16x16 DCT blocks.
Set on all 16x16 intra/inter modes
Features:
- Butterfly fDCT/iDCT
- Loop filter does not filter internal edges with 16x16
- Optimize coefficient function
- Update coefficient probability function
- RD
- Entropy stats
- 16x16 is a config option
Have not tested with experiments.
hd: 2.60%
std-hd: 2.43%
yt: 1.32%
derf: 0.60%
Change-Id: I96fb090517c30c5da84bad4fae602c3ec0c58b1c
diff --git a/test/idct8x8_test.cc b/test/idct8x8_test.cc
new file mode 100644
index 0000000..a6308f8
--- /dev/null
+++ b/test/idct8x8_test.cc
@@ -0,0 +1,154 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "third_party/googletest/src/include/gtest/gtest.h"
+
+extern "C" {
+#include "vp8/encoder/dct.h"
+#include "vp8/common/idct.h"
+}
+
+#include "acm_random.h"
+#include "vpx/vpx_integer.h"
+
+using libvpx_test::ACMRandom;
+
+namespace {
+
+void reference_dct_1d(double input[8], double output[8]) {
+ const double kPi = 3.141592653589793238462643383279502884;
+ const double kInvSqrt2 = 0.707106781186547524400844362104;
+ for (int k = 0; k < 8; k++) {
+ output[k] = 0.0;
+ for (int n = 0; n < 8; n++)
+ output[k] += input[n]*cos(kPi*(2*n+1)*k/16.0);
+ if (k == 0)
+ output[k] = output[k]*kInvSqrt2;
+ }
+}
+
+void reference_dct_2d(int16_t input[64], double output[64]) {
+ // First transform columns
+ for (int i = 0; i < 8; ++i) {
+ double temp_in[8], temp_out[8];
+ for (int j = 0; j < 8; ++j)
+ temp_in[j] = input[j*8 + i];
+ reference_dct_1d(temp_in, temp_out);
+ for (int j = 0; j < 8; ++j)
+ output[j*8 + i] = temp_out[j];
+ }
+ // Then transform rows
+ for (int i = 0; i < 8; ++i) {
+ double temp_in[8], temp_out[8];
+ for (int j = 0; j < 8; ++j)
+ temp_in[j] = output[j + i*8];
+ reference_dct_1d(temp_in, temp_out);
+ for (int j = 0; j < 8; ++j)
+ output[j + i*8] = temp_out[j];
+ }
+ // Scale by some magic number
+ for (int i = 0; i < 64; ++i)
+ output[i] *= 2;
+}
+
+void reference_idct_1d(double input[8], double output[8]) {
+ const double kPi = 3.141592653589793238462643383279502884;
+ const double kSqrt2 = 1.414213562373095048801688724209698;
+ for (int k = 0; k < 8; k++) {
+ output[k] = 0.0;
+ for (int n = 0; n < 8; n++) {
+ output[k] += input[n]*cos(kPi*(2*k+1)*n/16.0);
+ if (n == 0)
+ output[k] = output[k]/kSqrt2;
+ }
+ }
+}
+
+void reference_idct_2d(double input[64], int16_t output[64]) {
+ double out[64], out2[64];
+ // First transform rows
+ for (int i = 0; i < 8; ++i) {
+ double temp_in[8], temp_out[8];
+ for (int j = 0; j < 8; ++j)
+ temp_in[j] = input[j + i*8];
+ reference_idct_1d(temp_in, temp_out);
+ for (int j = 0; j < 8; ++j)
+ out[j + i*8] = temp_out[j];
+ }
+ // Then transform columns
+ for (int i = 0; i < 8; ++i) {
+ double temp_in[8], temp_out[8];
+ for (int j = 0; j < 8; ++j)
+ temp_in[j] = out[j*8 + i];
+ reference_idct_1d(temp_in, temp_out);
+ for (int j = 0; j < 8; ++j)
+ out2[j*8 + i] = temp_out[j];
+ }
+ for (int i = 0; i < 64; ++i)
+ output[i] = round(out2[i]/32);
+}
+
+TEST(VP8Idct8x8Test, AccuracyCheck) {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ const int count_test_block = 10000;
+ for (int i = 0; i < count_test_block; ++i) {
+ int16_t input[64], coeff[64];
+ int16_t output_c[64];
+ double output_r[64];
+
+ // Initialize a test block with input range [-255, 255].
+ for (int j = 0; j < 64; ++j)
+ input[j] = rnd.Rand8() - rnd.Rand8();
+
+ const int pitch = 16;
+ vp8_short_fdct8x8_c(input, output_c, pitch);
+ reference_dct_2d(input, output_r);
+
+ for (int j = 0; j < 64; ++j) {
+ const double diff = output_c[j] - output_r[j];
+ const double error = diff * diff;
+ // An error in a DCT coefficient isn't that bad.
+ // We care more about the reconstructed pixels.
+ EXPECT_GE(2.0, error)
+ << "Error: 8x8 FDCT/IDCT has error " << error
+ << " at index " << j;
+ }
+
+#if 0
+ // Tests that the reference iDCT and fDCT match.
+ reference_dct_2d(input, output_r);
+ reference_idct_2d(output_r, output_c);
+ for (int j = 0; j < 64; ++j) {
+ const int diff = output_c[j] -input[j];
+ const int error = diff * diff;
+ EXPECT_EQ(0, error)
+ << "Error: 8x8 FDCT/IDCT has error " << error
+ << " at index " << j;
+ }
+#endif
+ reference_dct_2d(input, output_r);
+ for (int j = 0; j < 64; ++j)
+ coeff[j] = round(output_r[j]);
+ vp8_short_idct8x8_c(coeff, output_c, pitch);
+ for (int j = 0; j < 64; ++j) {
+ const int diff = output_c[j] -input[j];
+ const int error = diff * diff;
+ EXPECT_GE(1, error)
+ << "Error: 8x8 FDCT/IDCT has error " << error
+ << " at index " << j;
+ }
+ }
+}
+
+} // namespace