| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include "av1/common/common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| |
| #if CONFIG_NEW_REF_SIGNALING |
| // Comparison function to sort reference frames in ascending score order |
| static int compare_score_data_asc(const void *a, const void *b) { |
| if (((RefScoreData *)a)->score == ((RefScoreData *)b)->score) { |
| return 0; |
| } else if (((const RefScoreData *)a)->score > |
| ((const RefScoreData *)b)->score) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| |
| // Checks to see if a particular reference frame is already in the reference |
| // frame map |
| static int is_in_ref_score(RefScoreData *map, int disp_order, int score, |
| int n_frames) { |
| for (int i = 0; i < n_frames; i++) { |
| if (disp_order == map[i].disp_order && score == map[i].score) return 1; |
| } |
| return 0; |
| } |
| |
| static int get_unmapped_ref(RefScoreData *scores, int n_bufs) { |
| if (n_bufs < INTER_REFS_PER_FRAME) return INVALID_IDX; |
| |
| int min_q = INT_MAX; |
| int max_q = INT_MIN; |
| for (int i = n_bufs - 1; i >= 0; i--) { |
| min_q = AOMMIN(min_q, scores[i].base_qindex); |
| max_q = AOMMAX(max_q, scores[i].base_qindex); |
| } |
| const int q_thresh = (max_q + min_q + 1) / 2; |
| |
| int unmapped_past_idx = INVALID_IDX; |
| int unmapped_future_idx = INVALID_IDX; |
| int max_past_score = 0; |
| int max_future_score = 0; |
| int n_past = 0; |
| int n_future = 0; |
| for (int i = 0; i < n_bufs; i++) { |
| if (scores[i].base_qindex >= q_thresh) { |
| int dist = scores[i].distance; |
| if (dist > 0) { |
| if (dist > max_past_score) { |
| max_past_score = dist; |
| unmapped_past_idx = i; |
| } |
| n_past++; |
| } else if (dist < 0) { |
| if (-dist > max_future_score) { |
| max_future_score = -dist; |
| unmapped_future_idx = i; |
| } |
| n_future++; |
| } |
| } |
| } |
| if (n_past > n_future) return unmapped_past_idx; |
| if (n_past < n_future) return unmapped_future_idx; |
| if (n_past == n_future && n_past > 0) |
| return max_past_score >= max_future_score ? unmapped_past_idx |
| : unmapped_future_idx; |
| |
| return INVALID_IDX; |
| } |
| |
| void av1_get_past_future_cur_ref_lists(AV1_COMMON *cm, RefScoreData *scores) { |
| int n_future = 0; |
| int n_past = 0; |
| int n_cur = 0; |
| for (int i = 0; i < cm->ref_frames_info.n_total_refs; i++) { |
| if (scores[i].distance < 0) { |
| cm->ref_frames_info.future_refs[n_future] = i; |
| n_future++; |
| } else if (scores[i].distance > 0) { |
| cm->ref_frames_info.past_refs[n_past] = i; |
| n_past++; |
| } else { |
| cm->ref_frames_info.cur_refs[n_cur] = i; |
| n_cur++; |
| } |
| } |
| cm->ref_frames_info.n_past_refs = n_past; |
| cm->ref_frames_info.n_future_refs = n_future; |
| cm->ref_frames_info.n_cur_refs = n_cur; |
| } |
| |
| #define JOINT_DIST_QINDEX_ORDERING 1 |
| #define DIST_WEIGHT_BITS 6 |
| void av1_get_ref_frames(AV1_COMMON *cm, int cur_frame_disp, |
| RefFrameMapPair *ref_frame_map_pairs) { |
| RefScoreData scores[REF_FRAMES]; |
| memset(scores, 0, REF_FRAMES * sizeof(*scores)); |
| for (int i = 0; i < REF_FRAMES; i++) { |
| scores[i].score = INT_MAX; |
| cm->remapped_ref_idx[i] = INVALID_IDX; |
| } |
| int n_ranked = 0; |
| // Compute a score for each reference buffer |
| for (int i = 0; i < REF_FRAMES; i++) { |
| // Get reference frame buffer |
| RefFrameMapPair cur_ref = ref_frame_map_pairs[i]; |
| if (cur_ref.disp_order == -1) continue; |
| const int ref_disp = cur_ref.disp_order; |
| const int ref_base_qindex = cur_ref.base_qindex; |
| const int disp_diff = cur_frame_disp - ref_disp; |
| const int score = (abs(disp_diff) << DIST_WEIGHT_BITS) + ref_base_qindex; |
| if (is_in_ref_score(scores, ref_disp, score, n_ranked)) continue; |
| |
| scores[n_ranked].index = i; |
| scores[n_ranked].score = score; |
| scores[n_ranked].distance = disp_diff; |
| scores[n_ranked].disp_order = ref_disp; |
| scores[n_ranked].base_qindex = ref_base_qindex; |
| n_ranked++; |
| } |
| if (n_ranked > INTER_REFS_PER_FRAME) { |
| const int unmapped_idx = get_unmapped_ref(scores, n_ranked); |
| if (unmapped_idx != INVALID_IDX) scores[unmapped_idx].score = INT_MAX; |
| } |
| |
| // Sort the references according to their score |
| qsort(scores, n_ranked, sizeof(scores[0]), compare_score_data_asc); |
| |
| cm->ref_frames_info.n_total_refs = |
| AOMMIN(n_ranked, cm->seq_params.max_reference_frames); |
| for (int i = 0; i < cm->ref_frames_info.n_total_refs; i++) { |
| cm->remapped_ref_idx[i] = scores[i].index; |
| cm->ref_frames_info.ref_frame_distance[i] = scores[i].distance; |
| } |
| |
| // Fill in RefFramesInfo struct according to computed mapping |
| av1_get_past_future_cur_ref_lists(cm, scores); |
| |
| if (n_ranked > INTER_REFS_PER_FRAME) |
| cm->remapped_ref_idx[n_ranked - 1] = scores[n_ranked - 1].index; |
| |
| // Fill any slots that are empty (should only happen for the first 7 frames) |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if (cm->remapped_ref_idx[i] == INVALID_IDX) cm->remapped_ref_idx[i] = 0; |
| } |
| } |
| #else |
| /*!\cond */ |
| // Struct to keep track of relevant reference frame data |
| typedef struct { |
| int map_idx; |
| int disp_order; |
| int pyr_level; |
| int used; |
| } RefBufMapData; |
| /*!\endcond */ |
| |
| // Comparison function to sort reference frames in ascending display order |
| static int compare_map_idx_pair_asc(const void *a, const void *b) { |
| if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) { |
| return 0; |
| } else if (((const RefBufMapData *)a)->disp_order > |
| ((const RefBufMapData *)b)->disp_order) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| |
| // Checks to see if a particular reference frame is already in the reference |
| // frame map |
| static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) { |
| for (int i = 0; i < n_frames; i++) { |
| if (disp_order == map[i].disp_order) return 1; |
| } |
| return 0; |
| } |
| |
| // Add a reference buffer index to a named reference slot |
| static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx, |
| int frame) { |
| remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx; |
| ref->used = 1; |
| } |
| |
| // Threshold dictating when we are allowed to start considering |
| // leaving lowest level frames unmapped |
| #define LOW_LEVEL_FRAMES_TR 5 |
| |
| // Find which reference buffer should be left out of the named mapping. |
| // This is because there are 8 reference buffers and only 7 named slots. |
| static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs, |
| int n_min_level_refs, int min_level, |
| int cur_frame_disp) { |
| int max_dist = 0; |
| int unmapped_idx = -1; |
| if (n_bufs <= ALTREF_FRAME) return; |
| for (int i = 0; i < n_bufs; i++) { |
| if (buffer_map[i].used) continue; |
| if (buffer_map[i].pyr_level != min_level || |
| n_min_level_refs >= LOW_LEVEL_FRAMES_TR) { |
| int dist = abs(cur_frame_disp - buffer_map[i].disp_order); |
| if (dist > max_dist) { |
| max_dist = dist; |
| unmapped_idx = i; |
| } |
| } |
| } |
| assert(unmapped_idx >= 0 && "Unmapped reference not found"); |
| buffer_map[unmapped_idx].used = 1; |
| } |
| |
| void av1_get_ref_frames(AV1_COMMON *const cm, int cur_frame_disp, |
| RefFrameMapPair *ref_frame_map_pairs) { |
| int *const remapped_ref_idx = cm->remapped_ref_idx; |
| |
| int buf_map_idx = 0; |
| |
| // Initialize reference frame mappings |
| for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX; |
| |
| RefBufMapData buffer_map[REF_FRAMES]; |
| int n_bufs = 0; |
| memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0])); |
| int min_level = INT_MAX; |
| int max_level = 0; |
| |
| // Go through current reference buffers and store display order, pyr level, |
| // and map index. |
| for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { |
| // Get reference frame buffer |
| RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; |
| if (ref_pair.disp_order == -1) continue; |
| const int frame_order = ref_pair.disp_order; |
| // Avoid duplicates |
| if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue; |
| const int reference_frame_level = ref_pair.pyr_level; |
| |
| // Keep track of the lowest and highest levels that currently exist |
| if (reference_frame_level < min_level) min_level = reference_frame_level; |
| if (reference_frame_level > max_level) max_level = reference_frame_level; |
| |
| buffer_map[n_bufs].map_idx = map_idx; |
| buffer_map[n_bufs].disp_order = frame_order; |
| buffer_map[n_bufs].pyr_level = reference_frame_level; |
| buffer_map[n_bufs].used = 0; |
| n_bufs++; |
| } |
| |
| // Sort frames in ascending display order |
| qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc); |
| |
| int n_min_level_refs = 0; |
| int n_past_high_level = 0; |
| int closest_past_ref = -1; |
| int golden_idx = -1; |
| int altref_idx = -1; |
| |
| // Find the GOLDEN_FRAME and BWDREF_FRAME. |
| // Also collect various stats about the reference frames for the remaining |
| // mappings |
| for (int i = n_bufs - 1; i >= 0; i--) { |
| if (buffer_map[i].pyr_level == min_level) { |
| // Keep track of the number of lowest level frames |
| n_min_level_refs++; |
| if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 && |
| remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) { |
| // Save index for GOLDEN |
| golden_idx = i; |
| } else if (buffer_map[i].disp_order > cur_frame_disp && |
| altref_idx == -1 && |
| remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) { |
| // Save index for ALTREF |
| altref_idx = i; |
| } |
| } else if (buffer_map[i].disp_order == cur_frame_disp) { |
| // Map the BWDREF_FRAME if this is the show_existing_frame |
| add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME); |
| } |
| |
| // Keep track of the number of past frames that are not at the lowest level |
| if (buffer_map[i].disp_order < cur_frame_disp && |
| buffer_map[i].pyr_level != min_level) |
| n_past_high_level++; |
| |
| // Keep track of where the frames change from being past frames to future |
| // frames |
| if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0) |
| closest_past_ref = i; |
| } |
| |
| // Do not map GOLDEN and ALTREF based on their pyramid level if all reference |
| // frames have the same level |
| if (n_min_level_refs <= n_bufs) { |
| // Map the GOLDEN_FRAME |
| if (golden_idx > -1) |
| add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME); |
| // Map the ALTREF_FRAME |
| if (altref_idx > -1) |
| add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME); |
| } |
| |
| // Find the buffer to be excluded from the mapping |
| set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level, |
| cur_frame_disp); |
| |
| // Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME |
| for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) { |
| // Continue if the current ref slot is already full |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| // in decreasing ouptut oreder relative to current picture |
| int next_buf_max = 0; |
| int next_disp_order = INT_MIN; |
| for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used && |
| buffer_map[buf_map_idx].disp_order < cur_frame_disp && |
| buffer_map[buf_map_idx].disp_order > next_disp_order) { |
| next_disp_order = buffer_map[buf_map_idx].disp_order; |
| next_buf_max = buf_map_idx; |
| } |
| } |
| buf_map_idx = next_buf_max; |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME |
| for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) { |
| // Continue if the current ref slot is already full |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| // in increasing ouptut oreder relative to current picture |
| int next_buf_max = 0; |
| int next_disp_order = INT_MAX; |
| for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used && |
| buffer_map[buf_map_idx].disp_order > cur_frame_disp && |
| buffer_map[buf_map_idx].disp_order < next_disp_order) { |
| next_disp_order = buffer_map[buf_map_idx].disp_order; |
| next_buf_max = buf_map_idx; |
| } |
| } |
| buf_map_idx = next_buf_max; |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place remaining past frames |
| buf_map_idx = closest_past_ref; |
| for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) { |
| // Continue if the current ref slot is already full |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| for (; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used) break; |
| } |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place remaining future frames |
| buf_map_idx = n_bufs - 1; |
| for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) { |
| // Continue if the current ref slot is already full |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| for (; buf_map_idx > closest_past_ref; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used) break; |
| } |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Fill any slots that are empty (should only happen for the first 7 frames) |
| for (int i = 0; i < REF_FRAMES; ++i) |
| if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0; |
| } |
| #endif // CONFIG_NEW_REF_SIGNALING |
| |
| // Returns a context number for the given MB prediction signal |
| static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi, |
| const MACROBLOCKD *xd, int dir, |
| MV_REFERENCE_FRAME ref_frame) { |
| (void)xd; |
| |
| if (ref_mbmi->ref_frame[0] != ref_frame && |
| ref_mbmi->ref_frame[1] != ref_frame) { |
| return SWITCHABLE_FILTERS; |
| } |
| #if CONFIG_REMOVE_DUAL_FILTER |
| (void)dir; |
| return ref_mbmi->interp_fltr; |
| #else |
| return av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01); |
| #endif // CONFIG_REMOVE_DUAL_FILTER |
| } |
| |
| int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int ctx_offset = |
| is_inter_ref_frame(mbmi->ref_frame[1]) * INTER_FILTER_COMP_OFFSET; |
| assert(dir == 0 || dir == 1); |
| const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; |
| int left_type = SWITCHABLE_FILTERS; |
| int above_type = SWITCHABLE_FILTERS; |
| |
| if (xd->left_available) |
| left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); |
| |
| if (xd->up_available) |
| above_type = |
| get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); |
| |
| if (left_type == above_type) { |
| filter_type_ctx += left_type; |
| } else if (left_type == SWITCHABLE_FILTERS) { |
| assert(above_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += above_type; |
| } else if (above_type == SWITCHABLE_FILTERS) { |
| assert(left_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += left_type; |
| } else { |
| filter_type_ctx += SWITCHABLE_FILTERS; |
| } |
| |
| return filter_type_ctx; |
| } |
| |
| static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) { |
| // Do not add an already existing value |
| if (*n > 0 && val == cache[*n - 1]) return; |
| |
| cache[(*n)++] = val; |
| } |
| |
| int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, |
| uint16_t *cache) { |
| const int row = -xd->mb_to_top_edge >> 3; |
| // Do not refer to above SB row when on SB boundary. |
| const MB_MODE_INFO *const above_mi = |
| (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| int above_n = 0, left_n = 0; |
| if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0]; |
| if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0]; |
| if (above_n == 0 && left_n == 0) return 0; |
| int above_idx = plane * PALETTE_MAX_SIZE; |
| int left_idx = plane * PALETTE_MAX_SIZE; |
| int n = 0; |
| const uint16_t *above_colors = |
| above_mi ? above_mi->palette_mode_info.palette_colors : NULL; |
| const uint16_t *left_colors = |
| left_mi ? left_mi->palette_mode_info.palette_colors : NULL; |
| // Merge the sorted lists of base colors from above and left to get |
| // combined sorted color cache. |
| while (above_n > 0 && left_n > 0) { |
| uint16_t v_above = above_colors[above_idx]; |
| uint16_t v_left = left_colors[left_idx]; |
| if (v_left < v_above) { |
| palette_add_to_cache(cache, &n, v_left); |
| ++left_idx, --left_n; |
| } else { |
| palette_add_to_cache(cache, &n, v_above); |
| ++above_idx, --above_n; |
| if (v_left == v_above) ++left_idx, --left_n; |
| } |
| } |
| while (above_n-- > 0) { |
| uint16_t val = above_colors[above_idx++]; |
| palette_add_to_cache(cache, &n, val); |
| } |
| while (left_n-- > 0) { |
| uint16_t val = left_colors[left_idx++]; |
| palette_add_to_cache(cache, &n, val); |
| } |
| assert(n <= 2 * PALETTE_MAX_SIZE); |
| return n; |
| } |
| |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| // 0 - inter/inter, inter/--, --/inter, --/-- |
| // 1 - intra/inter, inter/intra |
| // 2 - intra/--, --/intra |
| // 3 - intra/intra |
| int av1_get_intra_inter_context(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| if (has_above && has_left) { // both edges available |
| #if CONFIG_SDP |
| const int above_intra = !is_inter_block(above_mbmi, xd->tree_type); |
| const int left_intra = !is_inter_block(left_mbmi, xd->tree_type); |
| #else |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| #endif |
| return left_intra && above_intra ? 3 : left_intra || above_intra; |
| } else if (has_above || has_left) { // one edge available |
| #if CONFIG_SDP |
| return 2 * |
| !is_inter_block(has_above ? above_mbmi : left_mbmi, xd->tree_type); |
| #else |
| return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); |
| #endif |
| } else { |
| return 0; |
| } |
| } |
| |
| #if CONFIG_NEW_REF_SIGNALING |
| #define IS_BACKWARD_REF_FRAME(ref_frame) \ |
| (get_dir_rank(cm, ref_frame, NULL) == 1) |
| #else |
| #define CHECK_BACKWARD_REFS(ref_frame) \ |
| (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) |
| #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) |
| #endif // CONFIG_NEW_REF_SIGNALING |
| |
| int av1_get_reference_mode_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| int ctx; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) |
| // neither edge uses comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ |
| IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); |
| else if (!has_second_ref(above_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || |
| #if CONFIG_SDP |
| !is_inter_block(above_mbmi, xd->tree_type)); |
| #else |
| !is_inter_block(above_mbmi)); |
| #endif |
| else if (!has_second_ref(left_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || |
| #if CONFIG_SDP |
| !is_inter_block(left_mbmi, xd->tree_type)); |
| #else |
| !is_inter_block(left_mbmi)); |
| #endif |
| else // both edges use comp pred (4) |
| ctx = 4; |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) |
| // edge does not use comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); |
| else |
| // edge uses comp pred (3) |
| ctx = 3; |
| } else { // no edges available (1) |
| ctx = 1; |
| } |
| assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); |
| return ctx; |
| } |
| |
| #if CONFIG_NEW_REF_SIGNALING |
| int av1_get_ref_pred_context_nrs(const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, |
| int n_total_refs) { |
| assert((ref + 1) < n_total_refs); |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| const int this_ref_count = ref_counts[ref]; |
| int next_refs_count = 0; |
| |
| for (int i = ref + 1; i < n_total_refs; i++) { |
| next_refs_count += ref_counts[i]; |
| } |
| |
| const int pred_context = (this_ref_count == next_refs_count) |
| ? 1 |
| : ((this_ref_count < next_refs_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| #else |
| int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| #if CONFIG_SDP |
| const int above_intra = !is_inter_block(above_mbmi, xd->tree_type); |
| const int left_intra = !is_inter_block(left_mbmi, xd->tree_type); |
| #else |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| #endif |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(inter_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); |
| } else { // inter/inter |
| const int a_sg = !has_second_ref(above_mbmi); |
| const int l_sg = !has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; |
| |
| if (a_sg && l_sg) { // single/single |
| pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ |
| IS_BACKWARD_REF_FRAME(frfl))); |
| } else if (l_sg || a_sg) { // single/comp |
| const int uni_rfc = |
| a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); |
| |
| if (!uni_rfc) // comp bidir |
| pred_context = 1; |
| else // comp unidir |
| pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ |
| IS_BACKWARD_REF_FRAME(frfl))); |
| } else { // comp/comp |
| const int a_uni_rfc = has_uni_comp_refs(above_mbmi); |
| const int l_uni_rfc = has_uni_comp_refs(left_mbmi); |
| |
| if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir |
| pred_context = 0; |
| else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir |
| pred_context = 2; |
| else // unidir/unidir |
| pred_context = |
| 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| #if CONFIG_SDP |
| if (!is_inter_block(edge_mbmi, xd->tree_type)) { // intra |
| #else |
| if (!is_inter_block(edge_mbmi)) { // intra |
| #endif |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 4 * has_uni_comp_refs(edge_mbmi); |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as either |
| // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as uni-directional. |
| // |
| // 3 contexts: Voting is used to compare the count of forward references with |
| // that of backward references from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of forward references (L, L2, L3, or G) |
| const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| // Count of backward references (B or A) |
| const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + |
| ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above three. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the |
| // total count of LAST3/GOLDEN from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST2 |
| const int last2_count = ref_counts[LAST2_FRAME]; |
| // Count of LAST3 or GOLDEN |
| const int last3_or_gld_count = |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = (last2_count == last3_or_gld_count) |
| ? 1 |
| : ((last2_count < last3_or_gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST3) or (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above two. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the |
| // total count of GOLDEN_FRAME from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST3 |
| const int last3_count = ref_counts[LAST3_FRAME]; |
| // Count of GOLDEN |
| const int gld_count = ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = |
| (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // == Common context functions for both comp and single ref == |
| // |
| // Obtain contexts to signal a reference frame to be either LAST/LAST2 or |
| // LAST3/GOLDEN. |
| static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST + LAST2 |
| const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME]; |
| // Count of LAST3 + GOLDEN |
| const int last3_gld_count = |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = (last_last2_count == last3_gld_count) |
| ? 1 |
| : ((last_last2_count < last3_gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame to be either LAST or LAST2. |
| static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST |
| const int last_count = ref_counts[LAST_FRAME]; |
| // Count of LAST2 |
| const int last2_count = ref_counts[LAST2_FRAME]; |
| |
| const int pred_context = |
| (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN. |
| static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST3 |
| const int last3_count = ref_counts[LAST3_FRAME]; |
| // Count of GOLDEN |
| const int gld_count = ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = |
| (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or |
| // ALTREF. |
| static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) |
| const int brfarf2_count = |
| ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME]; |
| const int arf_count = ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. |
| static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of BWDREF frames (B) |
| const int brf_count = ref_counts[BWDREF_FRAME]; |
| // Count of ALTREF2 frames (A2) |
| const int arf2_count = ref_counts[ALTREF2_FRAME]; |
| |
| const int pred_context = |
| (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // == Context functions for comp ref == |
| // |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be either |
| // GOLDEN/LAST3, or LAST/LAST2. |
| int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) { |
| return get_pred_context_ll2_or_l3gld(xd); |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be LAST, |
| // conditioning on that it is known either LAST/LAST2. |
| int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) { |
| return get_pred_context_last_or_last2(xd); |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be GOLDEN, |
| // conditioning on that it is known either GOLDEN or LAST3. |
| int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) { |
| return get_pred_context_last3_or_gld(xd); |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF, or ALTREF2/BWDREF. |
| int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) { |
| return get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF2 or BWDREF. |
| int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) { |
| return get_pred_context_brf_or_arf2(xd); |
| } |
| |
| // == Context functions for single ref == |
| // |
| // For the bit to signal whether the single reference is a forward reference |
| // frame or a backward reference frame. |
| int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of forward reference frames |
| const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| // Count of backward reference frames |
| const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + |
| ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF_FRAME or |
| // non-ALTREF backward reference frame, knowing that it shall be either of |
| // these 2 choices. |
| int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
| return get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // For the bit to signal whether the single reference is LAST3/GOLDEN or |
| // LAST2/LAST, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { |
| return get_pred_context_ll2_or_l3gld(xd); |
| } |
| |
| // For the bit to signal whether the single reference is LAST2_FRAME or |
| // LAST_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { |
| return get_pred_context_last_or_last2(xd); |
| } |
| |
| // For the bit to signal whether the single reference is GOLDEN_FRAME or |
| // LAST3_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { |
| return get_pred_context_last3_or_gld(xd); |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF2_FRAME or |
| // BWDREF_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { |
| return get_pred_context_brf_or_arf2(xd); |
| } |
| #endif // CONFIG_NEW_REF_SIGNALING |