Separate utility functions from encodeframe.c

Created encodeframe_utils.h and encodeframe_utils.c
to improve modularity of encodeframe.c

encodeframe_utils.h : To keep utility functions,
                      data structures, defs and enums
encodeframe_utils.c : To keep utility functions

Change-Id: Ifbaf6b5e726d6c7bad1cc73356f9bdb054407800
diff --git a/av1/encoder/encodeframe_utils.c b/av1/encoder/encodeframe_utils.c
new file mode 100644
index 0000000..f8c7ef9
--- /dev/null
+++ b/av1/encoder/encodeframe_utils.c
@@ -0,0 +1,1318 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "aom_ports/system_state.h"
+
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/partition_strategy.h"
+#include "av1/encoder/rdopt.h"
+
+static AOM_INLINE int set_deltaq_rdmult(const AV1_COMP *const cpi,
+                                        const MACROBLOCK *const x) {
+  const AV1_COMMON *const cm = &cpi->common;
+  const CommonQuantParams *quant_params = &cm->quant_params;
+  return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
+                                      quant_params->y_dc_delta_q);
+}
+
+void av1_set_ssim_rdmult(const AV1_COMP *const cpi, MvCosts *const mv_costs,
+                         const BLOCK_SIZE bsize, const int mi_row,
+                         const int mi_col, int *const rdmult) {
+  const AV1_COMMON *const cm = &cpi->common;
+
+  const int bsize_base = BLOCK_16X16;
+  const int num_mi_w = mi_size_wide[bsize_base];
+  const int num_mi_h = mi_size_high[bsize_base];
+  const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+  const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
+  const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+  int row, col;
+  double num_of_mi = 0.0;
+  double geom_mean_of_scale = 0.0;
+
+  assert(cpi->oxcf.tuning == AOM_TUNE_SSIM);
+
+  aom_clear_system_state();
+  for (row = mi_row / num_mi_w;
+       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+    for (col = mi_col / num_mi_h;
+         col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
+      const int index = row * num_cols + col;
+      geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
+      num_of_mi += 1.0;
+    }
+  }
+  geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
+
+  *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
+  *rdmult = AOMMAX(*rdmult, 0);
+  av1_set_error_per_bit(mv_costs, *rdmult);
+  aom_clear_system_state();
+}
+
+int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+                            const BLOCK_SIZE bsize, const int mi_row,
+                            const int mi_col, int orig_rdmult) {
+  const AV1_COMMON *const cm = &cpi->common;
+  const GF_GROUP *const gf_group = &cpi->gf_group;
+  assert(IMPLIES(cpi->gf_group.size > 0,
+                 cpi->gf_group.index < cpi->gf_group.size));
+  const int tpl_idx = cpi->gf_group.index;
+  const TplDepFrame *tpl_frame = &cpi->tpl_data.tpl_frame[tpl_idx];
+  const int deltaq_rdmult = set_deltaq_rdmult(cpi, x);
+  if (tpl_frame->is_valid == 0) return deltaq_rdmult;
+  if (!is_frame_tpl_eligible(gf_group)) return deltaq_rdmult;
+  if (tpl_idx >= MAX_TPL_FRAME_IDX) return deltaq_rdmult;
+  if (cpi->superres_mode != AOM_SUPERRES_NONE) return deltaq_rdmult;
+  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
+
+  const int bsize_base = BLOCK_16X16;
+  const int num_mi_w = mi_size_wide[bsize_base];
+  const int num_mi_h = mi_size_high[bsize_base];
+  const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+  const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
+  const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+  int row, col;
+  double base_block_count = 0.0;
+  double geom_mean_of_scale = 0.0;
+  aom_clear_system_state();
+  for (row = mi_row / num_mi_w;
+       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+    for (col = mi_col / num_mi_h;
+         col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
+      const int index = row * num_cols + col;
+      geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]);
+      base_block_count += 1.0;
+    }
+  }
+  geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
+  int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
+  rdmult = AOMMAX(rdmult, 0);
+  av1_set_error_per_bit(&x->mv_costs, rdmult);
+  aom_clear_system_state();
+  if (bsize == cm->seq_params.sb_size) {
+    const int rdmult_sb = set_deltaq_rdmult(cpi, x);
+    assert(rdmult_sb == rdmult);
+    (void)rdmult_sb;
+  }
+  return rdmult;
+}
+
+static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
+                                                const MACROBLOCKD *xd,
+                                                const MB_MODE_INFO *mbmi) {
+  int dir;
+  for (dir = 0; dir < 2; ++dir) {
+    const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
+    InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
+    ++counts->switchable_interp[ctx][filter];
+  }
+}
+
+static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
+                          const TX_MODE tx_mode) {
+  MACROBLOCKD *const xd = &x->e_mbd;
+  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+  if (xd->lossless[mbmi->segment_id]) {
+    mbmi->tx_size = TX_4X4;
+  } else if (tx_mode != TX_MODE_SELECT) {
+    mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode);
+  } else {
+    BLOCK_SIZE bsize = mbmi->sb_type;
+    TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
+    mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
+  }
+  if (is_inter_block(mbmi)) {
+    memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
+  }
+  const int stride = xd->tx_type_map_stride;
+  const int bw = mi_size_wide[mbmi->sb_type];
+  for (int row = 0; row < mi_size_high[mbmi->sb_type]; ++row) {
+    memset(xd->tx_type_map + row * stride, DCT_DCT,
+           bw * sizeof(xd->tx_type_map[0]));
+  }
+  av1_zero(txfm_info->blk_skip);
+  txfm_info->skip_txfm = 0;
+}
+
+// This function will copy the best reference mode information from
+// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
+static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
+    MB_MODE_INFO_EXT *mbmi_ext,
+    const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
+  memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
+         sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
+  memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
+         sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
+  mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
+  mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
+  memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
+         sizeof(mbmi_ext->global_mvs));
+}
+
+void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
+                      const PICK_MODE_CONTEXT *const ctx, int mi_row,
+                      int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
+  int i, x_idx, y;
+  const AV1_COMMON *const cm = &cpi->common;
+  const CommonModeInfoParams *const mi_params = &cm->mi_params;
+  const int num_planes = av1_num_planes(cm);
+  RD_COUNTS *const rdc = &td->rd_counts;
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  struct macroblock_plane *const p = x->plane;
+  struct macroblockd_plane *const pd = xd->plane;
+  const MB_MODE_INFO *const mi = &ctx->mic;
+  MB_MODE_INFO *const mi_addr = xd->mi[0];
+  const struct segmentation *const seg = &cm->seg;
+  const int bw = mi_size_wide[mi->sb_type];
+  const int bh = mi_size_high[mi->sb_type];
+  const int mis = mi_params->mi_stride;
+  const int mi_width = mi_size_wide[bsize];
+  const int mi_height = mi_size_high[bsize];
+  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+
+  assert(mi->sb_type == bsize);
+
+  *mi_addr = *mi;
+  copy_mbmi_ext_frame_to_mbmi_ext(x->mbmi_ext, &ctx->mbmi_ext_best,
+                                  av1_ref_frame_type(ctx->mic.ref_frame));
+
+  memcpy(txfm_info->blk_skip, ctx->blk_skip,
+         sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+
+  txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
+
+  xd->tx_type_map = ctx->tx_type_map;
+  xd->tx_type_map_stride = mi_size_wide[bsize];
+  // If not dry_run, copy the transform type data into the frame level buffer.
+  // Encoder will fetch tx types when writing bitstream.
+  if (!dry_run) {
+    const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
+    uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
+    const int mi_stride = mi_params->mi_stride;
+    for (int blk_row = 0; blk_row < bh; ++blk_row) {
+      av1_copy_array(tx_type_map + blk_row * mi_stride,
+                     xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
+    }
+    xd->tx_type_map = tx_type_map;
+    xd->tx_type_map_stride = mi_stride;
+  }
+
+  // If segmentation in use
+  if (seg->enabled) {
+    // For in frame complexity AQ copy the segment id from the segment map.
+    if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
+      const uint8_t *const map =
+          seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+      mi_addr->segment_id =
+          map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
+      reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type);
+    }
+    // Else for cyclic refresh mode update the segment map, set the segment id
+    // and then update the quantizer.
+    if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
+      av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize,
+                                        ctx->rd_stats.rate, ctx->rd_stats.dist,
+                                        txfm_info->skip_txfm);
+    }
+    if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
+      mi_addr->uv_mode = UV_DC_PRED;
+  }
+
+  for (i = 0; i < num_planes; ++i) {
+    p[i].coeff = ctx->coeff[i];
+    p[i].qcoeff = ctx->qcoeff[i];
+    p[i].dqcoeff = ctx->dqcoeff[i];
+    p[i].eobs = ctx->eobs[i];
+    p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+  }
+  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+  // Restore the coding context of the MB to that that was in place
+  // when the mode was picked for it
+  for (y = 0; y < mi_height; y++) {
+    for (x_idx = 0; x_idx < mi_width; x_idx++) {
+      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
+          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
+        xd->mi[x_idx + y * mis] = mi_addr;
+      }
+    }
+  }
+
+  if (cpi->oxcf.q_cfg.aq_mode)
+    av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
+
+  if (dry_run) return;
+
+#if CONFIG_INTERNAL_STATS
+  {
+    unsigned int *const mode_chosen_counts =
+        (unsigned int *)cpi->mode_chosen_counts;  // Cast const away.
+    if (frame_is_intra_only(cm)) {
+      static const int kf_mode_index[] = {
+        THR_DC /*DC_PRED*/,
+        THR_V_PRED /*V_PRED*/,
+        THR_H_PRED /*H_PRED*/,
+        THR_D45_PRED /*D45_PRED*/,
+        THR_D135_PRED /*D135_PRED*/,
+        THR_D113_PRED /*D113_PRED*/,
+        THR_D157_PRED /*D157_PRED*/,
+        THR_D203_PRED /*D203_PRED*/,
+        THR_D67_PRED /*D67_PRED*/,
+        THR_SMOOTH,   /*SMOOTH_PRED*/
+        THR_SMOOTH_V, /*SMOOTH_V_PRED*/
+        THR_SMOOTH_H, /*SMOOTH_H_PRED*/
+        THR_PAETH /*PAETH_PRED*/,
+      };
+      ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
+    } else {
+      // Note how often each mode chosen as best
+      ++mode_chosen_counts[ctx->best_mode_index];
+    }
+  }
+#endif
+  if (!frame_is_intra_only(cm)) {
+    if (is_inter_block(mi_addr)) {
+      // TODO(sarahparker): global motion stats need to be handled per-tile
+      // to be compatible with tile-based threading.
+      update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc);
+    }
+
+    if (cm->features.interp_filter == SWITCHABLE &&
+        mi_addr->motion_mode != WARPED_CAUSAL &&
+        !is_nontrans_global_motion(xd, xd->mi[0])) {
+      update_filter_type_count(td->counts, xd, mi_addr);
+    }
+
+    rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
+    rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
+    rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
+  }
+
+  const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
+  const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
+  if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
+    av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
+}
+
+void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
+                                 PREDICTION_MODE mode, int16_t mode_context) {
+  (void)counts;
+
+  int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
+  if (mode == NEWMV) {
+#if CONFIG_ENTROPY_STATS
+    ++counts->newmv_mode[mode_ctx][0];
+#endif
+    update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
+    return;
+  }
+
+#if CONFIG_ENTROPY_STATS
+  ++counts->newmv_mode[mode_ctx][1];
+#endif
+  update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
+
+  mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+  if (mode == GLOBALMV) {
+#if CONFIG_ENTROPY_STATS
+    ++counts->zeromv_mode[mode_ctx][0];
+#endif
+    update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
+    return;
+  }
+
+#if CONFIG_ENTROPY_STATS
+  ++counts->zeromv_mode[mode_ctx][1];
+#endif
+  update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
+
+  mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+#if CONFIG_ENTROPY_STATS
+  ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
+#endif
+  update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
+}
+
+static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
+                               FRAME_COUNTS *counts) {
+  FRAME_CONTEXT *fc = xd->tile_ctx;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+  const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+  const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+
+  (void)counts;
+
+  if (mbmi->mode == DC_PRED) {
+    const int n = pmi->palette_size[0];
+    const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
+
+#if CONFIG_ENTROPY_STATS
+    ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
+#endif
+    update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
+               n > 0, 2);
+    if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+      ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+      update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
+                 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+    }
+  }
+
+  if (mbmi->uv_mode == UV_DC_PRED) {
+    const int n = pmi->palette_size[1];
+    const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
+
+#if CONFIG_ENTROPY_STATS
+    ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
+#endif
+    update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
+
+    if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+      ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+      update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
+                 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+    }
+  }
+}
+
+void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
+                         MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
+                         const MB_MODE_INFO *above_mi,
+                         const MB_MODE_INFO *left_mi, const int intraonly) {
+  FRAME_CONTEXT *fc = xd->tile_ctx;
+  const PREDICTION_MODE y_mode = mbmi->mode;
+  (void)counts;
+  const BLOCK_SIZE bsize = mbmi->sb_type;
+
+  if (intraonly) {
+#if CONFIG_ENTROPY_STATS
+    const PREDICTION_MODE above = av1_above_block_mode(above_mi);
+    const PREDICTION_MODE left = av1_left_block_mode(left_mi);
+    const int above_ctx = intra_mode_context[above];
+    const int left_ctx = intra_mode_context[left];
+    ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
+#endif  // CONFIG_ENTROPY_STATS
+    update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
+  } else {
+#if CONFIG_ENTROPY_STATS
+    ++counts->y_mode[size_group_lookup[bsize]][y_mode];
+#endif  // CONFIG_ENTROPY_STATS
+    update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
+  }
+
+  if (av1_filter_intra_allowed(cm, mbmi)) {
+    const int use_filter_intra_mode =
+        mbmi->filter_intra_mode_info.use_filter_intra;
+#if CONFIG_ENTROPY_STATS
+    ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode];
+    if (use_filter_intra_mode) {
+      ++counts
+            ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
+    }
+#endif  // CONFIG_ENTROPY_STATS
+    update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, 2);
+    if (use_filter_intra_mode) {
+      update_cdf(fc->filter_intra_mode_cdf,
+                 mbmi->filter_intra_mode_info.filter_intra_mode,
+                 FILTER_INTRA_MODES);
+    }
+  }
+  if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+    ++counts->angle_delta[mbmi->mode - V_PRED]
+                         [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
+#endif
+    update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
+               mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
+               2 * MAX_ANGLE_DELTA + 1);
+  }
+
+  if (!xd->is_chroma_ref) return;
+
+  const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
+  const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
+#if CONFIG_ENTROPY_STATS
+  ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
+#endif  // CONFIG_ENTROPY_STATS
+  update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
+             UV_INTRA_MODES - !cfl_allowed);
+  if (uv_mode == UV_CFL_PRED) {
+    const int8_t joint_sign = mbmi->cfl_alpha_signs;
+    const uint8_t idx = mbmi->cfl_alpha_idx;
+
+#if CONFIG_ENTROPY_STATS
+    ++counts->cfl_sign[joint_sign];
+#endif
+    update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
+    if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
+      aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+      ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
+#endif
+      update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
+    }
+    if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
+      aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+      ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
+#endif
+      update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
+    }
+  }
+  if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
+      av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+    ++counts->angle_delta[uv_mode - UV_V_PRED]
+                         [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
+#endif
+    update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
+               mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
+               2 * MAX_ANGLE_DELTA + 1);
+  }
+  if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+    update_palette_cdf(xd, mbmi, counts);
+  }
+}
+
+void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+                         int mi_row, int mi_col, BLOCK_SIZE bsize,
+                         const int num_planes) {
+  MACROBLOCKD *xd = &x->e_mbd;
+  int p;
+  const int num_4x4_blocks_wide = mi_size_wide[bsize];
+  const int num_4x4_blocks_high = mi_size_high[bsize];
+  int mi_width = mi_size_wide[bsize];
+  int mi_height = mi_size_high[bsize];
+  for (p = 0; p < num_planes; p++) {
+    int tx_col = mi_col;
+    int tx_row = mi_row & MAX_MIB_MASK;
+    memcpy(
+        xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+        ctx->a + num_4x4_blocks_wide * p,
+        (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+            xd->plane[p].subsampling_x);
+    memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+           ctx->l + num_4x4_blocks_high * p,
+           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+               xd->plane[p].subsampling_y);
+  }
+  memcpy(xd->above_partition_context + mi_col, ctx->sa,
+         sizeof(*xd->above_partition_context) * mi_width);
+  memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
+         sizeof(xd->left_partition_context[0]) * mi_height);
+  xd->above_txfm_context = ctx->p_ta;
+  xd->left_txfm_context = ctx->p_tl;
+  memcpy(xd->above_txfm_context, ctx->ta,
+         sizeof(*xd->above_txfm_context) * mi_width);
+  memcpy(xd->left_txfm_context, ctx->tl,
+         sizeof(*xd->left_txfm_context) * mi_height);
+}
+
+void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+                      int mi_row, int mi_col, BLOCK_SIZE bsize,
+                      const int num_planes) {
+  const MACROBLOCKD *xd = &x->e_mbd;
+  int p;
+  int mi_width = mi_size_wide[bsize];
+  int mi_height = mi_size_high[bsize];
+
+  // buffer the above/left context information of the block in search.
+  for (p = 0; p < num_planes; ++p) {
+    int tx_col = mi_col;
+    int tx_row = mi_row & MAX_MIB_MASK;
+    memcpy(
+        ctx->a + mi_width * p,
+        xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+        (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
+    memcpy(ctx->l + mi_height * p,
+           xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+           (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
+  }
+  memcpy(ctx->sa, xd->above_partition_context + mi_col,
+         sizeof(*xd->above_partition_context) * mi_width);
+  memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
+         sizeof(xd->left_partition_context[0]) * mi_height);
+  memcpy(ctx->ta, xd->above_txfm_context,
+         sizeof(*xd->above_txfm_context) * mi_width);
+  memcpy(ctx->tl, xd->left_txfm_context,
+         sizeof(*xd->left_txfm_context) * mi_height);
+  ctx->p_ta = xd->above_txfm_context;
+  ctx->p_tl = xd->left_txfm_context;
+}
+
+static void set_partial_sb_partition(const AV1_COMMON *const cm,
+                                     MB_MODE_INFO *mi, int bh_in, int bw_in,
+                                     int mi_rows_remaining,
+                                     int mi_cols_remaining, BLOCK_SIZE bsize,
+                                     MB_MODE_INFO **mib) {
+  int bh = bh_in;
+  int r, c;
+  for (r = 0; r < cm->seq_params.mib_size; r += bh) {
+    int bw = bw_in;
+    for (c = 0; c < cm->seq_params.mib_size; c += bw) {
+      const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
+      const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
+      mib[grid_index] = mi + mi_index;
+      mib[grid_index]->sb_type = find_partition_size(
+          bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
+    }
+  }
+}
+
+// This function attempts to set all mode info entries in a given superblock
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
+                                MB_MODE_INFO **mib, int mi_row, int mi_col,
+                                BLOCK_SIZE bsize) {
+  AV1_COMMON *const cm = &cpi->common;
+  const CommonModeInfoParams *const mi_params = &cm->mi_params;
+  const int mi_rows_remaining = tile->mi_row_end - mi_row;
+  const int mi_cols_remaining = tile->mi_col_end - mi_col;
+  MB_MODE_INFO *const mi_upper_left =
+      mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
+  int bh = mi_size_high[bsize];
+  int bw = mi_size_wide[bsize];
+
+  assert(bsize >= mi_params->mi_alloc_bsize &&
+         "Attempted to use bsize < mi_params->mi_alloc_bsize");
+  assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
+
+  // Apply the requested partition size to the SB if it is all "in image"
+  if ((mi_cols_remaining >= cm->seq_params.mib_size) &&
+      (mi_rows_remaining >= cm->seq_params.mib_size)) {
+    for (int block_row = 0; block_row < cm->seq_params.mib_size;
+         block_row += bh) {
+      for (int block_col = 0; block_col < cm->seq_params.mib_size;
+           block_col += bw) {
+        const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
+        const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
+        mib[grid_index] = mi_upper_left + mi_index;
+        mib[grid_index]->sb_type = bsize;
+      }
+    }
+  } else {
+    // Else this is a partial SB.
+    set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
+                             mi_cols_remaining, bsize, mib);
+  }
+}
+
+int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
+                                BLOCK_SIZE bsize) {
+  const int bs = mi_size_wide[bsize];
+  const int hbs = bs / 2;
+  assert(bsize >= BLOCK_8X8);
+  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+  for (int i = 0; i < 4; i++) {
+    int x_idx = (i & 1) * hbs;
+    int y_idx = (i >> 1) * hbs;
+    if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
+        (mi_col + x_idx >= cm->mi_params.mi_cols))
+      return 0;
+    if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
+            PARTITION_NONE &&
+        subsize != BLOCK_8X8)
+      return 0;
+  }
+  return 1;
+}
+
+#if !CONFIG_REALTIME_ONLY
+int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int analysis_type,
+                         int mi_row, int mi_col, int orig_rdmult) {
+  AV1_COMMON *const cm = &cpi->common;
+  const GF_GROUP *const gf_group = &cpi->gf_group;
+  assert(IMPLIES(cpi->gf_group.size > 0,
+                 cpi->gf_group.index < cpi->gf_group.size));
+  const int tpl_idx = cpi->gf_group.index;
+  TplParams *const tpl_data = &cpi->tpl_data;
+  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+  int tpl_stride = tpl_frame->stride;
+  int64_t intra_cost = 0;
+  int64_t mc_dep_cost = 0;
+  const int mi_wide = mi_size_wide[bsize];
+  const int mi_high = mi_size_high[bsize];
+
+  if (tpl_frame->is_valid == 0) return orig_rdmult;
+
+  if (!is_frame_tpl_eligible(gf_group)) return orig_rdmult;
+
+  if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return orig_rdmult;
+
+  int64_t mc_count = 0, mc_saved = 0;
+  int mi_count = 0;
+  const int mi_col_sr =
+      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+  const int mi_col_end_sr =
+      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+  const int step = 1 << block_mis_log2;
+  for (int row = mi_row; row < mi_row + mi_high; row += step) {
+    for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+      TplDepStats *this_stats =
+          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+      int64_t mc_dep_delta =
+          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+                 this_stats->mc_dep_dist);
+      intra_cost += this_stats->recrf_dist << RDDIV_BITS;
+      mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+      mc_count += this_stats->mc_count;
+      mc_saved += this_stats->mc_saved;
+      mi_count++;
+    }
+  }
+
+  aom_clear_system_state();
+
+  double beta = 1.0;
+  if (analysis_type == 0) {
+    if (mc_dep_cost > 0 && intra_cost > 0) {
+      const double r0 = cpi->rd.r0;
+      const double rk = (double)intra_cost / mc_dep_cost;
+      beta = (r0 / rk);
+    }
+  } else if (analysis_type == 1) {
+    const double mc_count_base = (mi_count * cpi->rd.mc_count_base);
+    beta = (mc_count + 1.0) / (mc_count_base + 1.0);
+    beta = pow(beta, 0.5);
+  } else if (analysis_type == 2) {
+    const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base);
+    beta = (mc_saved + 1.0) / (mc_saved_base + 1.0);
+    beta = pow(beta, 0.5);
+  }
+
+  int rdmult = av1_get_adaptive_rdmult(cpi, beta);
+
+  aom_clear_system_state();
+
+  rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
+  rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
+
+  rdmult = AOMMAX(1, rdmult);
+
+  return rdmult;
+}
+
+// Checks to see if a super block is on a horizontal image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
+  int top_edge = 0;
+  int bottom_edge = cpi->common.mi_params.mi_rows;
+  int is_active_h_edge = 0;
+
+  // For two pass account for any formatting bars detected.
+  if (is_stat_consumption_stage_twopass(cpi)) {
+    const AV1_COMMON *const cm = &cpi->common;
+    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+        &cpi->twopass, cm->current_frame.display_order_hint);
+    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+    // The inactive region is specified in MBs not mi units.
+    // The image edge is in the following MB row.
+    top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
+
+    bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
+    bottom_edge = AOMMAX(top_edge, bottom_edge);
+  }
+
+  if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
+      ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
+    is_active_h_edge = 1;
+  }
+  return is_active_h_edge;
+}
+
+// Checks to see if a super block is on a vertical image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
+  int left_edge = 0;
+  int right_edge = cpi->common.mi_params.mi_cols;
+  int is_active_v_edge = 0;
+
+  // For two pass account for any formatting bars detected.
+  if (is_stat_consumption_stage_twopass(cpi)) {
+    const AV1_COMMON *const cm = &cpi->common;
+    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+        &cpi->twopass, cm->current_frame.display_order_hint);
+    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+    // The inactive region is specified in MBs not mi units.
+    // The image edge is in the following MB row.
+    left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
+
+    right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
+    right_edge = AOMMAX(left_edge, right_edge);
+  }
+
+  if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
+      ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
+    is_active_v_edge = 1;
+  }
+  return is_active_v_edge;
+}
+
+void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
+                          int mi_col, SuperBlockEnc *sb_enc) {
+  sb_enc->tpl_data_count = 0;
+
+  if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
+  if (cpi->superres_mode != AOM_SUPERRES_NONE) return;
+  if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
+  const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+  if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
+    return;
+  assert(IMPLIES(cpi->gf_group.size > 0,
+                 cpi->gf_group.index < cpi->gf_group.size));
+
+  AV1_COMMON *const cm = &cpi->common;
+  const int gf_group_index = cpi->gf_group.index;
+  TplParams *const tpl_data = &cpi->tpl_data;
+  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
+  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+  int tpl_stride = tpl_frame->stride;
+  const int mi_wide = mi_size_wide[bsize];
+  const int mi_high = mi_size_high[bsize];
+
+  if (tpl_frame->is_valid == 0) return;
+  if (gf_group_index >= MAX_TPL_FRAME_IDX) return;
+
+  int mi_count = 0;
+  int count = 0;
+  const int mi_col_sr =
+      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+  const int mi_col_end_sr =
+      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+  // mi_cols_sr is mi_cols at superres case.
+  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+
+  // TPL store unit size is not the same as the motion estimation unit size.
+  // Here always use motion estimation size to avoid getting repetitive inter/
+  // intra cost.
+  const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(MC_FLOW_BSIZE_1D);
+  const int step = mi_size_wide[tpl_bsize];
+  assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
+
+  // Stride is only based on SB size, and we fill in values for every 16x16
+  // block in a SB.
+  sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / step;
+
+  for (int row = mi_row; row < mi_row + mi_high; row += step) {
+    for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+      // Handle partial SB, so that no invalid values are used later.
+      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
+        sb_enc->tpl_inter_cost[count] = INT64_MAX;
+        sb_enc->tpl_intra_cost[count] = INT64_MAX;
+        for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+          sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
+        }
+        count++;
+        continue;
+      }
+
+      TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+      sb_enc->tpl_inter_cost[count] = this_stats->inter_cost;
+      sb_enc->tpl_intra_cost[count] = this_stats->intra_cost;
+      memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
+      mi_count++;
+      count++;
+    }
+  }
+
+  sb_enc->tpl_data_count = mi_count;
+}
+
+// analysis_type 0: Use mc_dep_cost and intra_cost
+// analysis_type 1: Use count of best inter predictor chosen
+// analysis_type 2: Use cost reduction from intra to inter for best inter
+//                  predictor chosen
+int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
+                                   int mi_row, int mi_col) {
+  AV1_COMMON *const cm = &cpi->common;
+  const GF_GROUP *const gf_group = &cpi->gf_group;
+  assert(IMPLIES(cpi->gf_group.size > 0,
+                 cpi->gf_group.index < cpi->gf_group.size));
+  const int tpl_idx = cpi->gf_group.index;
+  TplParams *const tpl_data = &cpi->tpl_data;
+  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+  int tpl_stride = tpl_frame->stride;
+  int64_t intra_cost = 0;
+  int64_t mc_dep_cost = 0;
+  const int mi_wide = mi_size_wide[bsize];
+  const int mi_high = mi_size_high[bsize];
+  const int base_qindex = cm->quant_params.base_qindex;
+
+  if (tpl_frame->is_valid == 0) return base_qindex;
+
+  if (!is_frame_tpl_eligible(gf_group)) return base_qindex;
+
+  if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return base_qindex;
+
+  int64_t mc_count = 0, mc_saved = 0;
+  int mi_count = 0;
+  const int mi_col_sr =
+      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+  const int mi_col_end_sr =
+      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+  const int step = 1 << block_mis_log2;
+  for (int row = mi_row; row < mi_row + mi_high; row += step) {
+    for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+      TplDepStats *this_stats =
+          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+      int64_t mc_dep_delta =
+          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+                 this_stats->mc_dep_dist);
+      intra_cost += this_stats->recrf_dist << RDDIV_BITS;
+      mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+      mc_count += this_stats->mc_count;
+      mc_saved += this_stats->mc_saved;
+      mi_count++;
+    }
+  }
+
+  aom_clear_system_state();
+
+  int offset = 0;
+  double beta = 1.0;
+  if (mc_dep_cost > 0 && intra_cost > 0) {
+    const double r0 = cpi->rd.r0;
+    const double rk = (double)intra_cost / mc_dep_cost;
+    beta = (r0 / rk);
+    assert(beta > 0.0);
+  }
+  offset = av1_get_deltaq_offset(cpi, base_qindex, beta);
+  aom_clear_system_state();
+
+  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+  offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
+  offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
+  int qindex = cm->quant_params.base_qindex + offset;
+  qindex = AOMMIN(qindex, MAXQ);
+  qindex = AOMMAX(qindex, MINQ);
+
+  return qindex;
+}
+#endif  // !CONFIG_REALTIME_ONLY
+
+void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
+                                            BLOCK_SIZE bsize) {
+  sms_tree->partitioning = PARTITION_NONE;
+
+  if (bsize >= BLOCK_8X8) {
+    BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+    for (int idx = 0; idx < 4; ++idx)
+      av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
+  }
+}
+
+// Record the ref frames that have been selected by square partition blocks.
+void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
+                                       BLOCK_SIZE bsize, int mib_size,
+                                       int mi_row, int mi_col) {
+  assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+  const int sb_size_mask = mib_size - 1;
+  const int mi_row_in_sb = mi_row & sb_size_mask;
+  const int mi_col_in_sb = mi_col & sb_size_mask;
+  const int mi_size = mi_size_wide[bsize];
+  for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
+    for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
+      x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
+    }
+  }
+}
+
+static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
+                           int num_cdfs, int cdf_stride, int nsymbs,
+                           int wt_left, int wt_tr) {
+  for (int i = 0; i < num_cdfs; i++) {
+    for (int j = 0; j <= nsymbs; j++) {
+      cdf_ptr_left[i * cdf_stride + j] =
+          (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
+                          (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
+                          ((wt_left + wt_tr) / 2)) /
+                         (wt_left + wt_tr));
+      assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
+             cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
+    }
+  }
+}
+
+#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
+  AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
+
+#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \
+  do {                                                                     \
+    aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \
+    aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \
+    int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \
+    int num_cdfs = array_size / cdf_stride;                                \
+    avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
+                   wt_left, wt_tr);                                        \
+  } while (0)
+
+static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
+                    int wt_tr) {
+  AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
+  for (int i = 0; i < 2; i++) {
+    AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
+                MV_CLASSES);
+    AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
+                nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
+    AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
+    AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
+    AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
+                nmv_tr->comps[i].class0_hp_cdf, 2);
+    AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
+    AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
+                CLASS0_SIZE);
+    AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
+  }
+}
+
+// In case of row-based multi-threading of encoder, since we always
+// keep a top - right sync, we can average the top - right SB's CDFs and
+// the left SB's CDFs and use the same for current SB's encoding to
+// improve the performance. This function facilitates the averaging
+// of CDF and used only when row-mt is enabled in encoder.
+void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
+                         int wt_left, int wt_tr) {
+  AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
+  AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
+  AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
+  AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
+  AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
+  AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
+  AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
+  AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
+  AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
+  AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
+  AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
+  AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
+              ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
+  AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
+              MASKED_COMPOUND_TYPES);
+  AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
+  AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
+  AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
+  AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
+              INTERINTRA_MODES);
+  AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
+  AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
+  AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
+              PALETTE_SIZES);
+  AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
+              PALETTE_SIZES);
+  for (int j = 0; j < PALETTE_SIZES; j++) {
+    int nsymbs = j + PALETTE_MIN_SIZE;
+    AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
+                   ctx_tr->palette_y_color_index_cdf[j], nsymbs,
+                   CDF_SIZE(PALETTE_COLORS));
+    AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
+                   ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
+                   CDF_SIZE(PALETTE_COLORS));
+  }
+  AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
+  AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
+  AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
+  AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
+  AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
+  AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
+  AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
+  AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
+  AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
+  AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
+  AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
+  AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
+  AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
+  AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
+  avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
+  avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
+  AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
+  AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
+  AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
+  AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
+              ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
+  AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
+  AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
+              FILTER_INTRA_MODES);
+  AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
+              RESTORE_SWITCHABLE_TYPES);
+  AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
+  AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
+  AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
+  AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
+                 UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
+  AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
+  for (int i = 0; i < PARTITION_CONTEXTS; i++) {
+    if (i < 4) {
+      AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
+                     CDF_SIZE(10));
+    } else if (i < 16) {
+      AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
+    } else {
+      AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
+                     CDF_SIZE(10));
+    }
+  }
+  AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
+              SWITCHABLE_FILTERS);
+  AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
+  AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
+              2 * MAX_ANGLE_DELTA + 1);
+  AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
+                 CDF_SIZE(MAX_TX_DEPTH + 1));
+  AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
+              MAX_TX_DEPTH + 1);
+  AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
+              MAX_TX_DEPTH + 1);
+  AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
+              MAX_TX_DEPTH + 1);
+  AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
+  AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
+  for (int i = 0; i < FRAME_LF_COUNT; i++) {
+    AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
+                DELTA_LF_PROBS + 1);
+  }
+  AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
+                 CDF_SIZE(TX_TYPES));
+  AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
+                 CDF_SIZE(TX_TYPES));
+  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
+                 CDF_SIZE(TX_TYPES));
+  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
+                 CDF_SIZE(TX_TYPES));
+  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
+                 CDF_SIZE(TX_TYPES));
+  AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
+  AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
+              CFL_ALPHABET_SIZE);
+}
+
+// Grade the temporal variation of the source by comparing the current sb and
+// its collocated block in the last frame.
+void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, int offset) {
+  unsigned int tmp_sse;
+  unsigned int tmp_variance;
+  const BLOCK_SIZE bsize = cpi->common.seq_params.sb_size;
+  uint8_t *src_y = cpi->source->y_buffer;
+  int src_ystride = cpi->source->y_stride;
+  uint8_t *last_src_y = cpi->last_source->y_buffer;
+  int last_src_ystride = cpi->last_source->y_stride;
+  uint64_t avg_source_sse_threshold = 100000;        // ~5*5*(64*64)
+  uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64)
+  uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5
+#if CONFIG_AV1_HIGHBITDEPTH
+  MACROBLOCKD *xd = &x->e_mbd;
+  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
+#endif
+  src_y += offset;
+  last_src_y += offset;
+  tmp_variance = cpi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
+                                       last_src_ystride, &tmp_sse);
+  // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
+  // Detect large lighting change.
+  if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
+    x->content_state_sb = kLowVarHighSumdiff;
+  else if (tmp_sse < avg_source_sse_threshold)
+    x->content_state_sb = kLowSad;
+  else if (tmp_sse > avg_source_sse_threshold_high)
+    x->content_state_sb = kHighSad;
+}
+
+// Memset the mbmis at the current superblock to 0
+void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
+                    int mi_row, int mi_col) {
+  // size of sb in unit of mi (BLOCK_4X4)
+  const int sb_size_mi = mi_size_wide[sb_size];
+  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
+  // size of sb in unit of allocated mi size
+  const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
+  assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
+         "mi is not allocated as a multiple of sb!");
+  assert(mi_params->mi_stride % sb_size_mi == 0 &&
+         "mi_grid_base is not allocated as a multiple of sb!");
+
+  const int mi_rows = mi_size_high[sb_size];
+  for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
+    assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
+           mi_params->mi_stride);
+    const int mi_grid_idx =
+        get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
+    const int alloc_mi_idx =
+        get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
+    memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
+           sb_size_mi * sizeof(*mi_params->mi_grid_base));
+    memset(&mi_params->tx_type_map[mi_grid_idx], 0,
+           sb_size_mi * sizeof(*mi_params->tx_type_map));
+    if (cur_mi_row % mi_alloc_size_1d == 0) {
+      memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
+             sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
+    }
+  }
+}
+
+void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
+                         ThreadData *td, const TileDataEnc *tile_data,
+                         int mi_row, int mi_col) {
+  MACROBLOCK *x = &td->mb;
+  MACROBLOCKD *xd = &x->e_mbd;
+  const TileInfo *tile_info = &tile_data->tile_info;
+
+  const AV1_COMMON *cm = &cpi->common;
+  const int num_planes = av1_num_planes(cm);
+  const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+
+  xd->above_txfm_context =
+      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+  xd->left_txfm_context =
+      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+  av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
+
+  sb_fp_stats->rd_count = cpi->td.rd_counts;
+  sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
+
+  sb_fp_stats->fc = *td->counts;
+
+  memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
+         sizeof(sb_fp_stats->inter_mode_rd_models));
+
+  memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
+         sizeof(sb_fp_stats->thresh_freq_fact));
+
+  const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+  sb_fp_stats->current_qindex =
+      cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+  memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
+         sizeof(sb_fp_stats->mode_chosen_counts));
+#endif  // CONFIG_INTERNAL_STATS
+}
+
+void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
+                          ThreadData *td, TileDataEnc *tile_data, int mi_row,
+                          int mi_col) {
+  MACROBLOCK *x = &td->mb;
+
+  const AV1_COMMON *cm = &cpi->common;
+  const int num_planes = av1_num_planes(cm);
+  const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+
+  av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
+                      num_planes);
+
+  cpi->td.rd_counts = sb_fp_stats->rd_count;
+  x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
+
+  *td->counts = sb_fp_stats->fc;
+
+  memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
+         sizeof(sb_fp_stats->inter_mode_rd_models));
+  memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
+         sizeof(sb_fp_stats->thresh_freq_fact));
+
+  const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+  cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
+      sb_fp_stats->current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+  memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
+         sizeof(sb_fp_stats->mode_chosen_counts));
+#endif  // CONFIG_INTERNAL_STATS
+}
+
+// Update the rate costs of some symbols according to the frequency directed
+// by speed features
+void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
+                           const TileInfo *const tile_info, const int mi_row,
+                           const int mi_col) {
+  AV1_COMMON *const cm = &cpi->common;
+  const int num_planes = av1_num_planes(cm);
+  MACROBLOCK *const x = &td->mb;
+  MACROBLOCKD *const xd = &x->e_mbd;
+
+  switch (cpi->oxcf.cost_upd_freq.coeff) {
+    case COST_UPD_TILE:  // Tile level
+      if (mi_row != tile_info->mi_row_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SBROW:  // SB row level in tile
+      if (mi_col != tile_info->mi_col_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SB:  // SB level
+      if (cpi->sf.inter_sf.disable_sb_level_coeff_cost_upd &&
+          mi_col != tile_info->mi_col_start)
+        break;
+      av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
+      break;
+    default: assert(0);
+  }
+
+  switch (cpi->oxcf.cost_upd_freq.mode) {
+    case COST_UPD_TILE:  // Tile level
+      if (mi_row != tile_info->mi_row_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SBROW:  // SB row level in tile
+      if (mi_col != tile_info->mi_col_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SB:  // SB level
+      av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
+      break;
+    default: assert(0);
+  }
+  switch (cpi->oxcf.cost_upd_freq.mv) {
+    case COST_UPD_OFF: break;
+    case COST_UPD_TILE:  // Tile level
+      if (mi_row != tile_info->mi_row_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SBROW:  // SB row level in tile
+      if (mi_col != tile_info->mi_col_start) break;
+      AOM_FALLTHROUGH_INTENDED;
+    case COST_UPD_SB:  // SB level
+      if (cpi->sf.inter_sf.disable_sb_level_mv_cost_upd &&
+          mi_col != tile_info->mi_col_start)
+        break;
+      av1_fill_mv_costs(xd->tile_ctx, cm->features.cur_frame_force_integer_mv,
+                        cm->features.allow_high_precision_mv, &x->mv_costs);
+      break;
+    default: assert(0);
+  }
+}