blob: d85245ebb874bda92d122f509707dcaf26b2a9bc [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/enums.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/mv.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"
#include "av1/common/tile_common.h"
#include "av1/common/timing.h"
#include "av1/common/odintrin.h"
#if CONFIG_IBP_DIR
#include "av1/common/warped_motion.h"
#endif
#include "av1/encoder/hash_motion.h"
#include "aom_dsp/grain_synthesis.h"
#include "aom_dsp/grain_table.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__clang__) && defined(__has_warning)
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
#endif
#elif defined(__GNUC__) && __GNUC__ >= 7
#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
#endif
#ifndef AOM_FALLTHROUGH_INTENDED
#define AOM_FALLTHROUGH_INTENDED \
do { \
} while (0)
#endif
#define CDEF_MAX_STRENGTHS 16
/* Constant value specifying size of subgop stats*/
#define MAX_SUBGOP_STATS_SIZE 32
/* Constant values while waiting for the sequence header */
#define FRAME_ID_LENGTH 15
#define DELTA_FRAME_ID_LENGTH 14
#if CONFIG_EXTQUANT
#define DELTA_DCQUANT_BITS 5
#define DELTA_DCQUANT_MAX (1 << (DELTA_DCQUANT_BITS - 2))
#define DELTA_DCQUANT_MIN (DELTA_DCQUANT_MAX - (1 << DELTA_DCQUANT_BITS) + 1)
#endif // CONFIG_EXTQUANT
#define DEBUG_EXTQUANT 0
#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
// Extra frame context which is always kept at default values
#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
#define PRIMARY_REF_BITS 3
#define PRIMARY_REF_NONE 7
#define NUM_PING_PONG_BUFFERS 2
#define MAX_NUM_TEMPORAL_LAYERS 8
#define MAX_NUM_SPATIAL_LAYERS 4
/* clang-format off */
// clang-format seems to think this is a pointer dereference and not a
// multiplication.
#define MAX_NUM_OPERATING_POINTS \
(MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
/* clang-format on */
// TODO(jingning): Turning this on to set up transform coefficient
// processing timer.
#define TXCOEFF_TIMER 0
#define TXCOEFF_COST_TIMER 0
#if CONFIG_NEW_REF_SIGNALING
#define COMPACT_INDEX0_NRS(r) \
(((r) == INTRA_FRAME_NRS) ? INTRA_FRAME_INDEX_NRS : (r))
#define COMPACT_INDEX1_NRS(r) \
(!is_inter_ref_frame((r)) ? INTRA_FRAME_INDEX_NRS : (r))
#endif // CONFIG_NEW_REF_SIGNALING
/*!\cond */
enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} UENUM1BYTE(REFERENCE_MODE);
enum {
/**
* Frame context updates are disabled
*/
REFRESH_FRAME_CONTEXT_DISABLED,
/**
* Update frame context to values resulting from backward probability
* updates based on entropy/counts in the decoded frame
*/
REFRESH_FRAME_CONTEXT_BACKWARD,
} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
typedef struct {
int_mv mfmv0;
uint8_t ref_frame_offset;
} TPL_MV_REF;
typedef struct {
int_mv mv;
MV_REFERENCE_FRAME ref_frame;
} MV_REF;
typedef struct RefCntBuffer {
// For a RefCntBuffer, the following are reference-holding variables:
// - cm->ref_frame_map[]
// - cm->cur_frame
// - cm->scaled_ref_buf[] (encoder only)
// - pbi->output_frame_index[] (decoder only)
// With that definition, 'ref_count' is the number of reference-holding
// variables that are currently referencing this buffer.
// For example:
// - suppose this buffer is at index 'k' in the buffer pool, and
// - Total 'n' of the variables / array elements above have value 'k' (that
// is, they are pointing to buffer at index 'k').
// Then, pool->frame_bufs[k].ref_count = n.
int ref_count;
unsigned int order_hint;
#if CONFIG_NEW_REF_SIGNALING
int ref_order_hints[INTER_REFS_PER_FRAME];
int ref_display_order_hint[INTER_REFS_PER_FRAME];
#else
unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
#endif // CONFIG_NEW_REF_SIGNALING
// These variables are used only in encoder and compare the absolute
// display order hint to compute the relative distance and overcome
// the limitation of get_relative_dist() which returns incorrect
// distance when a very old frame is used as a reference.
unsigned int display_order_hint;
unsigned int absolute_poc;
// Frame's level within the hierarchical structure
unsigned int pyramid_level;
MV_REF *mvs;
uint8_t *seg_map;
struct segmentation seg;
int mi_rows;
int mi_cols;
// Width and height give the size of the buffer (before any upscaling, unlike
// the sizes that can be derived from the buf structure)
int width;
int height;
#if CONFIG_NEW_REF_SIGNALING
WarpedMotionParams global_motion[INTER_REFS_PER_FRAME];
#else
WarpedMotionParams global_motion[REF_FRAMES];
#endif // CONFIG_NEW_REF_SIGNALING
int showable_frame; // frame can be used as show existing frame in future
uint8_t film_grain_params_present;
aom_film_grain_t film_grain_params;
aom_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
FRAME_TYPE frame_type;
// This is only used in the encoder but needs to be indexed per ref frame
// so it's extremely convenient to keep it here.
int interp_filter_selected[SWITCHABLE];
// Inter frame reference frame delta for loop filter
int8_t ref_deltas[REF_FRAMES];
// 0 = ZERO_MV, MV
int8_t mode_deltas[MAX_MODE_LF_DELTAS];
FRAME_CONTEXT frame_context;
#if CONFIG_NEW_REF_SIGNALING
int base_qindex;
#endif // CONFIG_NEW_REF_SIGNALING
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
// TODO(wtc): Remove this. See
// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
/*!\endcond */
/*!\brief Parameters related to CDEF */
typedef struct {
int cdef_damping; /*!< CDEF damping factor */
int nb_cdef_strengths; /*!< Number of CDEF strength values */
int cdef_strengths[CDEF_MAX_STRENGTHS]; /*!< CDEF strength values for luma */
int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; /*!< CDEF strength values for
chroma */
int cdef_bits; /*!< Number of CDEF strength values in bits */
} CdefInfo;
#if CONFIG_OPTFLOW_REFINEMENT
enum {
/*!
* MV refinement disabled for the current frame.
*/
REFINE_NONE = 0,
/*!
* MV refinement is switchable per block for the current frame.
*/
REFINE_SWITCHABLE = 1,
/*!
* MV refinement applied to all compound blocks for the current frame.
*/
REFINE_ALL = 2,
} UENUM1BYTE(OPTFLOW_REFINE_TYPE);
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_CCSO
/** ccso info */
typedef struct {
/** ccso enable */
bool ccso_enable[2];
/** ccso filter offset */
int8_t filter_offset[2][16];
/** quant index */
uint8_t quant_idx[2];
/** extended filter support */
uint8_t ext_filter_support[2];
} CcsoInfo;
#endif
/*!\cond */
typedef struct {
int delta_q_present_flag;
// Resolution of delta quant
int delta_q_res;
int delta_lf_present_flag;
// Resolution of delta lf level
int delta_lf_res;
// This is a flag for number of deltas of loop filter level
// 0: use 1 delta, for y_vertical, y_horizontal, u, and v
// 1: use separate deltas for each filter level
int delta_lf_multi;
} DeltaQInfo;
typedef struct {
int enable_order_hint; // 0 - disable order hint, and related tools
int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
// frame_sign_bias
// if 0, enable_dist_wtd_comp and
// enable_ref_frame_mvs must be set as 0.
int enable_ref_frame_mvs; // 0 - disable ref frame mvs
// 1 - enable it
} OrderHintInfo;
// Sequence header structure.
// Note: All syntax elements of sequence_header_obu that need to be
// bit-identical across multiple sequence headers must be part of this struct,
// so that consistency is checked by are_seq_headers_consistent() function.
// One exception is the last member 'op_params' that is ignored by
// are_seq_headers_consistent() function.
typedef struct SequenceHeader {
int num_bits_width;
int num_bits_height;
int max_frame_width;
int max_frame_height;
// Whether current and reference frame IDs are signaled in the bitstream.
// Frame id numbers are additional information that do not affect the
// decoding process, but provide decoders with a way of detecting missing
// reference frames so that appropriate action can be taken.
uint8_t frame_id_numbers_present_flag;
int frame_id_length;
int delta_frame_id_length;
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
int mib_size; // Size of the superblock in units of MI blocks
int mib_size_log2; // Log 2 of above.
#if CONFIG_NEW_REF_SIGNALING
int explicit_ref_frame_map; // Explicitly signal the reference frame mapping
int max_reference_frames; // Number of reference frames allowed
#endif
OrderHintInfo order_hint_info;
uint8_t force_screen_content_tools; // 0 - force off
// 1 - force on
// 2 - adaptive
uint8_t still_picture; // Video is a single frame still picture
uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
// 1 - force to integer
// 2 - adaptive
#if CONFIG_SDP
uint8_t enable_sdp; // enables/disables semi-decoupled partitioning
#endif
#if CONFIG_MRLS
uint8_t enable_mrls; // enables/disables multiple reference line selection
#endif
uint8_t enable_filter_intra; // enables/disables filterintra
uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
#if CONFIG_ORIP
uint8_t enable_orip; // To turn on/off sub-block based ORIP
#endif
#if CONFIG_IST
uint8_t enable_ist; // enables/disables intra secondary transform
#endif
#if CONFIG_IBP_DC || CONFIG_IBP_DIR
uint8_t enable_ibp; // enables/disables intra bi-prediction(IBP)
#endif
uint8_t enable_interintra_compound; // enables/disables interintra_compound
uint8_t enable_masked_compound; // enables/disables masked compound
#if CONFIG_OPTFLOW_REFINEMENT
aom_opfl_refine_type enable_opfl_refine; // optical flow refinement type for
// this frame
#endif
#if !CONFIG_REMOVE_DUAL_FILTER
uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
#endif // !CONFIG_REMOVE_DUAL_FILTER
// 1 - enable vert/horz filter selection
uint8_t enable_warped_motion; // 0 - disable warp for the sequence
// 1 - enable warp for the sequence
uint8_t enable_superres; // 0 - Disable superres for the sequence
// and no frame level superres flag
// 1 - Enable superres for the sequence
// enable per-frame superres flag
uint8_t enable_cdef; // To turn on/off CDEF
uint8_t enable_restoration; // To turn on/off loop restoration
#if CONFIG_CCSO
uint8_t enable_ccso; // To turn on/off CCSO
#endif
#if CONFIG_REF_MV_BANK
uint8_t enable_refmvbank; // To turn on/off Ref MV Bank
#endif // CONFIG_REF_MV_BANK
BITSTREAM_PROFILE profile;
// Color config.
aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
// AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
uint8_t monochrome; // Monochorme video
aom_color_primaries_t color_primaries;
aom_transfer_characteristics_t transfer_characteristics;
aom_matrix_coefficients_t matrix_coefficients;
int color_range;
int subsampling_x; // Chroma subsampling for x
int subsampling_y; // Chroma subsampling for y
aom_chroma_sample_position_t chroma_sample_position;
uint8_t separate_uv_delta_q;
#if CONFIG_EXTQUANT
int8_t base_y_dc_delta_q;
int8_t base_uv_dc_delta_q;
#endif // CONFIG_EXTQUANT
uint8_t film_grain_params_present;
// Operating point info.
int operating_points_cnt_minus_1;
int operating_point_idc[MAX_NUM_OPERATING_POINTS];
int timing_info_present;
aom_timing_info_t timing_info;
uint8_t decoder_model_info_present_flag;
aom_dec_model_info_t decoder_model_info;
uint8_t display_model_info_present_flag;
AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
// IMPORTANT: the op_params member must be at the end of the struct so that
// are_seq_headers_consistent() can be implemented with a memcmp() call.
// TODO(urvang): We probably don't need the +1 here.
aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
} SequenceHeader;
typedef struct {
int skip_mode_allowed;
int skip_mode_flag;
int ref_frame_idx_0;
int ref_frame_idx_1;
} SkipModeInfo;
typedef struct {
FRAME_TYPE frame_type;
REFERENCE_MODE reference_mode;
unsigned int order_hint;
unsigned int display_order_hint;
// Frame's level within the hierarchical structure
unsigned int pyramid_level;
unsigned int absolute_poc;
unsigned int key_frame_number;
unsigned int frame_number;
SkipModeInfo skip_mode_info;
int refresh_frame_flags; // Which ref frames are overwritten by this frame
#if !CONFIG_NEW_REF_SIGNALING
int frame_refs_short_signaling;
#endif // !CONFIG_NEW_REF_SIGNALING
} CurrentFrame;
/*!\endcond */
/*!
* \brief Frame level features.
*/
typedef struct {
/*!
* If true, CDF update in the symbol encoding/decoding process is disabled.
*/
bool disable_cdf_update;
/*!
* If true, motion vectors are specified to eighth pel precision; and
* if false, motion vectors are specified to quarter pel precision.
*/
bool allow_high_precision_mv;
/*!
* If true, force integer motion vectors; if false, use the default.
*/
bool cur_frame_force_integer_mv;
/*!
* If true, palette tool and/or intra block copy tools may be used.
*/
bool allow_screen_content_tools;
bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
/*!
* If true, using previous frames' motion vectors for prediction is allowed.
*/
bool allow_ref_frame_mvs;
/*!
* If true, frame is fully lossless at coded resolution.
* */
bool coded_lossless;
/*!
* If true, frame is fully lossless at upscaled resolution.
*/
bool all_lossless;
/*!
* If true, the frame is restricted to a reduced subset of the full set of
* transform types.
*/
bool reduced_tx_set_used;
/*!
* If true, error resilient mode is enabled.
* Note: Error resilient mode allows the syntax of a frame to be parsed
* independently of previously decoded frames.
*/
bool error_resilient_mode;
/*!
* If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
* if true, all MOTION_MODES may be used.
*/
bool switchable_motion_mode;
TX_MODE tx_mode; /*!< Transform mode at frame level. */
InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
/*!
* The reference frame that contains the CDF values and other state that
* should be loaded at the start of the frame.
*/
int primary_ref_frame;
/*!
* Byte alignment of the planes in the reference buffers.
*/
int byte_alignment;
/*!
* Flag signaling how frame contexts should be updated at the end of
* a frame decode.
*/
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
#if CONFIG_NEW_INTER_MODES
/*!
* Max_drl_bits. Note number of ref MVs allowed is max_drl_bits + 1
*/
int max_drl_bits;
#endif // CONFIG_NEW_INTER_MODES
#if CONFIG_OPTFLOW_REFINEMENT
/*!
* Ternary symbol for optical flow refinement type. 0: do not refine,
* 1: always refine, 2: switchable at block level.
*/
OPTFLOW_REFINE_TYPE opfl_refine_type;
#endif // CONFIG_OPTFLOW_REFINEMENT
} FeatureFlags;
/*!
* \brief Params related to tiles.
*/
typedef struct CommonTileParams {
int cols; /*!< number of tile columns that frame is divided into */
int rows; /*!< number of tile rows that frame is divided into */
int max_width_sb; /*!< maximum tile width in superblock units. */
int max_height_sb; /*!< maximum tile height in superblock units. */
/*!
* Min width of non-rightmost tile in MI units. Only valid if cols > 1.
*/
int min_inner_width;
/*!
* If true, tiles are uniformly spaced with power-of-two number of rows and
* columns.
* If false, tiles have explicitly configured widths and heights.
*/
int uniform_spacing;
/**
* \name Members only valid when uniform_spacing == 1
*/
/**@{*/
int log2_cols; /*!< log2 of 'cols'. */
int log2_rows; /*!< log2 of 'rows'. */
int width; /*!< tile width in MI units */
int height; /*!< tile height in MI units */
/**@}*/
/*!
* Min num of tile columns possible based on 'max_width_sb' and frame width.
*/
int min_log2_cols;
/*!
* Min num of tile rows possible based on 'max_height_sb' and frame height.
*/
int min_log2_rows;
/*!
* Min num of tile columns possible based on frame width.
*/
int max_log2_cols;
/*!
* Max num of tile columns possible based on frame width.
*/
int max_log2_rows;
/*!
* log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
*/
int min_log2;
/*!
* col_start_sb[i] is the start position of tile column i in superblock units.
* valid for 0 <= i <= cols
*/
int col_start_sb[MAX_TILE_COLS + 1];
/*!
* row_start_sb[i] is the start position of tile row i in superblock units.
* valid for 0 <= i <= rows
*/
int row_start_sb[MAX_TILE_ROWS + 1];
/*!
* If true, we are using large scale tile mode.
*/
unsigned int large_scale;
/*!
* Only relevant when large_scale == 1.
* If true, the independent decoding of a single tile or a section of a frame
* is allowed.
*/
unsigned int single_tile_decoding;
} CommonTileParams;
typedef struct CommonModeInfoParams CommonModeInfoParams;
/*!
* \brief Params related to MB_MODE_INFO arrays and related info.
*/
struct CommonModeInfoParams {
/*!
* Number of rows in the frame in 16 pixel units.
* This is computed from frame height aligned to a multiple of 8.
*/
int mb_rows;
/*!
* Number of cols in the frame in 16 pixel units.
* This is computed from frame width aligned to a multiple of 8.
*/
int mb_cols;
/*!
* Total MBs = mb_rows * mb_cols.
*/
int MBs;
/*!
* Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
* This is computed from frame height aligned to a multiple of 8.
*/
int mi_rows;
/*!
* Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
* This is computed from frame width aligned to a multiple of 8.
*/
int mi_cols;
/*!
* An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
* in the frame.
* Note: This array should be treated like a scratch memory, and should NOT be
* accessed directly, in most cases. Please use 'mi_grid_base' array instead.
*/
MB_MODE_INFO *mi_alloc;
/*!
* Number of allocated elements in 'mi_alloc'.
*/
int mi_alloc_size;
/*!
* Stride for 'mi_alloc' array.
*/
int mi_alloc_stride;
/*!
* The minimum block size that each element in 'mi_alloc' can correspond to.
* For decoder, this is always BLOCK_4X4.
* For encoder, this is currently set to BLOCK_4X4 for resolution < 4k,
* and BLOCK_8X8 for resolution >= 4k.
*/
BLOCK_SIZE mi_alloc_bsize;
/*!
* Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
* It's possible that:
* - Multiple pointers in the grid point to the same element in 'mi_alloc'
* (for example, for all 4x4 blocks that belong to the same partition block).
* - Some pointers can be NULL (for example, for blocks outside visible area).
*/
MB_MODE_INFO **mi_grid_base;
/*!
* Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
*/
int mi_grid_size;
/*!
* Stride for 'mi_grid_base' (and 'tx_type_map' also).
*/
int mi_stride;
/*!
* An array of tx types for each 4x4 block in the frame.
* Number of allocated elements is same as 'mi_grid_size', and stride is
* same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
* 'mi_grid_base'.
* If secondary transform in enabled (CONFIG_IST) each element of the array
* stores both primary and secondary transform types as shown below: Bits 4~5
* of each element stores secondary tx_type Bits 0~3 of each element stores
* primary tx_type
*/
TX_TYPE *tx_type_map;
/**
* \name Function pointers to allow separate logic for encoder and decoder.
*/
/**@{*/
/*!
* Free the memory allocated to arrays in 'mi_params'.
* \param[in,out] mi_params object containing common mode info parameters
*/
void (*free_mi)(struct CommonModeInfoParams *mi_params);
/*!
* Initialize / reset appropriate arrays in 'mi_params'.
* \param[in,out] mi_params object containing common mode info parameters
*/
void (*setup_mi)(struct CommonModeInfoParams *mi_params);
/*!
* Allocate required memory for arrays in 'mi_params'.
* \param[in,out] mi_params object containing common mode info parameters
* \param width frame width
* \param height frame height
*/
void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
int height);
/**@}*/
};
typedef struct CommonQuantParams CommonQuantParams;
/*!
* \brief Parameters related to quantization at the frame level.
*/
struct CommonQuantParams {
/*!
* Base qindex of the frame in the range 0 to 255.
*/
int base_qindex;
/*!
* Delta of qindex (from base_qindex) for Y plane DC coefficient.
* Note: y_ac_delta_q is implicitly 0.
*/
int y_dc_delta_q;
/*!
* Delta of qindex (from base_qindex) for U plane DC coefficients.
*/
int u_dc_delta_q;
/*!
* Delta of qindex (from base_qindex) for U plane AC coefficients.
*/
int v_dc_delta_q;
/*!
* Delta of qindex (from base_qindex) for V plane DC coefficients.
* Same as those for U plane if cm->seq_params.separate_uv_delta_q == 0.
*/
int u_ac_delta_q;
/*!
* Delta of qindex (from base_qindex) for V plane AC coefficients.
* Same as those for U plane if cm->seq_params.separate_uv_delta_q == 0.
*/
int v_ac_delta_q;
/*
* Note: The qindex per superblock may have a delta from the qindex obtained
* at frame level from parameters above, based on 'cm->delta_q_info'.
*/
/**
* \name True dequantizers.
* The dequantizers below are true dequantizers used only in the
* dequantization process. They have the same coefficient
* shift/scale as TX.
*/
/**@{*/
#if CONFIG_EXTQUANT
int32_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
int32_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
int32_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
#else
int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
#endif
/**@}*/
/**
* \name Global quantization matrix tables.
*/
/**@{*/
/*!
* Global dquantization matrix table.
*/
const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
/*!
* Global quantization matrix table.
*/
const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
/**@}*/
/**
* \name Local dequantization matrix tables for each frame.
*/
/**@{*/
/*!
* Local dequant matrix for Y plane.
*/
const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
/*!
* Local dequant matrix for U plane.
*/
const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
/*!
* Local dequant matrix for V plane.
*/
const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
/**@}*/
/*!
* Flag indicating whether quantization matrices are being used:
* - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
* indices to be used to access appropriate global quant matrix tables.
* - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
*/
bool using_qmatrix;
/**
* \name Valid only when using_qmatrix == true
* Indicate the level indices to be used to access appropriate global quant
* matrix tables.
*/
/**@{*/
int qmatrix_level_y; /*!< Level index for Y plane */
int qmatrix_level_u; /*!< Level index for U plane */
int qmatrix_level_v; /*!< Level index for V plane */
/**@}*/
};
typedef struct CommonContexts CommonContexts;
/*!
* \brief Contexts used for transmitting various symbols in the bitstream.
*/
struct CommonContexts {
/*!
* Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
* partition[i][j] is the context for ith tile row, jth mi_col.
*/
#if CONFIG_SDP
PARTITION_CONTEXT **partition[MAX_MB_PLANE];
#else
PARTITION_CONTEXT **partition;
#endif
/*!
* Context used to derive context for multiple symbols:
* - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
* to transmit skip_txfm flag.
* - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
* sign.
* entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
*/
ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
/*!
* Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
* transmit 'is_split' flag to indicate if this transform block should be
* split into smaller sub-blocks.
* txfm[i][j] is the context for ith tile row, jth mi_col.
*/
TXFM_CONTEXT **txfm;
/*!
* Dimensions that were used to allocate the arrays above.
* If these dimensions change, the arrays may have to be re-allocated.
*/
int num_planes; /*!< Corresponds to av1_num_planes(cm) */
int num_tile_rows; /*!< Corresponds to cm->tiles.row */
int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
};
#if CONFIG_THROUGHPUT_ANALYSIS
struct total_sym_stats {
/** Frame number (decoding order)*/
int frame_dec_order;
/** Total number of bits*/
int64_t tot_bits;
/** total ctx coded symbols. */
int64_t tot_ctx_syms;
/** total bypass coded symbols. */
int64_t tot_bypass_syms;
/** peak ctx coded symbols. */
int peak_ctx_syms;
/** peak bypass coded symbols. */
int peak_bypass_syms;
/** peak bits. */
int peak_bits;
};
#endif // CONFIG_THROUGHPUT_ANALYSIS
#if CONFIG_NEW_REF_SIGNALING
/*!
* \brief Structure to contain information about the reference frame mapping
* scheme.
*/
typedef struct {
/*!
* Distance of ref frame from current frame. Negative value indicates
* reference in the future, and positive value indicates reference in
* the past from the current frame
*/
int ref_frame_distance[INTER_REFS_PER_FRAME];
/*!
* Total number of reference buffers available to the current frame.
*/
int n_total_refs;
/*!
* Contains the indices of the frames in ref_frame_map that are future
* references.
*/
int future_refs[INTER_REFS_PER_FRAME];
/*!
* Number of future references.
*/
int n_future_refs;
/*!
* Contains the indices of the frames in ref_frame_map that are past
* references.
*/
int past_refs[INTER_REFS_PER_FRAME];
/*!
* Number of past references.
*/
int n_past_refs;
/*!
* Contains the indices of the frames in ref_frame_map with same order hint
* as current frame. -1 if unset.
*/
int cur_refs[INTER_REFS_PER_FRAME];
/*!
* Number of references with the same order hint.
*/
int n_cur_refs;
} RefFramesInfo;
#endif // CONFIG_NEW_REF_SIGNALING
/*!
* \brief Top level common structure used by both encoder and decoder.
*/
typedef struct AV1Common {
#if CONFIG_THROUGHPUT_ANALYSIS
/*!
* Symbol stats.
*/
struct total_sym_stats sym_stats;
#endif // CONFIG_THROUGHPUT_ANALYSIS
/*!
* Bitmask indicating which reference buffers may be referenced by this frame.
*/
int ref_frame_flags;
/*!
* Information about the current frame that is being coded.
*/
CurrentFrame current_frame;
/*!
* Code and details about current error status.
*/
struct aom_internal_error_info error;
/*!
* AV1 allows two types of frame scaling operations:
* 1. Frame super-resolution: that allows coding a frame at lower resolution
* and after decoding the frame, normatively uscales and restores the frame --
* inside the coding loop.
* 2. Frame resize: that allows coding frame at lower/higher resolution, and
* then non-normatively upscale the frame at the time of rendering -- outside
* the coding loop.
* Hence, the need for 3 types of dimensions.
*/
/**
* \name Coded frame dimensions.
*/
/**@{*/
int width; /*!< Coded frame width */
int height; /*!< Coded frame height */
/**@}*/
/**
* \name Rendered frame dimensions.
* Dimensions after applying both super-resolution and resize to the coded
* frame. Different from coded dimensions if super-resolution and/or resize
* are being used for this frame.
*/
/**@{*/
int render_width; /*!< Rendered frame width */
int render_height; /*!< Rendered frame height */
/**@}*/
/**
* \name Super-resolved frame dimensions.
* Frame dimensions after applying super-resolution to the coded frame (if
* present), but before applying resize.
* Larger than the coded dimensions if super-resolution is being used for
* this frame.
* Different from rendered dimensions if resize is being used for this frame.
*/
/**@{*/
int superres_upscaled_width; /*!< Super-resolved frame width */
int superres_upscaled_height; /*!< Super-resolved frame height */
/**@}*/
/*!
* The denominator of the superres scale used by this frame.
* Note: The numerator is fixed to be SCALE_NUMERATOR.
*/
uint8_t superres_scale_denominator;
/*!
* If true, buffer removal times are present.
*/
bool buffer_removal_time_present;
/*!
* buffer_removal_times[op_num] specifies the frame removal time in units of
* DecCT clock ticks counted from the removal time of the last random access
* point for operating point op_num.
* TODO(urvang): We probably don't need the +1 here.
*/
uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
/*!
* Presentation time of the frame in clock ticks DispCT counted from the
* removal time of the last random access point for the operating point that
* is being decoded.
*/
uint32_t frame_presentation_time;
/*!
* Buffer where previous frame is stored.
*/
RefCntBuffer *prev_frame;
/*!
* Buffer into which the current frame will be stored and other related info.
* TODO(hkuang): Combine this with cur_buf in macroblockd.
*/
RefCntBuffer *cur_frame;
#if CONFIG_NEW_REF_SIGNALING
/*!
* An alternative to remapped_ref_idx (above) which contains a mapping to
* ref_frame_map[] according to a "usefulness" score. It also contains all
* other relevant data to aid the reference mapping and signaling.
*/
RefFramesInfo ref_frames_info;
/*!
* For encoder, we have a two-level mapping from reference frame type to the
* corresponding buffer in the buffer pool:
* * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: 0 ...
* INTER_REFS_PER_FRAME - 1) to a remapped index 'j' in the same range.
* * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
* the reference counted buffer structure RefCntBuffer, taken from the buffer
* pool cm->buffer_pool->frame_bufs.
*
* 0, ..., INTER_REFS_PER_FRAME - 1
* | |
* v v
* remapped_ref_idx[0], ..., remapped_ref_idx[INTER_REFS_PER_FRAME- 1]
* | |
* v v
* ref_frame_map[], ..., ref_frame_map[]
*
* Note: INTRA_FRAME always refers to the current frame, so there's no need to
* have a remapped index for the same.
*/
int remapped_ref_idx[REF_FRAMES];
#else
/*!
* For encoder, we have a two-level mapping from reference frame type to the
* corresponding buffer in the buffer pool:
* * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
* EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
* * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
* the reference counted buffer structure RefCntBuffer, taken from the buffer
* pool cm->buffer_pool->frame_bufs.
*
* LAST_FRAME, ..., EXTREF_FRAME
* | |
* v v
* remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
* | |
* v v
* ref_frame_map[], ..., ref_frame_map[]
*
* Note: INTRA_FRAME always refers to the current frame, so there's no need to
* have a remapped index for the same.
*/
int remapped_ref_idx[REF_FRAMES];
#endif // CONFIG_NEW_REF_SIGNALING
/*!
* Scale of the current frame with respect to itself.
* This is currently used for intra block copy, which behaves like an inter
* prediction mode, where the reference frame is the current frame itself.
*/
struct scale_factors sf_identity;
/*!
* Scale factors of the reference frame with respect to the current frame.
* This is required for generating inter prediction and will be non-identity
* for a reference frame, if it has different dimensions than the coded
* dimensions of the current frame.
*/
struct scale_factors ref_scale_factors[REF_FRAMES];
/*!
* For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
* the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
* For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
* remapped reference index 'j' (that is, original reference type 'i') to
* a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
*/
RefCntBuffer *ref_frame_map[REF_FRAMES];
/*!
* If true, this frame is actually shown after decoding.
* If false, this frame is coded in the bitstream, but not shown. It is only
* used as a reference for other frames coded later.
*/
int show_frame;
/*!
* If true, this frame can be used as a show-existing frame for other frames
* coded later.
* When 'show_frame' is true, this is always true for all non-keyframes.
* When 'show_frame' is false, this value is transmitted in the bitstream.
*/
int showable_frame;
/*!
* If true, show an existing frame coded before, instead of actually coding a
* frame. The existing frame comes from one of the existing reference buffers,
* as signaled in the bitstream.
*/
int show_existing_frame;
/*!
* Whether some features are allowed or not.
*/
FeatureFlags features;
/*!
* Params related to MB_MODE_INFO arrays and related info.
*/
CommonModeInfoParams mi_params;
#if CONFIG_ENTROPY_STATS
/*!
* Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
*/
int coef_cdf_category;
#endif // CONFIG_ENTROPY_STATS
/*!
* Quantization params.
*/
CommonQuantParams quant_params;
/*!
* Segmentation info for current frame.
*/
struct segmentation seg;
/*!
* Segmentation map for previous frame.
*/
uint8_t *last_frame_seg_map;
/**
* \name Deblocking filter parameters.
*/
/**@{*/
loop_filter_info_n lf_info; /*!< Loop filter info */
struct loopfilter lf; /*!< Loop filter parameters */
/**@}*/
/**
* \name Loop Restoration filter parameters.
*/
/**@{*/
RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
/**@}*/
/*!
* CDEF (Constrained Directional Enhancement Filter) parameters.
*/
CdefInfo cdef_info;
#if CONFIG_CCSO
/*!
* CCSO (Cross Component Sample Offset) parameters.
*/
CcsoInfo ccso_info;
#endif
/*!
* Parameters for film grain synthesis.
*/
aom_film_grain_t film_grain_params;
/*!
* Parameters for delta quantization and delta loop filter level.
*/
DeltaQInfo delta_q_info;
/*!
* Global motion parameters for each reference frame.
*/
#if CONFIG_NEW_REF_SIGNALING
WarpedMotionParams global_motion[INTER_REFS_PER_FRAME];
#else
WarpedMotionParams global_motion[REF_FRAMES];
#endif // CONFIG_NEW_REF_SIGNALING
/*!
* Elements part of the sequence header, that are applicable for all the
* frames in the video.
*/
SequenceHeader seq_params;
/*!
* Current CDFs of all the symbols for the current frame.
*/
FRAME_CONTEXT *fc;
/*!
* Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
* (e.g. for a keyframe). These default CDFs are defined by the bitstream and
* copied from default CDF tables for each symbol.
*/
FRAME_CONTEXT *default_frame_context;
/*!
* Parameters related to tiling.
*/
CommonTileParams tiles;
/*!
* External BufferPool passed from outside.
*/
BufferPool *buffer_pool;
/*!
* Above context buffers and their sizes.
* Note: above contexts are allocated in this struct, as their size is
* dependent on frame width, while left contexts are declared and allocated in
* MACROBLOCKD struct, as they have a fixed size.
*/
CommonContexts above_contexts;
/**
* \name Signaled when cm->seq_params.frame_id_numbers_present_flag == 1
*/
/**@{*/
int current_frame_id; /*!< frame ID for the current frame. */
int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
/**@}*/
/*!
* Motion vectors provided by motion field estimation.
* tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
* mi_row = 2 * row,
* mi_col = 2 * col, and
* stride = cm->mi_params.mi_stride / 2
*/
TPL_MV_REF *tpl_mvs;
/*!
* Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
*/
int tpl_mvs_mem_size;
/*!
* ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
* current frame is positive; and 0 otherwise.
*/
#if CONFIG_NEW_REF_SIGNALING
int ref_frame_sign_bias[INTER_REFS_PER_FRAME];
#else
int ref_frame_sign_bias[REF_FRAMES];
#endif // CONFIG_NEW_REF_SIGNALING
/*!
* ref_frame_side[k] is 1 if relative distance between reference 'k' and
* current frame is positive, -1 if relative distance is 0; and 0 otherwise.
* TODO(jingning): This can be combined with sign_bias later.
*/
#if CONFIG_NEW_REF_SIGNALING
int8_t ref_frame_side[INTER_REFS_PER_FRAME];
#else
int8_t ref_frame_side[REF_FRAMES];
#endif // CONFIG_NEW_REF_SIGNALING
#if CONFIG_SMVP_IMPROVEMENT
/*!
* relative distance between reference 'k' and current frame.
*/
int8_t ref_frame_relative_dist[REF_FRAMES];
#endif // CONFIG_SMVP_IMPROVEMENT
/*!
* Number of temporal layers: may be > 1 for SVC (scalable vector coding).
*/
unsigned int number_temporal_layers;
/*!
* Temporal layer ID of this frame
* (in the range 0 ... (number_temporal_layers - 1)).
*/
int temporal_layer_id;
/*!
* Number of spatial layers: may be > 1 for SVC (scalable vector coding).
*/
unsigned int number_spatial_layers;
/*!
* Spatial layer ID of this frame
* (in the range 0 ... (number_spatial_layers - 1)).
*/
int spatial_layer_id;
#if CONFIG_IBP_DIR
/*!
* Weights for IBP of directional modes.
*/
uint8_t *ibp_directional_weights[TX_SIZES_ALL][DIR_MODES_0_90];
#endif
#if TXCOEFF_TIMER
int64_t cum_txcoeff_timer;
int64_t txcoeff_timer;
int txb_count;
#endif // TXCOEFF_TIMER
#if TXCOEFF_COST_TIMER
int64_t cum_txcoeff_cost_timer;
int64_t txcoeff_cost_timer;
int64_t txcoeff_cost_count;
#endif // TXCOEFF_COST_TIMER
#if CONFIG_LPF_MASK
int is_decoding;
#endif // CONFIG_LPF_MASK
#if DEBUG_EXTQUANT
FILE *fEncCoeffLog;
FILE *fDecCoeffLog;
#endif
} AV1_COMMON;
/*!\cond */
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
static void lock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static void unlock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES) return NULL;
if (cm->ref_frame_map[index] == NULL) return NULL;
return &cm->ref_frame_map[index]->buf;
}
static INLINE int get_free_fb(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0) break;
if (i != FRAME_BUFFERS) {
if (frame_bufs[i].buf.use_external_reference_buffers) {
// If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
// external reference buffers. Restore the buffer pointers to point to the
// internally allocated memory.
YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
ybf->y_buffer = ybf->store_buf_adr[0];
ybf->u_buffer = ybf->store_buf_adr[1];
ybf->v_buffer = ybf->store_buf_adr[2];
ybf->use_external_reference_buffers = 0;
}
frame_bufs[i].ref_count = 1;
} else {
// We should never run out of free buffers. If this assertion fails, there
// is a reference leak.
assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
// Release the previously-used frame-buffer
if (cm->cur_frame != NULL) {
--cm->cur_frame->ref_count;
cm->cur_frame = NULL;
}
// Assign a new framebuffer
const int new_fb_idx = get_free_fb(cm);
if (new_fb_idx == INVALID_IDX) return NULL;
cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
cm->cur_frame->buf.buf_8bit_valid = 0;
av1_zero(cm->cur_frame->interp_filter_selected);
return cm->cur_frame;
}
// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
// counts accordingly.
static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
RefCntBuffer *rhs_ptr) {
RefCntBuffer *const old_ptr = *lhs_ptr;
if (old_ptr != NULL) {
assert(old_ptr->ref_count > 0);
// One less reference to the buffer at 'old_ptr', so decrease ref count.
--old_ptr->ref_count;
}
*lhs_ptr = rhs_ptr;
// One more reference to the buffer at 'rhs_ptr', so increase ref count.
++rhs_ptr->ref_count;
}
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
return cm->current_frame.frame_type == KEY_FRAME ||
cm->current_frame.frame_type == INTRA_ONLY_FRAME;
}
static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
return cm->current_frame.frame_type == S_FRAME;
}
#if CONFIG_NEW_REF_SIGNALING
static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
const int ref_frame) {
return (ref_frame >= 0 && ref_frame < REF_FRAMES)
? cm->remapped_ref_idx[ref_frame]
: INVALID_IDX;
}
#else
// This function takes a reference frame label between LAST_FRAME and
// EXTREF_FRAME inclusive. Note that this is different to the indexing
// previously used by the frame_refs[] array.
static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
const MV_REFERENCE_FRAME ref_frame) {
return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
: INVALID_IDX;
}
#endif // CONFIG_NEW_REF_SIGNALING
static INLINE RefCntBuffer *get_ref_frame_buf(
const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
}
// Both const and non-const versions of this function are provided so that it
// can be used with a const AV1_COMMON if needed.
static INLINE const struct scale_factors *get_ref_scale_factors_const(
const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
}
static INLINE struct scale_factors *get_ref_scale_factors(
AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
}
static INLINE RefCntBuffer *get_primary_ref_frame_buf(
const AV1_COMMON *const cm) {
const int primary_ref_frame = cm->features.primary_ref_frame;
if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
#if CONFIG_NEW_REF_SIGNALING
const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame);
#else
const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
#endif // CONFIG_NEW_REF_SIGNALING
return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
}
// Returns 1 if this frame might allow mvs from some reference frame.
static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
return !cm->features.error_resilient_mode &&
cm->seq_params.order_hint_info.enable_ref_frame_mvs &&
cm->seq_params.order_hint_info.enable_order_hint &&
!frame_is_intra_only(cm);
}
// Returns 1 if this frame might use warped_motion
static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
cm->seq_params.enable_warped_motion;
}
static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
const int buf_rows = buf->mi_rows;
const int buf_cols = buf->mi_cols;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
buf_cols != mi_params->mi_cols) {
aom_free(buf->mvs);
buf->mi_rows = mi_params->mi_rows;
buf->mi_cols = mi_params->mi_cols;
CHECK_MEM_ERROR(cm, buf->mvs,
(MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
((mi_params->mi_cols + 1) >> 1),
sizeof(*buf->mvs)));
aom_free(buf->seg_map);
CHECK_MEM_ERROR(
cm, buf->seg_map,
(uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
sizeof(*buf->seg_map)));
}
const int mem_size =
((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
int realloc = cm->tpl_mvs == NULL;
if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
if (realloc) {
aom_free(cm->tpl_mvs);
CHECK_MEM_ERROR(cm, cm->tpl_mvs,
(TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
cm->tpl_mvs_mem_size = mem_size;
}
}
void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
static INLINE int av1_num_planes(const AV1_COMMON *cm) {
return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
}
static INLINE void av1_init_above_context(CommonContexts *above_contexts,
int num_planes, int tile_row,
MACROBLOCKD *xd) {
for (int i = 0; i < num_planes; ++i) {
xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
#if CONFIG_SDP
xd->above_partition_context[i] = above_contexts->partition[i][tile_row];
#endif
}
#if !CONFIG_SDP
xd->above_partition_context = above_contexts->partition[tile_row];
#endif
xd->above_txfm_context = above_contexts->txfm[tile_row];
}
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
const int num_planes = av1_num_planes(cm);
const CommonQuantParams *const quant_params = &cm->quant_params;
for (int i = 0; i < num_planes; ++i) {
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
sizeof(quant_params->y_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
sizeof(quant_params->y_iqmatrix));
} else {
if (i == AOM_PLANE_U) {
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
sizeof(quant_params->u_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
sizeof(quant_params->u_iqmatrix));
} else {
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
sizeof(quant_params->v_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
sizeof(quant_params->v_iqmatrix));
}
}
}
xd->mi_stride = cm->mi_params.mi_stride;
xd->error_info = &cm->error;
cfl_init(&xd->cfl, &cm->seq_params);
}
static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
const int num_planes) {
int i;
int row_offset = mi_row;
int col_offset = mi_col;
#if CONFIG_SDP
for (i = (xd->tree_type == CHROMA_PART); i < num_planes; ++i) {
#else
for (i = 0; i < num_planes; ++i) {
#endif
struct macroblockd_plane *const pd = &xd->plane[i];
// Offset the buffer pointer
#if CONFIG_SDP
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART];
#else
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
#endif
if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
row_offset = mi_row - 1;
if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
col_offset = mi_col - 1;
int above_idx = col_offset;
int left_idx = row_offset & MAX_MIB_MASK;
pd->above_entropy_context =
&xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
pd->left_entropy_context =
&xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units. Align to a multiple of SBs.
return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
}
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
const int num_planes) {
int i;
#if CONFIG_SDP
for (i = (xd->tree_type == CHROMA_PART); i < num_planes; i++) {
#else
for (i = 0; i < num_planes; i++) {
#endif
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
}
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh, int mi_col, int bw,
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
xd->mi_row = mi_row;
xd->mi_col = mi_col;
// Are edges available for intra prediction?
xd->up_available = (mi_row > tile->mi_row_start);
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
xd->left_available = (mi_col > tile->mi_col_start);
xd->chroma_up_available = xd->up_available;
xd->chroma_left_available = xd->left_available;
if (ss_x && bw < mi_size_wide[BLOCK_8X8])
xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
if (ss_y && bh < mi_size_high[BLOCK_8X8])
xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
if (xd->up_available) {
xd->above_mbmi = xd->mi[-xd->mi_stride];
} else {
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mbmi = xd->mi[-1];
} else {
xd->left_mbmi = NULL;
}
#if CONFIG_AIMC
if (xd->up_available) {
xd->above_right_mbmi = xd->mi[-xd->mi_stride + bw - 1];
} else {
xd->above_right_mbmi = NULL;
}
if (xd->left_available) {
xd->bottom_left_mbmi = xd->mi[-1 + xd->mi_stride * (bh - 1)];
} else {
xd->bottom_left_mbmi = NULL;
}
#endif // CONFIG_AIMC
const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
xd->is_chroma_ref = chroma_ref;
if (chroma_ref) {
// To help calculate the "above" and "left" chroma blocks, note that the
// current block may cover multiple luma blocks (eg, if partitioned into
// 4x4 luma blocks).
// First, find the top-left-most luma block covered by this chroma block
MB_MODE_INFO **base_mi =
&xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
// Then, we consider the luma region covered by the left or above 4x4 chroma
// prediction. We want to point to the chroma reference block in that
// region, which is the bottom-right-most mi unit.
// This leads to the following offsets:
MB_MODE_INFO *chroma_above_mi =
xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
xd->chroma_above_mbmi = chroma_above_mi;
MB_MODE_INFO *chroma_left_mi =
xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
xd->chroma_left_mbmi = chroma_left_mi;
}
xd->height = bh;
xd->width = bw;
xd->is_last_vertical_rect = 0;
if (xd->width < xd->height) {
if (!((mi_col + xd->width) & (xd->height - 1))) {
xd->is_last_vertical_rect = 1;
}
}
xd->is_first_horizontal_rect = 0;
if (xd->width > xd->height)
if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
}
#if !CONFIG_AIMC
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi) {
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[above];
const int left_ctx = intra_mode_context[left];
return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
}
#endif // !CONFIG_AIMC
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
#if CONFIG_SDP
const int plane = xd->tree_type == CHROMA_PART;
PARTITION_CONTEXT *const above_ctx =
xd->above_partition_context[plane] + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_partition_context[plane] + (mi_row & MAX_MIB_MASK);
#else
PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_partition_context + (mi_row & MAX_MIB_MASK);
#endif
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bh);
}
static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
int subsampling_x, int subsampling_y) {
assert(bsize < BLOCK_SIZES_ALL);
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
return ref_pos;
}
static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
size_t element) {
assert(cdf != NULL);
return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
}
static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in,
BLOCK_SIZE bsize) {
(void)bsize;
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_HORZ);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in,
BLOCK_SIZE bsize) {
(void)bsize;
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_VERT);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (bsize >= BLOCK_8X8) {
const int hbs = mi_size_wide[bsize] / 2;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
switch (partition) {
case PARTITION_SPLIT:
if (bsize != BLOCK_8X8) break;
AOM_FALLTHROUGH_INTENDED;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
}
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
#if CONFIG_SDP
const int plane = xd->tree_type == CHROMA_PART;
const PARTITION_CONTEXT *above_ctx =
xd->above_partition_context[plane] + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_partition_context[plane] + (mi_row & MAX_MIB_MASK);
#else
const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_partition_context + (mi_row & MAX_MIB_MASK);
#endif
// Minimum partition point is 8x8. Offset the bsl accordingly.
const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
// Return the number of elements in the partition CDF when
// partitioning the (square) block with luma block size of bsize.
static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
if (bsize <= BLOCK_8X8)
return PARTITION_TYPES;
else if (bsize == BLOCK_128X128)
return EXT_PARTITION_TYPES - 2;
else
return EXT_PARTITION_TYPES;
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
assert(bsize < BLOCK_SIZES_ALL);
int max_blocks_wide = block_size_wide[bsize];
if (xd->mb_to_right_edge < 0) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
}
// Scale the width in the transform block unit.
return max_blocks_wide >> MI_SIZE_LOG2;
}
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_high = block_size_high[bsize];
if (xd->mb_to_bottom_edge < 0) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
}
// Scale the height in the transform block unit.
return max_blocks_high >> MI_SIZE_LOG2;
}
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
const MACROBLOCKD *xd,
int mi_col_start, int mi_col_end,
const int tile_row) {
const SequenceHeader *const seq_params = &cm->seq_params;
const int num_planes = av1_num_planes(cm);
const int width = mi_col_end - mi_col_start;
const int aligned_width =
ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
const int offset_y = mi_col_start;
const int width_y = aligned_width;
const int offset_uv = offset_y >> seq_params->subsampling_x;
const int width_uv = width_y >> seq_params->subsampling_x;
CommonContexts *const above_contexts = &cm->above_contexts;
av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
if (num_planes > 1) {
if (above_contexts->entropy[1][tile_row] &&
above_contexts->entropy[2][tile_row]) {
av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
width_uv);
av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
width_uv);
} else {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of planes");
}
}
#if CONFIG_SDP
av1_zero_array(above_contexts->partition[0][tile_row] + mi_col_start,
aligned_width);
if (num_planes > 1) {
if (above_contexts->partition[1][tile_row] &&
above_contexts->partition[2][tile_row]) {
av1_zero_array(above_contexts->partition[1][tile_row] + mi_col_start,
aligned_width);
av1_zero_array(above_contexts->partition[2][tile_row] + mi_col_start,
aligned_width);
} else {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of planes");
}
}
#else
av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
aligned_width);
#endif
memset(above_contexts->txfm[tile_row] + mi_col_start,
tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
}
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
av1_zero(xd->left_entropy_context);
av1_zero(xd->left_partition_context);
memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
sizeof(xd->left_txfm_context_buffer));
}
// Disable array-bounds checks as the TX_SIZE enum contains values larger than
// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
// infeasible. The assert is enough for static analysis and this or other tools
// asan, valgrind would catch oob access at runtime.
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic warning "-Warray-bounds"
#endif
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
int i;
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
}
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
const MACROBLOCKD *xd) {
uint8_t bw = tx_size_wide[tx_size];
uint8_t bh = tx_size_high[tx_size];
if (skip) {
bw = n4_w * MI_SIZE;
bh = n4_h * MI_SIZE;
}
set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
}
static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
int mi_row, int mi_col) {
return mi_row * mi_params->mi_stride + mi_col;
}
static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
int mi_row, int mi_col) {
const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
const int mi_alloc_row = mi_row / mi_alloc_size_1d;
const int mi_alloc_col = mi_col / mi_alloc_size_1d;
return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
}
// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
MACROBLOCKD *const xd, int mi_row,
int mi_col) {
// 'mi_grid_base' should point to appropriate memory in 'mi'.
const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
// 'xd->mi' should point to an offset in 'mi_grid_base';
xd->mi = mi_params->mi_grid_base + mi_grid_idx;
// 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
#if CONFIG_SDP
if (xd->tree_type != CHROMA_PART)
#endif
xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
xd->tx_type_map_stride = mi_params->mi_stride;
}
#if CONFIG_SDP
// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
static INLINE void set_blk_offsets(const CommonModeInfoParams *const mi_params,
MACROBLOCKD *const xd, int mi_row,
int mi_col, int blk_row, int blk_col) {
// 'mi_grid_base' should point to appropriate memory in 'mi'.
const int mi_grid_idx =
get_mi_grid_idx(mi_params, mi_row + blk_row, mi_col + blk_col);
const int mi_alloc_idx =
get_alloc_mi_idx(mi_params, mi_row + blk_row, mi_col + blk_col);
mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
// 'xd->mi' should point to an offset in 'mi_grid_base';
xd->mi[mi_params->mi_stride * blk_row + blk_col] =
mi_params->mi_grid_base[mi_grid_idx];
xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
xd->tx_type_map_stride = mi_params->mi_stride;
}
// Return the number of sub-blocks whose width and height are
// less than half of the parent block.
static INLINE int get_luma_split_flag(
BLOCK_SIZE bsize, const CommonModeInfoParams *const mi_params, int mi_row,
int mi_col) {
int luma_split_flag = 0;
int width_unit = mi_size_wide[bsize];
int height_unit = mi_size_high[bsize];
int parent_block_width = block_size_wide[bsize];
const int x_mis = AOMMIN(width_unit, mi_params->mi_cols - mi_col);
const int y_mis = AOMMIN(height_unit, mi_params->mi_rows - mi_row);
int x_mis_half = x_mis >> 1;
int y_mis_half = y_mis >> 1;
int half_parent_width = parent_block_width >> 1;
for (int y_district = 0; y_district < 2; y_district++) {
for (int x_district = 0; x_district < 2; x_district++) {
int find_small_block = 0;
for (int y = 0; y < y_mis_half; ++y) {
for (int x = 0; x < x_mis_half; ++x) {
int y_pos = y_district * y_mis_half + y;
int x_pos = x_district * x_mis_half + x;
MB_MODE_INFO *temp_mi = &mi_params->mi_alloc[get_alloc_mi_idx(
mi_params, mi_row + y_pos, mi_col + x_pos)];
BLOCK_SIZE temp_size = temp_mi->sb_type[PLANE_TYPE_Y];
if (block_size_wide[temp_size] < half_parent_width &&
block_size_high[temp_size] < half_parent_width) {
find_small_block++;
}
}
}
if (find_small_block > 0) luma_split_flag++;
}
}
return luma_split_flag;
}
#endif
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
TX_SIZE tx_size, TX_SIZE txb_size) {
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
uint8_t txw = tx_size_wide[tx_size];
uint8_t txh = tx_size_high[tx_size];
int i;
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
}
static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
switch (tx_dim) {
case 128:
case 64: return TX_64X64; break;
case 32: return TX_32X32; break;
case 16: return TX_16X16; break;
case 8: return TX_8X8; break;
default: return TX_4X4;
}
}
static INLINE TX_SIZE get_tx_size(int width, int height) {
if (width == height) {
return get_sqr_tx_size(width);
}
if (width < height) {
if (width + width == height) {
switch (width) {
case 4: return (height == 8) ? TX_4X8 : TX_INVALID;
case 8: return (height == 16) ? TX_8X16 : TX_INVALID;
case 16: return (height == 32) ? TX_16X32 : TX_INVALID;
case 32: return (height == 64) ? TX_32X64 : TX_INVALID;
}
} else {
switch (width) {
case 4: return (height == 16) ? TX_4X16 : TX_INVALID;
case 8: return (height == 32) ? TX_8X32 : TX_INVALID;
case 16: return (height == 64) ? TX_16X64 : TX_INVALID;
}
}
} else {
if (height + height == width) {
switch (height) {
case 4: return (width == 8) ? TX_8X4 : TX_INVALID;
case 8: return (width == 16) ? TX_16X8 : TX_INVALID;
case 16: return (width == 32) ? TX_32X16 : TX_INVALID;
case 32: return (width == 64) ? TX_64X32 : TX_INVALID;
}
} else {
switch (height) {
case 4: return (width == 16) ? TX_16X4 : TX_INVALID;
case 8: return (width == 32) ? TX_32X8 : TX_INVALID;
case 16: return (width == 64) ? TX_64X16 : TX_INVALID;
}
}
}
return TX_INVALID;
}
#if CONFIG_NEW_TX_PARTITION
#define MAX_TX_PARTITIONS 4
typedef struct {
int rows[MAX_TX_PARTITIONS];
int cols[MAX_TX_PARTITIONS];
int n_partitions;
} TX_PARTITION_BIT_SHIFT;
// Defines the number of bits to use to divide a block's dimensions
// to create the tx sizes in each partition.
// Keep square and rectangular separate for now, but we can potentially
// merge them in the future.
static const TX_PARTITION_BIT_SHIFT
partition_shift_bits[2][TX_PARTITION_TYPES] = {
// Square
{
{ { 0 }, { 0 }, 1 }, // TX_PARTITION_NONE
{ { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, 4 }, // TX_PARTITION_SPLIT
{ { 1, 1 }, { 0, 0 }, 2 }, // TX_PARTITION_HORZ
{ { 0, 0 }, { 1, 1 }, 2 }, // TX_PARTITION_VERT
{ { 2, 2, 2, 2 }, { 0, 0, 0, 0 }, 4 }, // TX_PARTITION_HORZ4
{ { 0, 0, 0, 0 }, { 2, 2, 2, 2 }, 4 }, // TX_PARTITION_VERT4
},
// Rectangular
{
{ { 0 }, { 0 }, 1 }, // TX_PARTITION_NONE
{ { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, 4 }, // TX_PARTITION_SPLIT
{ { 1, 1 }, { 0, 0 }, 2 }, // TX_PARTITION_HORZ
{ { 0, 0 }, { 1, 1 }, 2 }, // TX_PARTITION_VERT
{ { 2, 2, 2, 2 }, { 0, 0, 0, 0 }, 4 }, // TX_PARTITION_HORZ4
{ { 0, 0, 0, 0 }, { 2, 2, 2, 2 }, 4 }, // TX_PARTITION_VERT4
},
};
static INLINE int get_tx_partition_sizes(TX_PARTITION_TYPE partition,
TX_SIZE max_tx_size,
TX_SIZE sub_txs[MAX_TX_PARTITIONS]) {
const int txw = tx_size_wide[max_tx_size];
const int txh = tx_size_high[max_tx_size];
int sub_txw = 0, sub_txh = 0;
const TX_PARTITION_BIT_SHIFT subtx_shift =
partition_shift_bits[is_rect_tx(max_tx_size)][partition];
const int n_partitions = subtx_shift.n_partitions;
for (int i = 0; i < n_partitions; i++) {
sub_txw = txw >> subtx_shift.cols[i];
sub_txh = txh >> subtx_shift.rows[i];
sub_txs[i] = get_tx_size(sub_txw, sub_txh);
assert(sub_txs[i] != TX_INVALID);
}
return n_partitions;
}
/*
Gets the type to signal for the 4 way split tree in the tx partition
type signaling.
*/
static INLINE int get_split4_partition(TX_PARTITION_TYPE partition) {
switch (partition) {
case TX_PARTITION_NONE:
case TX_PARTITION_SPLIT:
case TX_PARTITION_VERT:
case TX_PARTITION_HORZ: return partition;
case TX_PARTITION_VERT4: return TX_PARTITION_VERT;
case TX_PARTITION_HORZ4: return TX_PARTITION_HORZ;
default: assert(0);
}
assert(0);
return 0;
}
static INLINE int allow_tx_horz_split(TX_SIZE max_tx_size) {
const int sub_txw = tx_size_wide[max_tx_size];
const int sub_txh = tx_size_high[max_tx_size] >> 1;
const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh);
return sub_tx_size != TX_INVALID;
}
static INLINE int allow_tx_vert_split(TX_SIZE max_tx_size) {
const int sub_txw = tx_size_wide[max_tx_size] >> 1;
const int sub_txh = tx_size_high[max_tx_size];
const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh);
return sub_tx_size != TX_INVALID;
}
static INLINE int allow_tx_horz4_split(TX_SIZE max_tx_size) {
const int sub_txw = tx_size_wide[max_tx_size];
const int sub_txh = tx_size_high[max_tx_size] >> 2;
const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh);
return sub_tx_size != TX_INVALID;
}
static INLINE int allow_tx_vert4_split(TX_SIZE max_tx_size) {
const int sub_txw = tx_size_wide[max_tx_size] >> 2;
const int sub_txh = tx_size_high[max_tx_size];
const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh);
return sub_tx_size != TX_INVALID;
}
static INLINE int use_tx_partition(TX_PARTITION_TYPE partition,
TX_SIZE max_tx_size) {
const int allow_horz = allow_tx_horz_split(max_tx_size);
const int allow_vert = allow_tx_vert_split(max_tx_size);
const int allow_horz4 = allow_tx_horz4_split(max_tx_size);
const int allow_vert4 = allow_tx_vert4_split(max_tx_size);
switch (partition) {
case TX_PARTITION_NONE: return 1;
case TX_PARTITION_SPLIT: return (allow_horz && allow_vert);
case TX_PARTITION_HORZ: return allow_horz;
case TX_PARTITION_VERT: return allow_vert;
case TX_PARTITION_HORZ4: return allow_horz4;
case TX_PARTITION_VERT4: return allow_vert4;
default: assert(0);
}
assert(0);
return 0;
}
static INLINE int txfm_partition_split4_inter_context(
const TXFM_CONTEXT *const above_ctx, const TXFM_CONTEXT *const left_ctx,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
int category = TXFM_PARTITION_INTER_CONTEXTS;
// dummy return, not used by others.
if (tx_size <= TX_4X4) return 0;
TX_SIZE max_tx_size =
get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
if (max_tx_size >= TX_8X8) {
category =
(txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
(TX_SIZES - 1 - max_tx_size) * 2;
}
assert(category != TXFM_PARTITION_INTER_CONTEXTS);
return category * 3 + above + left;
}
#else
static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
const TXFM_CONTEXT *const left_ctx,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
int category = TXFM_PARTITION_CONTEXTS;
// dummy return, not used by others.
if (tx_size <= TX_4X4) return 0;
TX_SIZE max_tx_size =
get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
if (max_tx_size >= TX_8X8) {
category =
(txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
(TX_SIZES - 1 - max_tx_size) * 2;
}
assert(category != TXFM_PARTITION_CONTEXTS);
return category * 3 + above + left;
}
#endif // CONFIG_NEW_TX_PARTITION
// Compute the next partition in the direction of the sb_type stored in the mi
// array, starting with bsize.
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
#if CONFIG_SDP
const int plane_type,
#endif
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
return PARTITION_INVALID;
const int offset = mi_row * mi_params->mi_stride + mi_col;
MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
#if CONFIG_SDP
const BLOCK_SIZE subsize = mi[0]->sb_type[plane_type];
#else
const BLOCK_SIZE subsize = mi[0]->sb_type;
#endif
assert(bsize < BLOCK_SIZES_ALL);
if (subsize == bsize) return PARTITION_NONE;
const int bhigh = mi_size_high[bsize];
const int bwide = mi_size_wide[bsize];
const int sshigh = mi_size_high[subsize];
const int sswide = mi_size_wide[subsize];
if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
mi_col + bhigh / 2 < mi_params->mi_cols) {
// In this case, the block might be using an extended partition
// type.
const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
if (sswide == bwide) {
// Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
// PARTITION_HORZ_B. To distinguish the latter two, check if the lower
// half was split.
if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
assert(sshigh * 2 == bhigh);
#if CONFIG_SDP
if (mbmi_below->sb_type[plane_type] == subsize)
#else
if (mbmi_below->sb_type == subsize)
#endif
return PARTITION_HORZ;
else
return PARTITION_HORZ_B;
} else if (sshigh == bhigh) {
// Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
// PARTITION_VERT_B. To distinguish the latter two, check if the right
// half was split.
if (sswide * 4 == bwide) return PARTITION_VERT_4;
assert(sswide * 2 == bhigh);
#if CONFIG_SDP
if (mbmi_right->sb_type[plane_type] == subsize)
#else
if (mbmi_right->sb_type == subsize)
#endif
return PARTITION_VERT;
else
return PARTITION_VERT_B;
} else {
// Smaller width and smaller height. Might be PARTITION_SPLIT or could be
// PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
// dimensions, we immediately know this is a split (which will recurse to
// get to subsize). Otherwise look down and to the right. With
// PARTITION_VERT_A, the right block will have height bhigh; with
// PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
// it's PARTITION_SPLIT.
if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
#if CONFIG_SDP
if (mi_size_wide[mbmi_below->sb_type[plane_type]] == bwide)
return PARTITION_HORZ_A;
if (mi_size_high[mbmi_right->sb_type[plane_type]] == bhigh)
return PARTITION_VERT_A;
#else
if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
#endif
return PARTITION_SPLIT;
}
}
const int vert_split = sswide < bwide;
const int horz_split = sshigh < bhigh;
const int split_idx = (vert_split << 1) | horz_split;
assert(split_idx != 0);
static const PARTITION_TYPE base_partitions[4] = {
PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
};
return base_partitions[split_idx];
}
static INLINE void set_sb_size(SequenceHeader *const seq_params,
BLOCK_SIZE sb_size) {
seq_params->sb_size = sb_size;
seq_params->mib_size = mi_size_wide[seq_params->sb_size];
seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
}
// Returns true if the frame is fully lossless at the coded resolution.
// Note: If super-resolution is used, such a frame will still NOT be lossless at
// the upscaled resolution.
static INLINE int is_coded_lossless(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int coded_lossless = 1;
if (cm->seg.enabled) {
for (int i = 0; i < MAX_SEGMENTS; ++i) {
if (!xd->lossless[i]) {
coded_lossless = 0;
break;
}
}
} else {
coded_lossless = xd->lossless[0];
}
return coded_lossless;
}
static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
return seq_level_idx == SEQ_LEVEL_MAX ||
(seq_level_idx < SEQ_LEVELS &&
// The following levels are currently undefined.
seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
}
#if CONFIG_IBP_DIR
// Intra derivative for second directional predictor of IBP
// second_dr_intra_derivative[x] = 64*64/dr_intra_derivative[x]
static const int16_t second_dr_intra_derivative[90] = {
0, 0, 0, //
4, 0, 0, // 3, ...
7, 0, 0, // 6, ...
11, 0, 0, 0, 0, // 9, ...
15, 0, 0, // 14, ...
19, 0, 0, // 17, ...
23, 0, 0, // 20, ...
27, 0, 0, // 23, ... (113 & 203 are base angles)
31, 0, 0, // 26, ...
35, 0, 0, // 29, ...
40, 0, 0, 0, // 32, ...
46, 0, 0, // 36, ...
51, 0, 0, // 39, ...
58, 0, 0, // 42, ...
64, 0, 0, // 45, ... (45 & 135 are base angles)
72, 0, 0, // 48, ...
80, 0, 0, // 51, ...
91, 0, 0, 0, // 54, ...
102, 0, 0, // 58, ...
117, 0, 0, // 61, ...
132, 0, 0, // 64, ...
152, 0, 0, // 67, ... (67 & 157 are base angles)
178, 0, 0, // 70, ...
216, 0, 0, // 73, ...
273, 0, 0, 0, 0, // 76, ...
372, 0, 0, // 81, ...
585, 0, 0, // 84, ...
1365, 0, 0, // 87, ...
};
// Generate the weights per pixel position for IBP
static void av1_dr_prediction_z1_info(uint8_t *weights, int bw, int bh,
int txw_log2, int txh_log2, int dy,
int mode) {
int32_t r, c, y;
int len0 = -1;
int len1 = -1;
int f0 = 1024;
int f1 = 1024;
int f2 = 1024;
int d0 = 0;
int d1 = 0;
int d2 = 0;
if (mode == D67_PRED) {
f0 = ((bw <= 8) && (bh <= 8)) ? 512 : 1024;
f1 = ((bw <= 8) && (bh <= 8)) ? 256 : 512;
f2 = ((bw <= 8) && (bh <= 8)) ? 128 : 256;
d0 = ROUND_POWER_OF_TWO(f0 - f1, (txh_log2 - 1));
d1 = ROUND_POWER_OF_TWO(f1 - f2, (txw_log2 - 1));
d2 = ROUND_POWER_OF_TWO(f2, (txw_log2 - 1));
}
if (mode == V_PRED) {
f0 = ((bw <= 8) && (bh <= 8)) ? 256 : 512;
f1 = ((bw <= 8) && (bh <= 8)) ? 128 : 256;
f2 = ((bw <= 8) && (bh <= 8)) ? 64 : 128;
d0 = ROUND_POWER_OF_TWO(f0 - f1, (txh_log2 - 2));
d1 = ROUND_POWER_OF_TWO(f1 - f2, (txw_log2 - 1));
d2 = ROUND_POWER_OF_TWO(f2, (txw_log2 - 1));
}
for (r = 0; r < bh; ++r) {
if (mode == D67_PRED) {
len0 = (bh - r) >> 1;
len1 = ((bh - r) >> 1) + (bw >> 1);
}
if (mode == V_PRED) {
len0 = (bh - r) >> 2;
len1 = ((bh - r) >> 2) + (bw >> 1);
}
y = dy;
for (c = 0; c < bw; ++c, y += dy) {
uint32_t dist = ((r + 1) << 6) + y;
int16_t shift = 0;
int16_t div = resolve_divisor_32(dist, &shift);
shift -= DIV_LUT_BITS;
int32_t weight0 = ROUND_POWER_OF_TWO(y * div, shift);
if ((len0 > -1) && (len1 > -1)) {
int weight1 = IBP_WEIGHT_MAX - weight0;
if (c <= len0) {
int fac = ((len0 - c) * d0 + f1);
weight1 = (fac > f0) ? weight1 * f0 : weight1 * fac;
} else if (c <= len1) {
int fac = ((len1 - c) * d1 + f2);
weight1 = (fac > f1) ? weight1 * f1 : weight1 * fac;
} else {
int fac = (f2 - (c - len1) * d2);
weight1 = (fac < 0) ? 0 : weight1 * fac;
}
weight1 = ROUND_POWER_OF_TWO(weight1, 10);
weight0 = IBP_WEIGHT_MAX - weight1;
}
weights[c] = weight0;
}
weights += bw;
}
}
static const uint8_t angle_to_mode_index[90] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 15, 0, 0, 14, 0, 0, 13,
0, 0, 12, 0, 0, 11, 0, 0, 10, 0, 0, 0, 9, 0, 0, 8, 0, 0, 7, 0, 0, 6, 0,
0, 5, 0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0
};
// Generate weights for IBP of one directional mode
static INLINE void init_ibp_info_per_mode(
uint8_t *weights[TX_SIZES_ALL][DIR_MODES_0_90], int block_idx, int mode,
int delta, int txw, int txh, int txw_log2, int txh_log2) {
const int angle = mode_to_angle_map[mode] + delta * 3;
const int mode_idx = angle_to_mode_index[angle];
const int dy = second_dr_intra_derivative[angle];
weights[block_idx][mode_idx] =
(uint8_t *)(aom_calloc(txw * txh, sizeof(uint8_t)));
av1_dr_prediction_z1_info(weights[block_idx][mode_idx], txw, txh, txw_log2,
txh_log2, dy, mode);
return;
}
// Generate weights for IBP of directional modes
static INLINE void init_ibp_info(
uint8_t *weights[TX_SIZES_ALL][DIR_MODES_0_90]) {
assert(weights != NULL);
for (TX_SIZE iblock = TX_4X4; iblock < TX_SIZES_ALL; iblock++) {
const int txw = tx_size_wide[iblock];
const int txh = tx_size_high[iblock];
const int txw_log2 = tx_size_wide_log2[iblock];
const int txh_log2 = tx_size_high_log2[iblock];
for (int delta = -3; delta < 0; delta++) {
init_ibp_info_per_mode(weights, iblock, V_PRED, delta, txw, txh, txw_log2,
txh_log2);
init_ibp_info_per_mode(weights, iblock, D67_PRED, delta, txw, txh,
txw_log2, txh_log2);
init_ibp_info_per_mode(weights, iblock, D45_PRED, delta, txw, txh,
txw_log2, txh_log2);
}
for (int delta = 0; delta <= 3; delta++) {
init_ibp_info_per_mode(weights, iblock, D67_PRED, delta, txw, txh,
txw_log2, txh_log2);
init_ibp_info_per_mode(weights, iblock, D45_PRED, delta, txw, txh,
txw_log2, txh_log2);
}
}
}
static INLINE void free_ibp_info(
uint8_t *weights[TX_SIZES_ALL][DIR_MODES_0_90]) {
for (int i = 0; i < TX_SIZES_ALL; i++) {
for (int j = 0; j < DIR_MODES_0_90; j++) {
aom_free(weights[i][j]);
}
}
}
#endif
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_