmi->mode != NEARESTMV)
+    return INT64_MAX;
+
+  pred_exists = 0;
+  // Are all MVs integer pel for Y and UV
+  intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv);
+  if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv);
+
+  // Search for best switchable filter by checking the variance of
+  // pred error irrespective of whether the filter will be used
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
+
+  if (cm->interp_filter != BILINEAR) {
+    if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
+      best_filter = EIGHTTAP;
+    } else if (best_filter == SWITCHABLE) {
+      int newbest;
+      int tmp_rate_sum = 0;
+      int64_t tmp_dist_sum = 0;
+
+      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+        int j;
+        int64_t rs_rd;
+        int tmp_skip_sb = 0;
+        int64_t tmp_skip_sse = INT64_MAX;
+
+        mbmi->interp_filter = i;
+        rs = vp10_get_switchable_rate(cpi, xd);
+        rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
+
+        if (i > 0 && intpel_mv) {
+          rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
+          filter_cache[i] = rd;
+          filter_cache[SWITCHABLE_FILTERS] =
+              VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+          if (cm->interp_filter == SWITCHABLE) rd += rs_rd;
+          *mask_filter = VPXMAX(*mask_filter, rd);
+        } else {
+          int rate_sum = 0;
+          int64_t dist_sum = 0;
+          if (i > 0 && cpi->sf.adaptive_interp_filter_search &&
+              (cpi->sf.interp_filter_search_mask & (1 << i))) {
+            rate_sum = INT_MAX;
+            dist_sum = INT64_MAX;
+            continue;
+          }
+
+          if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) ||
+              (cm->interp_filter != SWITCHABLE &&
+               (cm->interp_filter == mbmi->interp_filter ||
+                (i == 0 && intpel_mv)))) {
+            restore_dst_buf(xd, orig_dst, orig_dst_stride);
+          } else {
+            for (j = 0; j < MAX_MB_PLANE; j++) {
+              xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
+              xd->plane[j].dst.stride = 64;
+            }
+          }
+          vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
+          model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, &tmp_skip_sb,
+                          &tmp_skip_sse);
+
+          rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
+          filter_cache[i] = rd;
+          filter_cache[SWITCHABLE_FILTERS] =
+              VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+          if (cm->interp_filter == SWITCHABLE) rd += rs_rd;
+          *mask_filter = VPXMAX(*mask_filter, rd);
+
+          if (i == 0 && intpel_mv) {
+            tmp_rate_sum = rate_sum;
+            tmp_dist_sum = dist_sum;
+          }
+        }
+
+        if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
+          if (rd / 2 > ref_best_rd) {
+            restore_dst_buf(xd, orig_dst, orig_dst_stride);
+            return INT64_MAX;
+          }
+        }
+        newbest = i == 0 || rd < best_rd;
+
+        if (newbest) {
+          best_rd = rd;
+          best_filter = mbmi->interp_filter;
+          if (cm->interp_filter == SWITCHABLE && i && !intpel_mv)
+            best_needs_copy = !best_needs_copy;
+        }
+
+        if ((cm->interp_filter == SWITCHABLE && newbest) ||
+            (cm->interp_filter != SWITCHABLE &&
+             cm->interp_filter == mbmi->interp_filter)) {
+          pred_exists = 1;
+          tmp_rd = best_rd;
+
+          skip_txfm_sb = tmp_skip_sb;
+          skip_sse_sb = tmp_skip_sse;
+          memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
+          memcpy(bsse, x->bsse, sizeof(bsse));
+        }
+      }
+      restore_dst_buf(xd, orig_dst, orig_dst_stride);
+    }
+  }
+  // Set the appropriate filter
+  mbmi->interp_filter =
+      cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter;
+  rs = cm->interp_filter == SWITCHABLE ? vp10_get_switchable_rate(cpi, xd) : 0;
+
+  if (pred_exists) {
+    if (best_needs_copy) {
+      // again temporarily set the buffers to local memory to prevent a memcpy
+      for (i = 0; i < MAX_MB_PLANE; i++) {
+        xd->plane[i].dst.buf = tmp_buf + i * 64 * 64;
+        xd->plane[i].dst.stride = 64;
+      }
+    }
+    rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0);
+  } else {
+    int tmp_rate;
+    int64_t tmp_dist;
+    // Handles the special case when a filter that is not in the
+    // switchable list (ex. bilinear) is indicated at the frame level, or
+    // skip condition holds.
+    vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
+    model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb,
+                    &skip_sse_sb);
+    rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
+    memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
+    memcpy(bsse, x->bsse, sizeof(bsse));
+  }
+
+  if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter;
+
+  if (cpi->sf.adaptive_mode_search)
+    if (is_comp_pred)
+      if (single_skippable[this_mode][refs[0]] &&
+          single_skippable[this_mode][refs[1]])
+        memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm));
+
+  if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
+    // if current pred_error modeled rd is substantially more than the best
+    // so far, do not bother doing full rd
+    if (rd / 2 > ref_best_rd) {
+      restore_dst_buf(xd, orig_dst, orig_dst_stride);
+      return INT64_MAX;
+    }
+  }
+
+  if (cm->interp_filter == SWITCHABLE) *rate2 += rs;
+
+  memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm));
+  memcpy(x->bsse, bsse, sizeof(bsse));
+
+  if (!skip_txfm_sb) {
+    int skippable_y, skippable_uv;
+    int64_t sseuv = INT64_MAX;
+    int64_t rdcosty = INT64_MAX;
+
+    // Y cost and distortion
+    vp10_subtract_plane(x, bsize, 0);
+    super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize,
+                    ref_best_rd);
+
+    if (*rate_y == INT_MAX) {
+      *rate2 = INT_MAX;
+      *distortion = INT64_MAX;
+      restore_dst_buf(xd, orig_dst, orig_dst_stride);
+      return INT64_MAX;
+    }
+
+    *rate2 += *rate_y;
+    *distortion += distortion_y;
+
+    rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
+    rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
+
+    if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
+                          &sseuv, bsize, ref_best_rd - rdcosty)) {
+      *rate2 = INT_MAX;
+      *distortion = INT64_MAX;
+      restore_dst_buf(xd, orig_dst, orig_dst_stride);
+      return INT64_MAX;
+    }
+
+    *psse += sseuv;
+    *rate2 += *rate_uv;
+    *distortion += distortion_uv;
+    *skippable = skippable_y && skippable_uv;
+  } else {
+    x->skip = 1;
+    *disable_skip = 1;
+
+    // The cost of skip bit needs to be added.
+    *rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
+
+    *distortion = skip_sse_sb;
+  }
+
+  if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable;
+
+  restore_dst_buf(xd, orig_dst, orig_dst_stride);
+  return 0;  // The rate-distortion cost will be re-calculated by caller.
+}
+
+void vp10_rd_pick_intra_mode_sb(VP10_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
+                                BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+                                int64_t best_rd) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblockd_plane *const pd = xd->plane;
+  int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
+  int y_skip = 0, uv_skip = 0;
+  int64_t dist_y = 0, dist_uv = 0;
+  TX_SIZE max_uv_tx_size;
+  ctx->skip = 0;
+  xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+  xd->mi[0]->mbmi.ref_frame[1] = NONE;
+
+  if (bsize >= BLOCK_8X8) {
+    if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
+                               &y_skip, bsize, best_rd) >= best_rd) {
+      rd_cost->rate = INT_MAX;
+      return;
+    }
+  } else {
+    y_skip = 0;
+    if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
+                                     &dist_y, best_rd) >= best_rd) {
+      rd_cost->rate = INT_MAX;
+      return;
+    }
+  }
+  max_uv_tx_size = get_uv_tx_size_impl(
+      xd->mi[0]->mbmi.tx_size, bsize, pd[1].subsampling_x, pd[1].subsampling_y);
+  rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv,
+                          &uv_skip, VPXMAX(BLOCK_8X8, bsize), max_uv_tx_size);
+
+  if (y_skip && uv_skip) {
+    rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
+                    vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
+    rd_cost->dist = dist_y + dist_uv;
+  } else {
+    rd_cost->rate =
+        rate_y + rate_uv + vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
+    rd_cost->dist = dist_y + dist_uv;
+  }
+
+  ctx->mic = *xd->mi[0];
+  ctx->mbmi_ext = *x->mbmi_ext;
+  rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
+}
+
+// This function is designed to apply a bias or adjustment to an rd value based
+// on the relative variance of the source and reconstruction.
+#define LOW_VAR_THRESH 16
+#define VLOW_ADJ_MAX 25
+#define VHIGH_ADJ_MAX 8
+static void rd_variance_adjustment(VP10_COMP *cpi, MACROBLOCK *x,
+                                   BLOCK_SIZE bsize, int64_t *this_rd,
+                                   MV_REFERENCE_FRAME ref_frame,
+                                   unsigned int source_variance) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  unsigned int recon_variance;
+  unsigned int absvar_diff = 0;
+  int64_t var_error = 0;
+  int64_t var_factor = 0;
+
+  if (*this_rd == INT64_MAX) return;
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    recon_variance = vp10_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
+                                                         bsize, xd->bd);
+  } else {
+    recon_variance =
+        vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
+  }
+#else
+  recon_variance =
+      vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+  if ((source_variance + recon_variance) > LOW_VAR_THRESH) {
+    absvar_diff = (source_variance > recon_variance)
+                      ? (source_variance - recon_variance)
+                      : (recon_variance - source_variance);
+
+    var_error = ((int64_t)200 * source_variance * recon_variance) /
+                (((int64_t)source_variance * source_variance) +
+                 ((int64_t)recon_variance * recon_variance));
+    var_error = 100 - var_error;
+  }
+
+  // Source variance above a threshold and ref frame is intra.
+  // This case is targeted mainly at discouraging intra modes that give rise
+  // to a predictor with a low spatial complexity compared to the source.
+  if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
+      (source_variance > recon_variance)) {
+    var_factor = VPXMIN(absvar_diff, VPXMIN(VLOW_ADJ_MAX, var_error));
+    // A second possible case of interest is where the source variance
+    // is very low and we wish to discourage false texture or motion trails.
+  } else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
+             (recon_variance > source_variance)) {
+    var_factor = VPXMIN(absvar_diff, VPXMIN(VHIGH_ADJ_MAX, var_error));
+  }
+  *this_rd += (*this_rd * var_factor) / 100;
+}
+
+// Do we have an internal image edge (e.g. formatting bars).
+int vp10_internal_image_edge(VP10_COMP *cpi) {
+  return (cpi->oxcf.pass == 2) &&
+         ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
+          (cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
+}
+
+// Checks to see if a super block is on a horizontal image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int vp10_active_h_edge(VP10_COMP *cpi, int mi_row, int mi_step) {
+  int top_edge = 0;
+  int bottom_edge = cpi->common.mi_rows;
+  int is_active_h_edge = 0;
+
+  // For two pass account for any formatting bars detected.
+  if (cpi->oxcf.pass == 2) {
+    TWO_PASS *twopass = &cpi->twopass;
+
+    // The inactive region is specified in MBs not mi units.
+    // The image edge is in the following MB row.
+    top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
+
+    bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
+    bottom_edge = VPXMAX(top_edge, bottom_edge);
+  }
+
+  if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
+      ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
+    is_active_h_edge = 1;
+  }
+  return is_active_h_edge;
+}
+
+// Checks to see if a super block is on a vertical image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int vp10_active_v_edge(VP10_COMP *cpi, int mi_col, int mi_step) {
+  int left_edge = 0;
+  int right_edge = cpi->common.mi_cols;
+  int is_active_v_edge = 0;
+
+  // For two pass account for any formatting bars detected.
+  if (cpi->oxcf.pass == 2) {
+    TWO_PASS *twopass = &cpi->twopass;
+
+    // The inactive region is specified in MBs not mi units.
+    // The image edge is in the following MB row.
+    left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
+
+    right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
+    right_edge = VPXMAX(left_edge, right_edge);
+  }
+
+  if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
+      ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
+    is_active_v_edge = 1;
+  }
+  return is_active_v_edge;
+}
+
+// Checks to see if a super block is at the edge of the active image.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int vp10_active_edge_sb(VP10_COMP *cpi, int mi_row, int mi_col) {
+  return vp10_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) ||
+         vp10_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE);
+}
+
+void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi, TileDataEnc *tile_data,
+                                MACROBLOCK *x, int mi_row, int mi_col,
+                                RD_COST *rd_cost, BLOCK_SIZE bsize,
+                                PICK_MODE_CONTEXT *ctx,
+                                int64_t best_rd_so_far) {
+  VP10_COMMON *const cm = &cpi->common;
+  RD_OPT *const rd_opt = &cpi->rd;
+  SPEED_FEATURES *const sf = &cpi->sf;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+  const struct segmentation *const seg = &cm->seg;
+  PREDICTION_MODE this_mode;
+  MV_REFERENCE_FRAME ref_frame, second_ref_frame;
+  unsigned char segment_id = mbmi->segment_id;
+  int comp_pred, i, k;
+  int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+  struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+  int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
+  INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
+  int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
+  static const int flag_list[4] = { 0, VPX_LAST_FLAG, VPX_GOLD_FLAG,
+                                    VPX_ALT_FLAG };
+  int64_t best_rd = best_rd_so_far;
+  int64_t best_pred_diff[REFERENCE_MODES];
+  int64_t best_pred_rd[REFERENCE_MODES];
+  int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
+  int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+  MB_MODE_INFO best_mbmode;
+  int best_mode_skippable = 0;
+  int midx, best_mode_index = -1;
+  unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+  vpx_prob comp_mode_p;
+  int64_t best_intra_rd = INT64_MAX;
+  unsigned int best_pred_sse = UINT_MAX;
+  PREDICTION_MODE best_intra_mode = DC_PRED;
+  int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
+  int64_t dist_uv[TX_SIZES];
+  int skip_uv[TX_SIZES];
+  PREDICTION_MODE mode_uv[TX_SIZES];
+  const int intra_cost_penalty = vp10_get_intra_cost_penalty(
+      cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
+  int best_skip2 = 0;
+  uint8_t ref_frame_skip_mask[2] = { 0 };
+  uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
+  int mode_skip_start = sf->mode_skip_start + 1;
+  const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
+  const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
+  int64_t mode_threshold[MAX_MODES];
+  int *mode_map = tile_data->mode_map[bsize];
+  const int mode_search_skip_flags = sf->mode_search_skip_flags;
+  int64_t mask_filter = 0;
+  int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
+
+  vp10_zero(best_mbmode);
+
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
+
+  estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+                           &comp_mode_p);
+
+  for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+    best_filter_rd[i] = INT64_MAX;
+  for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX;
+  for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+  for (i = 0; i < MB_MODE_COUNT; ++i) {
+    for (k = 0; k < MAX_REF_FRAMES; ++k) {
+      single_inter_filter[i][k] = SWITCHABLE;
+      single_skippable[i][k] = 0;
+    }
+  }
+
+  rd_cost->rate = INT_MAX;
+
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+    x->pred_mv_sad[ref_frame] = INT_MAX;
+    if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+      assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
+      setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
+                         frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
+    }
+    frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+    frame_mv[ZEROMV][ref_frame].as_int = 0;
+  }
+
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+    if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
+      // Skip checking missing references in both single and compound reference
+      // modes. Note that a mode will be skipped iff both reference frames
+      // are masked out.
+      ref_frame_skip_mask[0] |= (1 << ref_frame);
+      ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+    } else {
+      for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+        // Skip fixed mv modes for poor references
+        if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
+          mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
+          break;
+        }
+      }
+    }
+    // If the segment reference frame feature is enabled....
+    // then do nothing if the current ref frame is not allowed..
+    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+        get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+      ref_frame_skip_mask[0] |= (1 << ref_frame);
+      ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+    }
+  }
+
+  // Disable this drop out case if the ref frame
+  // segment level feature is enabled for this segment. This is to
+  // prevent the possibility that we end up unable to pick any mode.
+  if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+    // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
+    // unless ARNR filtering is enabled in which case we want
+    // an unfiltered alternative. We allow near/nearest as well
+    // because they may result in zero-zero MVs but be cheaper.
+    if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
+      ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME);
+      ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+      mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
+      if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
+        mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
+      if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
+        mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
+    }
+  }
+
+  if (cpi->rc.is_src_frame_alt_ref) {
+    if (sf->alt_ref_search_fp) {
+      mode_skip_mask[ALTREF_FRAME] = 0;
+      ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
+      ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+    }
+  }
+
+  if (sf->alt_ref_search_fp)
+    if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
+      if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
+        mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
+
+  if (sf->adaptive_mode_search) {
+    if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
+        cpi->rc.frames_since_golden >= 3)
+      if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
+        mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
+  }
+
+  if (bsize > sf->max_intra_bsize) {
+    ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
+    ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
+  }
+
+  mode_skip_mask[INTRA_FRAME] |=
+      ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
+
+  for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0;
+  for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
+    mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
+
+  midx = sf->schedule_mode_search ? mode_skip_start : 0;
+  while (midx > 4) {
+    uint8_t end_pos = 0;
+    for (i = 5; i < midx; ++i) {
+      if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
+        uint8_t tmp = mode_map[i];
+        mode_map[i] = mode_map[i - 1];
+        mode_map[i - 1] = tmp;
+        end_pos = i;
+      }
+    }
+    midx = end_pos;
+  }
+
+  for (midx = 0; midx < MAX_MODES; ++midx) {
+    int mode_index = mode_map[midx];
+    int mode_excluded = 0;
+    int64_t this_rd = INT64_MAX;
+    int disable_skip = 0;
+    int compmode_cost = 0;
+    int rate2 = 0, rate_y = 0, rate_uv = 0;
+    int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
+    int skippable = 0;
+    int this_skip2 = 0;
+    int64_t total_sse = INT64_MAX;
+    int early_term = 0;
+
+    this_mode = vp10_mode_order[mode_index].mode;
+    ref_frame = vp10_mode_order[mode_index].ref_frame[0];
+    second_ref_frame = vp10_mode_order[mode_index].ref_frame[1];
+
+    // Look at the reference frame of the best mode so far and set the
+    // skip mask to look at a subset of the remaining modes.
+    if (midx == mode_skip_start && best_mode_index >= 0) {
+      switch (best_mbmode.ref_frame[0]) {
+        case INTRA_FRAME: break;
+        case LAST_FRAME:
+          ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
+          ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+          break;
+        case GOLDEN_FRAME:
+          ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
+          ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+          break;
+        case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; break;
+        case NONE:
+        case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
+      }
+    }
+
+    if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
+        (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
+      continue;
+
+    if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue;
+
+    // Test best rd so far against threshold for trying this mode.
+    if (best_mode_skippable && sf->schedule_mode_search)
+      mode_threshold[mode_index] <<= 1;
+
+    if (best_rd < mode_threshold[mode_index]) continue;
+
+    comp_pred = second_ref_frame > INTRA_FRAME;
+    if (comp_pred) {
+      if (!cpi->allow_comp_inter_inter) continue;
+
+      // Skip compound inter modes if ARF is not available.
+      if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
+
+      // Do not allow compound prediction if the segment level reference frame
+      // feature is in use as in this case there can only be one reference.
+      if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
+
+      if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+          best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
+        continue;
+
+      mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+    } else {
+      if (ref_frame != INTRA_FRAME)
+        mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
+    }
+
+    if (ref_frame == INTRA_FRAME) {
+      if (sf->adaptive_mode_search)
+        if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
+          continue;
+
+      if (this_mode != DC_PRED) {
+        // Disable intra modes other than DC_PRED for blocks with low variance
+        // Threshold for intra skipping based on source variance
+        // TODO(debargha): Specialize the threshold for super block sizes
+        const unsigned int skip_intra_var_thresh = 64;
+        if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
+            x->source_variance < skip_intra_var_thresh)
+          continue;
+        // Only search the oblique modes if the best so far is
+        // one of the neighboring directional modes
+        if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
+            (this_mode >= D45_PRED && this_mode <= TM_PRED)) {
+          if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME)
+            continue;
+        }
+        if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+          if (conditional_skipintra(this_mode, best_intra_mode)) continue;
+        }
+      }
+    } else {
+      const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame };
+      if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode,
+                              ref_frames))
+        continue;
+    }
+
+    mbmi->mode = this_mode;
+    mbmi->uv_mode = DC_PRED;
+    mbmi->ref_frame[0] = ref_frame;
+    mbmi->ref_frame[1] = second_ref_frame;
+    // Evaluate all sub-pel filters irrespective of whether we can use
+    // them for this frame.
+    mbmi->interp_filter =
+        cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
+    mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
+
+    x->skip = 0;
+    set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+    // Select prediction reference frames.
+    for (i = 0; i < MAX_MB_PLANE; i++) {
+      xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+      if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+    }
+
+    if (ref_frame == INTRA_FRAME) {
+      TX_SIZE uv_tx;
+      struct macroblockd_plane *const pd = &xd->plane[1];
+      memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+      super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
+                      best_rd);
+      if (rate_y == INT_MAX) continue;
+
+      uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize, pd->subsampling_x,
+                                  pd->subsampling_y);
+      if (rate_uv_intra[uv_tx] == INT_MAX) {
+        choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
+                             &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx],
+                             &skip_uv[uv_tx], &mode_uv[uv_tx]);
+      }
+
+      rate_uv = rate_uv_tokenonly[uv_tx];
+      distortion_uv = dist_uv[uv_tx];
+      skippable = skippable && skip_uv[uv_tx];
+      mbmi->uv_mode = mode_uv[uv_tx];
+
+      rate2 = rate_y + cpi->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
+      if (this_mode != DC_PRED && this_mode != TM_PRED)
+        rate2 += intra_cost_penalty;
+      distortion2 = distortion_y + distortion_uv;
+    } else {
+      this_rd = handle_inter_mode(
+          cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv,
+          &disable_skip, frame_mv, mi_row, mi_col, single_newmv,
+          single_inter_filter, single_skippable, &total_sse, best_rd,
+          &mask_filter, filter_cache);
+      if (this_rd == INT64_MAX) continue;
+
+      compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred);
+
+      if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
+    }
+
+    // Estimate the reference frame signaling cost and add it
+    // to the rolling cost variable.
+    if (comp_pred) {
+      rate2 += ref_costs_comp[ref_frame];
+    } else {
+      rate2 += ref_costs_single[ref_frame];
+    }
+
+    if (!disable_skip) {
+      if (skippable) {
+        // Back out the coefficient coding costs
+        rate2 -= (rate_y + rate_uv);
+
+        // Cost the skip mb case
+        rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
+      } else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
+        if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
+            RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
+          // Add in the cost of the no skip flag.
+          rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
+        } else {
+          // FIXME(rbultje) make this work for splitmv also
+          rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
+          distortion2 = total_sse;
+          assert(total_sse >= 0);
+          rate2 -= (rate_y + rate_uv);
+          this_skip2 = 1;
+        }
+      } else {
+        // Add in the cost of the no skip flag.
+        rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
+      }
+
+      // Calculate the final RD estimate for this mode.
+      this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+    }
+
+    // Apply an adjustment to the rd value based on the similarity of the
+    // source variance and reconstructed variance.
+    rd_variance_adjustment(cpi, x, bsize, &this_rd, ref_frame,
+                           x->source_variance);
+
+    if (ref_frame == INTRA_FRAME) {
+      // Keep record of best intra rd
+      if (this_rd < best_intra_rd) {
+        best_intra_rd = this_rd;
+        best_intra_mode = mbmi->mode;
+      }
+    }
+
+    if (!disable_skip && ref_frame == INTRA_FRAME) {
+      for (i = 0; i < REFERENCE_MODES; ++i)
+        best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
+      for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+        best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
+    }
+
+    // Did this mode help.. i.e. is it the new best mode
+    if (this_rd < best_rd || x->skip) {
+      int max_plane = MAX_MB_PLANE;
+      if (!mode_excluded) {
+        // Note index of best mode so far
+        best_mode_index = mode_index;
+
+        if (ref_frame == INTRA_FRAME) {
+          /* required for left and above block mv */
+          mbmi->mv[0].as_int = 0;
+          max_plane = 1;
+        } else {
+          best_pred_sse = x->pred_sse[ref_frame];
+        }
+
+        rd_cost->rate = rate2;
+        rd_cost->dist = distortion2;
+        rd_cost->rdcost = this_rd;
+        best_rd = this_rd;
+        best_mbmode = *mbmi;
+        best_skip2 = this_skip2;
+        best_mode_skippable = skippable;
+
+        if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
+        memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
+               sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
+
+        // TODO(debargha): enhance this test with a better distortion prediction
+        // based on qp, activity mask and history
+        if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
+            (mode_index > MIN_EARLY_TERM_INDEX)) {
+          int qstep = xd->plane[0].dequant[1];
+          // TODO(debargha): Enhance this by specializing for each mode_index
+          int scale = 4;
+#if CONFIG_VPX_HIGHBITDEPTH
+          if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+            qstep >>= (xd->bd - 8);
+          }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+          if (x->source_variance < UINT_MAX) {
+            const int var_adjust = (x->source_variance < 16);
+            scale -= var_adjust;
+          }
+          if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) {
+            early_term = 1;
+          }
+        }
+      }
+    }
+
+    /* keep record of best compound/single-only prediction */
+    if (!disable_skip && ref_frame != INTRA_FRAME) {
+      int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+      if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+        single_rate = rate2 - compmode_cost;
+        hybrid_rate = rate2;
+      } else {
+        single_rate = rate2;
+        hybrid_rate = rate2 + compmode_cost;
+      }
+
+      single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
+      hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
+
+      if (!comp_pred) {
+        if (single_rd < best_pred_rd[SINGLE_REFERENCE])
+          best_pred_rd[SINGLE_REFERENCE] = single_rd;
+      } else {
+        if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
+          best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+      }
+      if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+        best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+
+      /* keep record of best filter type */
+      if (!mode_excluded && cm->interp_filter != BILINEAR) {
+        int64_t ref =
+            filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS
+                                                         : cm->interp_filter];
+
+        for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+          int64_t adj_rd;
+          if (ref == INT64_MAX)
+            adj_rd = 0;
+          else if (filter_cache[i] == INT64_MAX)
+            // when early termination is triggered, the encoder does not have
+            // access to the rate-distortion cost. it only knows that the cost
+            // should be above the maximum valid value. hence it takes the known
+            // maximum plus an arbitrary constant as the rate-distortion cost.
+            adj_rd = mask_filter - ref + 10;
+          else
+            adj_rd = filter_cache[i] - ref;
+
+          adj_rd += this_rd;
+          best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
+        }
+      }
+    }
+
+    if (early_term) break;
+
+    if (x->skip && !comp_pred) break;
+  }
+
+  // The inter modes' rate costs are not calculated precisely in some cases.
+  // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
+  // ZEROMV. Here, checks are added for those cases, and the mode decisions
+  // are corrected.
+  if (best_mbmode.mode == NEWMV) {
+    const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
+                                         best_mbmode.ref_frame[1] };
+    int comp_pred_mode = refs[1] > INTRA_FRAME;
+
+    if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
+        ((comp_pred_mode &&
+          frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
+         !comp_pred_mode))
+      best_mbmode.mode = NEARESTMV;
+    else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
+             ((comp_pred_mode &&
+               frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
+              !comp_pred_mode))
+      best_mbmode.mode = NEARMV;
+    else if (best_mbmode.mv[0].as_int == 0 &&
+             ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) ||
+              !comp_pred_mode))
+      best_mbmode.mode = ZEROMV;
+  }
+
+  if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
+    rd_cost->rate = INT_MAX;
+    rd_cost->rdcost = INT64_MAX;
+    return;
+  }
+
+  // If we used an estimate for the uv intra rd in the loop above...
+  if (sf->use_uv_intra_rd_estimate) {
+    // Do Intra UV best rd mode selection if best mode choice above was intra.
+    if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
+      TX_SIZE uv_tx_size;
+      *mbmi = best_mbmode;
+      uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
+      rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size],
+                              &rate_uv_tokenonly[uv_tx_size],
+                              &dist_uv[uv_tx_size], &skip_uv[uv_tx_size],
+                              bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
+                              uv_tx_size);
+    }
+  }
+
+  assert((cm->interp_filter == SWITCHABLE) ||
+         (cm->interp_filter == best_mbmode.interp_filter) ||
+         !is_inter_block(&best_mbmode));
+
+  if (!cpi->rc.is_src_frame_alt_ref)
+    vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+                               sf->adaptive_rd_thresh, bsize, best_mode_index);
+
+  // macroblock modes
+  *mbmi = best_mbmode;
+  x->skip |= best_skip2;
+
+  for (i = 0; i < REFERENCE_MODES; ++i) {
+    if (best_pred_rd[i] == INT64_MAX)
+      best_pred_diff[i] = INT_MIN;
+    else
+      best_pred_diff[i] = best_rd - best_pred_rd[i];
+  }
+
+  if (!x->skip) {
+    for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+      if (best_filter_rd[i] == INT64_MAX)
+        best_filter_diff[i] = 0;
+      else
+        best_filter_diff[i] = best_rd - best_filter_rd[i];
+    }
+    if (cm->interp_filter == SWITCHABLE)
+      assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
+  } else {
+    vp10_zero(best_filter_diff);
+  }
+
+  // TODO(yunqingwang): Moving this line in front of the above best_filter_diff
+  // updating code causes PSNR loss. Need to figure out the confliction.
+  x->skip |= best_mode_skippable;
+
+  if (!x->skip && !x->select_tx_size) {
+    int has_high_freq_coeff = 0;
+    int plane;
+    int max_plane = is_inter_block(&xd->mi[0]->mbmi) ? MAX_MB_PLANE : 1;
+    for (plane = 0; plane < max_plane; ++plane) {
+      x->plane[plane].eobs = ctx->eobs_pbuf[plane][1];
+      has_high_freq_coeff |= vp10_has_high_freq_in_plane(x, bsize, plane);
+    }
+
+    for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) {
+      x->plane[plane].eobs = ctx->eobs_pbuf[plane][2];
+      has_high_freq_coeff |= vp10_has_high_freq_in_plane(x, bsize, plane);
+    }
+
+    best_mode_skippable |= !has_high_freq_coeff;
+  }
+
+  assert(best_mode_index >= 0);
+
+  store_coding_context(x, ctx, best_mode_index, best_pred_diff,
+                       best_filter_diff, best_mode_skippable);
+}
+
+void vp10_rd_pick_inter_mode_sb_seg_skip(VP10_COMP *cpi, TileDataEnc *tile_data,
+                                         MACROBLOCK *x, RD_COST *rd_cost,
+                                         BLOCK_SIZE bsize,
+                                         PICK_MODE_CONTEXT *ctx,
+                                         int64_t best_rd_so_far) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  unsigned char segment_id = mbmi->segment_id;
+  const int comp_pred = 0;
+  int i;
+  int64_t best_pred_diff[REFERENCE_MODES];
+  int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+  unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+  vpx_prob comp_mode_p;
+  INTERP_FILTER best_filter = SWITCHABLE;
+  int64_t this_rd = INT64_MAX;
+  int rate2 = 0;
+  const int64_t distortion2 = 0;
+
+  estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+                           &comp_mode_p);
+
+  for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+  for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
+
+  rd_cost->rate = INT_MAX;
+
+  assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
+
+  mbmi->mode = ZEROMV;
+  mbmi->uv_mode = DC_PRED;
+  mbmi->ref_frame[0] = LAST_FRAME;
+  mbmi->ref_frame[1] = NONE;
+  mbmi->mv[0].as_int = 0;
+  x->skip = 1;
+
+  if (cm->interp_filter != BILINEAR) {
+    best_filter = EIGHTTAP;
+    if (cm->interp_filter == SWITCHABLE &&
+        x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
+      int rs;
+      int best_rs = INT_MAX;
+      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+        mbmi->interp_filter = i;
+        rs = vp10_get_switchable_rate(cpi, xd);
+        if (rs < best_rs) {
+          best_rs = rs;
+          best_filter = mbmi->interp_filter;
+        }
+      }
+    }
+  }
+  // Set the appropriate filter
+  if (cm->interp_filter == SWITCHABLE) {
+    mbmi->interp_filter = best_filter;
+    rate2 += vp10_get_switchable_rate(cpi, xd);
+  } else {
+    mbmi->interp_filter = cm->interp_filter;
+  }
+
+  if (cm->reference_mode == REFERENCE_MODE_SELECT)
+    rate2 += vp10_cost_bit(comp_mode_p, comp_pred);
+
+  // Estimate the reference frame signaling cost and add it
+  // to the rolling cost variable.
+  rate2 += ref_costs_single[LAST_FRAME];
+  this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+
+  rd_cost->rate = rate2;
+  rd_cost->dist = distortion2;
+  rd_cost->rdcost = this_rd;
+
+  if (this_rd >= best_rd_so_far) {
+    rd_cost->rate = INT_MAX;
+    rd_cost->rdcost = INT64_MAX;
+    return;
+  }
+
+  assert((cm->interp_filter == SWITCHABLE) ||
+         (cm->interp_filter == mbmi->interp_filter));
+
+  vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+                             cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
+
+  vp10_zero(best_pred_diff);
+  vp10_zero(best_filter_diff);
+
+  if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE);
+  store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, best_filter_diff, 0);
+}
+
+void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi, TileDataEnc *tile_data,
+                                    MACROBLOCK *x, int mi_row, int mi_col,
+                                    RD_COST *rd_cost, BLOCK_SIZE bsize,
+                                    PICK_MODE_CONTEXT *ctx,
+                                    int64_t best_rd_so_far) {
+  VP10_COMMON *const cm = &cpi->common;
+  RD_OPT *const rd_opt = &cpi->rd;
+  SPEED_FEATURES *const sf = &cpi->sf;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  const struct segmentation *const seg = &cm->seg;
+  MV_REFERENCE_FRAME ref_frame, second_ref_frame;
+  unsigned char segment_id = mbmi->segment_id;
+  int comp_pred, i;
+  int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+  struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+  static const int flag_list[4] = { 0, VPX_LAST_FLAG, VPX_GOLD_FLAG,
+                                    VPX_ALT_FLAG };
+  int64_t best_rd = best_rd_so_far;
+  int64_t best_yrd = best_rd_so_far;  // FIXME(rbultje) more precise
+  int64_t best_pred_diff[REFERENCE_MODES];
+  int64_t best_pred_rd[REFERENCE_MODES];
+  int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
+  int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+  MB_MODE_INFO best_mbmode;
+  int ref_index, best_ref_index = 0;
+  unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+  vpx_prob comp_mode_p;
+  INTERP_FILTER tmp_best_filter = SWITCHABLE;
+  int rate_uv_intra, rate_uv_tokenonly;
+  int64_t dist_uv;
+  int skip_uv;
+  PREDICTION_MODE mode_uv = DC_PRED;
+  const int intra_cost_penalty = vp10_get_intra_cost_penalty(
+      cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
+  int_mv seg_mvs[4][MAX_REF_FRAMES];
+  b_mode_info best_bmodes[4];
+  int best_skip2 = 0;
+  int ref_frame_skip_mask[2] = { 0 };
+  int64_t mask_filter = 0;
+  int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
+  int internal_active_edge =
+      vp10_active_edge_sb(cpi, mi_row, mi_col) && vp10_internal_image_edge(cpi);
+
+  memset(x->zcoeff_blk[TX_4X4], 0, 4);
+  vp10_zero(best_mbmode);
+
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
+
+  for (i = 0; i < 4; i++) {
+    int j;
+    for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV;
+  }
+
+  estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+                           &comp_mode_p);
+
+  for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
+  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+    best_filter_rd[i] = INT64_MAX;
+  rate_uv_intra = INT_MAX;
+
+  rd_cost->rate = INT_MAX;
+
+  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
+    if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+      setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
+                         frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
+    } else {
+      ref_frame_skip_mask[0] |= (1 << ref_frame);
+      ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+    }
+    frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+    frame_mv[ZEROMV][ref_frame].as_int = 0;
+  }
+
+  for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
+    int mode_excluded = 0;
+    int64_t this_rd = INT64_MAX;
+    int disable_skip = 0;
+    int compmode_cost = 0;
+    int rate2 = 0, rate_y = 0, rate_uv = 0;
+    int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
+    int skippable = 0;
+    int i;
+    int this_skip2 = 0;
+    int64_t total_sse = INT_MAX;
+    int early_term = 0;
+
+    ref_frame = vp10_ref_order[ref_index].ref_frame[0];
+    second_ref_frame = vp10_ref_order[ref_index].ref_frame[1];
+
+    // Look at the reference frame of the best mode so far and set the
+    // skip mask to look at a subset of the remaining modes.
+    if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
+      if (ref_index == 3) {
+        switch (best_mbmode.ref_frame[0]) {
+          case INTRA_FRAME: break;
+          case LAST_FRAME:
+            ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME);
+            ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+            break;
+          case GOLDEN_FRAME:
+            ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME);
+            ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+            break;
+          case ALTREF_FRAME:
+            ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME);
+            break;
+          case NONE:
+          case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
+        }
+      }
+    }
+
+    if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
+        (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
+      continue;
+
+    // Test best rd so far against threshold for trying this mode.
+    if (!internal_active_edge &&
+        rd_less_than_thresh(best_rd,
+                            rd_opt->threshes[segment_id][bsize][ref_index],
+                            tile_data->thresh_freq_fact[bsize][ref_index]))
+      continue;
+
+    comp_pred = second_ref_frame > INTRA_FRAME;
+    if (comp_pred) {
+      if (!cpi->allow_comp_inter_inter) continue;
+      if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
+      // Do not allow compound prediction if the segment level reference frame
+      // feature is in use as in this case there can only be one reference.
+      if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
+
+      if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+          best_mbmode.ref_frame[0] == INTRA_FRAME)
+        continue;
+    }
+
+    // TODO(jingning, jkoleszar): scaling reference frame not supported for
+    // sub8x8 blocks.
+    if (ref_frame > INTRA_FRAME &&
+        vp10_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
+      continue;
+
+    if (second_ref_frame > INTRA_FRAME &&
+        vp10_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
+      continue;
+
+    if (comp_pred)
+      mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+    else if (ref_frame != INTRA_FRAME)
+      mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
+
+    // If the segment reference frame feature is enabled....
+    // then do nothing if the current ref frame is not allowed..
+    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+        get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+      continue;
+      // Disable this drop out case if the ref frame
+      // segment level feature is enabled for this segment. This is to
+      // prevent the possibility that we end up unable to pick any mode.
+    } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+      // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
+      // unless ARNR filtering is enabled in which case we want
+      // an unfiltered alternative. We allow near/nearest as well
+      // because they may result in zero-zero MVs but be cheaper.
+      if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
+        continue;
+    }
+
+    mbmi->tx_size = TX_4X4;
+    mbmi->uv_mode = DC_PRED;
+    mbmi->ref_frame[0] = ref_frame;
+    mbmi->ref_frame[1] = second_ref_frame;
+    // Evaluate all sub-pel filters irrespective of whether we can use
+    // them for this frame.
+    mbmi->interp_filter =
+        cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
+    x->skip = 0;
+    set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+    // Select prediction reference frames.
+    for (i = 0; i < MAX_MB_PLANE; i++) {
+      xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+      if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+    }
+
+    if (ref_frame == INTRA_FRAME) {
+      int rate;
+      if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y,
+                                       best_rd) >= best_rd)
+        continue;
+      rate2 += rate;
+      rate2 += intra_cost_penalty;
+      distortion2 += distortion_y;
+
+      if (rate_uv_intra == INT_MAX) {
+        choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra,
+                             &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv);
+      }
+      rate2 += rate_uv_intra;
+      rate_uv = rate_uv_tokenonly;
+      distortion2 += dist_uv;
+      distortion_uv = dist_uv;
+      mbmi->uv_mode = mode_uv;
+    } else {
+      int rate;
+      int64_t distortion;
+      int64_t this_rd_thresh;
+      int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
+      int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
+      int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
+      int tmp_best_skippable = 0;
+      int switchable_filter_index;
+      int_mv *second_ref =
+          comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
+      b_mode_info tmp_best_bmodes[16];
+      MB_MODE_INFO tmp_best_mbmode;
+      BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
+      int pred_exists = 0;
+      int uv_skippable;
+
+      this_rd_thresh = (ref_frame == LAST_FRAME)
+                           ? rd_opt->threshes[segment_id][bsize][THR_LAST]
+                           : rd_opt->threshes[segment_id][bsize][THR_ALTR];
+      this_rd_thresh = (ref_frame == GOLDEN_FRAME)
+                           ? rd_opt->threshes[segment_id][bsize][THR_GOLD]
+                           : this_rd_thresh;
+      for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+        filter_cache[i] = INT64_MAX;
+
+      if (cm->interp_filter != BILINEAR) {
+        tmp_best_filter = EIGHTTAP;
+        if (x->source_variance < sf->disable_filter_search_var_thresh) {
+          tmp_best_filter = EIGHTTAP;
+        } else if (sf->adaptive_pred_interp_filter == 1 &&
+                   ctx->pred_interp_filter < SWITCHABLE) {
+          tmp_best_filter = ctx->pred_interp_filter;
+        } else if (sf->adaptive_pred_interp_filter == 2) {
+          tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE
+                                ? ctx->pred_interp_filter
+                                : 0;
+        } else {
+          for (switchable_filter_index = 0;
+               switchable_filter_index < SWITCHABLE_FILTERS;
+               ++switchable_filter_index) {
+            int newbest, rs;
+            int64_t rs_rd;
+            MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
+            mbmi->interp_filter = switchable_filter_index;
+            tmp_rd = rd_pick_best_sub8x8_mode(
+                cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
+                &rate, &rate_y, &distortion, &skippable, &total_sse,
+                (int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index,
+                mi_row, mi_col);
+
+            if (tmp_rd == INT64_MAX) continue;
+            rs = vp10_get_switchable_rate(cpi, xd);
+            rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
+            filter_cache[switchable_filter_index] = tmp_rd;
+            filter_cache[SWITCHABLE_FILTERS] =
+                VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd);
+            if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd;
+
+            mask_filter = VPXMAX(mask_filter, tmp_rd);
+
+            newbest = (tmp_rd < tmp_best_rd);
+            if (newbest) {
+              tmp_best_filter = mbmi->interp_filter;
+              tmp_best_rd = tmp_rd;
+            }
+            if ((newbest && cm->interp_filter == SWITCHABLE) ||
+                (mbmi->interp_filter == cm->interp_filter &&
+                 cm->interp_filter != SWITCHABLE)) {
+              tmp_best_rdu = tmp_rd;
+              tmp_best_rate = rate;
+              tmp_best_ratey = rate_y;
+              tmp_best_distortion = distortion;
+              tmp_best_sse = total_sse;
+              tmp_best_skippable = skippable;
+              tmp_best_mbmode = *mbmi;
+              for (i = 0; i < 4; i++) {
+                tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
+                x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
+              }
+              pred_exists = 1;
+              if (switchable_filter_index == 0 && sf->use_rd_breakout &&
+                  best_rd < INT64_MAX) {
+                if (tmp_best_rdu / 2 > best_rd) {
+                  // skip searching the other filters if the first is
+                  // already substantially larger than the best so far
+                  tmp_best_filter = mbmi->interp_filter;
+                  tmp_best_rdu = INT64_MAX;
+                  break;
+                }
+              }
+            }
+          }  // switchable_filter_index loop
+        }
+      }
+
+      if (tmp_best_rdu == INT64_MAX && pred_exists) continue;
+
+      mbmi->interp_filter =
+          (cm->interp_filter == SWITCHABLE ? tmp_best_filter
+                                           : cm->interp_filter);
+      if (!pred_exists) {
+        // Handles the special case when a filter that is not in the
+        // switchable list (bilinear, 6-tap) is indicated at the frame level
+        tmp_rd = rd_pick_best_sub8x8_mode(
+            cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
+            &rate, &rate_y, &distortion, &skippable, &total_sse,
+            (int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col);
+        if (tmp_rd == INT64_MAX) continue;
+      } else {
+        total_sse = tmp_best_sse;
+        rate = tmp_best_rate;
+        rate_y = tmp_best_ratey;
+        distortion = tmp_best_distortion;
+        skippable = tmp_best_skippable;
+        *mbmi = tmp_best_mbmode;
+        for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
+      }
+
+      rate2 += rate;
+      distortion2 += distortion;
+
+      if (cm->interp_filter == SWITCHABLE)
+        rate2 += vp10_get_switchable_rate(cpi, xd);
+
+      if (!mode_excluded)
+        mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
+                                  : cm->reference_mode == COMPOUND_REFERENCE;
+
+      compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred);
+
+      tmp_best_rdu =
+          best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
+                           RDCOST(x->rdmult, x->rddiv, 0, total_sse));
+
+      if (tmp_best_rdu > 0) {
+        // If even the 'Y' rd value of split is higher than best so far
+        // then dont bother looking at UV
+        vp10_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8);
+        memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
+        if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
+                              &uv_sse, BLOCK_8X8, tmp_best_rdu))
+          continue;
+
+        rate2 += rate_uv;
+        distortion2 += distortion_uv;
+        skippable = skippable && uv_skippable;
+        total_sse += uv_sse;
+      }
+    }
+
+    if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
+
+    // Estimate the reference frame signaling cost and add it
+    // to the rolling cost variable.
+    if (second_ref_frame > INTRA_FRAME) {
+      rate2 += ref_costs_comp[ref_frame];
+    } else {
+      rate2 += ref_costs_single[ref_frame];
+    }
+
+    if (!disable_skip) {
+      // Skip is never coded at the segment level for sub8x8 blocks and instead
+      // always coded in the bitstream at the mode info level.
+
+      if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
+        if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
+            RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
+          // Add in the cost of the no skip flag.
+          rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
+        } else {
+          // FIXME(rbultje) make this work for splitmv also
+          rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1);
+          distortion2 = total_sse;
+          assert(total_sse >= 0);
+          rate2 -= (rate_y + rate_uv);
+          rate_y = 0;
+          rate_uv = 0;
+          this_skip2 = 1;
+        }
+      } else {
+        // Add in the cost of the no skip flag.
+        rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0);
+      }
+
+      // Calculate the final RD estimate for this mode.
+      this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+    }
+
+    if (!disable_skip && ref_frame == INTRA_FRAME) {
+      for (i = 0; i < REFERENCE_MODES; ++i)
+        best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
+      for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+        best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
+    }
+
+    // Did this mode help.. i.e. is it the new best mode
+    if (this_rd < best_rd || x->skip) {
+      if (!mode_excluded) {
+        int max_plane = MAX_MB_PLANE;
+        // Note index of best mode so far
+        best_ref_index = ref_index;
+
+        if (ref_frame == INTRA_FRAME) {
+          /* required for left and above block mv */
+          mbmi->mv[0].as_int = 0;
+          max_plane = 1;
+        }
+
+        rd_cost->rate = rate2;
+        rd_cost->dist = distortion2;
+        rd_cost->rdcost = this_rd;
+        best_rd = this_rd;
+        best_yrd =
+            best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
+        best_mbmode = *mbmi;
+        best_skip2 = this_skip2;
+        if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
+        memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
+               sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
+
+        for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i];
+
+        // TODO(debargha): enhance this test with a better distortion prediction
+        // based on qp, activity mask and history
+        if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
+            (ref_index > MIN_EARLY_TERM_INDEX)) {
+          int qstep = xd->plane[0].dequant[1];
+          // TODO(debargha): Enhance this by specializing for each mode_index
+          int scale = 4;
+#if CONFIG_VPX_HIGHBITDEPTH
+          if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+            qstep >>= (xd->bd - 8);
+          }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+          if (x->source_variance < UINT_MAX) {
+            const int var_adjust = (x->source_variance < 16);
+            scale -= var_adjust;
+          }
+          if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) {
+            early_term = 1;
+          }
+        }
+      }
+    }
+
+    /* keep record of best compound/single-only prediction */
+    if (!disable_skip && ref_frame != INTRA_FRAME) {
+      int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+      if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+        single_rate = rate2 - compmode_cost;
+        hybrid_rate = rate2;
+      } else {
+        single_rate = rate2;
+        hybrid_rate = rate2 + compmode_cost;
+      }
+
+      single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
+      hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
+
+      if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
+        best_pred_rd[SINGLE_REFERENCE] = single_rd;
+      else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
+        best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+
+      if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+        best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+    }
+
+    /* keep record of best filter type */
+    if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
+        cm->interp_filter != BILINEAR) {
+      int64_t ref =
+          filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS
+                                                       : cm->interp_filter];
+      int64_t adj_rd;
+      for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+        if (ref == INT64_MAX)
+          adj_rd = 0;
+        else if (filter_cache[i] == INT64_MAX)
+          // when early termination is triggered, the encoder does not have
+          // access to the rate-distortion cost. it only knows that the cost
+          // should be above the maximum valid value. hence it takes the known
+          // maximum plus an arbitrary constant as the rate-distortion cost.
+          adj_rd = mask_filter - ref + 10;
+        else
+          adj_rd = filter_cache[i] - ref;
+
+        adj_rd += this_rd;
+        best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
+      }
+    }
+
+    if (early_term) break;
+
+    if (x->skip && !comp_pred) break;
+  }
+
+  if (best_rd >= best_rd_so_far) {
+    rd_cost->rate = INT_MAX;
+    rd_cost->rdcost = INT64_MAX;
+    return;
+  }
+
+  // If we used an estimate for the uv intra rd in the loop above...
+  if (sf->use_uv_intra_rd_estimate) {
+    // Do Intra UV best rd mode selection if best mode choice above was intra.
+    if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
+      *mbmi = best_mbmode;
+      rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, &rate_uv_tokenonly,
+                              &dist_uv, &skip_uv, BLOCK_8X8, TX_4X4);
+    }
+  }
+
+  if (best_rd == INT64_MAX) {
+    rd_cost->rate = INT_MAX;
+    rd_cost->dist = INT64_MAX;
+    rd_cost->rdcost = INT64_MAX;
+    return;
+  }
+
+  assert((cm->interp_filter == SWITCHABLE) ||
+         (cm->interp_filter == best_mbmode.interp_filter) ||
+         !is_inter_block(&best_mbmode));
+
+  vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+                             sf->adaptive_rd_thresh, bsize, best_ref_index);
+
+  // macroblock modes
+  *mbmi = best_mbmode;
+  x->skip |= best_skip2;
+  if (!is_inter_block(&best_mbmode)) {
+    for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
+  } else {
+    for (i = 0; i < 4; ++i)
+      memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
+
+    mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
+    mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
+  }
+
+  for (i = 0; i < REFERENCE_MODES; ++i) {
+    if (best_pred_rd[i] == INT64_MAX)
+      best_pred_diff[i] = INT_MIN;
+    else
+      best_pred_diff[i] = best_rd - best_pred_rd[i];
+  }
+
+  if (!x->skip) {
+    for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+      if (best_filter_rd[i] == INT64_MAX)
+        best_filter_diff[i] = 0;
+      else
+        best_filter_diff[i] = best_rd - best_filter_rd[i];
+    }
+    if (cm->interp_filter == SWITCHABLE)
+      assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
+  } else {
+    vp10_zero(best_filter_diff);
+  }
+
+  store_coding_context(x, ctx, best_ref_index, best_pred_diff, best_filter_diff,
+                       0);
+}
diff --git a/av1/encoder/rdopt.h b/av1/encoder/rdopt.h
new file mode 100644
index 0000000..cf5efe6
--- /dev/null
+++ b/av1/encoder/rdopt.h
@@ -0,0 +1,68 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_RDOPT_H_
+#define VP10_ENCODER_RDOPT_H_
+
+#include "av1/common/blockd.h"
+
+#include "av1/encoder/block.h"
+#include "av1/encoder/context_tree.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct TileInfo;
+struct VP10_COMP;
+struct macroblock;
+struct RD_COST;
+
+void vp10_rd_pick_intra_mode_sb(struct VP10_COMP *cpi, struct macroblock *x,
+                                struct RD_COST *rd_cost, BLOCK_SIZE bsize,
+                                PICK_MODE_CONTEXT *ctx, int64_t best_rd);
+
+unsigned int vp10_get_sby_perpixel_variance(VP10_COMP *cpi,
+                                            const struct buf_2d *ref,
+                                            BLOCK_SIZE bs);
+#if CONFIG_VPX_HIGHBITDEPTH
+unsigned int vp10_high_get_sby_perpixel_variance(VP10_COMP *cpi,
+                                                 const struct buf_2d *ref,
+                                                 BLOCK_SIZE bs, int bd);
+#endif
+
+void vp10_rd_pick_inter_mode_sb(struct VP10_COMP *cpi,
+                                struct TileDataEnc *tile_data,
+                                struct macroblock *x, int mi_row, int mi_col,
+                                struct RD_COST *rd_cost, BLOCK_SIZE bsize,
+                                PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far);
+
+void vp10_rd_pick_inter_mode_sb_seg_skip(
+    struct VP10_COMP *cpi, struct TileDataEnc *tile_data, struct macroblock *x,
+    struct RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+    int64_t best_rd_so_far);
+
+int vp10_internal_image_edge(struct VP10_COMP *cpi);
+int vp10_active_h_edge(struct VP10_COMP *cpi, int mi_row, int mi_step);
+int vp10_active_v_edge(struct VP10_COMP *cpi, int mi_col, int mi_step);
+int vp10_active_edge_sb(struct VP10_COMP *cpi, int mi_row, int mi_col);
+
+void vp10_rd_pick_inter_mode_sub8x8(struct VP10_COMP *cpi,
+                                    struct TileDataEnc *tile_data,
+                                    struct macroblock *x, int mi_row,
+                                    int mi_col, struct RD_COST *rd_cost,
+                                    BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+                                    int64_t best_rd_so_far);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_RDOPT_H_
diff --git a/av1/encoder/resize.c b/av1/encoder/resize.c
new file mode 100644
index 0000000..d3295eb
--- /dev/null
+++ b/av1/encoder/resize.c
@@ -0,0 +1,820 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#if CONFIG_VPX_HIGHBITDEPTH
+#include "aom_dsp/vpx_dsp_common.h"
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+#include "aom_ports/mem.h"
+#include "av1/common/common.h"
+#include "av1/encoder/resize.h"
+
+#define FILTER_BITS 7
+
+#define INTERP_TAPS 8
+#define SUBPEL_BITS 5
+#define SUBPEL_MASK ((1 << SUBPEL_BITS) - 1)
+#define INTERP_PRECISION_BITS 32
+
+typedef int16_t interp_kernel[INTERP_TAPS];
+
+// Filters for interpolation (0.5-band) - note this also filters integer pels.
+static const interp_kernel filteredinterp_filters500[(1 << SUBPEL_BITS)] = {
+  { -3, 0, 35, 64, 35, 0, -3, 0 },    { -3, -1, 34, 64, 36, 1, -3, 0 },
+  { -3, -1, 32, 64, 38, 1, -3, 0 },   { -2, -2, 31, 63, 39, 2, -3, 0 },
+  { -2, -2, 29, 63, 41, 2, -3, 0 },   { -2, -2, 28, 63, 42, 3, -4, 0 },
+  { -2, -3, 27, 63, 43, 4, -4, 0 },   { -2, -3, 25, 62, 45, 5, -4, 0 },
+  { -2, -3, 24, 62, 46, 5, -4, 0 },   { -2, -3, 23, 61, 47, 6, -4, 0 },
+  { -2, -3, 21, 60, 49, 7, -4, 0 },   { -1, -4, 20, 60, 50, 8, -4, -1 },
+  { -1, -4, 19, 59, 51, 9, -4, -1 },  { -1, -4, 17, 58, 52, 10, -4, 0 },
+  { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 15, 56, 54, 13, -4, -1 },
+  { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 13, 54, 56, 15, -4, -1 },
+  { -1, -4, 12, 53, 57, 16, -4, -1 }, { 0, -4, 10, 52, 58, 17, -4, -1 },
+  { -1, -4, 9, 51, 59, 19, -4, -1 },  { -1, -4, 8, 50, 60, 20, -4, -1 },
+  { 0, -4, 7, 49, 60, 21, -3, -2 },   { 0, -4, 6, 47, 61, 23, -3, -2 },
+  { 0, -4, 5, 46, 62, 24, -3, -2 },   { 0, -4, 5, 45, 62, 25, -3, -2 },
+  { 0, -4, 4, 43, 63, 27, -3, -2 },   { 0, -4, 3, 42, 63, 28, -2, -2 },
+  { 0, -3, 2, 41, 63, 29, -2, -2 },   { 0, -3, 2, 39, 63, 31, -2, -2 },
+  { 0, -3, 1, 38, 64, 32, -1, -3 },   { 0, -3, 1, 36, 64, 34, -1, -3 }
+};
+
+// Filters for interpolation (0.625-band) - note this also filters integer pels.
+static const interp_kernel filteredinterp_filters625[(1 << SUBPEL_BITS)] = {
+  { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 30, 80, 35, -8, -1, 1 },
+  { -1, -8, 28, 80, 37, -7, -2, 1 }, { 0, -8, 26, 79, 39, -7, -2, 1 },
+  { 0, -8, 24, 79, 41, -7, -2, 1 },  { 0, -8, 22, 78, 43, -6, -2, 1 },
+  { 0, -8, 20, 78, 45, -5, -3, 1 },  { 0, -8, 18, 77, 48, -5, -3, 1 },
+  { 0, -8, 16, 76, 50, -4, -3, 1 },  { 0, -8, 15, 75, 52, -3, -4, 1 },
+  { 0, -7, 13, 74, 54, -3, -4, 1 },  { 0, -7, 11, 73, 56, -2, -4, 1 },
+  { 0, -7, 10, 71, 58, -1, -4, 1 },  { 1, -7, 8, 70, 60, 0, -5, 1 },
+  { 1, -6, 6, 68, 62, 1, -5, 1 },    { 1, -6, 5, 67, 63, 2, -5, 1 },
+  { 1, -6, 4, 65, 65, 4, -6, 1 },    { 1, -5, 2, 63, 67, 5, -6, 1 },
+  { 1, -5, 1, 62, 68, 6, -6, 1 },    { 1, -5, 0, 60, 70, 8, -7, 1 },
+  { 1, -4, -1, 58, 71, 10, -7, 0 },  { 1, -4, -2, 56, 73, 11, -7, 0 },
+  { 1, -4, -3, 54, 74, 13, -7, 0 },  { 1, -4, -3, 52, 75, 15, -8, 0 },
+  { 1, -3, -4, 50, 76, 16, -8, 0 },  { 1, -3, -5, 48, 77, 18, -8, 0 },
+  { 1, -3, -5, 45, 78, 20, -8, 0 },  { 1, -2, -6, 43, 78, 22, -8, 0 },
+  { 1, -2, -7, 41, 79, 24, -8, 0 },  { 1, -2, -7, 39, 79, 26, -8, 0 },
+  { 1, -2, -7, 37, 80, 28, -8, -1 }, { 1, -1, -8, 35, 80, 30, -8, -1 },
+};
+
+// Filters for interpolation (0.75-band) - note this also filters integer pels.
+static const interp_kernel filteredinterp_filters750[(1 << SUBPEL_BITS)] = {
+  { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -11, 22, 96, 28, -11, 2, 0 },
+  { 2, -10, 19, 95, 31, -11, 2, 0 }, { 2, -10, 17, 95, 34, -12, 2, 0 },
+  { 2, -9, 14, 94, 37, -12, 2, 0 },  { 2, -8, 12, 93, 40, -12, 1, 0 },
+  { 2, -8, 9, 92, 43, -12, 1, 1 },   { 2, -7, 7, 91, 46, -12, 1, 0 },
+  { 2, -7, 5, 90, 49, -12, 1, 0 },   { 2, -6, 3, 88, 52, -12, 0, 1 },
+  { 2, -5, 1, 86, 55, -12, 0, 1 },   { 2, -5, -1, 84, 58, -11, 0, 1 },
+  { 2, -4, -2, 82, 61, -11, -1, 1 }, { 2, -4, -4, 80, 64, -10, -1, 1 },
+  { 1, -3, -5, 77, 67, -9, -1, 1 },  { 1, -3, -6, 75, 70, -8, -2, 1 },
+  { 1, -2, -7, 72, 72, -7, -2, 1 },  { 1, -2, -8, 70, 75, -6, -3, 1 },
+  { 1, -1, -9, 67, 77, -5, -3, 1 },  { 1, -1, -10, 64, 80, -4, -4, 2 },
+  { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -11, 58, 84, -1, -5, 2 },
+  { 1, 0, -12, 55, 86, 1, -5, 2 },   { 1, 0, -12, 52, 88, 3, -6, 2 },
+  { 0, 1, -12, 49, 90, 5, -7, 2 },   { 0, 1, -12, 46, 91, 7, -7, 2 },
+  { 1, 1, -12, 43, 92, 9, -8, 2 },   { 0, 1, -12, 40, 93, 12, -8, 2 },
+  { 0, 2, -12, 37, 94, 14, -9, 2 },  { 0, 2, -12, 34, 95, 17, -10, 2 },
+  { 0, 2, -11, 31, 95, 19, -10, 2 }, { 0, 2, -11, 28, 96, 22, -11, 2 }
+};
+
+// Filters for interpolation (0.875-band) - note this also filters integer pels.
+static const interp_kernel filteredinterp_filters875[(1 << SUBPEL_BITS)] = {
+  { 3, -8, 13, 112, 13, -8, 3, 0 },   { 3, -7, 10, 112, 17, -9, 3, -1 },
+  { 2, -6, 7, 111, 21, -9, 3, -1 },   { 2, -5, 4, 111, 24, -10, 3, -1 },
+  { 2, -4, 1, 110, 28, -11, 3, -1 },  { 1, -3, -1, 108, 32, -12, 4, -1 },
+  { 1, -2, -3, 106, 36, -13, 4, -1 }, { 1, -1, -6, 105, 40, -14, 4, -1 },
+  { 1, -1, -7, 102, 44, -14, 4, -1 }, { 1, 0, -9, 100, 48, -15, 4, -1 },
+  { 1, 1, -11, 97, 53, -16, 4, -1 },  { 0, 1, -12, 95, 57, -16, 4, -1 },
+  { 0, 2, -13, 91, 61, -16, 4, -1 },  { 0, 2, -14, 88, 65, -16, 4, -1 },
+  { 0, 3, -15, 84, 69, -17, 4, 0 },   { 0, 3, -16, 81, 73, -16, 3, 0 },
+  { 0, 3, -16, 77, 77, -16, 3, 0 },   { 0, 3, -16, 73, 81, -16, 3, 0 },
+  { 0, 4, -17, 69, 84, -15, 3, 0 },   { -1, 4, -16, 65, 88, -14, 2, 0 },
+  { -1, 4, -16, 61, 91, -13, 2, 0 },  { -1, 4, -16, 57, 95, -12, 1, 0 },
+  { -1, 4, -16, 53, 97, -11, 1, 1 },  { -1, 4, -15, 48, 100, -9, 0, 1 },
+  { -1, 4, -14, 44, 102, -7, -1, 1 }, { -1, 4, -14, 40, 105, -6, -1, 1 },
+  { -1, 4, -13, 36, 106, -3, -2, 1 }, { -1, 4, -12, 32, 108, -1, -3, 1 },
+  { -1, 3, -11, 28, 110, 1, -4, 2 },  { -1, 3, -10, 24, 111, 4, -5, 2 },
+  { -1, 3, -9, 21, 111, 7, -6, 2 },   { -1, 3, -9, 17, 112, 10, -7, 3 }
+};
+
+// Filters for interpolation (full-band) - no filtering for integer pixels
+static const interp_kernel filteredinterp_filters1000[(1 << SUBPEL_BITS)] = {
+  { 0, 0, 0, 128, 0, 0, 0, 0 },        { 0, 1, -3, 128, 3, -1, 0, 0 },
+  { -1, 2, -6, 127, 7, -2, 1, 0 },     { -1, 3, -9, 126, 12, -4, 1, 0 },
+  { -1, 4, -12, 125, 16, -5, 1, 0 },   { -1, 4, -14, 123, 20, -6, 2, 0 },
+  { -1, 5, -15, 120, 25, -8, 2, 0 },   { -1, 5, -17, 118, 30, -9, 3, -1 },
+  { -1, 6, -18, 114, 35, -10, 3, -1 }, { -1, 6, -19, 111, 41, -12, 3, -1 },
+  { -1, 6, -20, 107, 46, -13, 4, -1 }, { -1, 6, -21, 103, 52, -14, 4, -1 },
+  { -1, 6, -21, 99, 57, -16, 5, -1 },  { -1, 6, -21, 94, 63, -17, 5, -1 },
+  { -1, 6, -20, 89, 68, -18, 5, -1 },  { -1, 6, -20, 84, 73, -19, 6, -1 },
+  { -1, 6, -20, 79, 79, -20, 6, -1 },  { -1, 6, -19, 73, 84, -20, 6, -1 },
+  { -1, 5, -18, 68, 89, -20, 6, -1 },  { -1, 5, -17, 63, 94, -21, 6, -1 },
+  { -1, 5, -16, 57, 99, -21, 6, -1 },  { -1, 4, -14, 52, 103, -21, 6, -1 },
+  { -1, 4, -13, 46, 107, -20, 6, -1 }, { -1, 3, -12, 41, 111, -19, 6, -1 },
+  { -1, 3, -10, 35, 114, -18, 6, -1 }, { -1, 3, -9, 30, 118, -17, 5, -1 },
+  { 0, 2, -8, 25, 120, -15, 5, -1 },   { 0, 2, -6, 20, 123, -14, 4, -1 },
+  { 0, 1, -5, 16, 125, -12, 4, -1 },   { 0, 1, -4, 12, 126, -9, 3, -1 },
+  { 0, 1, -2, 7, 127, -6, 2, -1 },     { 0, 0, -1, 3, 128, -3, 1, 0 }
+};
+
+// Filters for factor of 2 downsampling.
+static const int16_t vp10_down2_symeven_half_filter[] = { 56, 12, -3, -1 };
+static const int16_t vp10_down2_symodd_half_filter[] = { 64, 35, 0, -3 };
+
+static const interp_kernel *choose_interp_filter(int inlength, int outlength) {
+  int outlength16 = outlength * 16;
+  if (outlength16 >= inlength * 16)
+    return filteredinterp_filters1000;
+  else if (outlength16 >= inlength * 13)
+    return filteredinterp_filters875;
+  else if (outlength16 >= inlength * 11)
+    return filteredinterp_filters750;
+  else if (outlength16 >= inlength * 9)
+    return filteredinterp_filters625;
+  else
+    return filteredinterp_filters500;
+}
+
+static void interpolate(const uint8_t *const input, int inlength,
+                        uint8_t *output, int outlength) {
+  const int64_t delta =
+      (((uint64_t)inlength << 32) + outlength / 2) / outlength;
+  const int64_t offset =
+      inlength > outlength
+          ? (((int64_t)(inlength - outlength) << 31) + outlength / 2) /
+                outlength
+          : -(((int64_t)(outlength - inlength) << 31) + outlength / 2) /
+                outlength;
+  uint8_t *optr = output;
+  int x, x1, x2, sum, k, int_pel, sub_pel;
+  int64_t y;
+
+  const interp_kernel *interp_filters =
+      choose_interp_filter(inlength, outlength);
+
+  x = 0;
+  y = offset;
+  while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) {
+    x++;
+    y += delta;
+  }
+  x1 = x;
+  x = outlength - 1;
+  y = delta * x + offset;
+  while ((y >> INTERP_PRECISION_BITS) + (int64_t)(INTERP_TAPS / 2) >=
+         inlength) {
+    x--;
+    y -= delta;
+  }
+  x2 = x;
+  if (x1 > x2) {
+    for (x = 0, y = offset; x < outlength; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k) {
+        const int pk = int_pel - INTERP_TAPS / 2 + 1 + k;
+        sum += filter[k] *
+               input[(pk < 0 ? 0 : (pk >= inlength ? inlength - 1 : pk))];
+      }
+      *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+    }
+  } else {
+    // Initial part.
+    for (x = 0, y = offset; x < x1; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0
+                                      ? 0
+                                      : int_pel - INTERP_TAPS / 2 + 1 + k)];
+      *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+    }
+    // Middle part.
+    for (; x <= x2; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k];
+      *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+    }
+    // End part.
+    for (; x < outlength; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >= inlength
+                                      ? inlength - 1
+                                      : int_pel - INTERP_TAPS / 2 + 1 + k)];
+      *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+    }
+  }
+}
+
+static void down2_symeven(const uint8_t *const input, int length,
+                          uint8_t *output) {
+  // Actual filter len = 2 * filter_len_half.
+  const int16_t *filter = vp10_down2_symeven_half_filter;
+  const int filter_len_half = sizeof(vp10_down2_symeven_half_filter) / 2;
+  int i, j;
+  uint8_t *optr = output;
+  int l1 = filter_len_half;
+  int l2 = (length - filter_len_half);
+  l1 += (l1 & 1);
+  l2 += (l2 & 1);
+  if (l1 > l2) {
+    // Short input length.
+    for (i = 0; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] +
+                input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+  } else {
+    // Initial part.
+    for (i = 0; i < l1; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+    // Middle part.
+    for (; i < l2; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[i + 1 + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+    // End part.
+    for (; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[i - j] +
+                input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+  }
+}
+
+static void down2_symodd(const uint8_t *const input, int length,
+                         uint8_t *output) {
+  // Actual filter len = 2 * filter_len_half - 1.
+  const int16_t *filter = vp10_down2_symodd_half_filter;
+  const int filter_len_half = sizeof(vp10_down2_symodd_half_filter) / 2;
+  int i, j;
+  uint8_t *optr = output;
+  int l1 = filter_len_half - 1;
+  int l2 = (length - filter_len_half + 1);
+  l1 += (l1 & 1);
+  l2 += (l2 & 1);
+  if (l1 > l2) {
+    // Short input length.
+    for (i = 0; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] +
+                input[(i + j >= length ? length - 1 : i + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+  } else {
+    // Initial part.
+    for (i = 0; i < l1; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+    // Middle part.
+    for (; i < l2; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[i + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+    // End part.
+    for (; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel(sum);
+    }
+  }
+}
+
+static int get_down2_length(int length, int steps) {
+  int s;
+  for (s = 0; s < steps; ++s) length = (length + 1) >> 1;
+  return length;
+}
+
+static int get_down2_steps(int in_length, int out_length) {
+  int steps = 0;
+  int proj_in_length;
+  while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) {
+    ++steps;
+    in_length = proj_in_length;
+  }
+  return steps;
+}
+
+static void resize_multistep(const uint8_t *const input, int length,
+                             uint8_t *output, int olength, uint8_t *buf) {
+  int steps;
+  if (length == olength) {
+    memcpy(output, input, sizeof(output[0]) * length);
+    return;
+  }
+  steps = get_down2_steps(length, olength);
+
+  if (steps > 0) {
+    int s;
+    uint8_t *out = NULL;
+    uint8_t *tmpbuf = NULL;
+    uint8_t *otmp, *otmp2;
+    int filteredlength = length;
+    if (!tmpbuf) {
+      tmpbuf = (uint8_t *)malloc(sizeof(uint8_t) * length);
+      otmp = tmpbuf;
+    } else {
+      otmp = buf;
+    }
+    otmp2 = otmp + get_down2_length(length, 1);
+    for (s = 0; s < steps; ++s) {
+      const int proj_filteredlength = get_down2_length(filteredlength, 1);
+      const uint8_t *const in = (s == 0 ? input : out);
+      if (s == steps - 1 && proj_filteredlength == olength)
+        out = output;
+      else
+        out = (s & 1 ? otmp2 : otmp);
+      if (filteredlength & 1)
+        down2_symodd(in, filteredlength, out);
+      else
+        down2_symeven(in, filteredlength, out);
+      filteredlength = proj_filteredlength;
+    }
+    if (filteredlength != olength) {
+      interpolate(out, filteredlength, output, olength);
+    }
+    if (tmpbuf) free(tmpbuf);
+  } else {
+    interpolate(input, length, output, olength);
+  }
+}
+
+static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) {
+  int i;
+  uint8_t *iptr = img;
+  uint8_t *aptr = arr;
+  for (i = 0; i < len; ++i, iptr += stride) {
+    *aptr++ = *iptr;
+  }
+}
+
+static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
+  int i;
+  uint8_t *iptr = img;
+  uint8_t *aptr = arr;
+  for (i = 0; i < len; ++i, iptr += stride) {
+    *iptr = *aptr++;
+  }
+}
+
+void vp10_resize_plane(const uint8_t *const input, int height, int width,
+                       int in_stride, uint8_t *output, int height2, int width2,
+                       int out_stride) {
+  int i;
+  uint8_t *intbuf = (uint8_t *)malloc(sizeof(uint8_t) * width2 * height);
+  uint8_t *tmpbuf =
+      (uint8_t *)malloc(sizeof(uint8_t) * (width < height ? height : width));
+  uint8_t *arrbuf = (uint8_t *)malloc(sizeof(uint8_t) * (height + height2));
+  assert(width > 0);
+  assert(height > 0);
+  assert(width2 > 0);
+  assert(height2 > 0);
+  for (i = 0; i < height; ++i)
+    resize_multistep(input + in_stride * i, width, intbuf + width2 * i, width2,
+                     tmpbuf);
+  for (i = 0; i < width2; ++i) {
+    fill_col_to_arr(intbuf + i, width2, height, arrbuf);
+    resize_multistep(arrbuf, height, arrbuf + height, height2, tmpbuf);
+    fill_arr_to_col(output + i, out_stride, height2, arrbuf + height);
+  }
+  free(intbuf);
+  free(tmpbuf);
+  free(arrbuf);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static void highbd_interpolate(const uint16_t *const input, int inlength,
+                               uint16_t *output, int outlength, int bd) {
+  const int64_t delta =
+      (((uint64_t)inlength << 32) + outlength / 2) / outlength;
+  const int64_t offset =
+      inlength > outlength
+          ? (((int64_t)(inlength - outlength) << 31) + outlength / 2) /
+                outlength
+          : -(((int64_t)(outlength - inlength) << 31) + outlength / 2) /
+                outlength;
+  uint16_t *optr = output;
+  int x, x1, x2, sum, k, int_pel, sub_pel;
+  int64_t y;
+
+  const interp_kernel *interp_filters =
+      choose_interp_filter(inlength, outlength);
+
+  x = 0;
+  y = offset;
+  while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) {
+    x++;
+    y += delta;
+  }
+  x1 = x;
+  x = outlength - 1;
+  y = delta * x + offset;
+  while ((y >> INTERP_PRECISION_BITS) + (int64_t)(INTERP_TAPS / 2) >=
+         inlength) {
+    x--;
+    y -= delta;
+  }
+  x2 = x;
+  if (x1 > x2) {
+    for (x = 0, y = offset; x < outlength; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k) {
+        const int pk = int_pel - INTERP_TAPS / 2 + 1 + k;
+        sum += filter[k] *
+               input[(pk < 0 ? 0 : (pk >= inlength ? inlength - 1 : pk))];
+      }
+      *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+    }
+  } else {
+    // Initial part.
+    for (x = 0, y = offset; x < x1; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0
+                                      ? 0
+                                      : int_pel - INTERP_TAPS / 2 + 1 + k)];
+      *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+    }
+    // Middle part.
+    for (; x <= x2; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k];
+      *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+    }
+    // End part.
+    for (; x < outlength; ++x, y += delta) {
+      const int16_t *filter;
+      int_pel = y >> INTERP_PRECISION_BITS;
+      sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+      filter = interp_filters[sub_pel];
+      sum = 0;
+      for (k = 0; k < INTERP_TAPS; ++k)
+        sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >= inlength
+                                      ? inlength - 1
+                                      : int_pel - INTERP_TAPS / 2 + 1 + k)];
+      *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+    }
+  }
+}
+
+static void highbd_down2_symeven(const uint16_t *const input, int length,
+                                 uint16_t *output, int bd) {
+  // Actual filter len = 2 * filter_len_half.
+  static const int16_t *filter = vp10_down2_symeven_half_filter;
+  const int filter_len_half = sizeof(vp10_down2_symeven_half_filter) / 2;
+  int i, j;
+  uint16_t *optr = output;
+  int l1 = filter_len_half;
+  int l2 = (length - filter_len_half);
+  l1 += (l1 & 1);
+  l2 += (l2 & 1);
+  if (l1 > l2) {
+    // Short input length.
+    for (i = 0; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] +
+                input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+  } else {
+    // Initial part.
+    for (i = 0; i < l1; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+    // Middle part.
+    for (; i < l2; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[i + 1 + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+    // End part.
+    for (; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1));
+      for (j = 0; j < filter_len_half; ++j) {
+        sum += (input[i - j] +
+                input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+  }
+}
+
+static void highbd_down2_symodd(const uint16_t *const input, int length,
+                                uint16_t *output, int bd) {
+  // Actual filter len = 2 * filter_len_half - 1.
+  static const int16_t *filter = vp10_down2_symodd_half_filter;
+  const int filter_len_half = sizeof(vp10_down2_symodd_half_filter) / 2;
+  int i, j;
+  uint16_t *optr = output;
+  int l1 = filter_len_half - 1;
+  int l2 = (length - filter_len_half + 1);
+  l1 += (l1 & 1);
+  l2 += (l2 & 1);
+  if (l1 > l2) {
+    // Short input length.
+    for (i = 0; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] +
+                input[(i + j >= length ? length - 1 : i + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+  } else {
+    // Initial part.
+    for (i = 0; i < l1; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+    // Middle part.
+    for (; i < l2; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[i + j]) * filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+    // End part.
+    for (; i < length; i += 2) {
+      int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+      for (j = 1; j < filter_len_half; ++j) {
+        sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
+               filter[j];
+      }
+      sum >>= FILTER_BITS;
+      *optr++ = clip_pixel_highbd(sum, bd);
+    }
+  }
+}
+
+static void highbd_resize_multistep(const uint16_t *const input, int length,
+                                    uint16_t *output, int olength,
+                                    uint16_t *buf, int bd) {
+  int steps;
+  if (length == olength) {
+    memcpy(output, input, sizeof(output[0]) * length);
+    return;
+  }
+  steps = get_down2_steps(length, olength);
+
+  if (steps > 0) {
+    int s;
+    uint16_t *out = NULL;
+    uint16_t *tmpbuf = NULL;
+    uint16_t *otmp, *otmp2;
+    int filteredlength = length;
+    if (!tmpbuf) {
+      tmpbuf = (uint16_t *)malloc(sizeof(uint16_t) * length);
+      otmp = tmpbuf;
+    } else {
+      otmp = buf;
+    }
+    otmp2 = otmp + get_down2_length(length, 1);
+    for (s = 0; s < steps; ++s) {
+      const int proj_filteredlength = get_down2_length(filteredlength, 1);
+      const uint16_t *const in = (s == 0 ? input : out);
+      if (s == steps - 1 && proj_filteredlength == olength)
+        out = output;
+      else
+        out = (s & 1 ? otmp2 : otmp);
+      if (filteredlength & 1)
+        highbd_down2_symodd(in, filteredlength, out, bd);
+      else
+        highbd_down2_symeven(in, filteredlength, out, bd);
+      filteredlength = proj_filteredlength;
+    }
+    if (filteredlength != olength) {
+      highbd_interpolate(out, filteredlength, output, olength, bd);
+    }
+    if (tmpbuf) free(tmpbuf);
+  } else {
+    highbd_interpolate(input, length, output, olength, bd);
+  }
+}
+
+static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len,
+                                   uint16_t *arr) {
+  int i;
+  uint16_t *iptr = img;
+  uint16_t *aptr = arr;
+  for (i = 0; i < len; ++i, iptr += stride) {
+    *aptr++ = *iptr;
+  }
+}
+
+static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len,
+                                   uint16_t *arr) {
+  int i;
+  uint16_t *iptr = img;
+  uint16_t *aptr = arr;
+  for (i = 0; i < len; ++i, iptr += stride) {
+    *iptr = *aptr++;
+  }
+}
+
+void vp10_highbd_resize_plane(const uint8_t *const input, int height, int width,
+                              int in_stride, uint8_t *output, int height2,
+                              int width2, int out_stride, int bd) {
+  int i;
+  uint16_t *intbuf = (uint16_t *)malloc(sizeof(uint16_t) * width2 * height);
+  uint16_t *tmpbuf =
+      (uint16_t *)malloc(sizeof(uint16_t) * (width < height ? height : width));
+  uint16_t *arrbuf = (uint16_t *)malloc(sizeof(uint16_t) * (height + height2));
+  for (i = 0; i < height; ++i) {
+    highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width,
+                            intbuf + width2 * i, width2, tmpbuf, bd);
+  }
+  for (i = 0; i < width2; ++i) {
+    highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf);
+    highbd_resize_multistep(arrbuf, height, arrbuf + height, height2, tmpbuf,
+                            bd);
+    highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2,
+                           arrbuf + height);
+  }
+  free(intbuf);
+  free(tmpbuf);
+  free(arrbuf);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+void vp10_resize_frame420(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth) {
+  vp10_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
+  vp10_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
+                    owidth / 2, ouv_stride);
+  vp10_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
+                    owidth / 2, ouv_stride);
+}
+
+void vp10_resize_frame422(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth) {
+  vp10_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
+  vp10_resize_plane(u, height, width / 2, uv_stride, ou, oheight, owidth / 2,
+                    ouv_stride);
+  vp10_resize_plane(v, height, width / 2, uv_stride, ov, oheight, owidth / 2,
+                    ouv_stride);
+}
+
+void vp10_resize_frame444(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth) {
+  vp10_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
+  vp10_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
+                    ouv_stride);
+  vp10_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
+                    ouv_stride);
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_resize_frame420(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd) {
+  vp10_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
+                           oy_stride, bd);
+  vp10_highbd_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
+                           owidth / 2, ouv_stride, bd);
+  vp10_highbd_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
+                           owidth / 2, ouv_stride, bd);
+}
+
+void vp10_highbd_resize_frame422(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd) {
+  vp10_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
+                           oy_stride, bd);
+  vp10_highbd_resize_plane(u, height, width / 2, uv_stride, ou, oheight,
+                           owidth / 2, ouv_stride, bd);
+  vp10_highbd_resize_plane(v, height, width / 2, uv_stride, ov, oheight,
+                           owidth / 2, ouv_stride, bd);
+}
+
+void vp10_highbd_resize_frame444(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd) {
+  vp10_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
+                           oy_stride, bd);
+  vp10_highbd_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
+                           ouv_stride, bd);
+  vp10_highbd_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
+                           ouv_stride, bd);
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
diff --git a/av1/encoder/resize.h b/av1/encoder/resize.h
new file mode 100644
index 0000000..0da888c
--- /dev/null
+++ b/av1/encoder/resize.h
@@ -0,0 +1,68 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_RESIZE_H_
+#define VP10_ENCODER_RESIZE_H_
+
+#include <stdio.h>
+#include "aom/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_resize_plane(const uint8_t *const input, int height, int width,
+                       int in_stride, uint8_t *output, int height2, int width2,
+                       int out_stride);
+void vp10_resize_frame420(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth);
+void vp10_resize_frame422(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth);
+void vp10_resize_frame444(const uint8_t *const y, int y_stride,
+                          const uint8_t *const u, const uint8_t *const v,
+                          int uv_stride, int height, int width, uint8_t *oy,
+                          int oy_stride, uint8_t *ou, uint8_t *ov,
+                          int ouv_stride, int oheight, int owidth);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_resize_plane(const uint8_t *const input, int height, int width,
+                              int in_stride, uint8_t *output, int height2,
+                              int width2, int out_stride, int bd);
+void vp10_highbd_resize_frame420(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd);
+void vp10_highbd_resize_frame422(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd);
+void vp10_highbd_resize_frame444(const uint8_t *const y, int y_stride,
+                                 const uint8_t *const u, const uint8_t *const v,
+                                 int uv_stride, int height, int width,
+                                 uint8_t *oy, int oy_stride, uint8_t *ou,
+                                 uint8_t *ov, int ouv_stride, int oheight,
+                                 int owidth, int bd);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_RESIZE_H_
diff --git a/av1/encoder/segmentation.c b/av1/encoder/segmentation.c
new file mode 100644
index 0000000..118463a
--- /dev/null
+++ b/av1/encoder/segmentation.c
@@ -0,0 +1,322 @@
+/*
+ *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "aom_mem/vpx_mem.h"
+
+#include "av1/common/pred_common.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/subexp.h"
+
+void vp10_enable_segmentation(struct segmentation *seg) {
+  seg->enabled = 1;
+  seg->update_map = 1;
+  seg->update_data = 1;
+}
+
+void vp10_disable_segmentation(struct segmentation *seg) {
+  seg->enabled = 0;
+  seg->update_map = 0;
+  seg->update_data = 0;
+}
+
+void vp10_set_segment_data(struct segmentation *seg, signed char *feature_data,
+                           unsigned char abs_delta) {
+  seg->abs_delta = abs_delta;
+
+  memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
+}
+void vp10_disable_segfeature(struct segmentation *seg, int segment_id,
+                             SEG_LVL_FEATURES feature_id) {
+  seg->feature_mask[segment_id] &= ~(1 << feature_id);
+}
+
+void vp10_clear_segdata(struct segmentation *seg, int segment_id,
+                        SEG_LVL_FEATURES feature_id) {
+  seg->feature_data[segment_id][feature_id] = 0;
+}
+
+// Based on set of segment counts calculate a probability tree
+static void calc_segtree_probs(unsigned *segcounts,
+                               vpx_prob *segment_tree_probs,
+                               const vpx_prob *cur_tree_probs) {
+  // Work out probabilities of each segment
+  const unsigned cc[4] = { segcounts[0] + segcounts[1],
+                           segcounts[2] + segcounts[3],
+                           segcounts[4] + segcounts[5],
+                           segcounts[6] + segcounts[7] };
+  const unsigned ccc[2] = { cc[0] + cc[1], cc[2] + cc[3] };
+#if CONFIG_MISC_FIXES
+  int i;
+#endif
+
+  segment_tree_probs[0] = get_binary_prob(ccc[0], ccc[1]);
+  segment_tree_probs[1] = get_binary_prob(cc[0], cc[1]);
+  segment_tree_probs[2] = get_binary_prob(cc[2], cc[3]);
+  segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
+  segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
+  segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
+  segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
+
+#if CONFIG_MISC_FIXES
+  for (i = 0; i < 7; i++) {
+    const unsigned *ct =
+        i == 0 ? ccc : i < 3 ? cc + (i & 2) : segcounts + (i - 3) * 2;
+    vp10_prob_diff_update_savings_search(
+        ct, cur_tree_probs[i], &segment_tree_probs[i], DIFF_UPDATE_PROB);
+  }
+#else
+  (void)cur_tree_probs;
+#endif
+}
+
+// Based on set of segment counts and probabilities calculate a cost estimate
+static int cost_segmap(unsigned *segcounts, vpx_prob *probs) {
+  const int c01 = segcounts[0] + segcounts[1];
+  const int c23 = segcounts[2] + segcounts[3];
+  const int c45 = segcounts[4] + segcounts[5];
+  const int c67 = segcounts[6] + segcounts[7];
+  const int c0123 = c01 + c23;
+  const int c4567 = c45 + c67;
+
+  // Cost the top node of the tree
+  int cost = c0123 * vp10_cost_zero(probs[0]) + c4567 * vp10_cost_one(probs[0]);
+
+  // Cost subsequent levels
+  if (c0123 > 0) {
+    cost += c01 * vp10_cost_zero(probs[1]) + c23 * vp10_cost_one(probs[1]);
+
+    if (c01 > 0)
+      cost += segcounts[0] * vp10_cost_zero(probs[3]) +
+              segcounts[1] * vp10_cost_one(probs[3]);
+    if (c23 > 0)
+      cost += segcounts[2] * vp10_cost_zero(probs[4]) +
+              segcounts[3] * vp10_cost_one(probs[4]);
+  }
+
+  if (c4567 > 0) {
+    cost += c45 * vp10_cost_zero(probs[2]) + c67 * vp10_cost_one(probs[2]);
+
+    if (c45 > 0)
+      cost += segcounts[4] * vp10_cost_zero(probs[5]) +
+              segcounts[5] * vp10_cost_one(probs[5]);
+    if (c67 > 0)
+      cost += segcounts[6] * vp10_cost_zero(probs[6]) +
+              segcounts[7] * vp10_cost_one(probs[6]);
+  }
+
+  return cost;
+}
+
+static void count_segs(const VP10_COMMON *cm, MACROBLOCKD *xd,
+                       const TileInfo *tile, MODE_INFO **mi,
+                       unsigned *no_pred_segcounts,
+                       unsigned (*temporal_predictor_count)[2],
+                       unsigned *t_unpred_seg_counts, int bw, int bh,
+                       int mi_row, int mi_col) {
+  int segment_id;
+
+  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+  xd->mi = mi;
+  segment_id = xd->mi[0]->mbmi.segment_id;
+
+  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
+
+  // Count the number of hits on each segment with no prediction
+  no_pred_segcounts[segment_id]++;
+
+  // Temporal prediction not allowed on key frames
+  if (cm->frame_type != KEY_FRAME) {
+    const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+    // Test to see if the segment id matches the predicted value.
+    const int pred_segment_id =
+        get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col);
+    const int pred_flag = pred_segment_id == segment_id;
+    const int pred_context = vp10_get_pred_context_seg_id(xd);
+
+    // Store the prediction status for this mb and update counts
+    // as appropriate
+    xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
+    temporal_predictor_count[pred_context][pred_flag]++;
+
+    // Update the "unpredicted" segment count
+    if (!pred_flag) t_unpred_seg_counts[segment_id]++;
+  }
+}
+
+static void count_segs_sb(const VP10_COMMON *cm, MACROBLOCKD *xd,
+                          const TileInfo *tile, MODE_INFO **mi,
+                          unsigned *no_pred_segcounts,
+                          unsigned (*temporal_predictor_count)[2],
+                          unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
+                          BLOCK_SIZE bsize) {
+  const int mis = cm->mi_stride;
+  int bw, bh;
+  const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
+
+  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+  bw = num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type];
+  bh = num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type];
+
+  if (bw == bs && bh == bs) {
+    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+               t_unpred_seg_counts, bs, bs, mi_row, mi_col);
+  } else if (bw == bs && bh < bs) {
+    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+               t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
+    count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
+               temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
+               mi_row + hbs, mi_col);
+  } else if (bw < bs && bh == bs) {
+    count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+               t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
+    count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts,
+               temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row,
+               mi_col + hbs);
+  } else {
+    const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
+    int n;
+
+    assert(bw < bs && bh < bs);
+
+    for (n = 0; n < 4; n++) {
+      const int mi_dc = hbs * (n & 1);
+      const int mi_dr = hbs * (n >> 1);
+
+      count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
+                    temporal_predictor_count, t_unpred_seg_counts,
+                    mi_row + mi_dr, mi_col + mi_dc, subsize);
+    }
+  }
+}
+
+void vp10_choose_segmap_coding_method(VP10_COMMON *cm, MACROBLOCKD *xd) {
+  struct segmentation *seg = &cm->seg;
+#if CONFIG_MISC_FIXES
+  struct segmentation_probs *segp = &cm->fc->seg;
+#else
+  struct segmentation_probs *segp = &cm->segp;
+#endif
+
+  int no_pred_cost;
+  int t_pred_cost = INT_MAX;
+
+  int i, tile_col, mi_row, mi_col;
+
+#if CONFIG_MISC_FIXES
+  unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred;
+  unsigned *no_pred_segcounts = cm->counts.seg.tree_total;
+  unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred;
+#else
+  unsigned temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
+  unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
+  unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
+#endif
+
+  vpx_prob no_pred_tree[SEG_TREE_PROBS];
+  vpx_prob t_pred_tree[SEG_TREE_PROBS];
+  vpx_prob t_nopred_prob[PREDICTION_PROBS];
+
+#if CONFIG_MISC_FIXES
+  (void)xd;
+#else
+  // Set default state for the segment tree probabilities and the
+  // temporal coding probabilities
+  memset(segp->tree_probs, 255, sizeof(segp->tree_probs));
+  memset(segp->pred_probs, 255, sizeof(segp->pred_probs));
+#endif
+
+  // First of all generate stats regarding how well the last segment map
+  // predicts this one
+  for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
+    TileInfo tile;
+    MODE_INFO **mi_ptr;
+    vp10_tile_init(&tile, cm, 0, tile_col);
+
+    mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
+    for (mi_row = 0; mi_row < cm->mi_rows;
+         mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
+      MODE_INFO **mi = mi_ptr;
+      for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
+           mi_col += 8, mi += 8)
+        count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts,
+                      temporal_predictor_count, t_unpred_seg_counts, mi_row,
+                      mi_col, BLOCK_64X64);
+    }
+  }
+
+  // Work out probability tree for coding segments without prediction
+  // and the cost.
+  calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs);
+  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
+
+  // Key frames cannot use temporal prediction
+  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
+    // Work out probability tree for coding those segments not
+    // predicted using the temporal method and the cost.
+    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs);
+    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
+
+    // Add in the cost of the signaling for each prediction context.
+    for (i = 0; i < PREDICTION_PROBS; i++) {
+      const int count0 = temporal_predictor_count[i][0];
+      const int count1 = temporal_predictor_count[i][1];
+
+#if CONFIG_MISC_FIXES
+      vp10_prob_diff_update_savings_search(temporal_predictor_count[i],
+                                           segp->pred_probs[i],
+                                           &t_nopred_prob[i], DIFF_UPDATE_PROB);
+#else
+      t_nopred_prob[i] = get_binary_prob(count0, count1);
+#endif
+
+      // Add in the predictor signaling cost
+      t_pred_cost += count0 * vp10_cost_zero(t_nopred_prob[i]) +
+                     count1 * vp10_cost_one(t_nopred_prob[i]);
+    }
+  }
+
+  // Now choose which coding method to use.
+  if (t_pred_cost < no_pred_cost) {
+    assert(!cm->error_resilient_mode);
+    seg->temporal_update = 1;
+#if !CONFIG_MISC_FIXES
+    memcpy(segp->tree_probs, t_pred_tree, sizeof(t_pred_tree));
+    memcpy(segp->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
+#endif
+  } else {
+    seg->temporal_update = 0;
+#if !CONFIG_MISC_FIXES
+    memcpy(segp->tree_probs, no_pred_tree, sizeof(no_pred_tree));
+#endif
+  }
+}
+
+void vp10_reset_segment_features(VP10_COMMON *cm) {
+  struct segmentation *seg = &cm->seg;
+#if !CONFIG_MISC_FIXES
+  struct segmentation_probs *segp = &cm->segp;
+#endif
+
+  // Set up default state for MB feature flags
+  seg->enabled = 0;
+  seg->update_map = 0;
+  seg->update_data = 0;
+#if !CONFIG_MISC_FIXES
+  memset(segp->tree_probs, 255, sizeof(segp->tree_probs));
+#endif
+  vp10_clearall_segfeatures(seg);
+}
diff --git a/av1/encoder/segmentation.h b/av1/encoder/segmentation.h
new file mode 100644
index 0000000..3c79bd1
--- /dev/null
+++ b/av1/encoder/segmentation.h
@@ -0,0 +1,50 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_SEGMENTATION_H_
+#define VP10_ENCODER_SEGMENTATION_H_
+
+#include "av1/common/blockd.h"
+#include "av1/encoder/encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_enable_segmentation(struct segmentation *seg);
+void vp10_disable_segmentation(struct segmentation *seg);
+
+void vp10_disable_segfeature(struct segmentation *seg, int segment_id,
+                             SEG_LVL_FEATURES feature_id);
+void vp10_clear_segdata(struct segmentation *seg, int segment_id,
+                        SEG_LVL_FEATURES feature_id);
+
+// The values given for each segment can be either deltas (from the default
+// value chosen for the frame) or absolute values.
+//
+// Valid range for abs values is (0-127 for MB_LVL_ALT_Q), (0-63 for
+// SEGMENT_ALT_LF)
+// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q), (+/-63 for
+// SEGMENT_ALT_LF)
+//
+// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use
+// the absolute values given).
+void vp10_set_segment_data(struct segmentation *seg, signed char *feature_data,
+                           unsigned char abs_delta);
+
+void vp10_choose_segmap_coding_method(VP10_COMMON *cm, MACROBLOCKD *xd);
+
+void vp10_reset_segment_features(VP10_COMMON *cm);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_SEGMENTATION_H_
diff --git a/av1/encoder/skin_detection.c b/av1/encoder/skin_detection.c
new file mode 100644
index 0000000..36e8781
--- /dev/null
+++ b/av1/encoder/skin_detection.c
@@ -0,0 +1,103 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "av1/common/blockd.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/skin_detection.h"
+
+// Fixed-point skin color model parameters.
+static const int skin_mean[2] = { 7463, 9614 };                 // q6
+static const int skin_inv_cov[4] = { 4107, 1663, 1663, 2157 };  // q16
+static const int skin_threshold = 1570636;                      // q18
+
+// Thresholds on luminance.
+static const int y_low = 20;
+static const int y_high = 220;
+
+// Evaluates the Mahalanobis distance measure for the input CbCr values.
+static int evaluate_skin_color_difference(int cb, int cr) {
+  const int cb_q6 = cb << 6;
+  const int cr_q6 = cr << 6;
+  const int cb_diff_q12 = (cb_q6 - skin_mean[0]) * (cb_q6 - skin_mean[0]);
+  const int cbcr_diff_q12 = (cb_q6 - skin_mean[0]) * (cr_q6 - skin_mean[1]);
+  const int cr_diff_q12 = (cr_q6 - skin_mean[1]) * (cr_q6 - skin_mean[1]);
+  const int cb_diff_q2 = (cb_diff_q12 + (1 << 9)) >> 10;
+  const int cbcr_diff_q2 = (cbcr_diff_q12 + (1 << 9)) >> 10;
+  const int cr_diff_q2 = (cr_diff_q12 + (1 << 9)) >> 10;
+  const int skin_diff =
+      skin_inv_cov[0] * cb_diff_q2 + skin_inv_cov[1] * cbcr_diff_q2 +
+      skin_inv_cov[2] * cbcr_diff_q2 + skin_inv_cov[3] * cr_diff_q2;
+  return skin_diff;
+}
+
+int vp10_skin_pixel(const uint8_t y, const uint8_t cb, const uint8_t cr) {
+  if (y < y_low || y > y_high)
+    return 0;
+  else
+    return (evaluate_skin_color_difference(cb, cr) < skin_threshold);
+}
+
+#ifdef OUTPUT_YUV_SKINMAP
+// For viewing skin map on input source.
+void vp10_compute_skin_map(VP10_COMP *const cpi, FILE *yuv_skinmap_file) {
+  int i, j, mi_row, mi_col;
+  VP10_COMMON *const cm = &cpi->common;
+  uint8_t *y;
+  const uint8_t *src_y = cpi->Source->y_buffer;
+  const uint8_t *src_u = cpi->Source->u_buffer;
+  const uint8_t *src_v = cpi->Source->v_buffer;
+  const int src_ystride = cpi->Source->y_stride;
+  const int src_uvstride = cpi->Source->uv_stride;
+  YV12_BUFFER_CONFIG skinmap;
+  memset(&skinmap, 0, sizeof(YV12_BUFFER_CONFIG));
+  if (vpx_alloc_frame_buffer(&skinmap, cm->width, cm->height, cm->subsampling_x,
+                             cm->subsampling_y, VPX_ENC_BORDER_IN_PIXELS,
+                             cm->byte_alignment)) {
+    vpx_free_frame_buffer(&skinmap);
+    return;
+  }
+  memset(skinmap.buffer_alloc, 128, skinmap.frame_size);
+  y = skinmap.y_buffer;
+  // Loop through 8x8 blocks and set skin map based on center pixel of block.
+  // Set y to white for skin block, otherwise set to source with gray scale.
+  // Ignore rightmost/bottom boundary blocks.
+  for (mi_row = 0; mi_row < cm->mi_rows - 1; ++mi_row) {
+    for (mi_col = 0; mi_col < cm->mi_cols - 1; ++mi_col) {
+      // Use middle pixel for each 8x8 block for skin detection.
+      // If middle pixel is skin, assign whole 8x8 block to skin.
+      const uint8_t ysource = src_y[4 * src_ystride + 4];
+      const uint8_t usource = src_u[2 * src_uvstride + 2];
+      const uint8_t vsource = src_v[2 * src_uvstride + 2];
+      const int is_skin = vp10_skin_pixel(ysource, usource, vsource);
+      for (i = 0; i < 8; i++) {
+        for (j = 0; j < 8; j++) {
+          if (is_skin)
+            y[i * src_ystride + j] = 255;
+          else
+            y[i * src_ystride + j] = src_y[i * src_ystride + j];
+        }
+      }
+      y += 8;
+      src_y += 8;
+      src_u += 4;
+      src_v += 4;
+    }
+    y += (src_ystride << 3) - ((cm->mi_cols - 1) << 3);
+    src_y += (src_ystride << 3) - ((cm->mi_cols - 1) << 3);
+    src_u += (src_uvstride << 2) - ((cm->mi_cols - 1) << 2);
+    src_v += (src_uvstride << 2) - ((cm->mi_cols - 1) << 2);
+  }
+  vp10_write_yuv_frame_420(&skinmap, yuv_skinmap_file);
+  vpx_free_frame_buffer(&skinmap);
+}
+#endif
diff --git a/av1/encoder/skin_detection.h b/av1/encoder/skin_detection.h
new file mode 100644
index 0000000..782b7a6
--- /dev/null
+++ b/av1/encoder/skin_detection.h
@@ -0,0 +1,35 @@
+/*
+ *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_SKIN_MAP_H_
+#define VP10_ENCODER_SKIN_MAP_H_
+
+#include "av1/common/blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP10_COMP;
+
+// #define OUTPUT_YUV_SKINMAP
+
+int vp10_skin_pixel(const uint8_t y, const uint8_t cb, const uint8_t cr);
+
+#ifdef OUTPUT_YUV_SKINMAP
+// For viewing skin map on input source.
+void vp10_compute_skin_map(VP10_COMP *const cpi, FILE *yuv_skinmap_file);
+#endif
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_SKIN_MAP_H_
diff --git a/av1/encoder/speed_features.c b/av1/encoder/speed_features.c
new file mode 100644
index 0000000..dc620a2
--- /dev/null
+++ b/av1/encoder/speed_features.c
@@ -0,0 +1,587 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/speed_features.h"
+#include "av1/encoder/rdopt.h"
+
+#include "aom_dsp/vpx_dsp_common.h"
+
+// Mesh search patters for various speed settings
+static MESH_PATTERN best_quality_mesh_pattern[MAX_MESH_STEP] = {
+  { 64, 4 }, { 28, 2 }, { 15, 1 }, { 7, 1 }
+};
+
+#define MAX_MESH_SPEED 5  // Max speed setting for mesh motion method
+static MESH_PATTERN
+    good_quality_mesh_patterns[MAX_MESH_SPEED + 1][MAX_MESH_STEP] = {
+      { { 64, 8 }, { 28, 4 }, { 15, 1 }, { 7, 1 } },
+      { { 64, 8 }, { 28, 4 }, { 15, 1 }, { 7, 1 } },
+      { { 64, 8 }, { 14, 2 }, { 7, 1 }, { 7, 1 } },
+      { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } },
+      { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } },
+      { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } },
+    };
+static unsigned char good_quality_max_mesh_pct[MAX_MESH_SPEED + 1] = {
+  50, 25, 15, 5, 1, 1
+};
+
+// Intra only frames, golden frames (except alt ref overlays) and
+// alt ref frames tend to be coded at a higher than ambient quality
+static int frame_is_boosted(const VP10_COMP *cpi) {
+  return frame_is_kf_gf_arf(cpi);
+}
+
+// Sets a partition size down to which the auto partition code will always
+// search (can go lower), based on the image dimensions. The logic here
+// is that the extent to which ringing artefacts are offensive, depends
+// partly on the screen area that over which they propogate. Propogation is
+// limited by transform block size but the screen area take up by a given block
+// size will be larger for a small image format stretched to full screen.
+static BLOCK_SIZE set_partition_min_limit(VP10_COMMON *const cm) {
+  unsigned int screen_area = (cm->width * cm->height);
+
+  // Select block size based on image format size.
+  if (screen_area < 1280 * 720) {
+    // Formats smaller in area than 720P
+    return BLOCK_4X4;
+  } else if (screen_area < 1920 * 1080) {
+    // Format >= 720P and < 1080P
+    return BLOCK_8X8;
+  } else {
+    // Formats 1080P and up
+    return BLOCK_16X16;
+  }
+}
+
+static void set_good_speed_feature_framesize_dependent(VP10_COMP *cpi,
+                                                       SPEED_FEATURES *sf,
+                                                       int speed) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  if (speed >= 1) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->disable_split_mask =
+          cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
+      sf->partition_search_breakout_dist_thr = (1 << 23);
+    } else {
+      sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+      sf->partition_search_breakout_dist_thr = (1 << 21);
+    }
+  }
+
+  if (speed >= 2) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->disable_split_mask =
+          cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
+      sf->adaptive_pred_interp_filter = 0;
+      sf->partition_search_breakout_dist_thr = (1 << 24);
+      sf->partition_search_breakout_rate_thr = 120;
+    } else {
+      sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+      sf->partition_search_breakout_dist_thr = (1 << 22);
+      sf->partition_search_breakout_rate_thr = 100;
+    }
+    sf->rd_auto_partition_min_limit = set_partition_min_limit(cm);
+  }
+
+  if (speed >= 3) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->disable_split_mask = DISABLE_ALL_SPLIT;
+      sf->schedule_mode_search = cm->base_qindex < 220 ? 1 : 0;
+      sf->partition_search_breakout_dist_thr = (1 << 25);
+      sf->partition_search_breakout_rate_thr = 200;
+    } else {
+      sf->max_intra_bsize = BLOCK_32X32;
+      sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
+      sf->schedule_mode_search = cm->base_qindex < 175 ? 1 : 0;
+      sf->partition_search_breakout_dist_thr = (1 << 23);
+      sf->partition_search_breakout_rate_thr = 120;
+    }
+  }
+
+  // If this is a two pass clip that fits the criteria for animated or
+  // graphics content then reset disable_split_mask for speeds 1-4.
+  // Also if the image edge is internal to the coded area.
+  if ((speed >= 1) && (cpi->oxcf.pass == 2) &&
+      ((cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) ||
+       (vp10_internal_image_edge(cpi)))) {
+    sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+  }
+
+  if (speed >= 4) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->partition_search_breakout_dist_thr = (1 << 26);
+    } else {
+      sf->partition_search_breakout_dist_thr = (1 << 24);
+    }
+    sf->disable_split_mask = DISABLE_ALL_SPLIT;
+  }
+}
+
+static void set_good_speed_feature(VP10_COMP *cpi, VP10_COMMON *cm,
+                                   SPEED_FEATURES *sf, int speed) {
+  const int boosted = frame_is_boosted(cpi);
+
+  sf->adaptive_rd_thresh = 1;
+  sf->allow_skip_recode = 1;
+
+  if (speed >= 1) {
+    if ((cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) ||
+        vp10_internal_image_edge(cpi)) {
+      sf->use_square_partition_only = !frame_is_boosted(cpi);
+    } else {
+      sf->use_square_partition_only = !frame_is_intra_only(cm);
+    }
+
+    sf->less_rectangular_check = 1;
+
+    sf->use_rd_breakout = 1;
+    sf->adaptive_motion_search = 1;
+    sf->mv.auto_mv_step_size = 1;
+    sf->adaptive_rd_thresh = 2;
+    sf->mv.subpel_iters_per_step = 1;
+    sf->mode_skip_start = 10;
+    sf->adaptive_pred_interp_filter = 1;
+
+    sf->recode_loop = ALLOW_RECODE_KFARFGF;
+    sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+    sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+    sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+    sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+
+    sf->tx_size_search_breakout = 1;
+    sf->partition_search_breakout_rate_thr = 80;
+  }
+
+  if (speed >= 2) {
+    sf->tx_size_search_method =
+        frame_is_boosted(cpi) ? USE_FULL_RD : USE_LARGESTALL;
+
+    sf->mode_search_skip_flags =
+        (cm->frame_type == KEY_FRAME) ? 0 : FLAG_SKIP_INTRA_DIRMISMATCH |
+                                                FLAG_SKIP_INTRA_BESTINTER |
+                                                FLAG_SKIP_COMP_BESTINTRA |
+                                                FLAG_SKIP_INTRA_LOWVAR;
+    sf->disable_filter_search_var_thresh = 100;
+    sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+    sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+    sf->allow_partition_search_skip = 1;
+  }
+
+  if (speed >= 3) {
+    sf->use_square_partition_only = !frame_is_intra_only(cm);
+    sf->tx_size_search_method =
+        frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL;
+    sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED;
+    sf->adaptive_pred_interp_filter = 0;
+    sf->adaptive_mode_search = 1;
+    sf->cb_partition_search = !boosted;
+    sf->cb_pred_filter_search = 1;
+    sf->alt_ref_search_fp = 1;
+    sf->recode_loop = ALLOW_RECODE_KFMAXBW;
+    sf->adaptive_rd_thresh = 3;
+    sf->mode_skip_start = 6;
+    sf->intra_y_mode_mask[TX_32X32] = INTRA_DC;
+    sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC;
+    sf->adaptive_interp_filter_search = 1;
+  }
+
+  if (speed >= 4) {
+    sf->use_square_partition_only = 1;
+    sf->tx_size_search_method = USE_LARGESTALL;
+    sf->mv.search_method = BIGDIA;
+    sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED_MORE;
+    sf->adaptive_rd_thresh = 4;
+    if (cm->frame_type != KEY_FRAME)
+      sf->mode_search_skip_flags |= FLAG_EARLY_TERMINATE;
+    sf->disable_filter_search_var_thresh = 200;
+    sf->use_lp32x32fdct = 1;
+    sf->use_fast_coef_updates = ONE_LOOP_REDUCED;
+    sf->use_fast_coef_costing = 1;
+    sf->partition_search_breakout_rate_thr = 300;
+  }
+
+  if (speed >= 5) {
+    int i;
+    sf->optimize_coefficients = 0;
+    sf->mv.search_method = HEX;
+    sf->disable_filter_search_var_thresh = 500;
+    for (i = 0; i < TX_SIZES; ++i) {
+      sf->intra_y_mode_mask[i] = INTRA_DC;
+      sf->intra_uv_mode_mask[i] = INTRA_DC;
+    }
+    sf->partition_search_breakout_rate_thr = 500;
+    sf->mv.reduce_first_step_size = 1;
+    sf->simple_model_rd_from_var = 1;
+  }
+}
+
+static void set_rt_speed_feature_framesize_dependent(VP10_COMP *cpi,
+                                                     SPEED_FEATURES *sf,
+                                                     int speed) {
+  VP10_COMMON *const cm = &cpi->common;
+
+  if (speed >= 1) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->disable_split_mask =
+          cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
+    } else {
+      sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+    }
+  }
+
+  if (speed >= 2) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->disable_split_mask =
+          cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
+    } else {
+      sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+    }
+  }
+
+  if (speed >= 5) {
+    if (VPXMIN(cm->width, cm->height) >= 720) {
+      sf->partition_search_breakout_dist_thr = (1 << 25);
+    } else {
+      sf->partition_search_breakout_dist_thr = (1 << 23);
+    }
+  }
+
+  if (speed >= 7) {
+    sf->encode_breakout_thresh =
+        (VPXMIN(cm->width, cm->height) >= 720) ? 800 : 300;
+  }
+}
+
+static void set_rt_speed_feature(VP10_COMP *cpi, SPEED_FEATURES *sf, int speed,
+                                 vpx_tune_content content) {
+  VP10_COMMON *const cm = &cpi->common;
+  const int is_keyframe = cm->frame_type == KEY_FRAME;
+  const int frames_since_key = is_keyframe ? 0 : cpi->rc.frames_since_key;
+  sf->static_segmentation = 0;
+  sf->adaptive_rd_thresh = 1;
+  sf->use_fast_coef_costing = 1;
+  sf->allow_exhaustive_searches = 0;
+  sf->exhaustive_searches_thresh = INT_MAX;
+
+  if (speed >= 1) {
+    sf->use_square_partition_only = !frame_is_intra_only(cm);
+    sf->less_rectangular_check = 1;
+    sf->tx_size_search_method =
+        frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL;
+
+    sf->use_rd_breakout = 1;
+
+    sf->adaptive_motion_search = 1;
+    sf->adaptive_pred_interp_filter = 1;
+    sf->mv.auto_mv_step_size = 1;
+    sf->adaptive_rd_thresh = 2;
+    sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+    sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+    sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+  }
+
+  if (speed >= 2) {
+    sf->mode_search_skip_flags =
+        (cm->frame_type == KEY_FRAME) ? 0 : FLAG_SKIP_INTRA_DIRMISMATCH |
+                                                FLAG_SKIP_INTRA_BESTINTER |
+                                                FLAG_SKIP_COMP_BESTINTRA |
+                                                FLAG_SKIP_INTRA_LOWVAR;
+    sf->adaptive_pred_interp_filter = 2;
+    sf->disable_filter_search_var_thresh = 50;
+    sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+    sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+    sf->lf_motion_threshold = LOW_MOTION_THRESHOLD;
+    sf->adjust_partitioning_from_last_frame = 1;
+    sf->last_partitioning_redo_frequency = 3;
+    sf->use_lp32x32fdct = 1;
+    sf->mode_skip_start = 11;
+    sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+  }
+
+  if (speed >= 3) {
+    sf->use_square_partition_only = 1;
+    sf->disable_filter_search_var_thresh = 100;
+    sf->use_uv_intra_rd_estimate = 1;
+    sf->mv.subpel_iters_per_step = 1;
+    sf->adaptive_rd_thresh = 4;
+    sf->mode_skip_start = 6;
+    sf->allow_skip_recode = 0;
+    sf->optimize_coefficients = 0;
+    sf->disable_split_mask = DISABLE_ALL_SPLIT;
+    sf->lpf_pick = LPF_PICK_FROM_Q;
+  }
+
+  if (speed >= 4) {
+    int i;
+    sf->last_partitioning_redo_frequency = 4;
+    sf->adaptive_rd_thresh = 5;
+    sf->use_fast_coef_costing = 0;
+    sf->auto_min_max_partition_size = STRICT_NEIGHBORING_MIN_MAX;
+    sf->adjust_partitioning_from_last_frame =
+        cm->last_frame_type != cm->frame_type ||
+        (0 == (frames_since_key + 1) % sf->last_partitioning_redo_frequency);
+    sf->mv.subpel_force_stop = 1;
+    for (i = 0; i < TX_SIZES; i++) {
+      sf->intra_y_mode_mask[i] = INTRA_DC_H_V;
+      sf->intra_uv_mode_mask[i] = INTRA_DC;
+    }
+    sf->intra_y_mode_mask[TX_32X32] = INTRA_DC;
+    sf->frame_parameter_update = 0;
+    sf->mv.search_method = FAST_HEX;
+
+    sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEAR_NEW;
+    sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST;
+    sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST;
+    sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST;
+    sf->max_intra_bsize = BLOCK_32X32;
+    sf->allow_skip_recode = 1;
+  }
+
+  if (speed >= 5) {
+    sf->use_quant_fp = !is_keyframe;
+    sf->auto_min_max_partition_size =
+        is_keyframe ? RELAXED_NEIGHBORING_MIN_MAX : STRICT_NEIGHBORING_MIN_MAX;
+    sf->default_max_partition_size = BLOCK_32X32;
+    sf->default_min_partition_size = BLOCK_8X8;
+    sf->force_frame_boost =
+        is_keyframe ||
+        (frames_since_key % (sf->last_partitioning_redo_frequency << 1) == 1);
+    sf->max_delta_qindex = is_keyframe ? 20 : 15;
+    sf->partition_search_type = REFERENCE_PARTITION;
+    sf->allow_skip_recode = 0;
+    sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEW_ZERO;
+    sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST_NEW_ZERO;
+    sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST_NEW_ZERO;
+    sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST_NEW_ZERO;
+    sf->adaptive_rd_thresh = 2;
+    // This feature is only enabled when partition search is disabled.
+    sf->reuse_inter_pred_sby = 1;
+    sf->partition_search_breakout_rate_thr = 200;
+    sf->coeff_prob_appx_step = 4;
+    sf->use_fast_coef_updates = is_keyframe ? TWO_LOOP : ONE_LOOP_REDUCED;
+    sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH;
+    sf->tx_size_search_method = is_keyframe ? USE_LARGESTALL : USE_TX_8X8;
+    sf->simple_model_rd_from_var = 1;
+
+    if (!is_keyframe) {
+      int i;
+      if (content == VPX_CONTENT_SCREEN) {
+        for (i = 0; i < BLOCK_SIZES; ++i)
+          sf->intra_y_mode_bsize_mask[i] = INTRA_DC_TM_H_V;
+      } else {
+        for (i = 0; i < BLOCK_SIZES; ++i)
+          if (i >= BLOCK_16X16)
+            sf->intra_y_mode_bsize_mask[i] = INTRA_DC;
+          else
+            // Use H and V intra mode for block sizes <= 16X16.
+            sf->intra_y_mode_bsize_mask[i] = INTRA_DC_H_V;
+      }
+    }
+  }
+
+  if (speed >= 6) {
+    // Adaptively switch between SOURCE_VAR_BASED_PARTITION and FIXED_PARTITION.
+    sf->partition_search_type = VAR_BASED_PARTITION;
+    // Turn on this to use non-RD key frame coding mode.
+    sf->mv.search_method = NSTEP;
+    sf->mv.reduce_first_step_size = 1;
+  }
+
+  if (speed >= 7) {
+    sf->adaptive_rd_thresh = 3;
+    sf->mv.search_method = FAST_DIAMOND;
+    sf->mv.fullpel_search_step_param = 10;
+  }
+  if (speed >= 8) {
+    sf->adaptive_rd_thresh = 4;
+    sf->mv.subpel_force_stop = 2;
+    sf->lpf_pick = LPF_PICK_MINIMAL_LPF;
+  }
+}
+
+void vp10_set_speed_features_framesize_dependent(VP10_COMP *cpi) {
+  SPEED_FEATURES *const sf = &cpi->sf;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  RD_OPT *const rd = &cpi->rd;
+  int i;
+
+  if (oxcf->mode == REALTIME) {
+    set_rt_speed_feature_framesize_dependent(cpi, sf, oxcf->speed);
+  } else if (oxcf->mode == GOOD) {
+    set_good_speed_feature_framesize_dependent(cpi, sf, oxcf->speed);
+  }
+
+  if (sf->disable_split_mask == DISABLE_ALL_SPLIT) {
+    sf->adaptive_pred_interp_filter = 0;
+  }
+
+  if (cpi->encode_breakout && oxcf->mode == REALTIME &&
+      sf->encode_breakout_thresh > cpi->encode_breakout) {
+    cpi->encode_breakout = sf->encode_breakout_thresh;
+  }
+
+  // Check for masked out split cases.
+  for (i = 0; i < MAX_REFS; ++i) {
+    if (sf->disable_split_mask & (1 << i)) {
+      rd->thresh_mult_sub8x8[i] = INT_MAX;
+    }
+  }
+}
+
+void vp10_set_speed_features_framesize_independent(VP10_COMP *cpi) {
+  SPEED_FEATURES *const sf = &cpi->sf;
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCK *const x = &cpi->td.mb;
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  int i;
+
+  // best quality defaults
+  sf->frame_parameter_update = 1;
+  sf->mv.search_method = NSTEP;
+  sf->recode_loop = ALLOW_RECODE;
+  sf->mv.subpel_search_method = SUBPEL_TREE;
+  sf->mv.subpel_iters_per_step = 2;
+  sf->mv.subpel_force_stop = 0;
+  sf->optimize_coefficients = !is_lossless_requested(&cpi->oxcf);
+  sf->mv.reduce_first_step_size = 0;
+  sf->coeff_prob_appx_step = 1;
+  sf->mv.auto_mv_step_size = 0;
+  sf->mv.fullpel_search_step_param = 6;
+  sf->comp_inter_joint_search_thresh = BLOCK_4X4;
+  sf->adaptive_rd_thresh = 0;
+  sf->tx_size_search_method = USE_FULL_RD;
+  sf->use_lp32x32fdct = 0;
+  sf->adaptive_motion_search = 0;
+  sf->adaptive_pred_interp_filter = 0;
+  sf->adaptive_mode_search = 0;
+  sf->cb_pred_filter_search = 0;
+  sf->cb_partition_search = 0;
+  sf->alt_ref_search_fp = 0;
+  sf->use_quant_fp = 0;
+  sf->partition_search_type = SEARCH_PARTITION;
+  sf->less_rectangular_check = 0;
+  sf->use_square_partition_only = 0;
+  sf->auto_min_max_partition_size = NOT_IN_USE;
+  sf->rd_auto_partition_min_limit = BLOCK_4X4;
+  sf->default_max_partition_size = BLOCK_64X64;
+  sf->default_min_partition_size = BLOCK_4X4;
+  sf->adjust_partitioning_from_last_frame = 0;
+  sf->last_partitioning_redo_frequency = 4;
+  sf->disable_split_mask = 0;
+  sf->mode_search_skip_flags = 0;
+  sf->force_frame_boost = 0;
+  sf->max_delta_qindex = 0;
+  sf->disable_filter_search_var_thresh = 0;
+  sf->adaptive_interp_filter_search = 0;
+  sf->allow_partition_search_skip = 0;
+
+  for (i = 0; i < TX_SIZES; i++) {
+    sf->intra_y_mode_mask[i] = INTRA_ALL;
+    sf->intra_uv_mode_mask[i] = INTRA_ALL;
+  }
+  sf->use_rd_breakout = 0;
+  sf->use_uv_intra_rd_estimate = 0;
+  sf->allow_skip_recode = 0;
+  sf->lpf_pick = LPF_PICK_FROM_FULL_IMAGE;
+  sf->use_fast_coef_updates = TWO_LOOP;
+  sf->use_fast_coef_costing = 0;
+  sf->mode_skip_start = MAX_MODES;  // Mode index at which mode skip mask set
+  sf->schedule_mode_search = 0;
+  for (i = 0; i < BLOCK_SIZES; ++i) sf->inter_mode_mask[i] = INTER_ALL;
+  sf->max_intra_bsize = BLOCK_64X64;
+  sf->reuse_inter_pred_sby = 0;
+  // This setting only takes effect when partition_search_type is set
+  // to FIXED_PARTITION.
+  sf->always_this_block_size = BLOCK_16X16;
+  sf->search_type_check_frequency = 50;
+  sf->encode_breakout_thresh = 0;
+  // Recode loop tolerance %.
+  sf->recode_tolerance = 25;
+  sf->default_interp_filter = SWITCHABLE;
+  sf->tx_size_search_breakout = 0;
+  sf->partition_search_breakout_dist_thr = 0;
+  sf->partition_search_breakout_rate_thr = 0;
+  sf->simple_model_rd_from_var = 0;
+
+  if (oxcf->mode == REALTIME)
+    set_rt_speed_feature(cpi, sf, oxcf->speed, oxcf->content);
+  else if (oxcf->mode == GOOD)
+    set_good_speed_feature(cpi, cm, sf, oxcf->speed);
+
+  cpi->full_search_sad = vp10_full_search_sad;
+  cpi->diamond_search_sad = vp10_diamond_search_sad;
+
+  sf->allow_exhaustive_searches = 1;
+  if (oxcf->mode == BEST) {
+    if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION)
+      sf->exhaustive_searches_thresh = (1 << 20);
+    else
+      sf->exhaustive_searches_thresh = (1 << 21);
+    sf->max_exaustive_pct = 100;
+    for (i = 0; i < MAX_MESH_STEP; ++i) {
+      sf->mesh_patterns[i].range = best_quality_mesh_pattern[i].range;
+      sf->mesh_patterns[i].interval = best_quality_mesh_pattern[i].interval;
+    }
+  } else {
+    int speed = (oxcf->speed > MAX_MESH_SPEED) ? MAX_MESH_SPEED : oxcf->speed;
+    if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION)
+      sf->exhaustive_searches_thresh = (1 << 22);
+    else
+      sf->exhaustive_searches_thresh = (1 << 23);
+    sf->max_exaustive_pct = good_quality_max_mesh_pct[speed];
+    if (speed > 0)
+      sf->exhaustive_searches_thresh = sf->exhaustive_searches_thresh << 1;
+
+    for (i = 0; i < MAX_MESH_STEP; ++i) {
+      sf->mesh_patterns[i].range = good_quality_mesh_patterns[speed][i].range;
+      sf->mesh_patterns[i].interval =
+          good_quality_mesh_patterns[speed][i].interval;
+    }
+  }
+
+  // Slow quant, dct and trellis not worthwhile for first pass
+  // so make sure they are always turned off.
+  if (oxcf->pass == 1) sf->optimize_coefficients = 0;
+
+  // No recode for 1 pass.
+  if (oxcf->pass == 0) {
+    sf->recode_loop = DISALLOW_RECODE;
+    sf->optimize_coefficients = 0;
+  }
+
+  if (sf->mv.subpel_search_method == SUBPEL_TREE) {
+    cpi->find_fractional_mv_step = vp10_find_best_sub_pixel_tree;
+  } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED) {
+    cpi->find_fractional_mv_step = vp10_find_best_sub_pixel_tree_pruned;
+  } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_MORE) {
+    cpi->find_fractional_mv_step = vp10_find_best_sub_pixel_tree_pruned_more;
+  } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_EVENMORE) {
+    cpi->find_fractional_mv_step =
+        vp10_find_best_sub_pixel_tree_pruned_evenmore;
+  }
+
+#if !CONFIG_AOM_QM
+  x->optimize = sf->optimize_coefficients == 1 && oxcf->pass != 1;
+#else
+  // FIXME: trellis not very efficient for quantisation matrices
+  x->optimize = 0;
+#endif
+
+  x->min_partition_size = sf->default_min_partition_size;
+  x->max_partition_size = sf->default_max_partition_size;
+
+  if (!cpi->oxcf.frame_periodic_boost) {
+    sf->max_delta_qindex = 0;
+  }
+}
diff --git a/av1/encoder/speed_features.h b/av1/encoder/speed_features.h
new file mode 100644
index 0000000..3d4f130
--- /dev/null
+++ b/av1/encoder/speed_features.h
@@ -0,0 +1,430 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_SPEED_FEATURES_H_
+#define VP10_ENCODER_SPEED_FEATURES_H_
+
+#include "av1/common/enums.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+enum {
+  INTRA_ALL = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED) | (1 << D45_PRED) |
+              (1 << D135_PRED) | (1 << D117_PRED) | (1 << D153_PRED) |
+              (1 << D207_PRED) | (1 << D63_PRED) | (1 << TM_PRED),
+  INTRA_DC = (1 << DC_PRED),
+  INTRA_DC_TM = (1 << DC_PRED) | (1 << TM_PRED),
+  INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED),
+  INTRA_DC_TM_H_V =
+      (1 << DC_PRED) | (1 << TM_PRED) | (1 << V_PRED) | (1 << H_PRED)
+};
+
+enum {
+  INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV) | (1 << NEWMV),
+  INTER_NEAREST = (1 << NEARESTMV),
+  INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
+  INTER_NEAREST_ZERO = (1 << NEARESTMV) | (1 << ZEROMV),
+  INTER_NEAREST_NEW_ZERO = (1 << NEARESTMV) | (1 << ZEROMV) | (1 << NEWMV),
+  INTER_NEAREST_NEAR_NEW = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
+  INTER_NEAREST_NEAR_ZERO = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV),
+};
+
+enum {
+  DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) |
+                            (1 << THR_ALTR) | (1 << THR_GOLD) | (1 << THR_LAST),
+
+  DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT,
+
+  DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA),
+
+  LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) |
+                              (1 << THR_ALTR) | (1 << THR_GOLD)
+};
+
+typedef enum {
+  DIAMOND = 0,
+  NSTEP = 1,
+  HEX = 2,
+  BIGDIA = 3,
+  SQUARE = 4,
+  FAST_HEX = 5,
+  FAST_DIAMOND = 6
+} SEARCH_METHODS;
+
+typedef enum {
+  // No recode.
+  DISALLOW_RECODE = 0,
+  // Allow recode for KF and exceeding maximum frame bandwidth.
+  ALLOW_RECODE_KFMAXBW = 1,
+  // Allow recode only for KF/ARF/GF frames.
+  ALLOW_RECODE_KFARFGF = 2,
+  // Allow recode for all frames based on bitrate constraints.
+  ALLOW_RECODE = 3,
+} RECODE_LOOP_TYPE;
+
+typedef enum {
+  SUBPEL_TREE = 0,
+  SUBPEL_TREE_PRUNED = 1,           // Prunes 1/2-pel searches
+  SUBPEL_TREE_PRUNED_MORE = 2,      // Prunes 1/2-pel searches more aggressively
+  SUBPEL_TREE_PRUNED_EVENMORE = 3,  // Prunes 1/2- and 1/4-pel searches
+  // Other methods to come
+} SUBPEL_SEARCH_METHODS;
+
+typedef enum {
+  NO_MOTION_THRESHOLD = 0,
+  LOW_MOTION_THRESHOLD = 7
+} MOTION_THRESHOLD;
+
+typedef enum {
+  USE_FULL_RD = 0,
+  USE_LARGESTALL,
+  USE_TX_8X8
+} TX_SIZE_SEARCH_METHOD;
+
+typedef enum {
+  NOT_IN_USE = 0,
+  RELAXED_NEIGHBORING_MIN_MAX = 1,
+  STRICT_NEIGHBORING_MIN_MAX = 2
+} AUTO_MIN_MAX_MODE;
+
+typedef enum {
+  // Try the full image with different values.
+  LPF_PICK_FROM_FULL_IMAGE,
+  // Try a small portion of the image with different values.
+  LPF_PICK_FROM_SUBIMAGE,
+  // Estimate the level based on quantizer and frame type
+  LPF_PICK_FROM_Q,
+  // Pick 0 to disable LPF if LPF was enabled last frame
+  LPF_PICK_MINIMAL_LPF
+} LPF_PICK_METHOD;
+
+typedef enum {
+  // Terminate search early based on distortion so far compared to
+  // qp step, distortion in the neighborhood of the frame, etc.
+  FLAG_EARLY_TERMINATE = 1 << 0,
+
+  // Skips comp inter modes if the best so far is an intra mode.
+  FLAG_SKIP_COMP_BESTINTRA = 1 << 1,
+
+  // Skips oblique intra modes if the best so far is an inter mode.
+  FLAG_SKIP_INTRA_BESTINTER = 1 << 3,
+
+  // Skips oblique intra modes  at angles 27, 63, 117, 153 if the best
+  // intra so far is not one of the neighboring directions.
+  FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4,
+
+  // Skips intra modes other than DC_PRED if the source variance is small
+  FLAG_SKIP_INTRA_LOWVAR = 1 << 5,
+} MODE_SEARCH_SKIP_LOGIC;
+
+typedef enum {
+  FLAG_SKIP_EIGHTTAP = 1 << EIGHTTAP,
+  FLAG_SKIP_EIGHTTAP_SMOOTH = 1 << EIGHTTAP_SMOOTH,
+  FLAG_SKIP_EIGHTTAP_SHARP = 1 << EIGHTTAP_SHARP,
+} INTERP_FILTER_MASK;
+
+typedef enum {
+  // Search partitions using RD criterion
+  SEARCH_PARTITION,
+
+  // Always use a fixed size partition
+  FIXED_PARTITION,
+
+  REFERENCE_PARTITION,
+
+  // Use an arbitrary partitioning scheme based on source variance within
+  // a 64X64 SB
+  VAR_BASED_PARTITION,
+
+  // Use non-fixed partitions based on source variance
+  SOURCE_VAR_BASED_PARTITION
+} PARTITION_SEARCH_TYPE;
+
+typedef enum {
+  // Does a dry run to see if any of the contexts need to be updated or not,
+  // before the final run.
+  TWO_LOOP = 0,
+
+  // No dry run, also only half the coef contexts and bands are updated.
+  // The rest are not updated at all.
+  ONE_LOOP_REDUCED = 1
+} FAST_COEFF_UPDATE;
+
+typedef struct MV_SPEED_FEATURES {
+  // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc).
+  SEARCH_METHODS search_method;
+
+  // This parameter controls which step in the n-step process we start at.
+  // It's changed adaptively based on circumstances.
+  int reduce_first_step_size;
+
+  // If this is set to 1, we limit the motion search range to 2 times the
+  // largest motion vector found in the last frame.
+  int auto_mv_step_size;
+
+  // Subpel_search_method can only be subpel_tree which does a subpixel
+  // logarithmic search that keeps stepping at 1/2 pixel units until
+  // you stop getting a gain, and then goes on to 1/4 and repeats
+  // the same process. Along the way it skips many diagonals.
+  SUBPEL_SEARCH_METHODS subpel_search_method;
+
+  // Maximum number of steps in logarithmic subpel search before giving up.
+  int subpel_iters_per_step;
+
+  // Control when to stop subpel search
+  int subpel_force_stop;
+
+  // This variable sets the step_param used in full pel motion search.
+  int fullpel_search_step_param;
+} MV_SPEED_FEATURES;
+
+#define MAX_MESH_STEP 4
+
+typedef struct MESH_PATTERN {
+  int range;
+  int interval;
+} MESH_PATTERN;
+
+typedef struct SPEED_FEATURES {
+  MV_SPEED_FEATURES mv;
+
+  // Frame level coding parameter update
+  int frame_parameter_update;
+
+  RECODE_LOOP_TYPE recode_loop;
+
+  // Trellis (dynamic programming) optimization of quantized values (+1, 0).
+  int optimize_coefficients;
+
+  // Always set to 0. If on it enables 0 cost background transmission
+  // (except for the initial transmission of the segmentation). The feature is
+  // disabled because the addition of very large block sizes make the
+  // backgrounds very to cheap to encode, and the segmentation we have
+  // adds overhead.
+  int static_segmentation;
+
+  // If 1 we iterate finding a best reference for 2 ref frames together - via
+  // a log search that iterates 4 times (check around mv for last for best
+  // error of combined predictor then check around mv for alt). If 0 we
+  // we just use the best motion vector found for each frame by itself.
+  BLOCK_SIZE comp_inter_joint_search_thresh;
+
+  // This variable is used to cap the maximum number of times we skip testing a
+  // mode to be evaluated. A high value means we will be faster.
+  int adaptive_rd_thresh;
+
+  // Speed feature to allow or disallow skipping of recode at block
+  // level within a frame.
+  int allow_skip_recode;
+
+  // Coefficient probability model approximation step size
+  int coeff_prob_appx_step;
+
+  // The threshold is to determine how slow the motino is, it is used when
+  // use_lastframe_partitioning is set to LAST_FRAME_PARTITION_LOW_MOTION
+  MOTION_THRESHOLD lf_motion_threshold;
+
+  // Determine which method we use to determine transform size. We can choose
+  // between options like full rd, largest for prediction size, largest
+  // for intra and model coefs for the rest.
+  TX_SIZE_SEARCH_METHOD tx_size_search_method;
+
+  // Low precision 32x32 fdct keeps everything in 16 bits and thus is less
+  // precise but significantly faster than the non lp version.
+  int use_lp32x32fdct;
+
+  // After looking at the first set of modes (set by index here), skip
+  // checking modes for reference frames that don't match the reference frame
+  // of the best so far.
+  int mode_skip_start;
+
+  PARTITION_SEARCH_TYPE partition_search_type;
+
+  // Used if partition_search_type = FIXED_SIZE_PARTITION
+  BLOCK_SIZE always_this_block_size;
+
+  // Skip rectangular partition test when partition type none gives better
+  // rd than partition type split.
+  int less_rectangular_check;
+
+  // Disable testing non square partitions. (eg 16x32)
+  int use_square_partition_only;
+
+  // Sets min and max partition sizes for this 64x64 region based on the
+  // same 64x64 in last encoded frame, and the left and above neighbor.
+  AUTO_MIN_MAX_MODE auto_min_max_partition_size;
+  // Ensures the rd based auto partition search will always
+  // go down at least to the specified level.
+  BLOCK_SIZE rd_auto_partition_min_limit;
+
+  // Min and max partition size we enable (block_size) as per auto
+  // min max, but also used by adjust partitioning, and pick_partitioning.
+  BLOCK_SIZE default_min_partition_size;
+  BLOCK_SIZE default_max_partition_size;
+
+  // Whether or not we allow partitions one smaller or one greater than the last
+  // frame's partitioning. Only used if use_lastframe_partitioning is set.
+  int adjust_partitioning_from_last_frame;
+
+  // How frequently we re do the partitioning from scratch. Only used if
+  // use_lastframe_partitioning is set.
+  int last_partitioning_redo_frequency;
+
+  // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable
+  // it always, to allow it for only Last frame and Intra, disable it for all
+  // inter modes or to enable it always.
+  int disable_split_mask;
+
+  // TODO(jingning): combine the related motion search speed features
+  // This allows us to use motion search at other sizes as a starting
+  // point for this motion search and limits the search range around it.
+  int adaptive_motion_search;
+
+  // Flag for allowing some use of exhaustive searches;
+  int allow_exhaustive_searches;
+
+  // Threshold for allowing exhaistive motion search.
+  int exhaustive_searches_thresh;
+
+  // Maximum number of exhaustive searches for a frame.
+  int max_exaustive_pct;
+
+  // Pattern to be used for any exhaustive mesh searches.
+  MESH_PATTERN mesh_patterns[MAX_MESH_STEP];
+
+  int schedule_mode_search;
+
+  // Allows sub 8x8 modes to use the prediction filter that was determined
+  // best for 8x8 mode. If set to 0 we always re check all the filters for
+  // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter
+  // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected.
+  int adaptive_pred_interp_filter;
+
+  // Adaptive prediction mode search
+  int adaptive_mode_search;
+
+  // Chessboard pattern prediction filter type search
+  int cb_pred_filter_search;
+
+  int cb_partition_search;
+
+  int alt_ref_search_fp;
+
+  // Fast quantization process path
+  int use_quant_fp;
+
+  // Use finer quantizer in every other few frames that run variable block
+  // partition type search.
+  int force_frame_boost;
+
+  // Maximally allowed base quantization index fluctuation.
+  int max_delta_qindex;
+
+  // Implements various heuristics to skip searching modes
+  // The heuristics selected are based on  flags
+  // defined in the MODE_SEARCH_SKIP_HEURISTICS enum
+  unsigned int mode_search_skip_flags;
+
+  // A source variance threshold below which filter search is disabled
+  // Choose a very large value (UINT_MAX) to use 8-tap always
+  unsigned int disable_filter_search_var_thresh;
+
+  // These bit masks allow you to enable or disable intra modes for each
+  // transform size separately.
+  int intra_y_mode_mask[TX_SIZES];
+  int intra_uv_mode_mask[TX_SIZES];
+
+  // These bit masks allow you to enable or disable intra modes for each
+  // prediction block size separately.
+  int intra_y_mode_bsize_mask[BLOCK_SIZES];
+
+  // This variable enables an early break out of mode testing if the model for
+  // rd built from the prediction signal indicates a value that's much
+  // higher than the best rd we've seen so far.
+  int use_rd_breakout;
+
+  // This enables us to use an estimate for intra rd based on dc mode rather
+  // than choosing an actual uv mode in the stage of encoding before the actual
+  // final encode.
+  int use_uv_intra_rd_estimate;
+
+  // This feature controls how the loop filter level is determined.
+  LPF_PICK_METHOD lpf_pick;
+
+  // This feature limits the number of coefficients updates we actually do
+  // by only looking at counts from 1/2 the bands.
+  FAST_COEFF_UPDATE use_fast_coef_updates;
+
+  // A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV
+  // modes are used in order from LSB to MSB for each BLOCK_SIZE.
+  int inter_mode_mask[BLOCK_SIZES];
+
+  // This feature controls whether we do the expensive context update and
+  // calculation in the rd coefficient costing loop.
+  int use_fast_coef_costing;
+
+  // This feature controls the tolerence vs target used in deciding whether to
+  // recode a frame. It has no meaning if recode is disabled.
+  int recode_tolerance;
+
+  // This variable controls the maximum block size where intra blocks can be
+  // used in inter frames.
+  // TODO(aconverse): Fold this into one of the other many mode skips
+  BLOCK_SIZE max_intra_bsize;
+
+  // The frequency that we check if SOURCE_VAR_BASED_PARTITION or
+  // FIXED_PARTITION search type should be used.
+  int search_type_check_frequency;
+
+  // When partition is pre-set, the inter prediction result from pick_inter_mode
+  // can be reused in final block encoding process. It is enabled only for real-
+  // time mode speed 6.
+  int reuse_inter_pred_sby;
+
+  // This variable sets the encode_breakout threshold. Currently, it is only
+  // enabled in real time mode.
+  int encode_breakout_thresh;
+
+  // default interp filter choice
+  INTERP_FILTER default_interp_filter;
+
+  // Early termination in transform size search, which only applies while
+  // tx_size_search_method is USE_FULL_RD.
+  int tx_size_search_breakout;
+
+  // adaptive interp_filter search to allow skip of certain filter types.
+  int adaptive_interp_filter_search;
+
+  // mask for skip evaluation of certain interp_filter type.
+  INTERP_FILTER_MASK interp_filter_search_mask;
+
+  // Partition search early breakout thresholds.
+  int64_t partition_search_breakout_dist_thr;
+  int partition_search_breakout_rate_thr;
+
+  // Allow skipping partition search for still image frame
+  int allow_partition_search_skip;
+
+  // Fast approximation of vp10_model_rd_from_var_lapndz
+  int simple_model_rd_from_var;
+} SPEED_FEATURES;
+
+struct VP10_COMP;
+
+void vp10_set_speed_features_framesize_independent(struct VP10_COMP *cpi);
+void vp10_set_speed_features_framesize_dependent(struct VP10_COMP *cpi);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_SPEED_FEATURES_H_
diff --git a/av1/encoder/subexp.c b/av1/encoder/subexp.c
new file mode 100644
index 0000000..def82ab
--- /dev/null
+++ b/av1/encoder/subexp.c
@@ -0,0 +1,222 @@
+/*
+ *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+#include "aom_dsp/bitwriter.h"
+
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/encoder/cost.h"
+#include "av1/encoder/subexp.h"
+
+#define vp10_cost_upd256 ((int)(vp10_cost_one(upd) - vp10_cost_zero(upd)))
+
+static const uint8_t update_bits[255] = {
+  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
+  5,  5,  5,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,
+  6,  6,  6,  6,  6,  6,  8,  8,  8,  8,  8,  8,  8,
+  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
+  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  10,
+  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+  10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11 - CONFIG_MISC_FIXES,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+  11, 11, 11, 11, 11, 11, 11, 0,
+};
+
+static int recenter_nonneg(int v, int m) {
+  if (v > (m << 1))
+    return v;
+  else if (v >= m)
+    return ((v - m) << 1);
+  else
+    return ((m - v) << 1) - 1;
+}
+
+static int remap_prob(int v, int m) {
+  int i;
+  static const uint8_t map_table[MAX_PROB - 1] = {
+    // generated by:
+    //   map_table[j] = split_index(j, MAX_PROB - 1, MODULUS_PARAM);
+    20,  21,  22,  23,  24,  25,  0,   26,  27,  28,  29,  30,  31,  32,  33,
+    34,  35,  36,  37,  1,   38,  39,  40,  41,  42,  43,  44,  45,  46,  47,
+    48,  49,  2,   50,  51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,
+    3,   62,  63,  64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  4,   74,
+    75,  76,  77,  78,  79,  80,  81,  82,  83,  84,  85,  5,   86,  87,  88,
+    89,  90,  91,  92,  93,  94,  95,  96,  97,  6,   98,  99,  100, 101, 102,
+    103, 104, 105, 106, 107, 108, 109, 7,   110, 111, 112, 113, 114, 115, 116,
+    117, 118, 119, 120, 121, 8,   122, 123, 124, 125, 126, 127, 128, 129, 130,
+    131, 132, 133, 9,   134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
+    145, 10,  146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 11,
+    158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 12,  170, 171,
+    172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 13,  182, 183, 184, 185,
+    186, 187, 188, 189, 190, 191, 192, 193, 14,  194, 195, 196, 197, 198, 199,
+    200, 201, 202, 203, 204, 205, 15,  206, 207, 208, 209, 210, 211, 212, 213,
+    214, 215, 216, 217, 16,  218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
+    228, 229, 17,  230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
+    18,  242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 19,
+  };
+  v--;
+  m--;
+  if ((m << 1) <= MAX_PROB)
+    i = recenter_nonneg(v, m) - 1;
+  else
+    i = recenter_nonneg(MAX_PROB - 1 - v, MAX_PROB - 1 - m) - 1;
+
+  i = map_table[i];
+  return i;
+}
+
+static int prob_diff_update_cost(vpx_prob newp, vpx_prob oldp) {
+  int delp = remap_prob(newp, oldp);
+  return update_bits[delp] << VP9_PROB_COST_SHIFT;
+}
+
+static void encode_uniform(vpx_writer *w, int v) {
+  const int l = 8;
+  const int m = (1 << l) - 191 + CONFIG_MISC_FIXES;
+  if (v < m) {
+    vpx_write_literal(w, v, l - 1);
+  } else {
+    vpx_write_literal(w, m + ((v - m) >> 1), l - 1);
+    vpx_write_literal(w, (v - m) & 1, 1);
+  }
+}
+
+static INLINE int write_bit_gte(vpx_writer *w, int word, int test) {
+  vpx_write_literal(w, word >= test, 1);
+  return word >= test;
+}
+
+static void encode_term_subexp(vpx_writer *w, int word) {
+  if (!write_bit_gte(w, word, 16)) {
+    vpx_write_literal(w, word, 4);
+  } else if (!write_bit_gte(w, word, 32)) {
+    vpx_write_literal(w, word - 16, 4);
+  } else if (!write_bit_gte(w, word, 64)) {
+    vpx_write_literal(w, word - 32, 5);
+  } else {
+    encode_uniform(w, word - 64);
+  }
+}
+
+void vp10_write_prob_diff_update(vpx_writer *w, vpx_prob newp, vpx_prob oldp) {
+  const int delp = remap_prob(newp, oldp);
+  encode_term_subexp(w, delp);
+}
+
+int vp10_prob_diff_update_savings_search(const unsigned int *ct, vpx_prob oldp,
+                                         vpx_prob *bestp, vpx_prob upd) {
+  const int old_b = cost_branch256(ct, oldp);
+  int bestsavings = 0;
+  vpx_prob newp, bestnewp = oldp;
+  const int step = *bestp > oldp ? -1 : 1;
+
+  for (newp = *bestp; newp != oldp; newp += step) {
+    const int new_b = cost_branch256(ct, newp);
+    const int update_b = prob_diff_update_cost(newp, oldp) + vp10_cost_upd256;
+    const int savings = old_b - new_b - update_b;
+    if (savings > bestsavings) {
+      bestsavings = savings;
+      bestnewp = newp;
+    }
+  }
+  *bestp = bestnewp;
+  return bestsavings;
+}
+
+int vp10_prob_diff_update_savings_search_model(const unsigned int *ct,
+                                               const vpx_prob *oldp,
+                                               vpx_prob *bestp, vpx_prob upd,
+                                               int stepsize) {
+  int i, old_b, new_b, update_b, savings, bestsavings, step;
+  int newp;
+  vpx_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
+  vp10_model_to_full_probs(oldp, oldplist);
+  memcpy(newplist, oldp, sizeof(vpx_prob) * UNCONSTRAINED_NODES);
+  for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
+    old_b += cost_branch256(ct + 2 * i, oldplist[i]);
+  old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]);
+
+  bestsavings = 0;
+  bestnewp = oldp[PIVOT_NODE];
+
+  if (*bestp > oldp[PIVOT_NODE]) {
+    step = -stepsize;
+    for (newp = *bestp; newp > oldp[PIVOT_NODE]; newp += step) {
+      if (newp < 1 || newp > 255) continue;
+      newplist[PIVOT_NODE] = newp;
+      vp10_model_to_full_probs(newplist, newplist);
+      for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
+        new_b += cost_branch256(ct + 2 * i, newplist[i]);
+      new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
+      update_b =
+          prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + vp10_cost_upd256;
+      savings = old_b - new_b - update_b;
+      if (savings > bestsavings) {
+        bestsavings = savings;
+        bestnewp = newp;
+      }
+    }
+  } else {
+    step = stepsize;
+    for (newp = *bestp; newp < oldp[PIVOT_NODE]; newp += step) {
+      if (newp < 1 || newp > 255) continue;
+      newplist[PIVOT_NODE] = newp;
+      vp10_model_to_full_probs(newplist, newplist);
+      for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
+        new_b += cost_branch256(ct + 2 * i, newplist[i]);
+      new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
+      update_b =
+          prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + vp10_cost_upd256;
+      savings = old_b - new_b - update_b;
+      if (savings > bestsavings) {
+        bestsavings = savings;
+        bestnewp = newp;
+      }
+    }
+  }
+
+  *bestp = bestnewp;
+  return bestsavings;
+}
+
+void vp10_cond_prob_diff_update(vpx_writer *w, vpx_prob *oldp,
+                                const unsigned int ct[2]) {
+  const vpx_prob upd = DIFF_UPDATE_PROB;
+  vpx_prob newp = get_binary_prob(ct[0], ct[1]);
+  const int savings =
+      vp10_prob_diff_update_savings_search(ct, *oldp, &newp, upd);
+  assert(newp >= 1);
+  if (savings > 0) {
+    vpx_write(w, 1, upd);
+    vp10_write_prob_diff_update(w, newp, *oldp);
+    *oldp = newp;
+  } else {
+    vpx_write(w, 0, upd);
+  }
+}
+
+int vp10_cond_prob_diff_update_savings(vpx_prob *oldp,
+                                       const unsigned int ct[2]) {
+  const vpx_prob upd = DIFF_UPDATE_PROB;
+  vpx_prob newp = get_binary_prob(ct[0], ct[1]);
+  const int savings =
+      vp10_prob_diff_update_savings_search(ct, *oldp, &newp, upd);
+  return savings;
+}
diff --git a/av1/encoder/subexp.h b/av1/encoder/subexp.h
new file mode 100644
index 0000000..bd847cb
--- /dev/null
+++ b/av1/encoder/subexp.h
@@ -0,0 +1,42 @@
+/*
+ *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_SUBEXP_H_
+#define VP10_ENCODER_SUBEXP_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "aom_dsp/prob.h"
+
+struct vpx_writer;
+
+void vp10_write_prob_diff_update(struct vpx_writer *w, vpx_prob newp,
+                                 vpx_prob oldp);
+
+void vp10_cond_prob_diff_update(struct vpx_writer *w, vpx_prob *oldp,
+                                const unsigned int ct[2]);
+
+int vp10_prob_diff_update_savings_search(const unsigned int *ct, vpx_prob oldp,
+                                         vpx_prob *bestp, vpx_prob upd);
+
+int vp10_prob_diff_update_savings_search_model(const unsigned int *ct,
+                                               const vpx_prob *oldp,
+                                               vpx_prob *bestp, vpx_prob upd,
+                                               int stepsize);
+
+int vp10_cond_prob_diff_update_savings(vpx_prob *oldp,
+                                       const unsigned int ct[2]);
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_SUBEXP_H_
diff --git a/av1/encoder/temporal_filter.c b/av1/encoder/temporal_filter.c
new file mode 100644
index 0000000..c13a1a8
--- /dev/null
+++ b/av1/encoder/temporal_filter.c
@@ -0,0 +1,597 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <limits.h>
+
+#include "av1/common/alloccommon.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/odintrin.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/quantize.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/temporal_filter.h"
+#include "aom_dsp/vpx_dsp_common.h"
+#include "aom_mem/vpx_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/vpx_timer.h"
+#include "aom_scale/vpx_scale.h"
+
+static void temporal_filter_predictors_mb_c(
+    MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr,
+    int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col,
+    uint8_t *pred, struct scale_factors *scale, int x, int y) {
+  const int which_mv = 0;
+  const MV mv = { mv_row, mv_col };
+  const InterpKernel *const kernel =
+      vp10_filter_kernels[xd->mi[0]->mbmi.interp_filter];
+
+  enum mv_precision mv_precision_uv;
+  int uv_stride;
+  if (uv_block_width == 8) {
+    uv_stride = (stride + 1) >> 1;
+    mv_precision_uv = MV_PRECISION_Q4;
+  } else {
+    uv_stride = stride;
+    mv_precision_uv = MV_PRECISION_Q3;
+  }
+
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    vp10_highbd_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv,
+                                      scale, 16, 16, which_mv, kernel,
+                                      MV_PRECISION_Q3, x, y, xd->bd);
+
+    vp10_highbd_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256],
+                                      uv_block_width, &mv, scale,
+                                      uv_block_width, uv_block_height, which_mv,
+                                      kernel, mv_precision_uv, x, y, xd->bd);
+
+    vp10_highbd_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512],
+                                      uv_block_width, &mv, scale,
+                                      uv_block_width, uv_block_height, which_mv,
+                                      kernel, mv_precision_uv, x, y, xd->bd);
+    return;
+  }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  vp10_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16,
+                             which_mv, kernel, MV_PRECISION_Q3, x, y);
+
+  vp10_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256], uv_block_width,
+                             &mv, scale, uv_block_width, uv_block_height,
+                             which_mv, kernel, mv_precision_uv, x, y);
+
+  vp10_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512], uv_block_width,
+                             &mv, scale, uv_block_width, uv_block_height,
+                             which_mv, kernel, mv_precision_uv, x, y);
+}
+
+void vp10_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride,
+                                  uint8_t *frame2, unsigned int block_width,
+                                  unsigned int block_height, int strength,
+                                  int filter_weight, unsigned int *accumulator,
+                                  uint16_t *count) {
+  unsigned int i, j, k;
+  int modifier;
+  int byte = 0;
+  const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+  for (i = 0, k = 0; i < block_height; i++) {
+    for (j = 0; j < block_width; j++, k++) {
+      int src_byte = frame1[byte];
+      int pixel_value = *frame2++;
+
+      modifier = src_byte - pixel_value;
+      // This is an integer approximation of:
+      // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
+      // modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
+      modifier *= modifier;
+      modifier *= 3;
+      modifier += rounding;
+      modifier >>= strength;
+
+      if (modifier > 16) modifier = 16;
+
+      modifier = 16 - modifier;
+      modifier *= filter_weight;
+
+      count[k] += modifier;
+      accumulator[k] += modifier * pixel_value;
+
+      byte++;
+    }
+
+    byte += stride - block_width;
+  }
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+void vp10_highbd_temporal_filter_apply_c(
+    uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8,
+    unsigned int block_width, unsigned int block_height, int strength,
+    int filter_weight, unsigned int *accumulator, uint16_t *count) {
+  uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
+  uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
+  unsigned int i, j, k;
+  int modifier;
+  int byte = 0;
+  const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+  for (i = 0, k = 0; i < block_height; i++) {
+    for (j = 0; j < block_width; j++, k++) {
+      int src_byte = frame1[byte];
+      int pixel_value = *frame2++;
+
+      modifier = src_byte - pixel_value;
+      // This is an integer approximation of:
+      // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
+      // modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
+      modifier *= modifier;
+      modifier *= 3;
+      modifier += rounding;
+      modifier >>= strength;
+
+      if (modifier > 16) modifier = 16;
+
+      modifier = 16 - modifier;
+      modifier *= filter_weight;
+
+      count[k] += modifier;
+      accumulator[k] += modifier * pixel_value;
+
+      byte++;
+    }
+
+    byte += stride - block_width;
+  }
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static int temporal_filter_find_matching_mb_c(VP10_COMP *cpi,
+                                              uint8_t *arf_frame_buf,
+                                              uint8_t *frame_ptr_buf,
+                                              int stride) {
+  MACROBLOCK *const x = &cpi->td.mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
+  int step_param;
+  int sadpb = x->sadperbit16;
+  int bestsme = INT_MAX;
+  int distortion;
+  unsigned int sse;
+  int cost_list[5];
+
+  MV best_ref_mv1 = { 0, 0 };
+  MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
+  MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
+
+  // Save input state
+  struct buf_2d src = x->plane[0].src;
+  struct buf_2d pre = xd->plane[0].pre[0];
+
+  best_ref_mv1_full.col = best_ref_mv1.col >> 3;
+  best_ref_mv1_full.row = best_ref_mv1.row >> 3;
+
+  // Setup frame pointers
+  x->plane[0].src.buf = arf_frame_buf;
+  x->plane[0].src.stride = stride;
+  xd->plane[0].pre[0].buf = frame_ptr_buf;
+  xd->plane[0].pre[0].stride = stride;
+
+  step_param = mv_sf->reduce_first_step_size;
+  step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+  // Ignore mv costing by sending NULL pointer instead of cost arrays
+  vp10_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
+                  cond_cost_list(cpi, cost_list), &cpi->fn_ptr[BLOCK_16X16], 0,
+                  &best_ref_mv1, ref_mv);
+
+  // Ignore mv costing by sending NULL pointer instead of cost array
+  bestsme = cpi->find_fractional_mv_step(
+      x, ref_mv, &best_ref_mv1, cpi->common.allow_high_precision_mv,
+      x->errorperbit, &cpi->fn_ptr[BLOCK_16X16], 0,
+      mv_sf->subpel_iters_per_step, cond_cost_list(cpi, cost_list), NULL, NULL,
+      &distortion, &sse, NULL, 0, 0);
+
+  // Restore input state
+  x->plane[0].src = src;
+  xd->plane[0].pre[0] = pre;
+
+  return bestsme;
+}
+
+static void temporal_filter_iterate_c(VP10_COMP *cpi,
+                                      YV12_BUFFER_CONFIG **frames,
+                                      int frame_count, int alt_ref_index,
+                                      int strength,
+                                      struct scale_factors *scale) {
+  int byte;
+  int frame;
+  int mb_col, mb_row;
+  unsigned int filter_weight;
+  int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
+  int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
+  int mb_y_offset = 0;
+  int mb_uv_offset = 0;
+  DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
+  DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
+  MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
+  YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
+  uint8_t *dst1, *dst2;
+#if CONFIG_VPX_HIGHBITDEPTH
+  DECLARE_ALIGNED(16, uint16_t, predictor16[16 * 16 * 3]);
+  DECLARE_ALIGNED(16, uint8_t, predictor8[16 * 16 * 3]);
+  uint8_t *predictor;
+#else
+  DECLARE_ALIGNED(16, uint8_t, predictor[16 * 16 * 3]);
+#endif
+  const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
+  const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x;
+
+  // Save input state
+  uint8_t *input_buffer[MAX_MB_PLANE];
+  int i;
+#if CONFIG_VPX_HIGHBITDEPTH
+  if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+    predictor = CONVERT_TO_BYTEPTR(predictor16);
+  } else {
+    predictor = predictor8;
+  }
+#endif
+
+  for (i = 0; i < MAX_MB_PLANE; i++) input_buffer[i] = mbd->plane[i].pre[0].buf;
+
+  for (mb_row = 0; mb_row < mb_rows; mb_row++) {
+    // Source frames are extended to 16 pixels. This is different than
+    //  L/A/G reference frames that have a border of 32 (VPXENCBORDERINPIXELS)
+    // A 6/8 tap filter is used for motion search.  This requires 2 pixels
+    //  before and 3 pixels after.  So the largest Y mv on a border would
+    //  then be 16 - VPX_INTERP_EXTEND. The UV blocks are half the size of the
+    //  Y and therefore only extended by 8.  The largest mv that a UV block
+    //  can support is 8 - VPX_INTERP_EXTEND.  A UV mv is half of a Y mv.
+    //  (16 - VPX_INTERP_EXTEND) >> 1 which is greater than
+    //  8 - VPX_INTERP_EXTEND.
+    // To keep the mv in play for both Y and UV planes the max that it
+    //  can be on a border is therefore 16 - (2*VPX_INTERP_EXTEND+1).
+    cpi->td.mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VPX_INTERP_EXTEND));
+    cpi->td.mb.mv_row_max =
+        ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * VPX_INTERP_EXTEND);
+
+    for (mb_col = 0; mb_col < mb_cols; mb_col++) {
+      int i, j, k;
+      int stride;
+
+      memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
+      memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
+
+      cpi->td.mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VPX_INTERP_EXTEND));
+      cpi->td.mb.mv_col_max =
+          ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * VPX_INTERP_EXTEND);
+
+      for (frame = 0; frame < frame_count; frame++) {
+        const int thresh_low = 10000;
+        const int thresh_high = 20000;
+
+        if (frames[frame] == NULL) continue;
+
+        mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
+        mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
+
+        if (frame == alt_ref_index) {
+          filter_weight = 2;
+        } else {
+          // Find best match in this frame by MC
+          int err = temporal_filter_find_matching_mb_c(
+              cpi, frames[alt_ref_index]->y_buffer + mb_y_offset,
+              frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride);
+
+          // Assign higher weight to matching MB if it's error
+          // score is lower. If not applying MC default behavior
+          // is to weight all MBs equal.
+          filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
+        }
+
+        if (filter_weight != 0) {
+          // Construct the predictors
+          temporal_filter_predictors_mb_c(
+              mbd, frames[frame]->y_buffer + mb_y_offset,
+              frames[frame]->u_buffer + mb_uv_offset,
+              frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
+              mb_uv_width, mb_uv_height, mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
+              mbd->mi[0]->bmi[0].as_mv[0].as_mv.col, predictor, scale,
+              mb_col * 16, mb_row * 16);
+
+#if CONFIG_VPX_HIGHBITDEPTH
+          if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+            int adj_strength = strength + 2 * (mbd->bd - 8);
+            // Apply the filter (YUV)
+            vp10_highbd_temporal_filter_apply(
+                f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16,
+                adj_strength, filter_weight, accumulator, count);
+            vp10_highbd_temporal_filter_apply(
+                f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
+                mb_uv_width, mb_uv_height, adj_strength, filter_weight,
+                accumulator + 256, count + 256);
+            vp10_highbd_temporal_filter_apply(
+                f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
+                mb_uv_width, mb_uv_height, adj_strength, filter_weight,
+                accumulator + 512, count + 512);
+          } else {
+            // Apply the filter (YUV)
+            vp10_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
+                                       predictor, 16, 16, strength,
+                                       filter_weight, accumulator, count);
+            vp10_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
+                                       predictor + 256, mb_uv_width,
+                                       mb_uv_height, strength, filter_weight,
+                                       accumulator + 256, count + 256);
+            vp10_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
+                                       predictor + 512, mb_uv_width,
+                                       mb_uv_height, strength, filter_weight,
+                                       accumulator + 512, count + 512);
+          }
+#else
+          // Apply the filter (YUV)
+          vp10_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
+                                     predictor, 16, 16, strength, filter_weight,
+                                     accumulator, count);
+          vp10_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
+                                     predictor + 256, mb_uv_width, mb_uv_height,
+                                     strength, filter_weight, accumulator + 256,
+                                     count + 256);
+          vp10_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
+                                     predictor + 512, mb_uv_width, mb_uv_height,
+                                     strength, filter_weight, accumulator + 512,
+                                     count + 512);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+        }
+      }
+
+#if CONFIG_VPX_HIGHBITDEPTH
+      if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+        uint16_t *dst1_16;
+        uint16_t *dst2_16;
+        // Normalize filter output to produce AltRef frame
+        dst1 = cpi->alt_ref_buffer.y_buffer;
+        dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+        stride = cpi->alt_ref_buffer.y_stride;
+        byte = mb_y_offset;
+        for (i = 0, k = 0; i < 16; i++) {
+          for (j = 0; j < 16; j++, k++) {
+            dst1_16[byte] =
+                (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+            // move to next pixel
+            byte++;
+          }
+
+          byte += stride - 16;
+        }
+
+        dst1 = cpi->alt_ref_buffer.u_buffer;
+        dst2 = cpi->alt_ref_buffer.v_buffer;
+        dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+        dst2_16 = CONVERT_TO_SHORTPTR(dst2);
+        stride = cpi->alt_ref_buffer.uv_stride;
+        byte = mb_uv_offset;
+        for (i = 0, k = 256; i < mb_uv_height; i++) {
+          for (j = 0; j < mb_uv_width; j++, k++) {
+            int m = k + 256;
+
+            // U
+            dst1_16[byte] =
+                (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+            // V
+            dst2_16[byte] =
+                (uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
+
+            // move to next pixel
+            byte++;
+          }
+
+          byte += stride - mb_uv_width;
+        }
+      } else {
+        // Normalize filter output to produce AltRef frame
+        dst1 = cpi->alt_ref_buffer.y_buffer;
+        stride = cpi->alt_ref_buffer.y_stride;
+        byte = mb_y_offset;
+        for (i = 0, k = 0; i < 16; i++) {
+          for (j = 0; j < 16; j++, k++) {
+            dst1[byte] =
+                (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+            // move to next pixel
+            byte++;
+          }
+          byte += stride - 16;
+        }
+
+        dst1 = cpi->alt_ref_buffer.u_buffer;
+        dst2 = cpi->alt_ref_buffer.v_buffer;
+        stride = cpi->alt_ref_buffer.uv_stride;
+        byte = mb_uv_offset;
+        for (i = 0, k = 256; i < mb_uv_height; i++) {
+          for (j = 0; j < mb_uv_width; j++, k++) {
+            int m = k + 256;
+
+            // U
+            dst1[byte] =
+                (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+            // V
+            dst2[byte] =
+                (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
+
+            // move to next pixel
+            byte++;
+          }
+          byte += stride - mb_uv_width;
+        }
+      }
+#else
+      // Normalize filter output to produce AltRef frame
+      dst1 = cpi->alt_ref_buffer.y_buffer;
+      stride = cpi->alt_ref_buffer.y_stride;
+      byte = mb_y_offset;
+      for (i = 0, k = 0; i < 16; i++) {
+        for (j = 0; j < 16; j++, k++) {
+          dst1[byte] =
+              (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+          // move to next pixel
+          byte++;
+        }
+        byte += stride - 16;
+      }
+
+      dst1 = cpi->alt_ref_buffer.u_buffer;
+      dst2 = cpi->alt_ref_buffer.v_buffer;
+      stride = cpi->alt_ref_buffer.uv_stride;
+      byte = mb_uv_offset;
+      for (i = 0, k = 256; i < mb_uv_height; i++) {
+        for (j = 0; j < mb_uv_width; j++, k++) {
+          int m = k + 256;
+
+          // U
+          dst1[byte] =
+              (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
+
+          // V
+          dst2[byte] =
+              (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
+
+          // move to next pixel
+          byte++;
+        }
+        byte += stride - mb_uv_width;
+      }
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+      mb_y_offset += 16;
+      mb_uv_offset += mb_uv_width;
+    }
+    mb_y_offset += 16 * (f->y_stride - mb_cols);
+    mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
+  }
+
+  // Restore input state
+  for (i = 0; i < MAX_MB_PLANE; i++) mbd->plane[i].pre[0].buf = input_buffer[i];
+}
+
+// Apply buffer limits and context specific adjustments to arnr filter.
+static void adjust_arnr_filter(VP10_COMP *cpi, int distance, int group_boost,
+                               int *arnr_frames, int *arnr_strength) {
+  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
+  const int frames_after_arf =
+      vp10_lookahead_depth(cpi->lookahead) - distance - 1;
+  int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
+  int frames_bwd;
+  int q, frames, strength;
+
+  // Define the forward and backwards filter limits for this arnr group.
+  if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
+  if (frames_fwd > distance) frames_fwd = distance;
+
+  frames_bwd = frames_fwd;
+
+  // For even length filter there is one more frame backward
+  // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
+  if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;
+
+  // Set the baseline active filter size.
+  frames = frames_bwd + 1 + frames_fwd;
+
+  // Adjust the strength based on active max q.
+  if (cpi->common.current_video_frame > 1)
+    q = ((int)vp10_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
+                                       cpi->common.bit_depth));
+  else
+    q = ((int)vp10_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME],
+                                       cpi->common.bit_depth));
+  if (q > 16) {
+    strength = oxcf->arnr_strength;
+  } else {
+    strength = oxcf->arnr_strength - ((16 - q) / 2);
+    if (strength < 0) strength = 0;
+  }
+
+  // Adjust number of frames in filter and strength based on gf boost level.
+  if (frames > group_boost / 150) {
+    frames = group_boost / 150;
+    frames += !(frames & 1);
+  }
+
+  if (strength > group_boost / 300) {
+    strength = group_boost / 300;
+  }
+
+  // Adjustments for second level arf in multi arf case.
+  if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) {
+    const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+    if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) {
+      strength >>= 1;
+    }
+  }
+
+  *arnr_frames = frames;
+  *arnr_strength = strength;
+}
+
+void vp10_temporal_filter(VP10_COMP *cpi, int distance) {
+  RATE_CONTROL *const rc = &cpi->rc;
+  int frame;
+  int frames_to_blur;
+  int start_frame;
+  int strength;
+  int frames_to_blur_backward;
+  int frames_to_blur_forward;
+  struct scale_factors sf;
+  YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
+
+  // Apply context specific adjustments to the arnr filter parameters.
+  adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength);
+  frames_to_blur_backward = (frames_to_blur / 2);
+  frames_to_blur_forward = ((frames_to_blur - 1) / 2);
+  start_frame = distance + frames_to_blur_forward;
+
+  // Setup frame pointers, NULL indicates frame not included in filter.
+  for (frame = 0; frame < frames_to_blur; ++frame) {
+    const int which_buffer = start_frame - frame;
+    struct lookahead_entry *buf =
+        vp10_lookahead_peek(cpi->lookahead, which_buffer);
+    frames[frames_to_blur - 1 - frame] = &buf->img;
+  }
+
+  if (frames_to_blur > 0) {
+// Setup scaling factors. Scaling on each of the arnr frames is not
+// supported.
+// ARF is produced at the native frame size and resized when coded.
+#if CONFIG_VPX_HIGHBITDEPTH
+    vp10_setup_scale_factors_for_frame(
+        &sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
+        frames[0]->y_crop_width, frames[0]->y_crop_height,
+        cpi->common.use_highbitdepth);
+#else
+    vp10_setup_scale_factors_for_frame(
+        &sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
+        frames[0]->y_crop_width, frames[0]->y_crop_height);
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+  }
+
+  temporal_filter_iterate_c(cpi, frames, frames_to_blur,
+                            frames_to_blur_backward, strength, &sf);
+}
diff --git a/av1/encoder/temporal_filter.h b/av1/encoder/temporal_filter.h
new file mode 100644
index 0000000..ce5291a
--- /dev/null
+++ b/av1/encoder/temporal_filter.h
@@ -0,0 +1,24 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_TEMPORAL_FILTER_H_
+#define VP10_ENCODER_TEMPORAL_FILTER_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_temporal_filter(VP10_COMP *cpi, int distance);
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_TEMPORAL_FILTER_H_
diff --git a/av1/encoder/tokenize.c b/av1/encoder/tokenize.c
new file mode 100644
index 0000000..1b5262b
--- /dev/null
+++ b/av1/encoder/tokenize.c
@@ -0,0 +1,530 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "aom_mem/vpx_mem.h"
+
+#include "av1/common/entropy.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/scan.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/tokenize.h"
+
+static const TOKENVALUE dct_cat_lt_10_value_tokens[] = {
+  { 9, 63 }, { 9, 61 }, { 9, 59 }, { 9, 57 }, { 9, 55 }, { 9, 53 }, { 9, 51 },
+  { 9, 49 }, { 9, 47 }, { 9, 45 }, { 9, 43 }, { 9, 41 }, { 9, 39 }, { 9, 37 },
+  { 9, 35 }, { 9, 33 }, { 9, 31 }, { 9, 29 }, { 9, 27 }, { 9, 25 }, { 9, 23 },
+  { 9, 21 }, { 9, 19 }, { 9, 17 }, { 9, 15 }, { 9, 13 }, { 9, 11 }, { 9, 9 },
+  { 9, 7 },  { 9, 5 },  { 9, 3 },  { 9, 1 },  { 8, 31 }, { 8, 29 }, { 8, 27 },
+  { 8, 25 }, { 8, 23 }, { 8, 21 }, { 8, 19 }, { 8, 17 }, { 8, 15 }, { 8, 13 },
+  { 8, 11 }, { 8, 9 },  { 8, 7 },  { 8, 5 },  { 8, 3 },  { 8, 1 },  { 7, 15 },
+  { 7, 13 }, { 7, 11 }, { 7, 9 },  { 7, 7 },  { 7, 5 },  { 7, 3 },  { 7, 1 },
+  { 6, 7 },  { 6, 5 },  { 6, 3 },  { 6, 1 },  { 5, 3 },  { 5, 1 },  { 4, 1 },
+  { 3, 1 },  { 2, 1 },  { 1, 1 },  { 0, 0 },  { 1, 0 },  { 2, 0 },  { 3, 0 },
+  { 4, 0 },  { 5, 0 },  { 5, 2 },  { 6, 0 },  { 6, 2 },  { 6, 4 },  { 6, 6 },
+  { 7, 0 },  { 7, 2 },  { 7, 4 },  { 7, 6 },  { 7, 8 },  { 7, 10 }, { 7, 12 },
+  { 7, 14 }, { 8, 0 },  { 8, 2 },  { 8, 4 },  { 8, 6 },  { 8, 8 },  { 8, 10 },
+  { 8, 12 }, { 8, 14 }, { 8, 16 }, { 8, 18 }, { 8, 20 }, { 8, 22 }, { 8, 24 },
+  { 8, 26 }, { 8, 28 }, { 8, 30 }, { 9, 0 },  { 9, 2 },  { 9, 4 },  { 9, 6 },
+  { 9, 8 },  { 9, 10 }, { 9, 12 }, { 9, 14 }, { 9, 16 }, { 9, 18 }, { 9, 20 },
+  { 9, 22 }, { 9, 24 }, { 9, 26 }, { 9, 28 }, { 9, 30 }, { 9, 32 }, { 9, 34 },
+  { 9, 36 }, { 9, 38 }, { 9, 40 }, { 9, 42 }, { 9, 44 }, { 9, 46 }, { 9, 48 },
+  { 9, 50 }, { 9, 52 }, { 9, 54 }, { 9, 56 }, { 9, 58 }, { 9, 60 }, { 9, 62 }
+};
+const TOKENVALUE *vp10_dct_cat_lt_10_value_tokens =
+    dct_cat_lt_10_value_tokens +
+    (sizeof(dct_cat_lt_10_value_tokens) / sizeof(*dct_cat_lt_10_value_tokens)) /
+        2;
+
+// Array indices are identical to previously-existing CONTEXT_NODE indices
+const vpx_tree_index vp10_coef_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
+  -EOB_TOKEN,
+  2,  // 0  = EOB
+  -ZERO_TOKEN,
+  4,  // 1  = ZERO
+  -ONE_TOKEN,
+  6,  // 2  = ONE
+  8,
+  12,  // 3  = LOW_VAL
+  -TWO_TOKEN,
+  10,  // 4  = TWO
+  -THREE_TOKEN,
+  -FOUR_TOKEN,  // 5  = THREE
+  14,
+  16,  // 6  = HIGH_LOW
+  -CATEGORY1_TOKEN,
+  -CATEGORY2_TOKEN,  // 7  = CAT_ONE
+  18,
+  20,  // 8  = CAT_THREEFOUR
+  -CATEGORY3_TOKEN,
+  -CATEGORY4_TOKEN,  // 9  = CAT_THREE
+  -CATEGORY5_TOKEN,
+  -CATEGORY6_TOKEN  // 10 = CAT_FIVE
+};
+
+static const vpx_tree_index cat1[2] = { 0, 0 };
+static const vpx_tree_index cat2[4] = { 2, 2, 0, 0 };
+static const vpx_tree_index cat3[6] = { 2, 2, 4, 4, 0, 0 };
+static const vpx_tree_index cat4[8] = { 2, 2, 4, 4, 6, 6, 0, 0 };
+static const vpx_tree_index cat5[10] = { 2, 2, 4, 4, 6, 6, 8, 8, 0, 0 };
+static const vpx_tree_index cat6[28] = { 2,  2,  4,  4,  6,  6,  8,  8,  10, 10,
+                                         12, 12, 14, 14, 16, 16, 18, 18, 20, 20,
+                                         22, 22, 24, 24, 26, 26, 0,  0 };
+
+static const int16_t zero_cost[] = { 0 };
+static const int16_t sign_cost[1] = { 512 };
+static const int16_t cat1_cost[1 << 1] = { 864, 1229 };
+static const int16_t cat2_cost[1 << 2] = { 1256, 1453, 1696, 1893 };
+static const int16_t cat3_cost[1 << 3] = { 1652, 1791, 1884, 2023,
+                                           2195, 2334, 2427, 2566 };
+static const int16_t cat4_cost[1 << 4] = { 2079, 2160, 2218, 2299, 2395, 2476,
+                                           2534, 2615, 2661, 2742, 2800, 2881,
+                                           2977, 3058, 3116, 3197 };
+static const int16_t cat5_cost[1 << 5] = {
+  2553, 2576, 2622, 2645, 2703, 2726, 2772, 2795, 2894, 2917, 2963,
+  2986, 3044, 3067, 3113, 3136, 3190, 3213, 3259, 3282, 3340, 3363,
+  3409, 3432, 3531, 3554, 3600, 3623, 3681, 3704, 3750, 3773
+};
+const int16_t vp10_cat6_low_cost[256] = {
+  3378, 3390, 3401, 3413, 3435, 3447, 3458, 3470, 3517, 3529, 3540, 3552, 3574,
+  3586, 3597, 3609, 3671, 3683, 3694, 3706, 3728, 3740, 3751, 3763, 3810, 3822,
+  3833, 3845, 3867, 3879, 3890, 3902, 3973, 3985, 3996, 4008, 4030, 4042, 4053,
+  4065, 4112, 4124, 4135, 4147, 4169, 4181, 4192, 4204, 4266, 4278, 4289, 4301,
+  4323, 4335, 4346, 4358, 4405, 4417, 4428, 4440, 4462, 4474, 4485, 4497, 4253,
+  4265, 4276, 4288, 4310, 4322, 4333, 4345, 4392, 4404, 4415, 4427, 4449, 4461,
+  4472, 4484, 4546, 4558, 4569, 4581, 4603, 4615, 4626, 4638, 4685, 4697, 4708,
+  4720, 4742, 4754, 4765, 4777, 4848, 4860, 4871, 4883, 4905, 4917, 4928, 4940,
+  4987, 4999, 5010, 5022, 5044, 5056, 5067, 5079, 5141, 5153, 5164, 5176, 5198,
+  5210, 5221, 5233, 5280, 5292, 5303, 5315, 5337, 5349, 5360, 5372, 4988, 5000,
+  5011, 5023, 5045, 5057, 5068, 5080, 5127, 5139, 5150, 5162, 5184, 5196, 5207,
+  5219, 5281, 5293, 5304, 5316, 5338, 5350, 5361, 5373, 5420, 5432, 5443, 5455,
+  5477, 5489, 5500, 5512, 5583, 5595, 5606, 5618, 5640, 5652, 5663, 5675, 5722,
+  5734, 5745, 5757, 5779, 5791, 5802, 5814, 5876, 5888, 5899, 5911, 5933, 5945,
+  5956, 5968, 6015, 6027, 6038, 6050, 6072, 6084, 6095, 6107, 5863, 5875, 5886,
+  5898, 5920, 5932, 5943, 5955, 6002, 6014, 6025, 6037, 6059, 6071, 6082, 6094,
+  6156, 6168, 6179, 6191, 6213, 6225, 6236, 6248, 6295, 6307, 6318, 6330, 6352,
+  6364, 6375, 6387, 6458, 6470, 6481, 6493, 6515, 6527, 6538, 6550, 6597, 6609,
+  6620, 6632, 6654, 6666, 6677, 6689, 6751, 6763, 6774, 6786, 6808, 6820, 6831,
+  6843, 6890, 6902, 6913, 6925, 6947, 6959, 6970, 6982
+};
+const int vp10_cat6_high_cost[64] = {
+  88,    2251,  2727,  4890,  3148,  5311,  5787,  7950,  3666,  5829,  6305,
+  8468,  6726,  8889,  9365,  11528, 3666,  5829,  6305,  8468,  6726,  8889,
+  9365,  11528, 7244,  9407,  9883,  12046, 10304, 12467, 12943, 15106, 3666,
+  5829,  6305,  8468,  6726,  8889,  9365,  11528, 7244,  9407,  9883,  12046,
+  10304, 12467, 12943, 15106, 7244,  9407,  9883,  12046, 10304, 12467, 12943,
+  15106, 10822, 12985, 13461, 15624, 13882, 16045, 16521, 18684
+};
+
+#if CONFIG_VPX_HIGHBITDEPTH
+const int vp10_cat6_high10_high_cost[256] = {
+  94,    2257,  2733,  4896,  3154,  5317,  5793,  7956,  3672,  5835,  6311,
+  8474,  6732,  8895,  9371,  11534, 3672,  5835,  6311,  8474,  6732,  8895,
+  9371,  11534, 7250,  9413,  9889,  12052, 10310, 12473, 12949, 15112, 3672,
+  5835,  6311,  8474,  6732,  8895,  9371,  11534, 7250,  9413,  9889,  12052,
+  10310, 12473, 12949, 15112, 7250,  9413,  9889,  12052, 10310, 12473, 12949,
+  15112, 10828, 12991, 13467, 15630, 13888, 16051, 16527, 18690, 4187,  6350,
+  6826,  8989,  7247,  9410,  9886,  12049, 7765,  9928,  10404, 12567, 10825,
+  12988, 13464, 15627, 7765,  9928,  10404, 12567, 10825, 12988, 13464, 15627,
+  11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 7765,  9928,  10404,
+  12567, 10825, 12988, 13464, 15627, 11343, 13506, 13982, 16145, 14403, 16566,
+  17042, 19205, 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 14921,
+  17084, 17560, 19723, 17981, 20144, 20620, 22783, 4187,  6350,  6826,  8989,
+  7247,  9410,  9886,  12049, 7765,  9928,  10404, 12567, 10825, 12988, 13464,
+  15627, 7765,  9928,  10404, 12567, 10825, 12988, 13464, 15627, 11343, 13506,
+  13982, 16145, 14403, 16566, 17042, 19205, 7765,  9928,  10404, 12567, 10825,
+  12988, 13464, 15627, 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205,
+  11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 14921, 17084, 17560,
+  19723, 17981, 20144, 20620, 22783, 8280,  10443, 10919, 13082, 11340, 13503,
+  13979, 16142, 11858, 14021, 14497, 16660, 14918, 17081, 17557, 19720, 11858,
+  14021, 14497, 16660, 14918, 17081, 17557, 19720, 15436, 17599, 18075, 20238,
+  18496, 20659, 21135, 23298, 11858, 14021, 14497, 16660, 14918, 17081, 17557,
+  19720, 15436, 17599, 18075, 20238, 18496, 20659, 21135, 23298, 15436, 17599,
+  18075, 20238, 18496, 20659, 21135, 23298, 19014, 21177, 21653, 23816, 22074,
+  24237, 24713, 26876
+};
+const int vp10_cat6_high12_high_cost[1024] = {
+  100,   2263,  2739,  4902,  3160,  5323,  5799,  7962,  3678,  5841,  6317,
+  8480,  6738,  8901,  9377,  11540, 3678,  5841,  6317,  8480,  6738,  8901,
+  9377,  11540, 7256,  9419,  9895,  12058, 10316, 12479, 12955, 15118, 3678,
+  5841,  6317,  8480,  6738,  8901,  9377,  11540, 7256,  9419,  9895,  12058,
+  10316, 12479, 12955, 15118, 7256,  9419,  9895,  12058, 10316, 12479, 12955,
+  15118, 10834, 12997, 13473, 15636, 13894, 16057, 16533, 18696, 4193,  6356,
+  6832,  8995,  7253,  9416,  9892,  12055, 7771,  9934,  10410, 12573, 10831,
+  12994, 13470, 15633, 7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633,
+  11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 7771,  9934,  10410,
+  12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572,
+  17048, 19211, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927,
+  17090, 17566, 19729, 17987, 20150, 20626, 22789, 4193,  6356,  6832,  8995,
+  7253,  9416,  9892,  12055, 7771,  9934,  10410, 12573, 10831, 12994, 13470,
+  15633, 7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633, 11349, 13512,
+  13988, 16151, 14409, 16572, 17048, 19211, 7771,  9934,  10410, 12573, 10831,
+  12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211,
+  11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927, 17090, 17566,
+  19729, 17987, 20150, 20626, 22789, 8286,  10449, 10925, 13088, 11346, 13509,
+  13985, 16148, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864,
+  14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244,
+  18502, 20665, 21141, 23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563,
+  19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605,
+  18081, 20244, 18502, 20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080,
+  24243, 24719, 26882, 4193,  6356,  6832,  8995,  7253,  9416,  9892,  12055,
+  7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633, 7771,  9934,  10410,
+  12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572,
+  17048, 19211, 7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633, 11349,
+  13512, 13988, 16151, 14409, 16572, 17048, 19211, 11349, 13512, 13988, 16151,
+  14409, 16572, 17048, 19211, 14927, 17090, 17566, 19729, 17987, 20150, 20626,
+  22789, 8286,  10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027,
+  14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924,
+  17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304,
+  11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081,
+  20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665,
+  21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882, 8286,
+  10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027, 14503, 16666,
+  14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924, 17087, 17563,
+  19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 11864, 14027,
+  14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502,
+  20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304,
+  19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882, 12379, 14542, 15018,
+  17181, 15439, 17602, 18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180,
+  21656, 23819, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535,
+  21698, 22174, 24337, 22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759,
+  19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234,
+  27397, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276,
+  25752, 27915, 26173, 28336, 28812, 30975, 4193,  6356,  6832,  8995,  7253,
+  9416,  9892,  12055, 7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633,
+  7771,  9934,  10410, 12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988,
+  16151, 14409, 16572, 17048, 19211, 7771,  9934,  10410, 12573, 10831, 12994,
+  13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 11349,
+  13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927, 17090, 17566, 19729,
+  17987, 20150, 20626, 22789, 8286,  10449, 10925, 13088, 11346, 13509, 13985,
+  16148, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027,
+  14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502,
+  20665, 21141, 23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726,
+  15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081,
+  20244, 18502, 20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243,
+  24719, 26882, 8286,  10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864,
+  14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666,
+  14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141,
+  23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605,
+  18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502,
+  20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882,
+  12379, 14542, 15018, 17181, 15439, 17602, 18078, 20241, 15957, 18120, 18596,
+  20759, 19017, 21180, 21656, 23819, 15957, 18120, 18596, 20759, 19017, 21180,
+  21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 15957,
+  18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337,
+  22595, 24758, 25234, 27397, 19535, 21698, 22174, 24337, 22595, 24758, 25234,
+  27397, 23113, 25276, 25752, 27915, 26173, 28336, 28812, 30975, 8286,  10449,
+  10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027, 14503, 16666, 14924,
+  17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726,
+  15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 11864, 14027, 14503,
+  16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665,
+  21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 19020,
+  21183, 21659, 23822, 22080, 24243, 24719, 26882, 12379, 14542, 15018, 17181,
+  15439, 17602, 18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180, 21656,
+  23819, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698,
+  22174, 24337, 22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759, 19017,
+  21180, 21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397,
+  19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276, 25752,
+  27915, 26173, 28336, 28812, 30975, 12379, 14542, 15018, 17181, 15439, 17602,
+  18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 15957,
+  18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337,
+  22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759, 19017, 21180, 21656,
+  23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 19535, 21698,
+  22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276, 25752, 27915, 26173,
+  28336, 28812, 30975, 16472, 18635, 19111, 21274, 19532, 21695, 22171, 24334,
+  20050, 22213, 22689, 24852, 23110, 25273, 25749, 27912, 20050, 22213, 22689,
+  24852, 23110, 25273, 25749, 27912, 23628, 25791, 26267, 28430, 26688, 28851,
+  29327, 31490, 20050, 22213, 22689, 24852, 23110, 25273, 25749, 27912, 23628,
+  25791, 26267, 28430, 26688, 28851, 29327, 31490, 23628, 25791, 26267, 28430,
+  26688, 28851, 29327, 31490, 27206, 29369, 29845, 32008, 30266, 32429, 32905,
+  35068
+};
+#endif
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static const vpx_tree_index cat1_high10[2] = { 0, 0 };
+static const vpx_tree_index cat2_high10[4] = { 2, 2, 0, 0 };
+static const vpx_tree_index cat3_high10[6] = { 2, 2, 4, 4, 0, 0 };
+static const vpx_tree_index cat4_high10[8] = { 2, 2, 4, 4, 6, 6, 0, 0 };
+static const vpx_tree_index cat5_high10[10] = { 2, 2, 4, 4, 6, 6, 8, 8, 0, 0 };
+static const vpx_tree_index cat6_high10[32] = { 2,  2,  4,  4,  6,  6,  8,  8,
+                                                10, 10, 12, 12, 14, 14, 16, 16,
+                                                18, 18, 20, 20, 22, 22, 24, 24,
+                                                26, 26, 28, 28, 30, 30, 0,  0 };
+static const vpx_tree_index cat1_high12[2] = { 0, 0 };
+static const vpx_tree_index cat2_high12[4] = { 2, 2, 0, 0 };
+static const vpx_tree_index cat3_high12[6] = { 2, 2, 4, 4, 0, 0 };
+static const vpx_tree_index cat4_high12[8] = { 2, 2, 4, 4, 6, 6, 0, 0 };
+static const vpx_tree_index cat5_high12[10] = { 2, 2, 4, 4, 6, 6, 8, 8, 0, 0 };
+static const vpx_tree_index cat6_high12[36] = {
+  2,  2,  4,  4,  6,  6,  8,  8,  10, 10, 12, 12, 14, 14, 16, 16, 18, 18,
+  20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 0,  0
+};
+#endif
+
+const vp10_extra_bit vp10_extra_bits[ENTROPY_TOKENS] = {
+  { 0, 0, 0, 0, zero_cost },                             // ZERO_TOKEN
+  { 0, 0, 0, 1, sign_cost },                             // ONE_TOKEN
+  { 0, 0, 0, 2, sign_cost },                             // TWO_TOKEN
+  { 0, 0, 0, 3, sign_cost },                             // THREE_TOKEN
+  { 0, 0, 0, 4, sign_cost },                             // FOUR_TOKEN
+  { cat1, vp10_cat1_prob, 1, CAT1_MIN_VAL, cat1_cost },  // CATEGORY1_TOKEN
+  { cat2, vp10_cat2_prob, 2, CAT2_MIN_VAL, cat2_cost },  // CATEGORY2_TOKEN
+  { cat3, vp10_cat3_prob, 3, CAT3_MIN_VAL, cat3_cost },  // CATEGORY3_TOKEN
+  { cat4, vp10_cat4_prob, 4, CAT4_MIN_VAL, cat4_cost },  // CATEGORY4_TOKEN
+  { cat5, vp10_cat5_prob, 5, CAT5_MIN_VAL, cat5_cost },  // CATEGORY5_TOKEN
+  { cat6, vp10_cat6_prob, 14, CAT6_MIN_VAL, 0 },         // CATEGORY6_TOKEN
+  { 0, 0, 0, 0, zero_cost }                              // EOB_TOKEN
+};
+
+#if CONFIG_VPX_HIGHBITDEPTH
+const vp10_extra_bit vp10_extra_bits_high10[ENTROPY_TOKENS] = {
+  { 0, 0, 0, 0, zero_cost },                                           // ZERO
+  { 0, 0, 0, 1, sign_cost },                                           // ONE
+  { 0, 0, 0, 2, sign_cost },                                           // TWO
+  { 0, 0, 0, 3, sign_cost },                                           // THREE
+  { 0, 0, 0, 4, sign_cost },                                           // FOUR
+  { cat1_high10, vp10_cat1_prob_high10, 1, CAT1_MIN_VAL, cat1_cost },  // CAT1
+  { cat2_high10, vp10_cat2_prob_high10, 2, CAT2_MIN_VAL, cat2_cost },  // CAT2
+  { cat3_high10, vp10_cat3_prob_high10, 3, CAT3_MIN_VAL, cat3_cost },  // CAT3
+  { cat4_high10, vp10_cat4_prob_high10, 4, CAT4_MIN_VAL, cat4_cost },  // CAT4
+  { cat5_high10, vp10_cat5_prob_high10, 5, CAT5_MIN_VAL, cat5_cost },  // CAT5
+  { cat6_high10, vp10_cat6_prob_high10, 16, CAT6_MIN_VAL, 0 },         // CAT6
+  { 0, 0, 0, 0, zero_cost }                                            // EOB
+};
+const vp10_extra_bit vp10_extra_bits_high12[ENTROPY_TOKENS] = {
+  { 0, 0, 0, 0, zero_cost },                                           // ZERO
+  { 0, 0, 0, 1, sign_cost },                                           // ONE
+  { 0, 0, 0, 2, sign_cost },                                           // TWO
+  { 0, 0, 0, 3, sign_cost },                                           // THREE
+  { 0, 0, 0, 4, sign_cost },                                           // FOUR
+  { cat1_high12, vp10_cat1_prob_high12, 1, CAT1_MIN_VAL, cat1_cost },  // CAT1
+  { cat2_high12, vp10_cat2_prob_high12, 2, CAT2_MIN_VAL, cat2_cost },  // CAT2
+  { cat3_high12, vp10_cat3_prob_high12, 3, CAT3_MIN_VAL, cat3_cost },  // CAT3
+  { cat4_high12, vp10_cat4_prob_high12, 4, CAT4_MIN_VAL, cat4_cost },  // CAT4
+  { cat5_high12, vp10_cat5_prob_high12, 5, CAT5_MIN_VAL, cat5_cost },  // CAT5
+  { cat6_high12, vp10_cat6_prob_high12, 18, CAT6_MIN_VAL, 0 },         // CAT6
+  { 0, 0, 0, 0, zero_cost }                                            // EOB
+};
+#endif
+
+const struct vp10_token vp10_coef_encodings[ENTROPY_TOKENS] = {
+  { 2, 2 },  { 6, 3 },   { 28, 5 },  { 58, 6 },  { 59, 6 },  { 60, 6 },
+  { 61, 6 }, { 124, 7 }, { 125, 7 }, { 126, 7 }, { 127, 7 }, { 0, 1 }
+};
+
+struct tokenize_b_args {
+  VP10_COMP *cpi;
+  ThreadData *td;
+  TOKENEXTRA **tp;
+};
+
+static void set_entropy_context_b(int plane, int block, int blk_row,
+                                  int blk_col, BLOCK_SIZE plane_bsize,
+                                  TX_SIZE tx_size, void *arg) {
+  struct tokenize_b_args *const args = arg;
+  ThreadData *const td = args->td;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblock_plane *p = &x->plane[plane];
+  struct macroblockd_plane *pd = &xd->plane[plane];
+  vp10_set_contexts(xd, pd, plane_bsize, tx_size, p->eobs[block] > 0, blk_col,
+                    blk_row);
+}
+
+static INLINE void add_token(TOKENEXTRA **t, const vpx_prob *context_tree,
+                             int32_t extra, uint8_t token,
+                             uint8_t skip_eob_node, unsigned int *counts) {
+  (*t)->token = token;
+  (*t)->extra = extra;
+  (*t)->context_tree = context_tree;
+  (*t)->skip_eob_node = skip_eob_node;
+  (*t)++;
+  ++counts[token];
+}
+
+static INLINE void add_token_no_extra(TOKENEXTRA **t,
+                                      const vpx_prob *context_tree,
+                                      uint8_t token, uint8_t skip_eob_node,
+                                      unsigned int *counts) {
+  (*t)->token = token;
+  (*t)->context_tree = context_tree;
+  (*t)->skip_eob_node = skip_eob_node;
+  (*t)++;
+  ++counts[token];
+}
+
+static INLINE int get_tx_eob(const struct segmentation *seg, int segment_id,
+                             TX_SIZE tx_size) {
+  const int eob_max = 16 << (tx_size << 1);
+  return segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max;
+}
+
+static void tokenize_b(int plane, int block, int blk_row, int blk_col,
+                       BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
+  struct tokenize_b_args *const args = arg;
+  VP10_COMP *cpi = args->cpi;
+  ThreadData *const td = args->td;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  TOKENEXTRA **tp = args->tp;
+  uint8_t token_cache[32 * 32];
+  struct macroblock_plane *p = &x->plane[plane];
+  struct macroblockd_plane *pd = &xd->plane[plane];
+  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+  int pt; /* near block/prev token context index */
+  int c;
+  TOKENEXTRA *t = *tp; /* store tokens starting here */
+  int eob = p->eobs[block];
+  const PLANE_TYPE type = pd->plane_type;
+  const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+  const int segment_id = mbmi->segment_id;
+  const int16_t *scan, *nb;
+  const TX_TYPE tx_type = get_tx_type(type, xd, block);
+  const scan_order *const so = get_scan(tx_size, tx_type);
+  const int ref = is_inter_block(mbmi);
+  unsigned int (*const counts)[COEFF_CONTEXTS][ENTROPY_TOKENS] =
+      td->rd_counts.coef_counts[tx_size][type][ref];
+  vpx_prob (*const coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
+      cpi->common.fc->coef_probs[tx_size][type][ref];
+  unsigned int (*const eob_branch)[COEFF_CONTEXTS] =
+      td->counts->eob_branch[tx_size][type][ref];
+  const uint8_t *const band = get_band_translate(tx_size);
+  const int seg_eob = get_tx_eob(&cpi->common.seg, segment_id, tx_size);
+  int16_t token;
+  EXTRABIT extra;
+  pt = get_entropy_context(tx_size, pd->above_context + blk_col,
+                           pd->left_context + blk_row);
+  scan = so->scan;
+  nb = so->neighbors;
+  c = 0;
+
+  while (c < eob) {
+    int v = 0;
+    int skip_eob = 0;
+    v = qcoeff[scan[c]];
+
+    while (!v) {
+      add_token_no_extra(&t, coef_probs[band[c]][pt], ZERO_TOKEN, skip_eob,
+                         counts[band[c]][pt]);
+      eob_branch[band[c]][pt] += !skip_eob;
+
+      skip_eob = 1;
+      token_cache[scan[c]] = 0;
+      ++c;
+      pt = get_coef_context(nb, token_cache, c);
+      v = qcoeff[scan[c]];
+    }
+
+    vp10_get_token_extra(v, &token, &extra);
+
+    add_token(&t, coef_probs[band[c]][pt], extra, (uint8_t)token,
+              (uint8_t)skip_eob, counts[band[c]][pt]);
+    eob_branch[band[c]][pt] += !skip_eob;
+
+    token_cache[scan[c]] = vp10_pt_energy_class[token];
+    ++c;
+    pt = get_coef_context(nb, token_cache, c);
+  }
+  if (c < seg_eob) {
+    add_token_no_extra(&t, coef_probs[band[c]][pt], EOB_TOKEN, 0,
+                       counts[band[c]][pt]);
+    ++eob_branch[band[c]][pt];
+  }
+
+  *tp = t;
+
+  vp10_set_contexts(xd, pd, plane_bsize, tx_size, c > 0, blk_col, blk_row);
+}
+
+struct is_skippable_args {
+  uint16_t *eobs;
+  int *skippable;
+};
+static void is_skippable(int plane, int block, int blk_row, int blk_col,
+                         BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *argv) {
+  struct is_skippable_args *args = argv;
+  (void)plane;
+  (void)plane_bsize;
+  (void)tx_size;
+  (void)blk_row;
+  (void)blk_col;
+  args->skippable[0] &= (!args->eobs[block]);
+}
+
+// TODO(yaowu): rewrite and optimize this function to remove the usage of
+//              vp10_foreach_transform_block() and simplify is_skippable().
+int vp10_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+  int result = 1;
+  struct is_skippable_args args = { x->plane[plane].eobs, &result };
+  vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane, is_skippable,
+                                          &args);
+  return result;
+}
+
+static void has_high_freq_coeff(int plane, int block, int blk_row, int blk_col,
+                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+                                void *argv) {
+  struct is_skippable_args *args = argv;
+  int eobs = (tx_size == TX_4X4) ? 3 : 10;
+  (void)plane;
+  (void)plane_bsize;
+  (void)blk_row;
+  (void)blk_col;
+
+  *(args->skippable) |= (args->eobs[block] > eobs);
+}
+
+int vp10_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+  int result = 0;
+  struct is_skippable_args args = { x->plane[plane].eobs, &result };
+  vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane,
+                                          has_high_freq_coeff, &args);
+  return result;
+}
+
+void vp10_tokenize_sb(VP10_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
+                      int dry_run, BLOCK_SIZE bsize) {
+  VP10_COMMON *const cm = &cpi->common;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+  const int ctx = vp10_get_skip_context(xd);
+  const int skip_inc =
+      !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
+  struct tokenize_b_args arg = { cpi, td, t };
+  if (mbmi->skip) {
+    if (!dry_run) td->counts->skip[ctx][1] += skip_inc;
+    reset_skip_context(xd, bsize);
+    return;
+  }
+
+  if (!dry_run) {
+    int plane;
+
+    td->counts->skip[ctx][0] += skip_inc;
+
+    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+      vp10_foreach_transformed_block_in_plane(xd, bsize, plane, tokenize_b,
+                                              &arg);
+      (*t)->token = EOSB_TOKEN;
+      (*t)++;
+    }
+  } else {
+    vp10_foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg);
+  }
+}
diff --git a/av1/encoder/tokenize.h b/av1/encoder/tokenize.h
new file mode 100644
index 0000000..27d7ed4
--- /dev/null
+++ b/av1/encoder/tokenize.h
@@ -0,0 +1,110 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_TOKENIZE_H_
+#define VP10_ENCODER_TOKENIZE_H_
+
+#include "av1/common/entropy.h"
+
+#include "av1/encoder/block.h"
+#include "av1/encoder/treewriter.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define EOSB_TOKEN 127  // Not signalled, encoder only
+
+#if CONFIG_VPX_HIGHBITDEPTH
+typedef int32_t EXTRABIT;
+#else
+typedef int16_t EXTRABIT;
+#endif
+
+typedef struct {
+  int16_t token;
+  EXTRABIT extra;
+} TOKENVALUE;
+
+typedef struct {
+  const vpx_prob *context_tree;
+  EXTRABIT extra;
+  uint8_t token;
+  uint8_t skip_eob_node;
+} TOKENEXTRA;
+
+extern const vpx_tree_index vp10_coef_tree[];
+extern const vpx_tree_index vp10_coef_con_tree[];
+extern const struct vp10_token vp10_coef_encodings[];
+
+int vp10_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+int vp10_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+struct VP10_COMP;
+struct ThreadData;
+
+void vp10_tokenize_sb(struct VP10_COMP *cpi, struct ThreadData *td,
+                      TOKENEXTRA **t, int dry_run, BLOCK_SIZE bsize);
+
+extern const int16_t *vp10_dct_value_cost_ptr;
+/* TODO: The Token field should be broken out into a separate char array to
+ *  improve cache locality, since it's needed for costing when the rest of the
+ *  fields are not.
+ */
+extern const TOKENVALUE *vp10_dct_value_tokens_ptr;
+extern const TOKENVALUE *vp10_dct_cat_lt_10_value_tokens;
+extern const int16_t vp10_cat6_low_cost[256];
+extern const int vp10_cat6_high_cost[64];
+extern const int vp10_cat6_high10_high_cost[256];
+extern const int vp10_cat6_high12_high_cost[1024];
+static INLINE int vp10_get_cost(int16_t token, EXTRABIT extrabits,
+                                const int *cat6_high_table) {
+  if (token != CATEGORY6_TOKEN)
+    return vp10_extra_bits[token].cost[extrabits >> 1];
+  return vp10_cat6_low_cost[(extrabits >> 1) & 0xff] +
+         cat6_high_table[extrabits >> 9];
+}
+
+#if CONFIG_VPX_HIGHBITDEPTH
+static INLINE const int *vp10_get_high_cost_table(int bit_depth) {
+  return bit_depth == 8 ? vp10_cat6_high_cost
+                        : (bit_depth == 10 ? vp10_cat6_high10_high_cost
+                                           : vp10_cat6_high12_high_cost);
+}
+#else
+static INLINE const int *vp10_get_high_cost_table(int bit_depth) {
+  (void)bit_depth;
+  return vp10_cat6_high_cost;
+}
+#endif  // CONFIG_VPX_HIGHBITDEPTH
+
+static INLINE void vp10_get_token_extra(int v, int16_t *token,
+                                        EXTRABIT *extra) {
+  if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) {
+    *token = CATEGORY6_TOKEN;
+    if (v >= CAT6_MIN_VAL)
+      *extra = 2 * v - 2 * CAT6_MIN_VAL;
+    else
+      *extra = -2 * v - 2 * CAT6_MIN_VAL + 1;
+    return;
+  }
+  *token = vp10_dct_cat_lt_10_value_tokens[v].token;
+  *extra = vp10_dct_cat_lt_10_value_tokens[v].extra;
+}
+static INLINE int16_t vp10_get_token(int v) {
+  if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) return 10;
+  return vp10_dct_cat_lt_10_value_tokens[v].token;
+}
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_TOKENIZE_H_
diff --git a/av1/encoder/treewriter.c b/av1/encoder/treewriter.c
new file mode 100644
index 0000000..d3fcd45
--- /dev/null
+++ b/av1/encoder/treewriter.c
@@ -0,0 +1,58 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "av1/encoder/treewriter.h"
+
+static void tree2tok(struct vp10_token *tokens, const vpx_tree_index *tree,
+                     int i, int v, int l) {
+  v += v;
+  ++l;
+
+  do {
+    const vpx_tree_index j = tree[i++];
+    if (j <= 0) {
+      tokens[-j].value = v;
+      tokens[-j].len = l;
+    } else {
+      tree2tok(tokens, tree, j, v, l);
+    }
+  } while (++v & 1);
+}
+
+void vp10_tokens_from_tree(struct vp10_token *tokens,
+                           const vpx_tree_index *tree) {
+  tree2tok(tokens, tree, 0, 0, 0);
+}
+
+static unsigned int convert_distribution(unsigned int i, vpx_tree tree,
+                                         unsigned int branch_ct[][2],
+                                         const unsigned int num_events[]) {
+  unsigned int left, right;
+
+  if (tree[i] <= 0)
+    left = num_events[-tree[i]];
+  else
+    left = convert_distribution(tree[i], tree, branch_ct, num_events);
+
+  if (tree[i + 1] <= 0)
+    right = num_events[-tree[i + 1]];
+  else
+    right = convert_distribution(tree[i + 1], tree, branch_ct, num_events);
+
+  branch_ct[i >> 1][0] = left;
+  branch_ct[i >> 1][1] = right;
+  return left + right;
+}
+
+void vp10_tree_probs_from_distribution(vpx_tree tree,
+                                       unsigned int branch_ct[/* n-1 */][2],
+                                       const unsigned int num_events[/* n */]) {
+  convert_distribution(0, tree, branch_ct, num_events);
+}
diff --git a/av1/encoder/treewriter.h b/av1/encoder/treewriter.h
new file mode 100644
index 0000000..096080c
--- /dev/null
+++ b/av1/encoder/treewriter.h
@@ -0,0 +1,51 @@
+/*
+ *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP10_ENCODER_TREEWRITER_H_
+#define VP10_ENCODER_TREEWRITER_H_
+
+#include "aom_dsp/bitwriter.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp10_tree_probs_from_distribution(vpx_tree tree,
+                                       unsigned int branch_ct[/* n - 1 */][2],
+                                       const unsigned int num_events[/* n */]);
+
+struct vp10_token {
+  int value;
+  int len;
+};
+
+void vp10_tokens_from_tree(struct vp10_token *, const vpx_tree_index *);
+
+static INLINE void vp10_write_tree(vpx_writer *w, const vpx_tree_index *tree,
+                                   const vpx_prob *probs, int bits, int len,
+                                   vpx_tree_index i) {
+  do {
+    const int bit = (bits >> --len) & 1;
+    vpx_write(w, bit, probs[i >> 1]);
+    i = tree[i + bit];
+  } while (len);
+}
+
+static INLINE void vp10_write_token(vpx_writer *w, const vpx_tree_index *tree,
+                                    const vpx_prob *probs,
+                                    const struct vp10_token *token) {
+  vp10_write_tree(w, tree, probs, token->value, token->len, 0);
+}
+
+#ifdef __cplusplus
+}  // extern "C"
+#endif
+
+#endif  // VP10_ENCODER_TREEWRITER_H_
diff --git a/av1/encoder/x86/dct_mmx.asm b/av1/encoder/x86/dct_mmx.asm
new file mode 100644
index 0000000..34ce315
--- /dev/null
+++ b/av1/encoder/x86/dct_mmx.asm
@@ -0,0 +1,104 @@
+;
+;  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+;  Use of this source code is governed by a BSD-style license
+;  that can be found in the LICENSE file in the root of the source
+;  tree. An additional intellectual property rights grant can be found
+;  in the file PATENTS.  All contributing project authors may
+;  be found in the AUTHORS file in the root of the source tree.
+;
+
+%define private_prefix vp10
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+%macro TRANSFORM_COLS 0
+  paddw           m0,        m1
+  movq            m4,        m0
+  psubw           m3,        m2
+  psubw           m4,        m3
+  psraw           m4,        1
+  movq            m5,        m4
+  psubw           m5,        m1 ;b1
+  psubw           m4,        m2 ;c1
+  psubw           m0,        m4
+  paddw           m3,        m5
+                                ; m0 a0
+  SWAP            1,         4  ; m1 c1
+  SWAP            2,         3  ; m2 d1
+  SWAP            3,         5  ; m3 b1
+%endmacro
+
+%macro TRANSPOSE_4X4 0
+  movq            m4,        m0
+  movq            m5,        m2
+  punpcklwd       m4,        m1
+  punpckhwd       m0,        m1
+  punpcklwd       m5,        m3
+  punpckhwd       m2,        m3
+  movq            m1,        m4
+  movq            m3,        m0
+  punpckldq       m1,        m5
+  punpckhdq       m4,        m5
+  punpckldq       m3,        m2
+  punpckhdq       m0,        m2
+  SWAP            2, 3, 0, 1, 4
+%endmacro
+
+INIT_MMX mmx
+cglobal fwht4x4, 3, 4, 8, input, output, stride
+  lea             r3q,       [inputq + strideq*4]
+  movq            m0,        [inputq] ;a1
+  movq            m1,        [inputq + strideq*2] ;b1
+  movq            m2,        [r3q] ;c1
+  movq            m3,        [r3q + strideq*2] ;d1
+
+  TRANSFORM_COLS
+  TRANSPOSE_4X4
+  TRANSFORM_COLS
+  TRANSPOSE_4X4
+
+  psllw           m0,        2
+  psllw           m1,        2
+  psllw           m2,        2
+  psllw           m3,        2
+
+%if CONFIG_VPX_HIGHBITDEPTH
+  pxor            m4,             m4
+  pxor            m5,             m5
+  pcmpgtw         m4,             m0
+  pcmpgtw         m5,             m1
+  movq            m6,             m0
+  movq            m7,             m1
+  punpcklwd       m0,             m4
+  punpcklwd       m1,             m5
+  punpckhwd       m6,             m4
+  punpckhwd       m7,             m5
+  movq            [outputq],      m0
+  movq            [outputq + 8],  m6
+  movq            [outputq + 16], m1
+  movq            [outputq + 24], m7
+  pxor            m4,             m4
+  pxor            m5,             m5
+  pcmpgtw         m4,             m2
+  pcmpgtw         m5,             m3
+  movq            m6,             m2
+  movq            m7,             m3
+  punpcklwd       m2,             m4
+  punpcklwd       m3,             m5
+  punpckhwd       m6,             m4
+  punpckhwd       m7,             m5
+  movq            [outputq + 32], m2
+  movq            [outputq + 40], m6
+  movq            [outputq + 48], m3
+  movq            [outputq + 56], m7
+%else
+  movq            [outputq],      m0
+  movq            [outputq + 8],  m1
+  movq            [outputq + 16], m2
+  movq            [outputq + 24], m3
+%endif
+
+  RET
diff --git a/av1/encoder/x86/dct_sse2.c b/av1/encoder/x86/dct_sse2.c
new file mode 100644
index 0000000..ca9fedb
--- /dev/null
+++ b/av1/encoder/x86/dct_sse2.c
@@ -0,0 +1,2043 @@
+/*
+ *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <emmintrin.h>  // SSE2
+
+#include "./vp10_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "aom_dsp/txfm_common.h"
+#include "aom_dsp/x86/fwd_txfm_sse2.h"
+#include "aom_dsp/x86/txfm_common_sse2.h"
+#include "aom_ports/mem.h"
+
+static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
+                                   int stride) {
+  const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+  const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+  __m128i mask;
+
+  in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+  in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+  in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
+  in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
+
+  in[0] = _mm_slli_epi16(in[0], 4);
+  in[1] = _mm_slli_epi16(in[1], 4);
+  in[2] = _mm_slli_epi16(in[2], 4);
+  in[3] = _mm_slli_epi16(in[3], 4);
+
+  mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a);
+  in[0] = _mm_add_epi16(in[0], mask);
+  in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
+}
+
+static INLINE void write_buffer_4x4(tran_low_t *output, __m128i *res) {
+  const __m128i kOne = _mm_set1_epi16(1);
+  __m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
+  __m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
+  __m128i out01 = _mm_add_epi16(in01, kOne);
+  __m128i out23 = _mm_add_epi16(in23, kOne);
+  out01 = _mm_srai_epi16(out01, 2);
+  out23 = _mm_srai_epi16(out23, 2);
+  store_output(&out01, (output + 0 * 8));
+  store_output(&out23, (output + 1 * 8));
+}
+
+static INLINE void transpose_4x4(__m128i *res) {
+  // Combine and transpose
+  // 00 01 02 03 20 21 22 23
+  // 10 11 12 13 30 31 32 33
+  const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
+  const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]);
+
+  // 00 10 01 11 02 12 03 13
+  // 20 30 21 31 22 32 23 33
+  res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1);
+  res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1);
+
+  // 00 10 20 30 01 11 21 31
+  // 02 12 22 32 03 13 23 33
+  // only use the first 4 16-bit integers
+  res[1] = _mm_unpackhi_epi64(res[0], res[0]);
+  res[3] = _mm_unpackhi_epi64(res[2], res[2]);
+}
+
+static void fdct4_sse2(__m128i *in) {
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+  __m128i u[4], v[4];
+  u[0] = _mm_unpacklo_epi16(in[0], in[1]);
+  u[1] = _mm_unpacklo_epi16(in[3], in[2]);
+
+  v[0] = _mm_add_epi16(u[0], u[1]);
+  v[1] = _mm_sub_epi16(u[0], u[1]);
+
+  u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);  // 0
+  u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16);  // 2
+  u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24);  // 1
+  u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08);  // 3
+
+  v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+  u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+  u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+  u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+  u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+  in[0] = _mm_packs_epi32(u[0], u[1]);
+  in[1] = _mm_packs_epi32(u[2], u[3]);
+  transpose_4x4(in);
+}
+
+static void fadst4_sse2(__m128i *in) {
+  const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
+  const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
+  const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
+  const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9);
+  const __m128i k__sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi_3_9);
+  const __m128i kZero = _mm_set1_epi16(0);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  __m128i u[8], v[8];
+  __m128i in7 = _mm_add_epi16(in[0], in[1]);
+
+  u[0] = _mm_unpacklo_epi16(in[0], in[1]);
+  u[1] = _mm_unpacklo_epi16(in[2], in[3]);
+  u[2] = _mm_unpacklo_epi16(in7, kZero);
+  u[3] = _mm_unpacklo_epi16(in[2], kZero);
+  u[4] = _mm_unpacklo_epi16(in[3], kZero);
+
+  v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02);  // s0 + s2
+  v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04);  // s4 + s5
+  v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03);  // x1
+  v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01);  // s1 - s3
+  v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02);  // -s4 + s6
+  v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03);  // s4
+  v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
+
+  u[0] = _mm_add_epi32(v[0], v[1]);
+  u[1] = _mm_sub_epi32(v[2], v[6]);
+  u[2] = _mm_add_epi32(v[3], v[4]);
+  u[3] = _mm_sub_epi32(u[2], u[0]);
+  u[4] = _mm_slli_epi32(v[5], 2);
+  u[5] = _mm_sub_epi32(u[4], v[5]);
+  u[6] = _mm_add_epi32(u[3], u[5]);
+
+  v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+
+  u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+  u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+  u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+  u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+  in[0] = _mm_packs_epi32(u[0], u[2]);
+  in[1] = _mm_packs_epi32(u[1], u[3]);
+  transpose_4x4(in);
+}
+
+void vp10_fht4x4_sse2(const int16_t *input, tran_low_t *output, int stride,
+                      int tx_type) {
+  __m128i in[4];
+
+  switch (tx_type) {
+    case DCT_DCT: vpx_fdct4x4_sse2(input, output, stride); break;
+    case ADST_DCT:
+      load_buffer_4x4(input, in, stride);
+      fadst4_sse2(in);
+      fdct4_sse2(in);
+      write_buffer_4x4(output, in);
+      break;
+    case DCT_ADST:
+      load_buffer_4x4(input, in, stride);
+      fdct4_sse2(in);
+      fadst4_sse2(in);
+      write_buffer_4x4(output, in);
+      break;
+    case ADST_ADST:
+      load_buffer_4x4(input, in, stride);
+      fadst4_sse2(in);
+      fadst4_sse2(in);
+      write_buffer_4x4(output, in);
+      break;
+    default: assert(0); break;
+  }
+}
+
+void vp10_fdct8x8_quant_sse2(
+    const int16_t *input, int stride, int16_t *coeff_ptr, intptr_t n_coeffs,
+    int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr,
+    const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
+    int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, const int16_t *dequant_ptr,
+    uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) {
+  __m128i zero;
+  int pass;
+  // Constants
+  //    When we use them, in one case, they are all the same. In all others
+  //    it's a pair of them that we need to repeat four times. This is done
+  //    by constructing the 32 bit constant corresponding to that pair.
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  // Load input
+  __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+  __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+  __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+  __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+  __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+  __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+  __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+  __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+  __m128i *in[8];
+  int index = 0;
+
+  (void)scan_ptr;
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)coeff_ptr;
+
+  // Pre-condition input (shift by two)
+  in0 = _mm_slli_epi16(in0, 2);
+  in1 = _mm_slli_epi16(in1, 2);
+  in2 = _mm_slli_epi16(in2, 2);
+  in3 = _mm_slli_epi16(in3, 2);
+  in4 = _mm_slli_epi16(in4, 2);
+  in5 = _mm_slli_epi16(in5, 2);
+  in6 = _mm_slli_epi16(in6, 2);
+  in7 = _mm_slli_epi16(in7, 2);
+
+  in[0] = &in0;
+  in[1] = &in1;
+  in[2] = &in2;
+  in[3] = &in3;
+  in[4] = &in4;
+  in[5] = &in5;
+  in[6] = &in6;
+  in[7] = &in7;
+
+  // We do two passes, first the columns, then the rows. The results of the
+  // first pass are transposed so that the same column code can be reused. The
+  // results of the second pass are also transposed so that the rows (processed
+  // as columns) are put back in row positions.
+  for (pass = 0; pass < 2; pass++) {
+    // To store results of each pass before the transpose.
+    __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+    // Add/subtract
+    const __m128i q0 = _mm_add_epi16(in0, in7);
+    const __m128i q1 = _mm_add_epi16(in1, in6);
+    const __m128i q2 = _mm_add_epi16(in2, in5);
+    const __m128i q3 = _mm_add_epi16(in3, in4);
+    const __m128i q4 = _mm_sub_epi16(in3, in4);
+    const __m128i q5 = _mm_sub_epi16(in2, in5);
+    const __m128i q6 = _mm_sub_epi16(in1, in6);
+    const __m128i q7 = _mm_sub_epi16(in0, in7);
+    // Work on first four results
+    {
+      // Add/subtract
+      const __m128i r0 = _mm_add_epi16(q0, q3);
+      const __m128i r1 = _mm_add_epi16(q1, q2);
+      const __m128i r2 = _mm_sub_epi16(q1, q2);
+      const __m128i r3 = _mm_sub_epi16(q0, q3);
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+      const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+      const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+      const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+      // dct_const_round_shift
+      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+      // Combine
+      res0 = _mm_packs_epi32(w0, w1);
+      res4 = _mm_packs_epi32(w2, w3);
+      res2 = _mm_packs_epi32(w4, w5);
+      res6 = _mm_packs_epi32(w6, w7);
+    }
+    // Work on next four results
+    {
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+      const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+      const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+      const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+      const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+      const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+      // dct_const_round_shift
+      const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+      const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+      const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+      const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+      const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+      const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+      const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+      const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+      // Combine
+      const __m128i r0 = _mm_packs_epi32(s0, s1);
+      const __m128i r1 = _mm_packs_epi32(s2, s3);
+      // Add/subtract
+      const __m128i x0 = _mm_add_epi16(q4, r0);
+      const __m128i x1 = _mm_sub_epi16(q4, r0);
+      const __m128i x2 = _mm_sub_epi16(q7, r1);
+      const __m128i x3 = _mm_add_epi16(q7, r1);
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+      const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+      const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+      const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+      // dct_const_round_shift
+      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+      // Combine
+      res1 = _mm_packs_epi32(w0, w1);
+      res7 = _mm_packs_epi32(w2, w3);
+      res5 = _mm_packs_epi32(w4, w5);
+      res3 = _mm_packs_epi32(w6, w7);
+    }
+    // Transpose the 8x8.
+    {
+      // 00 01 02 03 04 05 06 07
+      // 10 11 12 13 14 15 16 17
+      // 20 21 22 23 24 25 26 27
+      // 30 31 32 33 34 35 36 37
+      // 40 41 42 43 44 45 46 47
+      // 50 51 52 53 54 55 56 57
+      // 60 61 62 63 64 65 66 67
+      // 70 71 72 73 74 75 76 77
+      const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+      const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+      const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+      const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+      const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+      const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+      const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+      const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+      // 00 10 01 11 02 12 03 13
+      // 20 30 21 31 22 32 23 33
+      // 04 14 05 15 06 16 07 17
+      // 24 34 25 35 26 36 27 37
+      // 40 50 41 51 42 52 43 53
+      // 60 70 61 71 62 72 63 73
+      // 54 54 55 55 56 56 57 57
+      // 64 74 65 75 66 76 67 77
+      const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+      const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+      const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+      const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+      const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+      const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+      const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+      const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+      // 00 10 20 30 01 11 21 31
+      // 40 50 60 70 41 51 61 71
+      // 02 12 22 32 03 13 23 33
+      // 42 52 62 72 43 53 63 73
+      // 04 14 24 34 05 15 21 36
+      // 44 54 64 74 45 55 61 76
+      // 06 16 26 36 07 17 27 37
+      // 46 56 66 76 47 57 67 77
+      in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+      in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+      in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+      in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+      in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+      in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+      in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+      in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+      // 00 10 20 30 40 50 60 70
+      // 01 11 21 31 41 51 61 71
+      // 02 12 22 32 42 52 62 72
+      // 03 13 23 33 43 53 63 73
+      // 04 14 24 34 44 54 64 74
+      // 05 15 25 35 45 55 65 75
+      // 06 16 26 36 46 56 66 76
+      // 07 17 27 37 47 57 67 77
+    }
+  }
+  // Post-condition output and store it
+  {
+    // Post-condition (division by two)
+    //    division of two 16 bits signed numbers using shifts
+    //    n / 2 = (n - (n >> 15)) >> 1
+    const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+    const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+    const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+    const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+    const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+    const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+    const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+    const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+    in0 = _mm_sub_epi16(in0, sign_in0);
+    in1 = _mm_sub_epi16(in1, sign_in1);
+    in2 = _mm_sub_epi16(in2, sign_in2);
+    in3 = _mm_sub_epi16(in3, sign_in3);
+    in4 = _mm_sub_epi16(in4, sign_in4);
+    in5 = _mm_sub_epi16(in5, sign_in5);
+    in6 = _mm_sub_epi16(in6, sign_in6);
+    in7 = _mm_sub_epi16(in7, sign_in7);
+    in0 = _mm_srai_epi16(in0, 1);
+    in1 = _mm_srai_epi16(in1, 1);
+    in2 = _mm_srai_epi16(in2, 1);
+    in3 = _mm_srai_epi16(in3, 1);
+    in4 = _mm_srai_epi16(in4, 1);
+    in5 = _mm_srai_epi16(in5, 1);
+    in6 = _mm_srai_epi16(in6, 1);
+    in7 = _mm_srai_epi16(in7, 1);
+  }
+
+  iscan_ptr += n_coeffs;
+  qcoeff_ptr += n_coeffs;
+  dqcoeff_ptr += n_coeffs;
+  n_coeffs = -n_coeffs;
+  zero = _mm_setzero_si128();
+
+  if (!skip_block) {
+    __m128i eob;
+    __m128i round, quant, dequant;
+    {
+      __m128i coeff0, coeff1;
+
+      // Setup global values
+      {
+        round = _mm_load_si128((const __m128i *)round_ptr);
+        quant = _mm_load_si128((const __m128i *)quant_ptr);
+        dequant = _mm_load_si128((const __m128i *)dequant_ptr);
+      }
+
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+        // Do DC and first 15 AC
+        coeff0 = *in[0];
+        coeff1 = *in[1];
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+        round = _mm_unpackhi_epi64(round, round);
+        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+        quant = _mm_unpackhi_epi64(quant, quant);
+        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+        // Reinsert signs
+        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0);
+        _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+        dequant = _mm_unpackhi_epi64(dequant, dequant);
+        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+        _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0);
+        _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+      }
+
+      {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob = _mm_max_epi16(eob, eob1);
+      }
+      n_coeffs += 8 * 2;
+    }
+
+    // AC only loop
+    index = 2;
+    while (n_coeffs < 0) {
+      __m128i coeff0, coeff1;
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+
+        assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
+        coeff0 = *in[index];
+        coeff1 = *in[index + 1];
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+        // Reinsert signs
+        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0);
+        _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+        _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0);
+        _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+      }
+
+      {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob0, eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob0 = _mm_max_epi16(eob0, eob1);
+        eob = _mm_max_epi16(eob, eob0);
+      }
+      n_coeffs += 8 * 2;
+      index += 2;
+    }
+
+    // Accumulate EOB
+    {
+      __m128i eob_shuffled;
+      eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      *eob_ptr = _mm_extract_epi16(eob, 1);
+    }
+  } else {
+    do {
+      _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, zero);
+      _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, zero);
+      n_coeffs += 8 * 2;
+    } while (n_coeffs < 0);
+    *eob_ptr = 0;
+  }
+}
+
+// load 8x8 array
+static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
+                                   int stride) {
+  in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+  in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+  in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+  in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+  in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+  in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+  in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+  in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+  in[0] = _mm_slli_epi16(in[0], 2);
+  in[1] = _mm_slli_epi16(in[1], 2);
+  in[2] = _mm_slli_epi16(in[2], 2);
+  in[3] = _mm_slli_epi16(in[3], 2);
+  in[4] = _mm_slli_epi16(in[4], 2);
+  in[5] = _mm_slli_epi16(in[5], 2);
+  in[6] = _mm_slli_epi16(in[6], 2);
+  in[7] = _mm_slli_epi16(in[7], 2);
+}
+
+// right shift and rounding
+static INLINE void right_shift_8x8(__m128i *res, const int bit) {
+  __m128i sign0 = _mm_srai_epi16(res[0], 15);
+  __m128i sign1 = _mm_srai_epi16(res[1], 15);
+  __m128i sign2 = _mm_srai_epi16(res[2], 15);
+  __m128i sign3 = _mm_srai_epi16(res[3], 15);
+  __m128i sign4 = _mm_srai_epi16(res[4], 15);
+  __m128i sign5 = _mm_srai_epi16(res[5], 15);
+  __m128i sign6 = _mm_srai_epi16(res[6], 15);
+  __m128i sign7 = _mm_srai_epi16(res[7], 15);
+
+  if (bit == 2) {
+    const __m128i const_rounding = _mm_set1_epi16(1);
+    res[0] = _mm_add_epi16(res[0], const_rounding);
+    res[1] = _mm_add_epi16(res[1], const_rounding);
+    res[2] = _mm_add_epi16(res[2], const_rounding);
+    res[3] = _mm_add_epi16(res[3], const_rounding);
+    res[4] = _mm_add_epi16(res[4], const_rounding);
+    res[5] = _mm_add_epi16(res[5], const_rounding);
+    res[6] = _mm_add_epi16(res[6], const_rounding);
+    res[7] = _mm_add_epi16(res[7], const_rounding);
+  }
+
+  res[0] = _mm_sub_epi16(res[0], sign0);
+  res[1] = _mm_sub_epi16(res[1], sign1);
+  res[2] = _mm_sub_epi16(res[2], sign2);
+  res[3] = _mm_sub_epi16(res[3], sign3);
+  res[4] = _mm_sub_epi16(res[4], sign4);
+  res[5] = _mm_sub_epi16(res[5], sign5);
+  res[6] = _mm_sub_epi16(res[6], sign6);
+  res[7] = _mm_sub_epi16(res[7], sign7);
+
+  if (bit == 1) {
+    res[0] = _mm_srai_epi16(res[0], 1);
+    res[1] = _mm_srai_epi16(res[1], 1);
+    res[2] = _mm_srai_epi16(res[2], 1);
+    res[3] = _mm_srai_epi16(res[3], 1);
+    res[4] = _mm_srai_epi16(res[4], 1);
+    res[5] = _mm_srai_epi16(res[5], 1);
+    res[6] = _mm_srai_epi16(res[6], 1);
+    res[7] = _mm_srai_epi16(res[7], 1);
+  } else {
+    res[0] = _mm_srai_epi16(res[0], 2);
+    res[1] = _mm_srai_epi16(res[1], 2);
+    res[2] = _mm_srai_epi16(res[2], 2);
+    res[3] = _mm_srai_epi16(res[3], 2);
+    res[4] = _mm_srai_epi16(res[4], 2);
+    res[5] = _mm_srai_epi16(res[5], 2);
+    res[6] = _mm_srai_epi16(res[6], 2);
+    res[7] = _mm_srai_epi16(res[7], 2);
+  }
+}
+
+// write 8x8 array
+static INLINE void write_buffer_8x8(tran_low_t *output, __m128i *res,
+                                    int stride) {
+  store_output(&res[0], (output + 0 * stride));
+  store_output(&res[1], (output + 1 * stride));
+  store_output(&res[2], (output + 2 * stride));
+  store_output(&res[3], (output + 3 * stride));
+  store_output(&res[4], (output + 4 * stride));
+  store_output(&res[5], (output + 5 * stride));
+  store_output(&res[6], (output + 6 * stride));
+  store_output(&res[7], (output + 7 * stride));
+}
+
+// perform in-place transpose
+static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
+  const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
+  const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
+  const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
+  const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
+  const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
+  const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
+  const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
+  const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
+  // 00 10 01 11 02 12 03 13
+  // 20 30 21 31 22 32 23 33
+  // 04 14 05 15 06 16 07 17
+  // 24 34 25 35 26 36 27 37
+  // 40 50 41 51 42 52 43 53
+  // 60 70 61 71 62 72 63 73
+  // 44 54 45 55 46 56 47 57
+  // 64 74 65 75 66 76 67 77
+  const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+  const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+  const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+  const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+  const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+  const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+  const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+  const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+  // 00 10 20 30 01 11 21 31
+  // 40 50 60 70 41 51 61 71
+  // 02 12 22 32 03 13 23 33
+  // 42 52 62 72 43 53 63 73
+  // 04 14 24 34 05 15 25 35
+  // 44 54 64 74 45 55 65 75
+  // 06 16 26 36 07 17 27 37
+  // 46 56 66 76 47 57 67 77
+  res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
+  res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
+  res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
+  res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
+  res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
+  res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
+  res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
+  res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
+  // 00 10 20 30 40 50 60 70
+  // 01 11 21 31 41 51 61 71
+  // 02 12 22 32 42 52 62 72
+  // 03 13 23 33 43 53 63 73
+  // 04 14 24 34 44 54 64 74
+  // 05 15 25 35 45 55 65 75
+  // 06 16 26 36 46 56 66 76
+  // 07 17 27 37 47 57 67 77
+}
+
+static void fdct8_sse2(__m128i *in) {
+  // constants
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  __m128i u0, u1, u2, u3, u4, u5, u6, u7;
+  __m128i v0, v1, v2, v3, v4, v5, v6, v7;
+  __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+
+  // stage 1
+  s0 = _mm_add_epi16(in[0], in[7]);
+  s1 = _mm_add_epi16(in[1], in[6]);
+  s2 = _mm_add_epi16(in[2], in[5]);
+  s3 = _mm_add_epi16(in[3], in[4]);
+  s4 = _mm_sub_epi16(in[3], in[4]);
+  s5 = _mm_sub_epi16(in[2], in[5]);
+  s6 = _mm_sub_epi16(in[1], in[6]);
+  s7 = _mm_sub_epi16(in[0], in[7]);
+
+  u0 = _mm_add_epi16(s0, s3);
+  u1 = _mm_add_epi16(s1, s2);
+  u2 = _mm_sub_epi16(s1, s2);
+  u3 = _mm_sub_epi16(s0, s3);
+  // interleave and perform butterfly multiplication/addition
+  v0 = _mm_unpacklo_epi16(u0, u1);
+  v1 = _mm_unpackhi_epi16(u0, u1);
+  v2 = _mm_unpacklo_epi16(u2, u3);
+  v3 = _mm_unpackhi_epi16(u2, u3);
+
+  u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
+  u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
+  u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
+  u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
+  u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
+  u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
+  u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
+  u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
+
+  // shift and rounding
+  v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+  v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+  v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+  v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+  v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+  v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+  v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+  v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+
+  u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+  u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+  u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+  u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+  u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+  u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+  u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+  u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+  in[0] = _mm_packs_epi32(u0, u1);
+  in[2] = _mm_packs_epi32(u4, u5);
+  in[4] = _mm_packs_epi32(u2, u3);
+  in[6] = _mm_packs_epi32(u6, u7);
+
+  // stage 2
+  // interleave and perform butterfly multiplication/addition
+  u0 = _mm_unpacklo_epi16(s6, s5);
+  u1 = _mm_unpackhi_epi16(s6, s5);
+  v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+  v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+  v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+  v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+
+  // shift and rounding
+  u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+  u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+  u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+  u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+
+  v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+  v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+  v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+  v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+
+  u0 = _mm_packs_epi32(v0, v1);
+  u1 = _mm_packs_epi32(v2, v3);
+
+  // stage 3
+  s0 = _mm_add_epi16(s4, u0);
+  s1 = _mm_sub_epi16(s4, u0);
+  s2 = _mm_sub_epi16(s7, u1);
+  s3 = _mm_add_epi16(s7, u1);
+
+  // stage 4
+  u0 = _mm_unpacklo_epi16(s0, s3);
+  u1 = _mm_unpackhi_epi16(s0, s3);
+  u2 = _mm_unpacklo_epi16(s1, s2);
+  u3 = _mm_unpackhi_epi16(s1, s2);
+
+  v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
+  v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
+  v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
+  v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
+  v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
+  v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
+  v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
+  v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
+
+  // shift and rounding
+  u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+  u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+  u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+  u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+  u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+  u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+  u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+  u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+  v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+  v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+  v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+  v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+  v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+  v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+  v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+  v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+  in[1] = _mm_packs_epi32(v0, v1);
+  in[3] = _mm_packs_epi32(v4, v5);
+  in[5] = _mm_packs_epi32(v2, v3);
+  in[7] = _mm_packs_epi32(v6, v7);
+
+  // transpose
+  array_transpose_8x8(in, in);
+}
+
+static void fadst8_sse2(__m128i *in) {
+  // Constants
+  const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
+  const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
+  const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
+  const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
+  const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
+  const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
+  const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
+  const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
+  const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+  const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__const_0 = _mm_set1_epi16(0);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+  __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
+  __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
+  __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
+  __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+  __m128i in0, in1, in2, in3, in4, in5, in6, in7;
+
+  // properly aligned for butterfly input
+  in0 = in[7];
+  in1 = in[0];
+  in2 = in[5];
+  in3 = in[2];
+  in4 = in[3];
+  in5 = in[4];
+  in6 = in[1];
+  in7 = in[6];
+
+  // column transformation
+  // stage 1
+  // interleave and multiply/add into 32-bit integer
+  s0 = _mm_unpacklo_epi16(in0, in1);
+  s1 = _mm_unpackhi_epi16(in0, in1);
+  s2 = _mm_unpacklo_epi16(in2, in3);
+  s3 = _mm_unpackhi_epi16(in2, in3);
+  s4 = _mm_unpacklo_epi16(in4, in5);
+  s5 = _mm_unpackhi_epi16(in4, in5);
+  s6 = _mm_unpacklo_epi16(in6, in7);
+  s7 = _mm_unpackhi_epi16(in6, in7);
+
+  u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
+  u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
+  u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
+  u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
+  u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
+  u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
+  u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
+  u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
+  u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
+  u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
+  u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
+  u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
+  u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
+  u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
+  u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
+  u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
+
+  // addition
+  w0 = _mm_add_epi32(u0, u8);
+  w1 = _mm_add_epi32(u1, u9);
+  w2 = _mm_add_epi32(u2, u10);
+  w3 = _mm_add_epi32(u3, u11);
+  w4 = _mm_add_epi32(u4, u12);
+  w5 = _mm_add_epi32(u5, u13);
+  w6 = _mm_add_epi32(u6, u14);
+  w7 = _mm_add_epi32(u7, u15);
+  w8 = _mm_sub_epi32(u0, u8);
+  w9 = _mm_sub_epi32(u1, u9);
+  w10 = _mm_sub_epi32(u2, u10);
+  w11 = _mm_sub_epi32(u3, u11);
+  w12 = _mm_sub_epi32(u4, u12);
+  w13 = _mm_sub_epi32(u5, u13);
+  w14 = _mm_sub_epi32(u6, u14);
+  w15 = _mm_sub_epi32(u7, u15);
+
+  // shift and rounding
+  v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+  v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+  v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+  v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+  v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+  v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+  v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+  v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+  v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
+  v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
+  v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
+  v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
+  v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
+  v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
+  v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
+  v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
+
+  u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+  u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+  u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+  u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+  u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+  u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+  u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+  u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+  u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
+  u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
+  u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
+  u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
+  u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
+  u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
+  u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
+  u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
+
+  // back to 16-bit and pack 8 integers into __m128i
+  in[0] = _mm_packs_epi32(u0, u1);
+  in[1] = _mm_packs_epi32(u2, u3);
+  in[2] = _mm_packs_epi32(u4, u5);
+  in[3] = _mm_packs_epi32(u6, u7);
+  in[4] = _mm_packs_epi32(u8, u9);
+  in[5] = _mm_packs_epi32(u10, u11);
+  in[6] = _mm_packs_epi32(u12, u13);
+  in[7] = _mm_packs_epi32(u14, u15);
+
+  // stage 2
+  s0 = _mm_add_epi16(in[0], in[2]);
+  s1 = _mm_add_epi16(in[1], in[3]);
+  s2 = _mm_sub_epi16(in[0], in[2]);
+  s3 = _mm_sub_epi16(in[1], in[3]);
+  u0 = _mm_unpacklo_epi16(in[4], in[5]);
+  u1 = _mm_unpackhi_epi16(in[4], in[5]);
+  u2 = _mm_unpacklo_epi16(in[6], in[7]);
+  u3 = _mm_unpackhi_epi16(in[6], in[7]);
+
+  v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
+  v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
+  v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
+  v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
+  v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
+  v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
+  v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
+  v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
+
+  w0 = _mm_add_epi32(v0, v4);
+  w1 = _mm_add_epi32(v1, v5);
+  w2 = _mm_add_epi32(v2, v6);
+  w3 = _mm_add_epi32(v3, v7);
+  w4 = _mm_sub_epi32(v0, v4);
+  w5 = _mm_sub_epi32(v1, v5);
+  w6 = _mm_sub_epi32(v2, v6);
+  w7 = _mm_sub_epi32(v3, v7);
+
+  v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+  v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+  v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+  v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+  v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+  v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+  v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+  v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+
+  u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+  u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+  u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+  u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+  u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+  u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+  u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+  u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+  // back to 16-bit intergers
+  s4 = _mm_packs_epi32(u0, u1);
+  s5 = _mm_packs_epi32(u2, u3);
+  s6 = _mm_packs_epi32(u4, u5);
+  s7 = _mm_packs_epi32(u6, u7);
+
+  // stage 3
+  u0 = _mm_unpacklo_epi16(s2, s3);
+  u1 = _mm_unpackhi_epi16(s2, s3);
+  u2 = _mm_unpacklo_epi16(s6, s7);
+  u3 = _mm_unpackhi_epi16(s6, s7);
+
+  v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+  v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+  v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+  v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+  v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
+  v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
+  v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
+  v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
+
+  u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+  u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+  u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+  u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+  u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+  u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+  u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+  u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+  v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+  v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+  v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+  v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+  v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+  v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+  v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+  v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+  s2 = _mm_packs_epi32(v0, v1);
+  s3 = _mm_packs_epi32(v2, v3);
+  s6 = _mm_packs_epi32(v4, v5);
+  s7 = _mm_packs_epi32(v6, v7);
+
+  // FIXME(jingning): do subtract using bit inversion?
+  in[0] = s0;
+  in[1] = _mm_sub_epi16(k__const_0, s4);
+  in[2] = s6;
+  in[3] = _mm_sub_epi16(k__const_0, s2);
+  in[4] = s3;
+  in[5] = _mm_sub_epi16(k__const_0, s7);
+  in[6] = s5;
+  in[7] = _mm_sub_epi16(k__const_0, s1);
+
+  // transpose
+  array_transpose_8x8(in, in);
+}
+
+void vp10_fht8x8_sse2(const int16_t *input, tran_low_t *output, int stride,
+                      int tx_type) {
+  __m128i in[8];
+
+  switch (tx_type) {
+    case DCT_DCT: vpx_fdct8x8_sse2(input, output, stride); break;
+    case ADST_DCT:
+      load_buffer_8x8(input, in, stride);
+      fadst8_sse2(in);
+      fdct8_sse2(in);
+      right_shift_8x8(in, 1);
+      write_buffer_8x8(output, in, 8);
+      break;
+    case DCT_ADST:
+      load_buffer_8x8(input, in, stride);
+      fdct8_sse2(in);
+      fadst8_sse2(in);
+      right_shift_8x8(in, 1);
+      write_buffer_8x8(output, in, 8);
+      break;
+    case ADST_ADST:
+      load_buffer_8x8(input, in, stride);
+      fadst8_sse2(in);
+      fadst8_sse2(in);
+      right_shift_8x8(in, 1);
+      write_buffer_8x8(output, in, 8);
+      break;
+    default: assert(0); break;
+  }
+}
+
+static INLINE void load_buffer_16x16(const int16_t *input, __m128i *in0,
+                                     __m128i *in1, int stride) {
+  // load first 8 columns
+  load_buffer_8x8(input, in0, stride);
+  load_buffer_8x8(input + 8 * stride, in0 + 8, stride);
+
+  input += 8;
+  // load second 8 columns
+  load_buffer_8x8(input, in1, stride);
+  load_buffer_8x8(input + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void write_buffer_16x16(tran_low_t *output, __m128i *in0,
+                                      __m128i *in1, int stride) {
+  // write first 8 columns
+  write_buffer_8x8(output, in0, stride);
+  write_buffer_8x8(output + 8 * stride, in0 + 8, stride);
+  // write second 8 columns
+  output += 8;
+  write_buffer_8x8(output, in1, stride);
+  write_buffer_8x8(output + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) {
+  __m128i tbuf[8];
+  array_transpose_8x8(res0, res0);
+  array_transpose_8x8(res1, tbuf);
+  array_transpose_8x8(res0 + 8, res1);
+  array_transpose_8x8(res1 + 8, res1 + 8);
+
+  res0[8] = tbuf[0];
+  res0[9] = tbuf[1];
+  res0[10] = tbuf[2];
+  res0[11] = tbuf[3];
+  res0[12] = tbuf[4];
+  res0[13] = tbuf[5];
+  res0[14] = tbuf[6];
+  res0[15] = tbuf[7];
+}
+
+static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
+  // perform rounding operations
+  right_shift_8x8(res0, 2);
+  right_shift_8x8(res0 + 8, 2);
+  right_shift_8x8(res1, 2);
+  right_shift_8x8(res1 + 8, 2);
+}
+
+static void fdct16_8col(__m128i *in) {
+  // perform 16x16 1-D DCT for 8 columns
+  __m128i i[8], s[8], p[8], t[8], u[16], v[16];
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+  const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+  const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+  const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+  const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+  const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+  const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+  const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+  // stage 1
+  i[0] = _mm_add_epi16(in[0], in[15]);
+  i[1] = _mm_add_epi16(in[1], in[14]);
+  i[2] = _mm_add_epi16(in[2], in[13]);
+  i[3] = _mm_add_epi16(in[3], in[12]);
+  i[4] = _mm_add_epi16(in[4], in[11]);
+  i[5] = _mm_add_epi16(in[5], in[10]);
+  i[6] = _mm_add_epi16(in[6], in[9]);
+  i[7] = _mm_add_epi16(in[7], in[8]);
+
+  s[0] = _mm_sub_epi16(in[7], in[8]);
+  s[1] = _mm_sub_epi16(in[6], in[9]);
+  s[2] = _mm_sub_epi16(in[5], in[10]);
+  s[3] = _mm_sub_epi16(in[4], in[11]);
+  s[4] = _mm_sub_epi16(in[3], in[12]);
+  s[5] = _mm_sub_epi16(in[2], in[13]);
+  s[6] = _mm_sub_epi16(in[1], in[14]);
+  s[7] = _mm_sub_epi16(in[0], in[15]);
+
+  p[0] = _mm_add_epi16(i[0], i[7]);
+  p[1] = _mm_add_epi16(i[1], i[6]);
+  p[2] = _mm_add_epi16(i[2], i[5]);
+  p[3] = _mm_add_epi16(i[3], i[4]);
+  p[4] = _mm_sub_epi16(i[3], i[4]);
+  p[5] = _mm_sub_epi16(i[2], i[5]);
+  p[6] = _mm_sub_epi16(i[1], i[6]);
+  p[7] = _mm_sub_epi16(i[0], i[7]);
+
+  u[0] = _mm_add_epi16(p[0], p[3]);
+  u[1] = _mm_add_epi16(p[1], p[2]);
+  u[2] = _mm_sub_epi16(p[1], p[2]);
+  u[3] = _mm_sub_epi16(p[0], p[3]);
+
+  v[0] = _mm_unpacklo_epi16(u[0], u[1]);
+  v[1] = _mm_unpackhi_epi16(u[0], u[1]);
+  v[2] = _mm_unpacklo_epi16(u[2], u[3]);
+  v[3] = _mm_unpackhi_epi16(u[2], u[3]);
+
+  u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);
+  u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16);
+  u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16);
+  u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16);
+  u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08);
+  u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08);
+  u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24);
+  u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24);
+
+  v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+  v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+  v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+  v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+  v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+  u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+  u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+  u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+  u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+  u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+  u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+  u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+  u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+  in[0] = _mm_packs_epi32(u[0], u[1]);
+  in[4] = _mm_packs_epi32(u[4], u[5]);
+  in[8] = _mm_packs_epi32(u[2], u[3]);
+  in[12] = _mm_packs_epi32(u[6], u[7]);
+
+  u[0] = _mm_unpacklo_epi16(p[5], p[6]);
+  u[1] = _mm_unpackhi_epi16(p[5], p[6]);
+  v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+  v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+  v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+
+  u[0] = _mm_packs_epi32(v[0], v[1]);
+  u[1] = _mm_packs_epi32(v[2], v[3]);
+
+  t[0] = _mm_add_epi16(p[4], u[0]);
+  t[1] = _mm_sub_epi16(p[4], u[0]);
+  t[2] = _mm_sub_epi16(p[7], u[1]);
+  t[3] = _mm_add_epi16(p[7], u[1]);
+
+  u[0] = _mm_unpacklo_epi16(t[0], t[3]);
+  u[1] = _mm_unpackhi_epi16(t[0], t[3]);
+  u[2] = _mm_unpacklo_epi16(t[1], t[2]);
+  u[3] = _mm_unpackhi_epi16(t[1], t[2]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04);
+  v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20);
+  v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12);
+  v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28);
+  v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+  in[2] = _mm_packs_epi32(v[0], v[1]);
+  in[6] = _mm_packs_epi32(v[4], v[5]);
+  in[10] = _mm_packs_epi32(v[2], v[3]);
+  in[14] = _mm_packs_epi32(v[6], v[7]);
+
+  // stage 2
+  u[0] = _mm_unpacklo_epi16(s[2], s[5]);
+  u[1] = _mm_unpackhi_epi16(s[2], s[5]);
+  u[2] = _mm_unpacklo_epi16(s[3], s[4]);
+  u[3] = _mm_unpackhi_epi16(s[3], s[4]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+  v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+  v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+  v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+  v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+  t[2] = _mm_packs_epi32(v[0], v[1]);
+  t[3] = _mm_packs_epi32(v[2], v[3]);
+  t[4] = _mm_packs_epi32(v[4], v[5]);
+  t[5] = _mm_packs_epi32(v[6], v[7]);
+
+  // stage 3
+  p[0] = _mm_add_epi16(s[0], t[3]);
+  p[1] = _mm_add_epi16(s[1], t[2]);
+  p[2] = _mm_sub_epi16(s[1], t[2]);
+  p[3] = _mm_sub_epi16(s[0], t[3]);
+  p[4] = _mm_sub_epi16(s[7], t[4]);
+  p[5] = _mm_sub_epi16(s[6], t[5]);
+  p[6] = _mm_add_epi16(s[6], t[5]);
+  p[7] = _mm_add_epi16(s[7], t[4]);
+
+  // stage 4
+  u[0] = _mm_unpacklo_epi16(p[1], p[6]);
+  u[1] = _mm_unpackhi_epi16(p[1], p[6]);
+  u[2] = _mm_unpacklo_epi16(p[2], p[5]);
+  u[3] = _mm_unpackhi_epi16(p[2], p[5]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24);
+  v[2] = _mm_madd_epi16(u[2], k__cospi_p24_p08);
+  v[3] = _mm_madd_epi16(u[3], k__cospi_p24_p08);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_p08_m24);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_p08_m24);
+  v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08);
+  v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+  t[1] = _mm_packs_epi32(v[0], v[1]);
+  t[2] = _mm_packs_epi32(v[2], v[3]);
+  t[5] = _mm_packs_epi32(v[4], v[5]);
+  t[6] = _mm_packs_epi32(v[6], v[7]);
+
+  // stage 5
+  s[0] = _mm_add_epi16(p[0], t[1]);
+  s[1] = _mm_sub_epi16(p[0], t[1]);
+  s[2] = _mm_add_epi16(p[3], t[2]);
+  s[3] = _mm_sub_epi16(p[3], t[2]);
+  s[4] = _mm_sub_epi16(p[4], t[5]);
+  s[5] = _mm_add_epi16(p[4], t[5]);
+  s[6] = _mm_sub_epi16(p[7], t[6]);
+  s[7] = _mm_add_epi16(p[7], t[6]);
+
+  // stage 6
+  u[0] = _mm_unpacklo_epi16(s[0], s[7]);
+  u[1] = _mm_unpackhi_epi16(s[0], s[7]);
+  u[2] = _mm_unpacklo_epi16(s[1], s[6]);
+  u[3] = _mm_unpackhi_epi16(s[1], s[6]);
+  u[4] = _mm_unpacklo_epi16(s[2], s[5]);
+  u[5] = _mm_unpackhi_epi16(s[2], s[5]);
+  u[6] = _mm_unpacklo_epi16(s[3], s[4]);
+  u[7] = _mm_unpackhi_epi16(s[3], s[4]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02);
+  v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18);
+  v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18);
+  v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10);
+  v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10);
+  v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26);
+  v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26);
+  v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06);
+  v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06);
+  v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22);
+  v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22);
+  v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14);
+  v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14);
+  v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30);
+  v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+  u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+  u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+  u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+  u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+  u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+  u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+  u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+  u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+  v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+  v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+  v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+  v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+  v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+  v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+  v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+  v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+  in[1] = _mm_packs_epi32(v[0], v[1]);
+  in[9] = _mm_packs_epi32(v[2], v[3]);
+  in[5] = _mm_packs_epi32(v[4], v[5]);
+  in[13] = _mm_packs_epi32(v[6], v[7]);
+  in[3] = _mm_packs_epi32(v[8], v[9]);
+  in[11] = _mm_packs_epi32(v[10], v[11]);
+  in[7] = _mm_packs_epi32(v[12], v[13]);
+  in[15] = _mm_packs_epi32(v[14], v[15]);
+}
+
+static void fadst16_8col(__m128i *in) {
+  // perform 16x16 1-D ADST for 8 columns
+  __m128i s[16], x[16], u[32], v[32];
+  const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
+  const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64);
+  const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64);
+  const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64);
+  const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64);
+  const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64);
+  const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64);
+  const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64);
+  const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64);
+  const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64);
+  const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64);
+  const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64);
+  const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64);
+  const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64);
+  const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64);
+  const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64);
+  const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64);
+  const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64);
+  const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64);
+  const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+  const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_m16_m16 = _mm_set1_epi16((int16_t)-cospi_16_64);
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  const __m128i kZero = _mm_set1_epi16(0);
+
+  u[0] = _mm_unpacklo_epi16(in[15], in[0]);
+  u[1] = _mm_unpackhi_epi16(in[15], in[0]);
+  u[2] = _mm_unpacklo_epi16(in[13], in[2]);
+  u[3] = _mm_unpackhi_epi16(in[13], in[2]);
+  u[4] = _mm_unpacklo_epi16(in[11], in[4]);
+  u[5] = _mm_unpackhi_epi16(in[11], in[4]);
+  u[6] = _mm_unpacklo_epi16(in[9], in[6]);
+  u[7] = _mm_unpackhi_epi16(in[9], in[6]);
+  u[8] = _mm_unpacklo_epi16(in[7], in[8]);
+  u[9] = _mm_unpackhi_epi16(in[7], in[8]);
+  u[10] = _mm_unpacklo_epi16(in[5], in[10]);
+  u[11] = _mm_unpackhi_epi16(in[5], in[10]);
+  u[12] = _mm_unpacklo_epi16(in[3], in[12]);
+  u[13] = _mm_unpackhi_epi16(in[3], in[12]);
+  u[14] = _mm_unpacklo_epi16(in[1], in[14]);
+  u[15] = _mm_unpackhi_epi16(in[1], in[14]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31);
+  v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01);
+  v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27);
+  v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05);
+  v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05);
+  v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23);
+  v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23);
+  v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09);
+  v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09);
+  v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19);
+  v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19);
+  v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13);
+  v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13);
+  v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15);
+  v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15);
+  v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17);
+  v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17);
+  v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11);
+  v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11);
+  v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21);
+  v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21);
+  v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07);
+  v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07);
+  v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25);
+  v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25);
+  v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03);
+  v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03);
+  v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29);
+  v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29);
+
+  u[0] = _mm_add_epi32(v[0], v[16]);
+  u[1] = _mm_add_epi32(v[1], v[17]);
+  u[2] = _mm_add_epi32(v[2], v[18]);
+  u[3] = _mm_add_epi32(v[3], v[19]);
+  u[4] = _mm_add_epi32(v[4], v[20]);
+  u[5] = _mm_add_epi32(v[5], v[21]);
+  u[6] = _mm_add_epi32(v[6], v[22]);
+  u[7] = _mm_add_epi32(v[7], v[23]);
+  u[8] = _mm_add_epi32(v[8], v[24]);
+  u[9] = _mm_add_epi32(v[9], v[25]);
+  u[10] = _mm_add_epi32(v[10], v[26]);
+  u[11] = _mm_add_epi32(v[11], v[27]);
+  u[12] = _mm_add_epi32(v[12], v[28]);
+  u[13] = _mm_add_epi32(v[13], v[29]);
+  u[14] = _mm_add_epi32(v[14], v[30]);
+  u[15] = _mm_add_epi32(v[15], v[31]);
+  u[16] = _mm_sub_epi32(v[0], v[16]);
+  u[17] = _mm_sub_epi32(v[1], v[17]);
+  u[18] = _mm_sub_epi32(v[2], v[18]);
+  u[19] = _mm_sub_epi32(v[3], v[19]);
+  u[20] = _mm_sub_epi32(v[4], v[20]);
+  u[21] = _mm_sub_epi32(v[5], v[21]);
+  u[22] = _mm_sub_epi32(v[6], v[22]);
+  u[23] = _mm_sub_epi32(v[7], v[23]);
+  u[24] = _mm_sub_epi32(v[8], v[24]);
+  u[25] = _mm_sub_epi32(v[9], v[25]);
+  u[26] = _mm_sub_epi32(v[10], v[26]);
+  u[27] = _mm_sub_epi32(v[11], v[27]);
+  u[28] = _mm_sub_epi32(v[12], v[28]);
+  u[29] = _mm_sub_epi32(v[13], v[29]);
+  u[30] = _mm_sub_epi32(v[14], v[30]);
+  u[31] = _mm_sub_epi32(v[15], v[31]);
+
+  v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+  v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+  v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+  v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+  v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+  v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+  v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+  v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+  v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+  v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+  v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+  v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+  v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+  v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING);
+  v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING);
+  v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING);
+  v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING);
+  v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING);
+  v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING);
+  v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING);
+  v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING);
+  v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING);
+  v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING);
+  v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING);
+  v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING);
+  v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING);
+  v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING);
+  v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING);
+  v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING);
+
+  u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+  u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+  u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+  u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+  u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+  u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+  u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+  u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+  u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+  u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+  u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+  u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+  u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+  u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+  u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+  u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+  u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
+  u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
+  u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
+  u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
+  u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
+  u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
+  u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
+  u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
+  u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS);
+  u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS);
+  u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS);
+  u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS);
+  u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS);
+  u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS);
+  u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS);
+  u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS);
+
+  s[0] = _mm_packs_epi32(u[0], u[1]);
+  s[1] = _mm_packs_epi32(u[2], u[3]);
+  s[2] = _mm_packs_epi32(u[4], u[5]);
+  s[3] = _mm_packs_epi32(u[6], u[7]);
+  s[4] = _mm_packs_epi32(u[8], u[9]);
+  s[5] = _mm_packs_epi32(u[10], u[11]);
+  s[6] = _mm_packs_epi32(u[12], u[13]);
+  s[7] = _mm_packs_epi32(u[14], u[15]);
+  s[8] = _mm_packs_epi32(u[16], u[17]);
+  s[9] = _mm_packs_epi32(u[18], u[19]);
+  s[10] = _mm_packs_epi32(u[20], u[21]);
+  s[11] = _mm_packs_epi32(u[22], u[23]);
+  s[12] = _mm_packs_epi32(u[24], u[25]);
+  s[13] = _mm_packs_epi32(u[26], u[27]);
+  s[14] = _mm_packs_epi32(u[28], u[29]);
+  s[15] = _mm_packs_epi32(u[30], u[31]);
+
+  // stage 2
+  u[0] = _mm_unpacklo_epi16(s[8], s[9]);
+  u[1] = _mm_unpackhi_epi16(s[8], s[9]);
+  u[2] = _mm_unpacklo_epi16(s[10], s[11]);
+  u[3] = _mm_unpackhi_epi16(s[10], s[11]);
+  u[4] = _mm_unpacklo_epi16(s[12], s[13]);
+  u[5] = _mm_unpackhi_epi16(s[12], s[13]);
+  u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+  u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28);
+  v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04);
+  v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12);
+  v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20);
+  v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20);
+  v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04);
+  v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04);
+  v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28);
+  v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28);
+  v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20);
+  v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20);
+  v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12);
+  v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12);
+
+  u[0] = _mm_add_epi32(v[0], v[8]);
+  u[1] = _mm_add_epi32(v[1], v[9]);
+  u[2] = _mm_add_epi32(v[2], v[10]);
+  u[3] = _mm_add_epi32(v[3], v[11]);
+  u[4] = _mm_add_epi32(v[4], v[12]);
+  u[5] = _mm_add_epi32(v[5], v[13]);
+  u[6] = _mm_add_epi32(v[6], v[14]);
+  u[7] = _mm_add_epi32(v[7], v[15]);
+  u[8] = _mm_sub_epi32(v[0], v[8]);
+  u[9] = _mm_sub_epi32(v[1], v[9]);
+  u[10] = _mm_sub_epi32(v[2], v[10]);
+  u[11] = _mm_sub_epi32(v[3], v[11]);
+  u[12] = _mm_sub_epi32(v[4], v[12]);
+  u[13] = _mm_sub_epi32(v[5], v[13]);
+  u[14] = _mm_sub_epi32(v[6], v[14]);
+  u[15] = _mm_sub_epi32(v[7], v[15]);
+
+  v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+  v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+  v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+  v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+  v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+  v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+  v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+  v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+  v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+  v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+  v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+  v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+  v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+  u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+  u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+  u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+  u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+  u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+  u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+  u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+  u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+  u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+  u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+  u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+  u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+  u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+  u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+  u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+  u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+  x[0] = _mm_add_epi16(s[0], s[4]);
+  x[1] = _mm_add_epi16(s[1], s[5]);
+  x[2] = _mm_add_epi16(s[2], s[6]);
+  x[3] = _mm_add_epi16(s[3], s[7]);
+  x[4] = _mm_sub_epi16(s[0], s[4]);
+  x[5] = _mm_sub_epi16(s[1], s[5]);
+  x[6] = _mm_sub_epi16(s[2], s[6]);
+  x[7] = _mm_sub_epi16(s[3], s[7]);
+  x[8] = _mm_packs_epi32(u[0], u[1]);
+  x[9] = _mm_packs_epi32(u[2], u[3]);
+  x[10] = _mm_packs_epi32(u[4], u[5]);
+  x[11] = _mm_packs_epi32(u[6], u[7]);
+  x[12] = _mm_packs_epi32(u[8], u[9]);
+  x[13] = _mm_packs_epi32(u[10], u[11]);
+  x[14] = _mm_packs_epi32(u[12], u[13]);
+  x[15] = _mm_packs_epi32(u[14], u[15]);
+
+  // stage 3
+  u[0] = _mm_unpacklo_epi16(x[4], x[5]);
+  u[1] = _mm_unpackhi_epi16(x[4], x[5]);
+  u[2] = _mm_unpacklo_epi16(x[6], x[7]);
+  u[3] = _mm_unpackhi_epi16(x[6], x[7]);
+  u[4] = _mm_unpacklo_epi16(x[12], x[13]);
+  u[5] = _mm_unpackhi_epi16(x[12], x[13]);
+  u[6] = _mm_unpacklo_epi16(x[14], x[15]);
+  u[7] = _mm_unpackhi_epi16(x[14], x[15]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24);
+  v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08);
+  v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08);
+  v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24);
+  v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24);
+  v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24);
+  v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24);
+  v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08);
+  v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08);
+  v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08);
+  v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08);
+  v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24);
+  v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24);
+
+  u[0] = _mm_add_epi32(v[0], v[4]);
+  u[1] = _mm_add_epi32(v[1], v[5]);
+  u[2] = _mm_add_epi32(v[2], v[6]);
+  u[3] = _mm_add_epi32(v[3], v[7]);
+  u[4] = _mm_sub_epi32(v[0], v[4]);
+  u[5] = _mm_sub_epi32(v[1], v[5]);
+  u[6] = _mm_sub_epi32(v[2], v[6]);
+  u[7] = _mm_sub_epi32(v[3], v[7]);
+  u[8] = _mm_add_epi32(v[8], v[12]);
+  u[9] = _mm_add_epi32(v[9], v[13]);
+  u[10] = _mm_add_epi32(v[10], v[14]);
+  u[11] = _mm_add_epi32(v[11], v[15]);
+  u[12] = _mm_sub_epi32(v[8], v[12]);
+  u[13] = _mm_sub_epi32(v[9], v[13]);
+  u[14] = _mm_sub_epi32(v[10], v[14]);
+  u[15] = _mm_sub_epi32(v[11], v[15]);
+
+  u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+  u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+  u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+  u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+  u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+  u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+  u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+  u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+  u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+  v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+  v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+  v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+  v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+  v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+  v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+  v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+  v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+  s[0] = _mm_add_epi16(x[0], x[2]);
+  s[1] = _mm_add_epi16(x[1], x[3]);
+  s[2] = _mm_sub_epi16(x[0], x[2]);
+  s[3] = _mm_sub_epi16(x[1], x[3]);
+  s[4] = _mm_packs_epi32(v[0], v[1]);
+  s[5] = _mm_packs_epi32(v[2], v[3]);
+  s[6] = _mm_packs_epi32(v[4], v[5]);
+  s[7] = _mm_packs_epi32(v[6], v[7]);
+  s[8] = _mm_add_epi16(x[8], x[10]);
+  s[9] = _mm_add_epi16(x[9], x[11]);
+  s[10] = _mm_sub_epi16(x[8], x[10]);
+  s[11] = _mm_sub_epi16(x[9], x[11]);
+  s[12] = _mm_packs_epi32(v[8], v[9]);
+  s[13] = _mm_packs_epi32(v[10], v[11]);
+  s[14] = _mm_packs_epi32(v[12], v[13]);
+  s[15] = _mm_packs_epi32(v[14], v[15]);
+
+  // stage 4
+  u[0] = _mm_unpacklo_epi16(s[2], s[3]);
+  u[1] = _mm_unpackhi_epi16(s[2], s[3]);
+  u[2] = _mm_unpacklo_epi16(s[6], s[7]);
+  u[3] = _mm_unpackhi_epi16(s[6], s[7]);
+  u[4] = _mm_unpacklo_epi16(s[10], s[11]);
+  u[5] = _mm_unpackhi_epi16(s[10], s[11]);
+  u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+  u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+  v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16);
+  v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16);
+  v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16);
+  v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16);
+  v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+  v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+  v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+  v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+  v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16);
+  v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16);
+  v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16);
+  v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16);
+  v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16);
+  v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16);
+  v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16);
+  v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16);
+
+  u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+  u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+  u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+  u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+  u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+  u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+  u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+  u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+  u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+  u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+  u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+  u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+  u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+  u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+  u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+  u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+  v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+  v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+  v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+  v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+  v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+  v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+  v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+  v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+  v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+  v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+  v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+  v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+  v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+  v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+  v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+  v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+  in[0] = s[0];
+  in[1] = _mm_sub_epi16(kZero, s[8]);
+  in[2] = s[12];
+  in[3] = _mm_sub_epi16(kZero, s[4]);
+  in[4] = _mm_packs_epi32(v[4], v[5]);
+  in[5] = _mm_packs_epi32(v[12], v[13]);
+  in[6] = _mm_packs_epi32(v[8], v[9]);
+  in[7] = _mm_packs_epi32(v[0], v[1]);
+  in[8] = _mm_packs_epi32(v[2], v[3]);
+  in[9] = _mm_packs_epi32(v[10], v[11]);
+  in[10] = _mm_packs_epi32(v[14], v[15]);
+  in[11] = _mm_packs_epi32(v[6], v[7]);
+  in[12] = s[5];
+  in[13] = _mm_sub_epi16(kZero, s[13]);
+  in[14] = s[9];
+  in[15] = _mm_sub_epi16(kZero, s[1]);
+}
+
+static void fdct16_sse2(__m128i *in0, __m128i *in1) {
+  fdct16_8col(in0);
+  fdct16_8col(in1);
+  array_transpose_16x16(in0, in1);
+}
+
+static void fadst16_sse2(__m128i *in0, __m128i *in1) {
+  fadst16_8col(in0);
+  fadst16_8col(in1);
+  array_transpose_16x16(in0, in1);
+}
+
+void vp10_fht16x16_sse2(const int16_t *input, tran_low_t *output, int stride,
+                        int tx_type) {
+  __m128i in0[16], in1[16];
+
+  switch (tx_type) {
+    case DCT_DCT: vpx_fdct16x16_sse2(input, output, stride); break;
+    case ADST_DCT:
+      load_buffer_16x16(input, in0, in1, stride);
+      fadst16_sse2(in0, in1);
+      right_shift_16x16(in0, in1);
+      fdct16_sse2(in0, in1);
+      write_buffer_16x16(output, in0, in1, 16);
+      break;
+    case DCT_ADST:
+      load_buffer_16x16(input, in0, in1, stride);
+      fdct16_sse2(in0, in1);
+      right_shift_16x16(in0, in1);
+      fadst16_sse2(in0, in1);
+      write_buffer_16x16(output, in0, in1, 16);
+      break;
+    case ADST_ADST:
+      load_buffer_16x16(input, in0, in1, stride);
+      fadst16_sse2(in0, in1);
+      right_shift_16x16(in0, in1);
+      fadst16_sse2(in0, in1);
+      write_buffer_16x16(output, in0, in1, 16);
+      break;
+    default: assert(0); break;
+  }
+}
diff --git a/av1/encoder/x86/dct_ssse3.c b/av1/encoder/x86/dct_ssse3.c
new file mode 100644
index 0000000..601c201
--- /dev/null
+++ b/av1/encoder/x86/dct_ssse3.c
@@ -0,0 +1,468 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#if defined(_MSC_VER) && _MSC_VER <= 1500
+// Need to include math.h before calling tmmintrin.h/intrin.h
+// in certain versions of MSVS.
+#include <math.h>
+#endif
+#include <tmmintrin.h>  // SSSE3
+
+#include "./vp10_rtcd.h"
+#include "aom_dsp/x86/inv_txfm_sse2.h"
+#include "aom_dsp/x86/txfm_common_sse2.h"
+
+void vp10_fdct8x8_quant_ssse3(
+    const int16_t* input, int stride, int16_t* coeff_ptr, intptr_t n_coeffs,
+    int skip_block, const int16_t* zbin_ptr, const int16_t* round_ptr,
+    const int16_t* quant_ptr, const int16_t* quant_shift_ptr,
+    int16_t* qcoeff_ptr, int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+    uint16_t* eob_ptr, const int16_t* scan_ptr, const int16_t* iscan_ptr) {
+  __m128i zero;
+  int pass;
+  // Constants
+  //    When we use them, in one case, they are all the same. In all others
+  //    it's a pair of them that we need to repeat four times. This is done
+  //    by constructing the 32 bit constant corresponding to that pair.
+  const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
+  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+  // Load input
+  __m128i in0 = _mm_load_si128((const __m128i*)(input + 0 * stride));
+  __m128i in1 = _mm_load_si128((const __m128i*)(input + 1 * stride));
+  __m128i in2 = _mm_load_si128((const __m128i*)(input + 2 * stride));
+  __m128i in3 = _mm_load_si128((const __m128i*)(input + 3 * stride));
+  __m128i in4 = _mm_load_si128((const __m128i*)(input + 4 * stride));
+  __m128i in5 = _mm_load_si128((const __m128i*)(input + 5 * stride));
+  __m128i in6 = _mm_load_si128((const __m128i*)(input + 6 * stride));
+  __m128i in7 = _mm_load_si128((const __m128i*)(input + 7 * stride));
+  __m128i* in[8];
+  int index = 0;
+
+  (void)scan_ptr;
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+  (void)coeff_ptr;
+
+  // Pre-condition input (shift by two)
+  in0 = _mm_slli_epi16(in0, 2);
+  in1 = _mm_slli_epi16(in1, 2);
+  in2 = _mm_slli_epi16(in2, 2);
+  in3 = _mm_slli_epi16(in3, 2);
+  in4 = _mm_slli_epi16(in4, 2);
+  in5 = _mm_slli_epi16(in5, 2);
+  in6 = _mm_slli_epi16(in6, 2);
+  in7 = _mm_slli_epi16(in7, 2);
+
+  in[0] = &in0;
+  in[1] = &in1;
+  in[2] = &in2;
+  in[3] = &in3;
+  in[4] = &in4;
+  in[5] = &in5;
+  in[6] = &in6;
+  in[7] = &in7;
+
+  // We do two passes, first the columns, then the rows. The results of the
+  // first pass are transposed so that the same column code can be reused. The
+  // results of the second pass are also transposed so that the rows (processed
+  // as columns) are put back in row positions.
+  for (pass = 0; pass < 2; pass++) {
+    // To store results of each pass before the transpose.
+    __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+    // Add/subtract
+    const __m128i q0 = _mm_add_epi16(in0, in7);
+    const __m128i q1 = _mm_add_epi16(in1, in6);
+    const __m128i q2 = _mm_add_epi16(in2, in5);
+    const __m128i q3 = _mm_add_epi16(in3, in4);
+    const __m128i q4 = _mm_sub_epi16(in3, in4);
+    const __m128i q5 = _mm_sub_epi16(in2, in5);
+    const __m128i q6 = _mm_sub_epi16(in1, in6);
+    const __m128i q7 = _mm_sub_epi16(in0, in7);
+    // Work on first four results
+    {
+      // Add/subtract
+      const __m128i r0 = _mm_add_epi16(q0, q3);
+      const __m128i r1 = _mm_add_epi16(q1, q2);
+      const __m128i r2 = _mm_sub_epi16(q1, q2);
+      const __m128i r3 = _mm_sub_epi16(q0, q3);
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+      const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+      const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+      const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+
+      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+
+      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+      // dct_const_round_shift
+
+      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+
+      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+
+      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+
+      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+      // Combine
+
+      res0 = _mm_packs_epi32(w0, w1);
+      res4 = _mm_packs_epi32(w2, w3);
+      res2 = _mm_packs_epi32(w4, w5);
+      res6 = _mm_packs_epi32(w6, w7);
+    }
+    // Work on next four results
+    {
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i d0 = _mm_sub_epi16(q6, q5);
+      const __m128i d1 = _mm_add_epi16(q6, q5);
+      const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
+      const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
+
+      // Add/subtract
+      const __m128i x0 = _mm_add_epi16(q4, r0);
+      const __m128i x1 = _mm_sub_epi16(q4, r0);
+      const __m128i x2 = _mm_sub_epi16(q7, r1);
+      const __m128i x3 = _mm_add_epi16(q7, r1);
+      // Interleave to do the multiply by constants which gets us into 32bits
+      const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+      const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+      const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+      const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+      // dct_const_round_shift
+      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+      // Combine
+      res1 = _mm_packs_epi32(w0, w1);
+      res7 = _mm_packs_epi32(w2, w3);
+      res5 = _mm_packs_epi32(w4, w5);
+      res3 = _mm_packs_epi32(w6, w7);
+    }
+    // Transpose the 8x8.
+    {
+      // 00 01 02 03 04 05 06 07
+      // 10 11 12 13 14 15 16 17
+      // 20 21 22 23 24 25 26 27
+      // 30 31 32 33 34 35 36 37
+      // 40 41 42 43 44 45 46 47
+      // 50 51 52 53 54 55 56 57
+      // 60 61 62 63 64 65 66 67
+      // 70 71 72 73 74 75 76 77
+      const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+      const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+      const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+      const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+      const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+      const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+      const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+      const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+      // 00 10 01 11 02 12 03 13
+      // 20 30 21 31 22 32 23 33
+      // 04 14 05 15 06 16 07 17
+      // 24 34 25 35 26 36 27 37
+      // 40 50 41 51 42 52 43 53
+      // 60 70 61 71 62 72 63 73
+      // 54 54 55 55 56 56 57 57
+      // 64 74 65 75 66 76 67 77
+      const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+      const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+      const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+      const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+      const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+      const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+      const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+      const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+      // 00 10 20 30 01 11 21 31
+      // 40 50 60 70 41 51 61 71
+      // 02 12 22 32 03 13 23 33
+      // 42 52 62 72 43 53 63 73
+      // 04 14 24 34 05 15 21 36
+      // 44 54 64 74 45 55 61 76
+      // 06 16 26 36 07 17 27 37
+      // 46 56 66 76 47 57 67 77
+      in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+      in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+      in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+      in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+      in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+      in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+      in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+      in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+      // 00 10 20 30 40 50 60 70
+      // 01 11 21 31 41 51 61 71
+      // 02 12 22 32 42 52 62 72
+      // 03 13 23 33 43 53 63 73
+      // 04 14 24 34 44 54 64 74
+      // 05 15 25 35 45 55 65 75
+      // 06 16 26 36 46 56 66 76
+      // 07 17 27 37 47 57 67 77
+    }
+  }
+  // Post-condition output and store it
+  {
+    // Post-condition (division by two)
+    //    division of two 16 bits signed numbers using shifts
+    //    n / 2 = (n - (n >> 15)) >> 1
+    const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+    const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+    const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+    const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+    const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+    const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+    const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+    const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+    in0 = _mm_sub_epi16(in0, sign_in0);
+    in1 = _mm_sub_epi16(in1, sign_in1);
+    in2 = _mm_sub_epi16(in2, sign_in2);
+    in3 = _mm_sub_epi16(in3, sign_in3);
+    in4 = _mm_sub_epi16(in4, sign_in4);
+    in5 = _mm_sub_epi16(in5, sign_in5);
+    in6 = _mm_sub_epi16(in6, sign_in6);
+    in7 = _mm_sub_epi16(in7, sign_in7);
+    in0 = _mm_srai_epi16(in0, 1);
+    in1 = _mm_srai_epi16(in1, 1);
+    in2 = _mm_srai_epi16(in2, 1);
+    in3 = _mm_srai_epi16(in3, 1);
+    in4 = _mm_srai_epi16(in4, 1);
+    in5 = _mm_srai_epi16(in5, 1);
+    in6 = _mm_srai_epi16(in6, 1);
+    in7 = _mm_srai_epi16(in7, 1);
+  }
+
+  iscan_ptr += n_coeffs;
+  qcoeff_ptr += n_coeffs;
+  dqcoeff_ptr += n_coeffs;
+  n_coeffs = -n_coeffs;
+  zero = _mm_setzero_si128();
+
+  if (!skip_block) {
+    __m128i eob;
+    __m128i round, quant, dequant, thr;
+    int16_t nzflag;
+    {
+      __m128i coeff0, coeff1;
+
+      // Setup global values
+      {
+        round = _mm_load_si128((const __m128i*)round_ptr);
+        quant = _mm_load_si128((const __m128i*)quant_ptr);
+        dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+      }
+
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+        // Do DC and first 15 AC
+        coeff0 = *in[0];
+        coeff1 = *in[1];
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+        round = _mm_unpackhi_epi64(round, round);
+        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+        quant = _mm_unpackhi_epi64(quant, quant);
+        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+        // Reinsert signs
+        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+        dequant = _mm_unpackhi_epi64(dequant, dequant);
+        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+      }
+
+      {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob = _mm_max_epi16(eob, eob1);
+      }
+      n_coeffs += 8 * 2;
+    }
+
+    // AC only loop
+    index = 2;
+    thr = _mm_srai_epi16(dequant, 1);
+    while (n_coeffs < 0) {
+      __m128i coeff0, coeff1;
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+
+        assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
+        coeff0 = *in[index];
+        coeff1 = *in[index + 1];
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
+                 _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
+
+        if (nzflag) {
+          qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+          qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+          qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+          qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+          // Reinsert signs
+          qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+          qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+          qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+          qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+          coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+          coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+        } else {
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+        }
+      }
+
+      if (nzflag) {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob0, eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob0 = _mm_max_epi16(eob0, eob1);
+        eob = _mm_max_epi16(eob, eob0);
+      }
+      n_coeffs += 8 * 2;
+      index += 2;
+    }
+
+    // Accumulate EOB
+    {
+      __m128i eob_shuffled;
+      eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      *eob_ptr = _mm_extract_epi16(eob, 1);
+    }
+  } else {
+    do {
+      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+      n_coeffs += 8 * 2;
+    } while (n_coeffs < 0);
+    *eob_ptr = 0;
+  }
+}
diff --git a/av1/encoder/x86/error_intrin_avx2.c b/av1/encoder/x86/error_intrin_avx2.c
new file mode 100644
index 0000000..6e7c093
--- /dev/null
+++ b/av1/encoder/x86/error_intrin_avx2.c
@@ -0,0 +1,71 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Usee of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h>  // AVX2
+
+#include "./vp10_rtcd.h"
+#include "aom/vpx_integer.h"
+
+int64_t vp10_block_error_avx2(const int16_t *coeff, const int16_t *dqcoeff,
+                              intptr_t block_size, int64_t *ssz) {
+  __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
+  __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
+  __m256i sse_reg_64hi, ssz_reg_64hi;
+  __m128i sse_reg128, ssz_reg128;
+  int64_t sse;
+  int i;
+  const __m256i zero_reg = _mm256_set1_epi16(0);
+
+  // init sse and ssz registerd to zero
+  sse_reg = _mm256_set1_epi16(0);
+  ssz_reg = _mm256_set1_epi16(0);
+
+  for (i = 0; i < block_size; i += 16) {
+    // load 32 bytes from coeff and dqcoeff
+    coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
+    dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
+    // dqcoeff - coeff
+    dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
+    // madd (dqcoeff - coeff)
+    dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
+    // madd coeff
+    coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
+    // expand each double word of madd (dqcoeff - coeff) to quad word
+    exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
+    exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
+    // expand each double word of madd (coeff) to quad word
+    exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
+    exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
+    // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
+    sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
+    ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
+    sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
+    ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+  }
+  // save the higher 64 bit of each 128 bit lane
+  sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
+  ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
+  // add the higher 64 bit to the low 64 bit
+  sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
+  ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
+
+  // add each 64 bit from each of the 128 bit lane of the 256 bit
+  sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
+                             _mm256_extractf128_si256(sse_reg, 1));
+
+  ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
+                             _mm256_extractf128_si256(ssz_reg, 1));
+
+  // store the results
+  _mm_storel_epi64((__m128i *)(&sse), sse_reg128);
+
+  _mm_storel_epi64((__m128i *)(ssz), ssz_reg128);
+  return sse;
+}
diff --git a/av1/encoder/x86/error_sse2.asm b/av1/encoder/x86/error_sse2.asm
new file mode 100644
index 0000000..0772da4
--- /dev/null
+++ b/av1/encoder/x86/error_sse2.asm
@@ -0,0 +1,122 @@
+;
+;  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+;  Use of this source code is governed by a BSD-style license
+;  that can be found in the LICENSE file in the root of the source
+;  tree. An additional intellectual property rights grant can be found
+;  in the file PATENTS.  All contributing project authors may
+;  be found in the AUTHORS file in the root of the source tree.
+;
+
+%define private_prefix vp10
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+; int64_t vp10_block_error(int16_t *coeff, int16_t *dqcoeff, intptr_t block_size,
+;                         int64_t *ssz)
+
+INIT_XMM sse2
+cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz
+  pxor      m4, m4                 ; sse accumulator
+  pxor      m6, m6                 ; ssz accumulator
+  pxor      m5, m5                 ; dedicated zero register
+  lea     uqcq, [uqcq+sizeq*2]
+  lea     dqcq, [dqcq+sizeq*2]
+  neg    sizeq
+.loop:
+  mova      m2, [uqcq+sizeq*2]
+  mova      m0, [dqcq+sizeq*2]
+  mova      m3, [uqcq+sizeq*2+mmsize]
+  mova      m1, [dqcq+sizeq*2+mmsize]
+  psubw     m0, m2
+  psubw     m1, m3
+  ; individual errors are max. 15bit+sign, so squares are 30bit, and
+  ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit)
+  pmaddwd   m0, m0
+  pmaddwd   m1, m1
+  pmaddwd   m2, m2
+  pmaddwd   m3, m3
+  ; accumulate in 64bit
+  punpckldq m7, m0, m5
+  punpckhdq m0, m5
+  paddq     m4, m7
+  punpckldq m7, m1, m5
+  paddq     m4, m0
+  punpckhdq m1, m5
+  paddq     m4, m7
+  punpckldq m7, m2, m5
+  paddq     m4, m1
+  punpckhdq m2, m5
+  paddq     m6, m7
+  punpckldq m7, m3, m5
+  paddq     m6, m2
+  punpckhdq m3, m5
+  paddq     m6, m7
+  paddq     m6, m3
+  add    sizeq, mmsize
+  jl .loop
+
+  ; accumulate horizontally and store in return value
+  movhlps   m5, m4
+  movhlps   m7, m6
+  paddq     m4, m5
+  paddq     m6, m7
+%if ARCH_X86_64
+  movq    rax, m4
+  movq [sszq], m6
+%else
+  mov     eax, sszm
+  pshufd   m5, m4, 0x1
+  movq  [eax], m6
+  movd    eax, m4
+  movd    edx, m5
+%endif
+  RET
+
+; Compute the sum of squared difference between two int16_t vectors.
+; int64_t vp10_block_error_fp(int16_t *coeff, int16_t *dqcoeff,
+;                            intptr_t block_size)
+
+INIT_XMM sse2
+cglobal block_error_fp, 3, 3, 6, uqc, dqc, size
+  pxor      m4, m4                 ; sse accumulator
+  pxor      m5, m5                 ; dedicated zero register
+  lea     uqcq, [uqcq+sizeq*2]
+  lea     dqcq, [dqcq+sizeq*2]
+  neg    sizeq
+.loop:
+  mova      m2, [uqcq+sizeq*2]
+  mova      m0, [dqcq+sizeq*2]
+  mova      m3, [uqcq+sizeq*2+mmsize]
+  mova      m1, [dqcq+sizeq*2+mmsize]
+  psubw     m0, m2
+  psubw     m1, m3
+  ; individual errors are max. 15bit+sign, so squares are 30bit, and
+  ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit)
+  pmaddwd   m0, m0
+  pmaddwd   m1, m1
+  ; accumulate in 64bit
+  punpckldq m3, m0, m5
+  punpckhdq m0, m5
+  paddq     m4, m3
+  punpckldq m3, m1, m5
+  paddq     m4, m0
+  punpckhdq m1, m5
+  paddq     m4, m3
+  paddq     m4, m1
+  add    sizeq, mmsize
+  jl .loop
+
+  ; accumulate horizontally and store in return value
+  movhlps   m5, m4
+  paddq     m4, m5
+%if ARCH_X86_64
+  movq    rax, m4
+%else
+  pshufd   m5, m4, 0x1
+  movd    eax, m4
+  movd    edx, m5
+%endif
+  RET
diff --git a/av1/encoder/x86/highbd_block_error_intrin_sse2.c b/av1/encoder/x86/highbd_block_error_intrin_sse2.c
new file mode 100644
index 0000000..2728880
--- /dev/null
+++ b/av1/encoder/x86/highbd_block_error_intrin_sse2.c
@@ -0,0 +1,71 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+#include <stdio.h>
+
+#include "av1/common/common.h"
+
+int64_t vp10_highbd_block_error_sse2(tran_low_t *coeff, tran_low_t *dqcoeff,
+                                     intptr_t block_size, int64_t *ssz,
+                                     int bps) {
+  int i, j, test;
+  uint32_t temp[4];
+  __m128i max, min, cmp0, cmp1, cmp2, cmp3;
+  int64_t error = 0, sqcoeff = 0;
+  const int shift = 2 * (bps - 8);
+  const int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+  for (i = 0; i < block_size; i += 8) {
+    // Load the data into xmm registers
+    __m128i mm_coeff = _mm_load_si128((__m128i *)(coeff + i));
+    __m128i mm_coeff2 = _mm_load_si128((__m128i *)(coeff + i + 4));
+    __m128i mm_dqcoeff = _mm_load_si128((__m128i *)(dqcoeff + i));
+    __m128i mm_dqcoeff2 = _mm_load_si128((__m128i *)(dqcoeff + i + 4));
+    // Check if any values require more than 15 bit
+    max = _mm_set1_epi32(0x3fff);
+    min = _mm_set1_epi32(0xffffc000);
+    cmp0 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff, max),
+                         _mm_cmplt_epi32(mm_coeff, min));
+    cmp1 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff2, max),
+                         _mm_cmplt_epi32(mm_coeff2, min));
+    cmp2 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff, max),
+                         _mm_cmplt_epi32(mm_dqcoeff, min));
+    cmp3 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff2, max),
+                         _mm_cmplt_epi32(mm_dqcoeff2, min));
+    test = _mm_movemask_epi8(
+        _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3)));
+
+    if (!test) {
+      __m128i mm_diff, error_sse2, sqcoeff_sse2;
+      mm_coeff = _mm_packs_epi32(mm_coeff, mm_coeff2);
+      mm_dqcoeff = _mm_packs_epi32(mm_dqcoeff, mm_dqcoeff2);
+      mm_diff = _mm_sub_epi16(mm_coeff, mm_dqcoeff);
+      error_sse2 = _mm_madd_epi16(mm_diff, mm_diff);
+      sqcoeff_sse2 = _mm_madd_epi16(mm_coeff, mm_coeff);
+      _mm_storeu_si128((__m128i *)temp, error_sse2);
+      error = error + temp[0] + temp[1] + temp[2] + temp[3];
+      _mm_storeu_si128((__m128i *)temp, sqcoeff_sse2);
+      sqcoeff += temp[0] + temp[1] + temp[2] + temp[3];
+    } else {
+      for (j = 0; j < 8; j++) {
+        const int64_t diff = coeff[i + j] - dqcoeff[i + j];
+        error += diff * diff;
+        sqcoeff += (int64_t)coeff[i + j] * (int64_t)coeff[i + j];
+      }
+    }
+  }
+  assert(error >= 0 && sqcoeff >= 0);
+  error = (error + rounding) >> shift;
+  sqcoeff = (sqcoeff + rounding) >> shift;
+
+  *ssz = sqcoeff;
+  return error;
+}
diff --git a/av1/encoder/x86/quantize_sse2.c b/av1/encoder/x86/quantize_sse2.c
new file mode 100644
index 0000000..7ef16e6
--- /dev/null
+++ b/av1/encoder/x86/quantize_sse2.c
@@ -0,0 +1,210 @@
+/*
+ *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+#include <xmmintrin.h>
+
+#include "./vp10_rtcd.h"
+#include "aom/vpx_integer.h"
+
+void vp10_quantize_fp_sse2(const int16_t* coeff_ptr, intptr_t n_coeffs,
+                           int skip_block, const int16_t* zbin_ptr,
+                           const int16_t* round_ptr, const int16_t* quant_ptr,
+                           const int16_t* quant_shift_ptr, int16_t* qcoeff_ptr,
+                           int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+                           uint16_t* eob_ptr, const int16_t* scan_ptr,
+                           const int16_t* iscan_ptr) {
+  __m128i zero;
+  __m128i thr;
+  int16_t nzflag;
+  (void)scan_ptr;
+  (void)zbin_ptr;
+  (void)quant_shift_ptr;
+
+  coeff_ptr += n_coeffs;
+  iscan_ptr += n_coeffs;
+  qcoeff_ptr += n_coeffs;
+  dqcoeff_ptr += n_coeffs;
+  n_coeffs = -n_coeffs;
+  zero = _mm_setzero_si128();
+
+  if (!skip_block) {
+    __m128i eob;
+    __m128i round, quant, dequant;
+    {
+      __m128i coeff0, coeff1;
+
+      // Setup global values
+      {
+        round = _mm_load_si128((const __m128i*)round_ptr);
+        quant = _mm_load_si128((const __m128i*)quant_ptr);
+        dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+      }
+
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+        // Do DC and first 15 AC
+        coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+        coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+        round = _mm_unpackhi_epi64(round, round);
+        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+        quant = _mm_unpackhi_epi64(quant, quant);
+        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+        // Reinsert signs
+        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+        dequant = _mm_unpackhi_epi64(dequant, dequant);
+        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+      }
+
+      {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob = _mm_max_epi16(eob, eob1);
+      }
+      n_coeffs += 8 * 2;
+    }
+
+    thr = _mm_srai_epi16(dequant, 1);
+
+    // AC only loop
+    while (n_coeffs < 0) {
+      __m128i coeff0, coeff1;
+      {
+        __m128i coeff0_sign, coeff1_sign;
+        __m128i qcoeff0, qcoeff1;
+        __m128i qtmp0, qtmp1;
+
+        coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+        coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+        // Poor man's sign extract
+        coeff0_sign = _mm_srai_epi16(coeff0, 15);
+        coeff1_sign = _mm_srai_epi16(coeff1, 15);
+        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+        nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
+                 _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
+
+        if (nzflag) {
+          qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+          qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+          qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+          qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+          // Reinsert signs
+          qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+          qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+          qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+          qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+          coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+          coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+        } else {
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+        }
+      }
+
+      if (nzflag) {
+        // Scan for eob
+        __m128i zero_coeff0, zero_coeff1;
+        __m128i nzero_coeff0, nzero_coeff1;
+        __m128i iscan0, iscan1;
+        __m128i eob0, eob1;
+        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+        // Add one to convert from indices to counts
+        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+        eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+        eob0 = _mm_max_epi16(eob0, eob1);
+        eob = _mm_max_epi16(eob, eob0);
+      }
+      n_coeffs += 8 * 2;
+    }
+
+    // Accumulate EOB
+    {
+      __m128i eob_shuffled;
+      eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+      eob = _mm_max_epi16(eob, eob_shuffled);
+      *eob_ptr = _mm_extract_epi16(eob, 1);
+    }
+  } else {
+    do {
+      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+      n_coeffs += 8 * 2;
+    } while (n_coeffs < 0);
+    *eob_ptr = 0;
+  }
+}
diff --git a/av1/encoder/x86/quantize_ssse3_x86_64.asm b/av1/encoder/x86/quantize_ssse3_x86_64.asm
new file mode 100644
index 0000000..b8fefa2
--- /dev/null
+++ b/av1/encoder/x86/quantize_ssse3_x86_64.asm
@@ -0,0 +1,201 @@
+;
+;  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+;  Use of this source code is governed by a BSD-style license
+;  that can be found in the LICENSE file in the root of the source
+;  tree. An additional intellectual property rights grant can be found
+;  in the file PATENTS.  All contributing project authors may
+;  be found in the AUTHORS file in the root of the source tree.
+;
+
+%define private_prefix vp10
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION_RODATA
+pw_1: times 8 dw 1
+
+SECTION .text
+
+%macro QUANTIZE_FP 2
+cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
+                                shift, qcoeff, dqcoeff, dequant, \
+                                eob, scan, iscan
+  cmp                    dword skipm, 0
+  jne .blank
+
+  ; actual quantize loop - setup pointers, rounders, etc.
+  movifnidn                   coeffq, coeffmp
+  movifnidn                  ncoeffq, ncoeffmp
+  mov                             r2, dequantmp
+  movifnidn                    zbinq, zbinmp
+  movifnidn                   roundq, roundmp
+  movifnidn                   quantq, quantmp
+  mova                            m1, [roundq]             ; m1 = round
+  mova                            m2, [quantq]             ; m2 = quant
+%ifidn %1, fp_32x32
+  pcmpeqw                         m5, m5
+  psrlw                           m5, 15
+  paddw                           m1, m5
+  psrlw                           m1, 1                    ; m1 = (m1 + 1) / 2
+%endif
+  mova                            m3, [r2q]                ; m3 = dequant
+  mov                             r3, qcoeffmp
+  mov                             r4, dqcoeffmp
+  mov                             r5, iscanmp
+%ifidn %1, fp_32x32
+  psllw                           m2, 1
+%endif
+  pxor                            m5, m5                   ; m5 = dedicated zero
+
+  lea                         coeffq, [  coeffq+ncoeffq*2]
+  lea                            r5q, [  r5q+ncoeffq*2]
+  lea                            r3q, [ r3q+ncoeffq*2]
+  lea                            r4q, [r4q+ncoeffq*2]
+  neg                        ncoeffq
+
+  ; get DC and first 15 AC coeffs
+  mova                            m9, [  coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+  mova                           m10, [  coeffq+ncoeffq*2+16] ; m10 = c[i]
+  pabsw                           m6, m9                   ; m6 = abs(m9)
+  pabsw                          m11, m10                  ; m11 = abs(m10)
+  pcmpeqw                         m7, m7
+
+  paddsw                          m6, m1                   ; m6 += round
+  punpckhqdq                      m1, m1
+  paddsw                         m11, m1                   ; m11 += round
+  pmulhw                          m8, m6, m2               ; m8 = m6*q>>16
+  punpckhqdq                      m2, m2
+  pmulhw                         m13, m11, m2              ; m13 = m11*q>>16
+  psignw                          m8, m9                   ; m8 = reinsert sign
+  psignw                         m13, m10                  ; m13 = reinsert sign
+  mova            [r3q+ncoeffq*2+ 0], m8
+  mova            [r3q+ncoeffq*2+16], m13
+%ifidn %1, fp_32x32
+  pabsw                           m8, m8
+  pabsw                          m13, m13
+%endif
+  pmullw                          m8, m3                   ; r4[i] = r3[i] * q
+  punpckhqdq                      m3, m3
+  pmullw                         m13, m3                   ; r4[i] = r3[i] * q
+%ifidn %1, fp_32x32
+  psrlw                           m8, 1
+  psrlw                          m13, 1
+  psignw                          m8, m9
+  psignw                         m13, m10
+  psrlw                           m0, m3, 2
+%else
+  psrlw                           m0, m3, 1
+%endif
+  mova            [r4q+ncoeffq*2+ 0], m8
+  mova            [r4q+ncoeffq*2+16], m13
+  pcmpeqw                         m8, m5                   ; m8 = c[i] == 0
+  pcmpeqw                        m13, m5                   ; m13 = c[i] == 0
+  mova                            m6, [  r5q+ncoeffq*2+ 0] ; m6 = scan[i]
+  mova                           m11, [  r5q+ncoeffq*2+16] ; m11 = scan[i]
+  psubw                           m6, m7                   ; m6 = scan[i] + 1
+  psubw                          m11, m7                   ; m11 = scan[i] + 1
+  pandn                           m8, m6                   ; m8 = max(eob)
+  pandn                          m13, m11                  ; m13 = max(eob)
+  pmaxsw                          m8, m13
+  add                        ncoeffq, mmsize
+  jz .accumulate_eob
+
+.ac_only_loop:
+  mova                            m9, [  coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+  mova                           m10, [  coeffq+ncoeffq*2+16] ; m10 = c[i]
+  pabsw                           m6, m9                   ; m6 = abs(m9)
+  pabsw                          m11, m10                  ; m11 = abs(m10)
+
+  pcmpgtw                         m7, m6,  m0
+  pcmpgtw                        m12, m11, m0
+  pmovmskb                       r6d, m7
+  pmovmskb                       r2d, m12
+
+  or                              r6, r2
+  jz .skip_iter
+
+  pcmpeqw                         m7, m7
+
+  paddsw                          m6, m1                   ; m6 += round
+  paddsw                         m11, m1                   ; m11 += round
+  pmulhw                         m14, m6, m2               ; m14 = m6*q>>16
+  pmulhw                         m13, m11, m2              ; m13 = m11*q>>16
+  psignw                         m14, m9                   ; m14 = reinsert sign
+  psignw                         m13, m10                  ; m13 = reinsert sign
+  mova            [r3q+ncoeffq*2+ 0], m14
+  mova            [r3q+ncoeffq*2+16], m13
+%ifidn %1, fp_32x32
+  pabsw                          m14, m14
+  pabsw                          m13, m13
+%endif
+  pmullw                         m14, m3                   ; r4[i] = r3[i] * q
+  pmullw                         m13, m3                   ; r4[i] = r3[i] * q
+%ifidn %1, fp_32x32
+  psrlw                          m14, 1
+  psrlw                          m13, 1
+  psignw                         m14, m9
+  psignw                         m13, m10
+%endif
+  mova            [r4q+ncoeffq*2+ 0], m14
+  mova            [r4q+ncoeffq*2+16], m13
+  pcmpeqw                        m14, m5                   ; m14 = c[i] == 0
+  pcmpeqw                        m13, m5                   ; m13 = c[i] == 0
+  mova                            m6, [  r5q+ncoeffq*2+ 0] ; m6 = scan[i]
+  mova                           m11, [  r5q+ncoeffq*2+16] ; m11 = scan[i]
+  psubw                           m6, m7                   ; m6 = scan[i] + 1
+  psubw                          m11, m7                   ; m11 = scan[i] + 1
+  pandn                          m14, m6                   ; m14 = max(eob)
+  pandn                          m13, m11                  ; m13 = max(eob)
+  pmaxsw                          m8, m14
+  pmaxsw                          m8, m13
+  add                        ncoeffq, mmsize
+  jl .ac_only_loop
+
+  jmp .accumulate_eob
+.skip_iter:
+  mova            [r3q+ncoeffq*2+ 0], m5
+  mova            [r3q+ncoeffq*2+16], m5
+  mova            [r4q+ncoeffq*2+ 0], m5
+  mova            [r4q+ncoeffq*2+16], m5
+  add                        ncoeffq, mmsize
+  jl .ac_only_loop
+
+.accumulate_eob:
+  ; horizontally accumulate/max eobs and write into [eob] memory pointer
+  mov                             r2, eobmp
+  pshufd                          m7, m8, 0xe
+  pmaxsw                          m8, m7
+  pshuflw                         m7, m8, 0xe
+  pmaxsw                          m8, m7
+  pshuflw                         m7, m8, 0x1
+  pmaxsw                          m8, m7
+  pextrw                          r6, m8, 0
+  mov                           [r2], r6
+  RET
+
+  ; skip-block, i.e. just write all zeroes
+.blank:
+  mov                             r0, dqcoeffmp
+  movifnidn                  ncoeffq, ncoeffmp
+  mov                             r2, qcoeffmp
+  mov                             r3, eobmp
+
+  lea                            r0q, [r0q+ncoeffq*2]
+  lea                            r2q, [r2q+ncoeffq*2]
+  neg                        ncoeffq
+  pxor                            m7, m7
+.blank_loop:
+  mova            [r0q+ncoeffq*2+ 0], m7
+  mova            [r0q+ncoeffq*2+16], m7
+  mova            [r2q+ncoeffq*2+ 0], m7
+  mova            [r2q+ncoeffq*2+16], m7
+  add                        ncoeffq, mmsize
+  jl .blank_loop
+  mov                     word [r3q], 0
+  RET
+%endmacro
+
+INIT_XMM ssse3
+QUANTIZE_FP fp, 7
+QUANTIZE_FP fp_32x32, 7
diff --git a/av1/encoder/x86/ssim_opt_x86_64.asm b/av1/encoder/x86/ssim_opt_x86_64.asm
new file mode 100644
index 0000000..29659ee
--- /dev/null
+++ b/av1/encoder/x86/ssim_opt_x86_64.asm
@@ -0,0 +1,216 @@
+;
+;  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+;  Use of this source code is governed by a BSD-style license
+;  that can be found in the LICENSE file in the root of the source
+;  tree. An additional intellectual property rights grant can be found
+;  in the file PATENTS.  All contributing project authors may
+;  be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "aom_ports/x86_abi_support.asm"
+
+; tabulate_ssim - sums sum_s,sum_r,sum_sq_s,sum_sq_r, sum_sxr
+%macro TABULATE_SSIM 0
+        paddusw         xmm15, xmm3  ; sum_s
+        paddusw         xmm14, xmm4  ; sum_r
+        movdqa          xmm1, xmm3
+        pmaddwd         xmm1, xmm1
+        paddd           xmm13, xmm1 ; sum_sq_s
+        movdqa          xmm2, xmm4
+        pmaddwd         xmm2, xmm2
+        paddd           xmm12, xmm2 ; sum_sq_r
+        pmaddwd         xmm3, xmm4
+        paddd           xmm11, xmm3  ; sum_sxr
+%endmacro
+
+; Sum across the register %1 starting with q words
+%macro SUM_ACROSS_Q 1
+        movdqa          xmm2,%1
+        punpckldq       %1,xmm0
+        punpckhdq       xmm2,xmm0
+        paddq           %1,xmm2
+        movdqa          xmm2,%1
+        punpcklqdq      %1,xmm0
+        punpckhqdq      xmm2,xmm0
+        paddq           %1,xmm2
+%endmacro
+
+; Sum across the register %1 starting with q words
+%macro SUM_ACROSS_W 1
+        movdqa          xmm1, %1
+        punpcklwd       %1,xmm0
+        punpckhwd       xmm1,xmm0
+        paddd           %1, xmm1
+        SUM_ACROSS_Q    %1
+%endmacro
+;void ssim_parms_sse2(
+;    unsigned char *s,
+;    int sp,
+;    unsigned char *r,
+;    int rp
+;    unsigned long *sum_s,
+;    unsigned long *sum_r,
+;    unsigned long *sum_sq_s,
+;    unsigned long *sum_sq_r,
+;    unsigned long *sum_sxr);
+;
+; TODO: Use parm passing through structure, probably don't need the pxors
+; ( calling app will initialize to 0 ) could easily fit everything in sse2
+; without too much hastle, and can probably do better estimates with psadw
+; or pavgb At this point this is just meant to be first pass for calculating
+; all the parms needed for 16x16 ssim so we can play with dssim as distortion
+; in mode selection code.
+global sym(vp10_ssim_parms_16x16_sse2) PRIVATE
+sym(vp10_ssim_parms_16x16_sse2):
+    push        rbp
+    mov         rbp, rsp
+    SHADOW_ARGS_TO_STACK 9
+    SAVE_XMM 15
+    push        rsi
+    push        rdi
+    ; end prolog
+
+    mov             rsi,        arg(0) ;s
+    mov             rcx,        arg(1) ;sp
+    mov             rdi,        arg(2) ;r
+    mov             rax,        arg(3) ;rp
+
+    pxor            xmm0, xmm0
+    pxor            xmm15,xmm15  ;sum_s
+    pxor            xmm14,xmm14  ;sum_r
+    pxor            xmm13,xmm13  ;sum_sq_s
+    pxor            xmm12,xmm12  ;sum_sq_r
+    pxor            xmm11,xmm11  ;sum_sxr
+
+    mov             rdx, 16      ;row counter
+.NextRow:
+
+    ;grab source and reference pixels
+    movdqu          xmm5, [rsi]
+    movdqu          xmm6, [rdi]
+    movdqa          xmm3, xmm5
+    movdqa          xmm4, xmm6
+    punpckhbw       xmm3, xmm0 ; high_s
+    punpckhbw       xmm4, xmm0 ; high_r
+
+    TABULATE_SSIM
+
+    movdqa          xmm3, xmm5
+    movdqa          xmm4, xmm6
+    punpcklbw       xmm3, xmm0 ; low_s
+    punpcklbw       xmm4, xmm0 ; low_r
+
+    TABULATE_SSIM
+
+    add             rsi, rcx   ; next s row
+    add             rdi, rax   ; next r row
+
+    dec             rdx        ; counter
+    jnz .NextRow
+
+    SUM_ACROSS_W    xmm15
+    SUM_ACROSS_W    xmm14
+    SUM_ACROSS_Q    xmm13
+    SUM_ACROSS_Q    xmm12
+    SUM_ACROSS_Q    xmm11
+
+    mov             rdi,arg(4)
+    movd            [rdi], xmm15;
+    mov             rdi,arg(5)
+    movd            [rdi], xmm14;
+    mov             rdi,arg(6)
+    movd            [rdi], xmm13;
+    mov             rdi,arg(7)
+    movd            [rdi], xmm12;
+    mov             rdi,arg(8)
+    movd            [rdi], xmm11;
+
+    ; begin epilog
+    pop         rdi
+    pop         rsi
+    RESTORE_XMM
+    UNSHADOW_ARGS
+    pop         rbp
+    ret
+
+;void ssim_parms_sse2(
+;    unsigned char *s,
+;    int sp,
+;    unsigned char *r,
+;    int rp
+;    unsigned long *sum_s,
+;    unsigned long *sum_r,
+;    unsigned long *sum_sq_s,
+;    unsigned long *sum_sq_r,
+;    unsigned long *sum_sxr);
+;
+; TODO: Use parm passing through structure, probably don't need the pxors
+; ( calling app will initialize to 0 ) could easily fit everything in sse2
+; without too much hastle, and can probably do better estimates with psadw
+; or pavgb At this point this is just meant to be first pass for calculating
+; all the parms needed for 16x16 ssim so we can play with dssim as distortion
+; in mode selection code.
+global sym(vp10_ssim_parms_8x8_sse2) PRIVATE
+sym(vp10_ssim_parms_8x8_sse2):
+    push        rbp
+    mov         rbp, rsp
+    SHADOW_ARGS_TO_STACK 9
+    SAVE_XMM 15
+    push        rsi
+    push        rdi
+    ; end prolog
+
+    mov             rsi,        arg(0) ;s
+    mov             rcx,        arg(1) ;sp
+    mov             rdi,        arg(2) ;r
+    mov             rax,        arg(3) ;rp
+
+    pxor            xmm0, xmm0
+    pxor            xmm15,xmm15  ;sum_s
+    pxor            xmm14,xmm14  ;sum_r
+    pxor            xmm13,xmm13  ;sum_sq_s
+    pxor            xmm12,xmm12  ;sum_sq_r
+    pxor            xmm11,xmm11  ;sum_sxr
+
+    mov             rdx, 8      ;row counter
+.NextRow:
+
+    ;grab source and reference pixels
+    movq            xmm3, [rsi]
+    movq            xmm4, [rdi]
+    punpcklbw       xmm3, xmm0 ; low_s
+    punpcklbw       xmm4, xmm0 ; low_r
+
+    TABULATE_SSIM
+
+    add             rsi, rcx   ; next s row
+    add             rdi, rax   ; next r row
+
+    dec             rdx        ; counter
+    jnz .NextRow
+
+    SUM_ACROSS_W    xmm15
+    SUM_ACROSS_W    xmm14
+    SUM_ACROSS_Q    xmm13
+    SUM_ACROSS_Q    xmm12
+    SUM_ACROSS_Q    xmm11
+
+    mov             rdi,arg(4)
+    movd            [rdi], xmm15;
+    mov             rdi,arg(5)
+    movd            [rdi], xmm14;
+    mov             rdi,arg(6)
+    movd            [rdi], xmm13;
+    mov             rdi,arg(7)
+    movd            [rdi], xmm12;
+    mov             rdi,arg(8)
+    movd            [rdi], xmm11;
+
+    ; begin epilog
+    pop         rdi
+    pop         rsi
+    RESTORE_XMM
+    UNSHADOW_ARGS
+    pop         rbp
+    ret
diff --git a/av1/encoder/x86/temporal_filter_apply_sse2.asm b/av1/encoder/x86/temporal_filter_apply_sse2.asm
new file mode 100644
index 0000000..eabe575
--- /dev/null
+++ b/av1/encoder/x86/temporal_filter_apply_sse2.asm
@@ -0,0 +1,212 @@
+;
+;  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+;  Use of this source code is governed by a BSD-style license
+;  that can be found in the LICENSE file in the root of the source
+;  tree. An additional intellectual property rights grant can be found
+;  in the file PATENTS.  All contributing project authors may
+;  be found in the AUTHORS file in the root of the source tree.
+;
+
+
+%include "aom_ports/x86_abi_support.asm"
+
+; void vp10_temporal_filter_apply_sse2 | arg
+;  (unsigned char  *frame1,           |  0
+;   unsigned int    stride,           |  1
+;   unsigned char  *frame2,           |  2
+;   unsigned int    block_width,      |  3
+;   unsigned int    block_height,     |  4
+;   int             strength,         |  5
+;   int             filter_weight,    |  6
+;   unsigned int   *accumulator,      |  7
+;   unsigned short *count)            |  8
+global sym(vp10_temporal_filter_apply_sse2) PRIVATE
+sym(vp10_temporal_filter_apply_sse2):
+
+    push        rbp
+    mov         rbp, rsp
+    SHADOW_ARGS_TO_STACK 9
+    SAVE_XMM 7
+    GET_GOT     rbx
+    push        rsi
+    push        rdi
+    ALIGN_STACK 16, rax
+    %define block_width    0
+    %define block_height  16
+    %define strength      32
+    %define filter_weight 48
+    %define rounding_bit  64
+    %define rbp_backup    80
+    %define stack_size    96
+    sub         rsp,           stack_size
+    mov         [rsp + rbp_backup], rbp
+    ; end prolog
+
+        mov         edx,            arg(3)
+        mov         [rsp + block_width], rdx
+        mov         edx,            arg(4)
+        mov         [rsp + block_height], rdx
+        movd        xmm6,           arg(5)
+        movdqa      [rsp + strength], xmm6 ; where strength is used, all 16 bytes are read
+
+        ; calculate the rounding bit outside the loop
+        ; 0x8000 >> (16 - strength)
+        mov         rdx,            16
+        sub         rdx,            arg(5) ; 16 - strength
+        movq        xmm4,           rdx    ; can't use rdx w/ shift
+        movdqa      xmm5,           [GLOBAL(_const_top_bit)]
+        psrlw       xmm5,           xmm4
+        movdqa      [rsp + rounding_bit], xmm5
+
+        mov         rsi,            arg(0) ; src/frame1
+        mov         rdx,            arg(2) ; predictor frame
+        mov         rdi,            arg(7) ; accumulator
+        mov         rax,            arg(8) ; count
+
+        ; dup the filter weight and store for later
+        movd        xmm0,           arg(6) ; filter_weight
+        pshuflw     xmm0,           xmm0, 0
+        punpcklwd   xmm0,           xmm0
+        movdqa      [rsp + filter_weight], xmm0
+
+        mov         rbp,            arg(1) ; stride
+        pxor        xmm7,           xmm7   ; zero for extraction
+
+        mov         rcx,            [rsp + block_width]
+        imul        rcx,            [rsp + block_height]
+        add         rcx,            rdx
+        cmp         dword ptr [rsp + block_width], 8
+        jne         .temporal_filter_apply_load_16
+
+.temporal_filter_apply_load_8:
+        movq        xmm0,           [rsi]  ; first row
+        lea         rsi,            [rsi + rbp] ; += stride
+        punpcklbw   xmm0,           xmm7   ; src[ 0- 7]
+        movq        xmm1,           [rsi]  ; second row
+        lea         rsi,            [rsi + rbp] ; += stride
+        punpcklbw   xmm1,           xmm7   ; src[ 8-15]
+        jmp         .temporal_filter_apply_load_finished
+
+.temporal_filter_apply_load_16:
+        movdqa      xmm0,           [rsi]  ; src (frame1)
+        lea         rsi,            [rsi + rbp] ; += stride
+        movdqa      xmm1,           xmm0
+        punpcklbw   xmm0,           xmm7   ; src[ 0- 7]
+        punpckhbw   xmm1,           xmm7   ; src[ 8-15]
+
+.temporal_filter_apply_load_finished:
+        movdqa      xmm2,           [rdx]  ; predictor (frame2)
+        movdqa      xmm3,           xmm2
+        punpcklbw   xmm2,           xmm7   ; pred[ 0- 7]
+        punpckhbw   xmm3,           xmm7   ; pred[ 8-15]
+
+        ; modifier = src_byte - pixel_value
+        psubw       xmm0,           xmm2   ; src - pred[ 0- 7]
+        psubw       xmm1,           xmm3   ; src - pred[ 8-15]
+
+        ; modifier *= modifier
+        pmullw      xmm0,           xmm0   ; modifer[ 0- 7]^2
+        pmullw      xmm1,           xmm1   ; modifer[ 8-15]^2
+
+        ; modifier *= 3
+        pmullw      xmm0,           [GLOBAL(_const_3w)]
+        pmullw      xmm1,           [GLOBAL(_const_3w)]
+
+        ; modifer += 0x8000 >> (16 - strength)
+        paddw       xmm0,           [rsp + rounding_bit]
+        paddw       xmm1,           [rsp + rounding_bit]
+
+        ; modifier >>= strength
+        psrlw       xmm0,           [rsp + strength]
+        psrlw       xmm1,           [rsp + strength]
+
+        ; modifier = 16 - modifier
+        ; saturation takes care of modifier > 16
+        movdqa      xmm3,           [GLOBAL(_const_16w)]
+        movdqa      xmm2,           [GLOBAL(_const_16w)]
+        psubusw     xmm3,           xmm1
+        psubusw     xmm2,           xmm0
+
+        ; modifier *= filter_weight
+        pmullw      xmm2,           [rsp + filter_weight]
+        pmullw      xmm3,           [rsp + filter_weight]
+
+        ; count
+        movdqa      xmm4,           [rax]
+        movdqa      xmm5,           [rax+16]
+        ; += modifier
+        paddw       xmm4,           xmm2
+        paddw       xmm5,           xmm3
+        ; write back
+        movdqa      [rax],          xmm4
+        movdqa      [rax+16],       xmm5
+        lea         rax,            [rax + 16*2] ; count += 16*(sizeof(short))
+
+        ; load and extract the predictor up to shorts
+        pxor        xmm7,           xmm7
+        movdqa      xmm0,           [rdx]
+        lea         rdx,            [rdx + 16*1] ; pred += 16*(sizeof(char))
+        movdqa      xmm1,           xmm0
+        punpcklbw   xmm0,           xmm7   ; pred[ 0- 7]
+        punpckhbw   xmm1,           xmm7   ; pred[ 8-15]
+
+        ; modifier *= pixel_value
+        pmullw      xmm0,           xmm2
+        pmullw      xmm1,           xmm3
+
+        ; expand to double words
+        movdqa      xmm2,           xmm0
+        punpcklwd   xmm0,           xmm7   ; [ 0- 3]
+        punpckhwd   xmm2,           xmm7   ; [ 4- 7]
+        movdqa      xmm3,           xmm1
+        punpcklwd   xmm1,           xmm7   ; [ 8-11]
+        punpckhwd   xmm3,           xmm7   ; [12-15]
+
+        ; accumulator
+        movdqa      xmm4,           [rdi]
+        movdqa      xmm5,           [rdi+16]
+        movdqa      xmm6,           [rdi+32]
+        movdqa      xmm7,           [rdi+48]
+        ; += modifier
+        paddd       xmm4,           xmm0
+        paddd       xmm5,           xmm2
+        paddd       xmm6,           xmm1
+        paddd       xmm7,           xmm3
+        ; write back
+        movdqa      [rdi],          xmm4
+        movdqa      [rdi+16],       xmm5
+        movdqa      [rdi+32],       xmm6
+        movdqa      [rdi+48],       xmm7
+        lea         rdi,            [rdi + 16*4] ; accumulator += 16*(sizeof(int))
+
+        cmp         rdx,            rcx
+        je          .temporal_filter_apply_epilog
+        pxor        xmm7,           xmm7   ; zero for extraction
+        cmp         dword ptr [rsp + block_width], 16
+        je          .temporal_filter_apply_load_16
+        jmp         .temporal_filter_apply_load_8
+
+.temporal_filter_apply_epilog:
+    ; begin epilog
+    mov         rbp,            [rsp + rbp_backup]
+    add         rsp,            stack_size
+    pop         rsp
+    pop         rdi
+    pop         rsi
+    RESTORE_GOT
+    RESTORE_XMM
+    UNSHADOW_ARGS
+    pop         rbp
+    ret
+
+SECTION_RODATA
+align 16
+_const_3w:
+    times 8 dw 3
+align 16
+_const_top_bit:
+    times 8 dw 1<<15
+align 16
+_const_16w
+    times 8 dw 16