Fix ubsan divide by zero warning in ransac
Change-Id: I8c736ff665a27ce8307fd62571b9728333756d7e
diff --git a/av1/encoder/ransac.c b/av1/encoder/ransac.c
index 714d567..2699c4f 100644
--- a/av1/encoder/ransac.c
+++ b/av1/encoder/ransac.c
@@ -81,10 +81,12 @@
const int stride_points,
const int stride_proj) {
int i;
- double x, y, Z;
+ double x, y, Z, Z_inv;
for (i = 0; i < n; ++i) {
x = *(points++), y = *(points++);
- Z = 1. / (mat[7] * x + mat[6] * y + 1);
+ Z_inv = mat[7] * x + mat[6] * y + 1;
+ assert(fabs(Z_inv) > 0.00001);
+ Z = 1. / Z_inv;
*(proj++) = (mat[1] * x + mat[0] * y + mat[3]) * Z;
*(proj++) = (mat[2] * x + mat[4] * y + mat[4]) * Z;
points += stride_points - 2;
@@ -155,7 +157,7 @@
double T1[9], T2[9];
*number_of_inliers = 0;
- if (npoints < minpts * MINPTS_MULTIPLIER) {
+ if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
printf("Cannot find motion with %d matches\n", npoints);
return 1;
}
@@ -245,11 +247,15 @@
}
}
- if (num_inliers >= max_inliers) {
- double mean_distance = sum_distance / ((double)num_inliers);
- double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
- mean_distance * mean_distance * ((double)num_inliers) /
- ((double)num_inliers - 1.0);
+ if (num_inliers >= max_inliers && num_inliers > 1) {
+ int temp;
+ double fracinliers, pNoOutliers, mean_distance, variance;
+
+ assert(num_inliers > 1);
+ mean_distance = sum_distance / ((double)num_inliers);
+ variance = sum_distance_squared / ((double)num_inliers - 1.0) -
+ mean_distance * mean_distance * ((double)num_inliers) /
+ ((double)num_inliers - 1.0);
if ((num_inliers > max_inliers) ||
(num_inliers == max_inliers && variance < best_variance)) {
best_variance = variance;
@@ -262,16 +268,15 @@
memcpy(best_inlier_mask, inlier_mask,
npoints * sizeof(*best_inlier_mask));
- if (num_inliers > 0) {
- double fracinliers = (double)num_inliers / (double)npoints;
- double pNoOutliers = 1 - pow(fracinliers, minpts);
- int temp;
- pNoOutliers = fmax(EPS, pNoOutliers);
- pNoOutliers = fmin(1 - EPS, pNoOutliers);
- temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
- if (temp > 0 && temp < N) {
- N = AOMMAX(temp, MIN_TRIALS);
- }
+ assert(npoints > 0);
+ fracinliers = (double)num_inliers / (double)npoints;
+ pNoOutliers = 1 - pow(fracinliers, minpts);
+ pNoOutliers = fmax(EPS, pNoOutliers);
+ pNoOutliers = fmin(1 - EPS, pNoOutliers);
+ assert(fabs(1.0 - pNoOutliers) > 0.00001);
+ temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
+ if (temp > 0 && temp < N) {
+ N = AOMMAX(temp, MIN_TRIALS);
}
}
}
@@ -356,6 +361,7 @@
// normalize so that H33 = 1
int i;
const double m = 1.0 / best_params[8];
+ assert(fabs(best_params[8]) > 0.00001);
for (i = 0; i < 8; ++i) best_params[i] *= m;
best_params[8] = 1.0;
}