blob: 915d8f6fb5cb19ad87200439de2d93c51c5dd1b5 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#if CONFIG_AIMC
PREDICTION_MODE av1_get_joint_mode(const MB_MODE_INFO *mi) {
if (!mi) return DC_PRED;
if (is_inter_block(mi, SHARED_PART) || is_intrabc_block(mi, SHARED_PART))
return DC_PRED;
return mi->joint_y_mode_delta_angle;
}
#else
PREDICTION_MODE av1_get_block_mode(const MB_MODE_INFO *mi) {
if (!mi) return DC_PRED;
assert(!is_inter_block(mi, SHARED_PART) || is_intrabc_block(mi, SHARED_PART));
return mi->mode;
}
#endif // CONFIG_AIMC
void av1_reset_is_mi_coded_map(MACROBLOCKD *xd, int stride) {
av1_zero(xd->is_mi_coded);
xd->is_mi_coded_stride = stride;
}
void av1_mark_block_as_coded(MACROBLOCKD *xd, BLOCK_SIZE bsize,
BLOCK_SIZE sb_size) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int sb_mi_size = mi_size_wide[sb_size];
const int mi_row_offset = mi_row & (sb_mi_size - 1);
const int mi_col_offset = mi_col & (sb_mi_size - 1);
for (int r = 0; r < mi_size_high[bsize]; ++r)
for (int c = 0; c < mi_size_wide[bsize]; ++c) {
const int pos =
(mi_row_offset + r) * xd->is_mi_coded_stride + mi_col_offset + c;
switch (xd->tree_type) {
case SHARED_PART:
xd->is_mi_coded[0][pos] = 1;
xd->is_mi_coded[1][pos] = 1;
break;
case LUMA_PART: xd->is_mi_coded[0][pos] = 1; break;
case CHROMA_PART: xd->is_mi_coded[1][pos] = 1; break;
default: assert(0 && "Invalid tree type");
}
}
}
void av1_mark_block_as_not_coded(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, BLOCK_SIZE sb_size) {
const int sb_mi_size = mi_size_wide[sb_size];
const int mi_row_offset = mi_row & (sb_mi_size - 1);
const int mi_col_offset = mi_col & (sb_mi_size - 1);
for (int r = 0; r < mi_size_high[bsize]; ++r) {
const int pos =
(mi_row_offset + r) * xd->is_mi_coded_stride + mi_col_offset;
uint8_t *row_ptr_luma = &xd->is_mi_coded[0][pos];
uint8_t *row_ptr_chroma = &xd->is_mi_coded[1][pos];
switch (xd->tree_type) {
case SHARED_PART:
av1_zero_array(row_ptr_luma, mi_size_wide[bsize]);
av1_zero_array(row_ptr_chroma, mi_size_wide[bsize]);
break;
case LUMA_PART: av1_zero_array(row_ptr_luma, mi_size_wide[bsize]); break;
case CHROMA_PART:
av1_zero_array(row_ptr_chroma, mi_size_wide[bsize]);
break;
default: assert(0 && "Invalid tree type");
}
}
}
PARTITION_TREE *av1_alloc_ptree_node(PARTITION_TREE *parent, int index) {
PARTITION_TREE *ptree = NULL;
struct aom_internal_error_info error;
AOM_CHECK_MEM_ERROR(&error, ptree, aom_calloc(1, sizeof(*ptree)));
ptree->parent = parent;
ptree->index = index;
ptree->partition = PARTITION_INVALID;
ptree->is_settled = 0;
for (int i = 0; i < 4; ++i) ptree->sub_tree[i] = NULL;
return ptree;
}
void av1_free_ptree_recursive(PARTITION_TREE *ptree) {
if (ptree == NULL) return;
for (int i = 0; i < 4; ++i) {
av1_free_ptree_recursive(ptree->sub_tree[i]);
ptree->sub_tree[i] = NULL;
}
aom_free(ptree);
}
void av1_reset_ptree_in_sbi(SB_INFO *sbi, TREE_TYPE tree_type) {
const int idx = av1_get_sdp_idx(tree_type);
if (sbi->ptree_root[idx]) av1_free_ptree_recursive(sbi->ptree_root[idx]);
sbi->ptree_root[idx] = av1_alloc_ptree_node(NULL, 0);
}
void av1_set_entropy_contexts(const MACROBLOCKD *xd,
struct macroblockd_plane *pd, int plane,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int has_eob, int aoff, int loff) {
ENTROPY_CONTEXT *const a = pd->above_entropy_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_entropy_context + loff;
const int txs_wide = tx_size_wide_unit[tx_size];
const int txs_high = tx_size_high_unit[tx_size];
// above
if (has_eob && xd->mb_to_right_edge < 0) {
const int blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int above_contexts = AOMMIN(txs_wide, blocks_wide - aoff);
memset(a, has_eob, sizeof(*a) * above_contexts);
memset(a + above_contexts, 0, sizeof(*a) * (txs_wide - above_contexts));
} else {
memset(a, has_eob, sizeof(*a) * txs_wide);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
const int blocks_high = max_block_high(xd, plane_bsize, plane);
const int left_contexts = AOMMIN(txs_high, blocks_high - loff);
memset(l, has_eob, sizeof(*l) * left_contexts);
memset(l + left_contexts, 0, sizeof(*l) * (txs_high - left_contexts));
} else {
memset(l, has_eob, sizeof(*l) * txs_high);
}
}
void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
const int num_planes) {
#if CONFIG_EXT_RECUR_PARTITIONS
// TODO(chiyotsai): This part is needed to avoid encoder/decoder mismatch.
// Investigate why this is the case. It seems like on the decoder side, the
// decoder is failing to clear the context after encoding a skip_txfm chroma
// block.
const int plane_start = (xd->tree_type == CHROMA_PART);
int plane_end = 0;
switch (xd->tree_type) {
case LUMA_PART: plane_end = 1; break;
case CHROMA_PART: plane_end = num_planes; break;
case SHARED_PART:
plane_end = 1 + (num_planes - 1) * xd->is_chroma_ref;
break;
default: assert(0);
}
for (int i = plane_start; i < plane_end; ++i) {
#else
const int nplanes = 1 + (num_planes - 1) * xd->is_chroma_ref;
for (int i = 0; i < nplanes; i++) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
struct macroblockd_plane *const pd = &xd->plane[i];
const BLOCK_SIZE plane_bsize = get_mb_plane_block_size(
xd, xd->mi[0], i, pd->subsampling_x, pd->subsampling_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize ==
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
(void)bsize;
const int txs_wide = mi_size_wide[plane_bsize];
const int txs_high = mi_size_high[plane_bsize];
memset(pd->above_entropy_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
memset(pd->left_entropy_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes) {
xd->delta_lf_from_base = 0;
const int frame_lf_count =
num_planes > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) xd->delta_lf[lf_id] = 0;
}
// Resets the LR decoding state before decoding each coded tile and
// associated LR coefficients
void av1_reset_loop_restoration(MACROBLOCKD *xd, int plane_start, int plane_end,
const int *num_filter_classes) {
for (int p = plane_start; p < plane_end; ++p) {
av1_reset_wiener_bank(&xd->wiener_info[p], p != AOM_PLANE_Y);
av1_reset_sgrproj_bank(&xd->sgrproj_info[p]);
av1_reset_wienerns_bank(&xd->wienerns_info[p], xd->current_base_qindex,
num_filter_classes[p], p != AOM_PLANE_Y);
}
}
// Initialize bank
void av1_reset_wiener_bank(WienerInfoBank *bank, int chroma) {
set_default_wiener(&bank->filter[0], chroma);
bank->bank_size = 0;
bank->bank_ptr = 0;
}
// Add a new filter to bank
void av1_add_to_wiener_bank(WienerInfoBank *bank, const WienerInfo *info) {
if (bank->bank_size < LR_BANK_SIZE) {
bank->bank_ptr = bank->bank_size;
memcpy(&bank->filter[bank->bank_ptr], info, sizeof(*info));
bank->bank_size++;
} else {
bank->bank_ptr = (bank->bank_ptr + 1) % LR_BANK_SIZE;
memcpy(&bank->filter[bank->bank_ptr], info, sizeof(*info));
}
}
// Get a reference to a filter given the index
WienerInfo *av1_ref_from_wiener_bank(WienerInfoBank *bank, int ndx) {
if (bank->bank_size == 0) {
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size);
const int ptr =
bank->bank_ptr - ndx + (bank->bank_ptr < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Get a const reference to a filter given the index
const WienerInfo *av1_constref_from_wiener_bank(const WienerInfoBank *bank,
int ndx) {
if (bank->bank_size == 0) {
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size);
const int ptr =
bank->bank_ptr - ndx + (bank->bank_ptr < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Directly replace a filter in the bank at given index
void av1_upd_to_wiener_bank(WienerInfoBank *bank, int ndx,
const WienerInfo *info) {
memcpy(av1_ref_from_wiener_bank(bank, ndx), info, sizeof(*info));
}
// Initialize bank
void av1_reset_sgrproj_bank(SgrprojInfoBank *bank) {
set_default_sgrproj(&bank->filter[0]);
bank->bank_size = 0;
bank->bank_ptr = 0;
}
// Add a new filter to bank
void av1_add_to_sgrproj_bank(SgrprojInfoBank *bank, const SgrprojInfo *info) {
if (bank->bank_size < LR_BANK_SIZE) {
bank->bank_ptr = bank->bank_size;
memcpy(&bank->filter[bank->bank_ptr], info, sizeof(*info));
bank->bank_size++;
} else {
bank->bank_ptr = (bank->bank_ptr + 1) % LR_BANK_SIZE;
memcpy(&bank->filter[bank->bank_ptr], info, sizeof(*info));
}
}
// Get a reference to a filter given the index
SgrprojInfo *av1_ref_from_sgrproj_bank(SgrprojInfoBank *bank, int ndx) {
if (bank->bank_size == 0) {
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size);
const int ptr =
bank->bank_ptr - ndx + (bank->bank_ptr < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Get a const reference to a filter given the index
const SgrprojInfo *av1_constref_from_sgrproj_bank(const SgrprojInfoBank *bank,
int ndx) {
if (bank->bank_size == 0) {
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size);
const int ptr =
bank->bank_ptr - ndx + (bank->bank_ptr < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Directly replace a filter in the bank at given index
void av1_upd_to_sgrproj_bank(SgrprojInfoBank *bank, int ndx,
const SgrprojInfo *info) {
memcpy(av1_ref_from_sgrproj_bank(bank, ndx), info, sizeof(*info));
}
// Initialize bank
void av1_reset_wienerns_bank(WienerNonsepInfoBank *bank, int qindex,
int num_classes, int chroma) {
for (int i = 0; i < LR_BANK_SIZE; ++i) {
set_default_wienerns(&bank->filter[i], qindex, num_classes, chroma);
}
for (int c_id = 0; c_id < num_classes; ++c_id) {
bank->bank_size_for_class[c_id] = 0;
bank->bank_ptr_for_class[c_id] = 0;
}
}
// Add a new filter to bank
void av1_add_to_wienerns_bank(WienerNonsepInfoBank *bank,
const WienerNonsepInfo *info,
int wiener_class_id) {
int c_id_begin = wiener_class_id;
int c_id_end = wiener_class_id + 1;
if (wiener_class_id == ALL_WIENERNS_CLASSES) {
c_id_begin = 0;
c_id_end = info->num_classes;
}
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
if (bank->bank_size_for_class[c_id] < LR_BANK_SIZE) {
bank->bank_ptr_for_class[c_id] = bank->bank_size_for_class[c_id];
bank->bank_size_for_class[c_id]++;
} else {
bank->bank_ptr_for_class[c_id] =
(bank->bank_ptr_for_class[c_id] + 1) % LR_BANK_SIZE;
}
copy_nsfilter_taps_for_class(&bank->filter[bank->bank_ptr_for_class[c_id]],
info, c_id);
}
}
// Returns the filter that is at slot ndx from last. When ndx is zero the last
// filter added is returned. When ndx is one the filter added before the last
// and so on.
WienerNonsepInfo *av1_ref_from_wienerns_bank(WienerNonsepInfoBank *bank,
int ndx, int wiener_class_id) {
assert(wiener_class_id != ALL_WIENERNS_CLASSES);
if (bank->bank_size_for_class[wiener_class_id] == 0) {
assert(ndx == 0);
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size_for_class[wiener_class_id]);
const int ptr =
bank->bank_ptr_for_class[wiener_class_id] - ndx +
(bank->bank_ptr_for_class[wiener_class_id] < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Get a const reference to a filter given the index
const WienerNonsepInfo *av1_constref_from_wienerns_bank(
const WienerNonsepInfoBank *bank, int ndx, int wiener_class_id) {
assert(wiener_class_id != ALL_WIENERNS_CLASSES);
if (bank->bank_size_for_class[wiener_class_id] == 0) {
return &bank->filter[0];
} else {
assert(ndx < bank->bank_size_for_class[wiener_class_id]);
const int ptr =
bank->bank_ptr_for_class[wiener_class_id] - ndx +
(bank->bank_ptr_for_class[wiener_class_id] < ndx ? LR_BANK_SIZE : 0);
return &bank->filter[ptr];
}
}
// Directly replace a filter in the bank at given index
void av1_upd_to_wienerns_bank(WienerNonsepInfoBank *bank, int ndx,
const WienerNonsepInfo *info,
int wiener_class_id) {
copy_nsfilter_taps_for_class(
av1_ref_from_wienerns_bank(bank, ndx, wiener_class_id), info,
wiener_class_id);
}
int16_t *nsfilter_taps(WienerNonsepInfo *nsinfo, int wiener_class_id) {
assert(wiener_class_id >= 0 && wiener_class_id < nsinfo->num_classes);
return nsinfo->allfiltertaps + wiener_class_id * WIENERNS_TAPS_MAX;
}
const int16_t *const_nsfilter_taps(const WienerNonsepInfo *nsinfo,
int wiener_class_id) {
assert(wiener_class_id >= 0 && wiener_class_id < nsinfo->num_classes);
return nsinfo->allfiltertaps + wiener_class_id * WIENERNS_TAPS_MAX;
}
void copy_nsfilter_taps_for_class(WienerNonsepInfo *to_info,
const WienerNonsepInfo *from_info,
int wiener_class_id) {
assert(wiener_class_id >= 0 && wiener_class_id < to_info->num_classes);
assert(wiener_class_id >= 0 && wiener_class_id < from_info->num_classes);
const int offset = wiener_class_id * WIENERNS_TAPS_MAX;
memcpy(to_info->allfiltertaps + offset, from_info->allfiltertaps + offset,
WIENERNS_TAPS_MAX * sizeof(*to_info->allfiltertaps));
to_info->bank_ref_for_class[wiener_class_id] =
from_info->bank_ref_for_class[wiener_class_id];
}
void copy_nsfilter_taps(WienerNonsepInfo *to_info,
const WienerNonsepInfo *from_info) {
assert(to_info->num_classes == from_info->num_classes);
memcpy(to_info->allfiltertaps, from_info->allfiltertaps,
sizeof(to_info->allfiltertaps));
memcpy(to_info->bank_ref_for_class, from_info->bank_ref_for_class,
sizeof(to_info->bank_ref_for_class));
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
const int num_planes) {
int i;
for (i = 0; i < num_planes; i++) {
xd->plane[i].plane_type = get_plane_type(i);
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
for (i = num_planes; i < MAX_MB_PLANE; i++) {
xd->plane[i].subsampling_x = 1;
xd->plane[i].subsampling_y = 1;
}
}
#if CONFIG_COMBINE_PC_NS_WIENER
int max_dictionary_size(int nopcw) {
const int max_num_predictors =
num_dictionary_slots(WIENERNS_MAX_CLASSES, nopcw);
return max_num_predictors * NUM_PC_WIENER_TAPS_LUMA;
}
void allocate_frame_filter_dictionary(AV1_COMMON *cm, int nopcw) {
(void)nopcw;
// Use max_dictionary_size(0) below instead of max_dictionary_size(nopcw)
// to always allocate for the largest possible dictionary size.
// If nopcw is solely based on sequence level parameters, this
// should not be strictly necessary, since reallocation should
// happen with every new sequence parameter set. However the current
// reference decoder does not appear to reallocate when the sequence
// level parameters change. Hence this change is needed.
cm->frame_filter_dictionary =
aom_calloc(max_dictionary_size(0), sizeof(*cm->frame_filter_dictionary));
cm->translated_pcwiener_filters =
aom_calloc(NUM_PC_WIENER_FILTERS * NUM_PC_WIENER_TAPS_LUMA,
sizeof(*cm->translated_pcwiener_filters));
cm->translation_done = 0;
cm->frame_filter_dictionary_stride = NUM_PC_WIENER_TAPS_LUMA;
}
void free_frame_filter_dictionary(AV1_COMMON *cm) {
aom_free(cm->frame_filter_dictionary);
aom_free(cm->translated_pcwiener_filters);
cm->frame_filter_dictionary = NULL;
cm->translated_pcwiener_filters = NULL;
cm->translation_done = 0;
cm->frame_filter_dictionary_stride = 0;
}
// TODO: Refactor so that this gets called only once during encoding/decoding.
// Useful when using pre-trained filters (with different config and precision)
// to predict transmitetd filters to reduce side-information.
void translate_pcwiener_filters_to_wienerns(AV1_COMMON *cm) {
if (cm->translation_done) {
return;
}
const int base_qindex = cm->quant_params.base_qindex;
const int is_uv = 0;
const WienernsFilterParameters *nsfilter_params =
get_wienerns_parameters(base_qindex, is_uv);
assert(nsfilter_params->ncoeffs <= NUM_PC_WIENER_TAPS_LUMA);
const int num_feat = nsfilter_params->ncoeffs;
int tap_translator[WIENERNS_TAPS_MAX];
const int num_taps = wienerns_to_pcwiener_tap_config_translator(
&nsfilter_params->nsfilter_config, tap_translator, WIENERNS_TAPS_MAX);
(void)num_taps;
assert(num_taps == num_feat);
const int set_index =
0; // get_filter_set_index(base_qindex + qindex_offset);
const int num_pc_wiener_filters = NUM_PC_WIENER_FILTERS;
const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs;
const int16_t(*pcwiener_filters_luma)[NUM_PC_WIENER_TAPS_LUMA] =
get_filter_set(set_index);
const int precision_diff =
PC_WIENER_PREC_FILTER - nsfilter_params->nsfilter_config.prec_bits;
assert(precision_diff >= 0);
for (int pc_wiener_cnt = 0; pc_wiener_cnt < num_pc_wiener_filters;
++pc_wiener_cnt) {
int filter_index = pc_wiener_cnt;
const int16_t *pcwiener_filter = pcwiener_filters_luma[filter_index];
const int dict_index = pc_wiener_cnt;
assert(cm->translated_pcwiener_filters != NULL);
for (int i = 0; i < num_feat; ++i) {
const int16_t scaled_tap = ROUND_POWER_OF_TWO_SIGNED(
pcwiener_filter[tap_translator[i]], precision_diff);
cm->translated_pcwiener_filters[dict_index * NUM_PC_WIENER_TAPS_LUMA +
i] =
clip_to_wienerns_range(scaled_tap,
wienerns_coeffs[i][WIENERNS_MIN_ID],
(1 << wienerns_coeffs[i][WIENERNS_BIT_ID]));
}
}
cm->translation_done = 1;
}
static inline int num_sampled_pc_wiener_filters(int num_ref_filters,
int num_classes, int nopcw) {
if (nopcw) return 0;
return AOMMIN(
AOMMAX(max_num_base_filters(num_classes, 0) - num_ref_filters, 0),
NUM_PC_WIENER_FILTERS);
}
void set_frame_filter_dictionary(const AV1_COMMON *cm, int num_classes,
int16_t *frame_filter_dictionary,
int dict_stride) {
assert(frame_filter_dictionary != NULL);
assert(dict_stride > 0);
const int base_qindex = cm->quant_params.base_qindex;
const int is_uv = 0;
const WienernsFilterParameters *nsfilter_params =
get_wienerns_parameters(base_qindex, is_uv);
assert(nsfilter_params->ncoeffs <= NUM_PC_WIENER_TAPS_LUMA);
const int num_feat = nsfilter_params->ncoeffs;
const int nopcw = disable_pcwiener_filters_in_framefilters(&cm->seq_params);
memset(frame_filter_dictionary, 0,
max_dictionary_size(nopcw) * sizeof(*frame_filter_dictionary));
const int max_predictors = num_dictionary_slots(num_classes, nopcw);
// Filters prior to ref_filter_offset are all zeros via calloc. --------------
const int ref_filter_offset = reference_filters_begin(num_classes);
// ---------------------------------------------------------------------------
// Copy available reference filters to the dictionary. -----------------------
int num_ref_filters = 0;
#if CONFIG_TEMP_LR
const int allowed_num_base_filters = max_num_base_filters(num_classes, nopcw);
assert(allowed_num_base_filters < max_predictors);
// const int num_ref_frames = cm->current_frame.frame_type == KEY_FRAME
// ? 0
// : cm->ref_frames_info.num_total_refs;
const int num_ref_frames = 0; // TODO: Fix the enc-dec issue.
for (int ref_idx = 0; ref_idx < num_ref_frames; ref_idx++) {
const int plane = AOM_PLANE_Y;
const RefCntBuffer *ref_frame_buf = get_ref_frame_buf(cm, ref_idx);
if (ref_frame_buf == NULL) {
assert(0);
continue;
}
RestorationInfo rsi = ref_frame_buf->rst_info[plane];
if (rsi.frame_filters_on) {
for (int c_id = 0; c_id < rsi.num_filter_classes; ++c_id) {
if (num_ref_filters >= allowed_num_base_filters) break;
int16_t *match_filter =
frame_filter_dictionary +
(num_ref_filters + ref_filter_offset) * dict_stride;
const int16_t *wienerns_filter =
const_nsfilter_taps(&rsi.frame_filters, c_id);
for (int i = 0; i < num_feat; ++i) {
match_filter[i] = wienerns_filter[i];
}
++num_ref_filters;
}
}
}
#endif // CONFIG_TEMP_LR
// ---------------------------------------------------------------------------
// Sample from the pc-wiener filters for the remaining allowed slots. --------
const int num_pc_wiener_filters =
num_sampled_pc_wiener_filters(num_ref_filters, num_classes, nopcw);
if (num_pc_wiener_filters == 0) return;
assert(num_pc_wiener_filters >= 0 &&
num_pc_wiener_filters <= NUM_PC_WIENER_FILTERS);
const int pc_wiener_skip = num_pc_wiener_filters
? NUM_PC_WIENER_FILTERS / num_pc_wiener_filters
: NUM_PC_WIENER_FILTERS;
const int pc_wiener_offset = pc_wiener_skip / 2;
assert(cm->translated_pcwiener_filters != NULL);
assert(cm->translation_done);
for (int pc_wiener_cnt = 0; pc_wiener_cnt < num_pc_wiener_filters;
++pc_wiener_cnt) {
int filter_index = pc_wiener_cnt * pc_wiener_skip + pc_wiener_offset;
assert(filter_index < NUM_PC_WIENER_FILTERS);
if (filter_index >= NUM_PC_WIENER_FILTERS) {
filter_index = NUM_PC_WIENER_FILTERS - 1;
}
const int16_t *pcwiener_filter = cm->translated_pcwiener_filters +
filter_index * NUM_PC_WIENER_TAPS_LUMA;
const int dict_index = ref_filter_offset + num_ref_filters + pc_wiener_cnt;
assert(dict_index < max_predictors);
if (dict_index >= max_predictors) {
break;
}
int16_t *match_filter = frame_filter_dictionary + dict_index * dict_stride;
for (int i = 0; i < num_feat; ++i) {
match_filter[i] = pcwiener_filter[i];
}
}
// ---------------------------------------------------------------------------
// One or more match filters are all zeros via calloc. -----------------------
// ---------------------------------------------------------------------------
}
void add_filter_to_dictionary(const WienerNonsepInfo *filter, int class_id,
const WienernsFilterParameters *nsfilter_params,
int16_t *frame_filter_dictionary, int dict_stride,
int nopcw) {
(void)nopcw;
assert(frame_filter_dictionary != NULL);
assert(dict_stride > 0);
if (class_id == filter->num_classes - 1) return;
const int filter_index = prev_filters_begin(filter->num_classes) + class_id;
assert(filter_index < num_dictionary_slots(filter->num_classes, nopcw));
int16_t *match_filter = frame_filter_dictionary + filter_index * dict_stride;
const int16_t *wienerns_filter = const_nsfilter_taps(filter, class_id);
const int num_feat = nsfilter_params->ncoeffs;
for (int i = 0; i < num_feat; ++i) {
match_filter[i] = wienerns_filter[i];
}
}
#endif // CONFIG_COMBINE_PC_NS_WIENER
void av1_alloc_txk_skip_array(CommonModeInfoParams *mi_params, AV1_COMMON *cm) {
// Allocate based on the MIN_TX_SIZE, which is a 4x4 block.
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
int w = mi_params->mi_cols << MI_SIZE_LOG2;
int h = mi_params->mi_rows << MI_SIZE_LOG2;
w = ((w + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
h = ((h + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
h >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_y);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int rows = (h + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
mi_params->tx_skip[plane] = aom_calloc(rows * stride, sizeof(uint8_t));
mi_params->tx_skip_buf_size[plane] = rows * stride;
mi_params->tx_skip_stride[plane] = stride;
}
#ifndef NDEBUG
av1_reset_txk_skip_array(cm);
#endif // NDEBUG
}
void av1_dealloc_txk_skip_array(CommonModeInfoParams *mi_params) {
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
aom_free(mi_params->tx_skip[plane]);
mi_params->tx_skip[plane] = NULL;
}
}
void av1_reset_txk_skip_array(AV1_COMMON *cm) {
// Allocate based on the MIN_TX_SIZE, which is a 4x4 block.
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
int w = cm->mi_params.mi_cols << MI_SIZE_LOG2;
int h = cm->mi_params.mi_rows << MI_SIZE_LOG2;
w = ((w + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
h = ((h + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
h >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_y);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int rows = (h + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
memset(cm->mi_params.tx_skip[plane], ILLEGAL_TXK_SKIP_VALUE, rows * stride);
}
}
void av1_reset_txk_skip_array_using_mi_params(CommonModeInfoParams *mi_params) {
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
memset(mi_params->tx_skip[plane], ILLEGAL_TXK_SKIP_VALUE,
mi_params->tx_skip_buf_size[plane]);
}
}
void av1_init_txk_skip_array(const AV1_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize, uint8_t value,
TREE_TYPE tree_type,
const CHROMA_REF_INFO *chroma_ref_info,
int plane_start, int plane_end) {
const bool is_chroma_ref = chroma_ref_info->is_chroma_ref;
for (int plane = plane_start; plane < plane_end; plane++) {
if (plane && !is_chroma_ref) {
break;
}
const int plane_mi_row =
plane ? chroma_ref_info->mi_row_chroma_base : mi_row;
const int plane_mi_col =
plane ? chroma_ref_info->mi_col_chroma_base : mi_col;
const BLOCK_SIZE bsize_base = (tree_type == SHARED_PART && plane)
? chroma_ref_info->bsize_base
: bsize;
int w = ((cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2)
<< MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int x = (plane_mi_col << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int y = (plane_mi_row << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_y);
int row = y >> MIN_TX_SIZE_LOG2;
int col = x >> MIN_TX_SIZE_LOG2;
int blk_w = block_size_wide[bsize_base] >>
((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int blk_h = block_size_high[bsize_base] >>
((plane == 0) ? 0 : cm->seq_params.subsampling_y);
blk_w >>= MIN_TX_SIZE_LOG2;
blk_h >>= MIN_TX_SIZE_LOG2;
if (plane && (blk_w == 0 || blk_h == 0) && is_chroma_ref) {
blk_w = blk_w == 0 ? 1 : blk_w;
blk_h = blk_h == 0 ? 1 : blk_h;
}
for (int r = 0; r < blk_h; r++) {
for (int c = 0; c < blk_w; c++) {
uint32_t idx = (row + r) * stride + col + c;
assert(idx < cm->mi_params.tx_skip_buf_size[plane]);
cm->mi_params.tx_skip[plane][idx] = value;
}
}
}
}
void av1_update_txk_skip_array(const AV1_COMMON *cm, int mi_row, int mi_col,
TREE_TYPE tree_type,
const CHROMA_REF_INFO *chroma_ref_info,
int plane, int blk_row, int blk_col,
TX_SIZE tx_size) {
blk_row *= 4;
blk_col *= 4;
mi_row = (tree_type == SHARED_PART && plane)
? chroma_ref_info->mi_row_chroma_base
: mi_row;
mi_col = (tree_type == SHARED_PART && plane)
? chroma_ref_info->mi_col_chroma_base
: mi_col;
int w = ((cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2)
<< MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int tx_w = tx_size_wide[tx_size];
int tx_h = tx_size_high[tx_size];
int cols = tx_w >> MIN_TX_SIZE_LOG2;
int rows = tx_h >> MIN_TX_SIZE_LOG2;
int x = (mi_col << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int y = (mi_row << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_y);
x = (x + blk_col) >> MIN_TX_SIZE_LOG2;
y = (y + blk_row) >> MIN_TX_SIZE_LOG2;
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
uint32_t idx = (y + r) * stride + x + c;
assert(idx < cm->mi_params.tx_skip_buf_size[plane]);
cm->mi_params.tx_skip[plane][idx] = 1;
}
}
}
uint8_t av1_get_txk_skip(const AV1_COMMON *cm, int mi_row, int mi_col,
int plane, int blk_row, int blk_col) {
blk_row *= 4;
blk_col *= 4;
int w = ((cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2)
<< MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int x = (mi_col << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_x);
int y = (mi_row << MI_SIZE_LOG2) >>
((plane == 0) ? 0 : cm->seq_params.subsampling_y);
x = (x + blk_col) >> MIN_TX_SIZE_LOG2;
y = (y + blk_row) >> MIN_TX_SIZE_LOG2;
uint32_t idx = y * stride + x;
assert(idx < cm->mi_params.tx_skip_buf_size[plane]);
assert(cm->mi_params.tx_skip[plane][idx] != ILLEGAL_TXK_SKIP_VALUE);
return cm->mi_params.tx_skip[plane][idx];
}
void av1_alloc_class_id_array(CommonModeInfoParams *mi_params, AV1_COMMON *cm) {
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
int w = cm->superres_upscaled_width;
int h = cm->superres_upscaled_height;
w = ((w + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
h = ((h + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2) << MAX_SB_SIZE_LOG2;
w >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_x);
h >>= ((plane == 0) ? 0 : cm->seq_params.subsampling_y);
int stride = (w + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
int rows = (h + MIN_TX_SIZE - 1) >> MIN_TX_SIZE_LOG2;
mi_params->wiener_class_id[plane] =
aom_calloc(rows * stride, sizeof(uint8_t));
mi_params->wiener_class_id_stride[plane] = stride;
}
}
void av1_dealloc_class_id_array(CommonModeInfoParams *mi_params) {
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
aom_free(mi_params->wiener_class_id[plane]);
mi_params->wiener_class_id[plane] = NULL;
}
}