blob: b6fa239e8b1b6173799e2e076962d0fcabca5857 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
const WarpTypesAllowed *const warp_types,
const WarpedMotionParams *const gm_params,
int build_for_obmc, const struct scale_factors *const sf,
WarpedMotionParams *final_warp_params) {
// Note: As per the spec, we must test the fixed point scales here, which are
// at a higher precision (1 << 14) than the xs and ys in subpel_params (that
// have 1 << 10 precision).
if (av1_is_scaled(sf)) return 0;
if (final_warp_params != NULL) *final_warp_params = default_warp_params;
if (build_for_obmc) return 0;
if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params));
return 1;
} else if (warp_types->global_warp_allowed && !gm_params->invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
return 0;
}
void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
int block_height, int pix_row, int pix_col,
int subsampling_x, int subsampling_y, int bit_depth,
int use_hbd_buf, int is_intrabc,
const struct scale_factors *sf,
const struct buf_2d *ref_buf,
#if CONFIG_REMOVE_DUAL_FILTER
InterpFilter interp_filter
#else
int_interpfilters interp_filters
#endif // CONFIG_REMOVE_DUAL_FILTER
) {
inter_pred_params->block_width = block_width;
inter_pred_params->block_height = block_height;
#if CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->orig_block_width = block_width;
inter_pred_params->orig_block_height = block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->pix_row = pix_row;
inter_pred_params->pix_col = pix_col;
inter_pred_params->subsampling_x = subsampling_x;
inter_pred_params->subsampling_y = subsampling_y;
inter_pred_params->bit_depth = bit_depth;
inter_pred_params->use_hbd_buf = use_hbd_buf;
inter_pred_params->is_intrabc = is_intrabc;
inter_pred_params->scale_factors = sf;
inter_pred_params->ref_frame_buf = *ref_buf;
inter_pred_params->mode = TRANSLATION_PRED;
inter_pred_params->comp_mode = UNIFORM_SINGLE;
if (is_intrabc) {
inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
} else {
inter_pred_params->interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(
#if CONFIG_REMOVE_DUAL_FILTER
interp_filter,
#else
interp_filters.as_filters.x_filter,
#endif // CONFIG_REMOVE_DUAL_FILTER
block_width);
inter_pred_params->interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(
#if CONFIG_REMOVE_DUAL_FILTER
interp_filter,
#else
interp_filters.as_filters.y_filter,
#endif // CONFIG_REMOVE_DUAL_FILTER
block_height);
}
}
void av1_init_comp_mode(InterPredParams *inter_pred_params) {
inter_pred_params->comp_mode = UNIFORM_COMP;
}
void av1_init_warp_params(InterPredParams *inter_pred_params,
const WarpTypesAllowed *warp_types, int ref,
const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8)
return;
if (xd->cur_frame_force_integer_mv) return;
if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], 0,
inter_pred_params->scale_factors,
&inter_pred_params->warp_params))
inter_pred_params->mode = WARP_PRED;
}
void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params) {
assert(IMPLIES(inter_pred_params->conv_params.is_compound,
inter_pred_params->conv_params.dst != NULL));
// TODO(jingning): av1_warp_plane() can be further cleaned up.
if (inter_pred_params->mode == WARP_PRED) {
av1_warp_plane(
&inter_pred_params->warp_params, inter_pred_params->use_hbd_buf,
inter_pred_params->bit_depth, inter_pred_params->ref_frame_buf.buf0,
inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height,
inter_pred_params->ref_frame_buf.stride, dst,
inter_pred_params->pix_col, inter_pred_params->pix_row,
inter_pred_params->block_width, inter_pred_params->block_height,
dst_stride, inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y, &inter_pred_params->conv_params);
} else if (inter_pred_params->mode == TRANSLATION_PRED) {
if (inter_pred_params->use_hbd_buf) {
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params,
inter_pred_params->block_width,
inter_pred_params->block_height,
&inter_pred_params->conv_params,
inter_pred_params->interp_filter_params,
inter_pred_params->bit_depth);
} else {
inter_predictor(src, src_stride, dst, dst_stride, subpel_params,
inter_pred_params->block_width,
inter_pred_params->block_height,
&inter_pred_params->conv_params,
inter_pred_params->interp_filter_params);
}
}
}
static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift,
int width) {
if (shift >= 0) {
memcpy(dst + shift, src, width - shift);
memset(dst, src[0], shift);
} else {
shift = -shift;
memcpy(dst, src + shift, width - shift);
memset(dst + width - shift, src[width - 1], shift);
}
}
/* clang-format off */
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
};
/* clang-format on */
// [negative][direction]
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
DECLARE_ALIGNED(16, static uint8_t,
smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
[MAX_WEDGE_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
wedge_masks[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
wedge_masks[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
wedge_masks[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
wedge_masks[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
wedge_masks[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
wedge_masks[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
wedge_masks[BLOCK_32X32] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
wedge_masks[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
wedge_masks[BLOCK_32X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
};
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
av1_wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
const uint8_t wsignflip =
av1_wedge_params_lookup[sb_type].signflip[wedge_index];
assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->type));
(void)sb_type;
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
case COMPOUND_DIFFWTD: return comp_data->seg_mask;
default: assert(0); return NULL;
}
}
static AOM_INLINE void diffwtd_mask_d16(
uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_d16_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
default: assert(0);
}
}
static AOM_INLINE void diffwtd_mask(uint8_t *mask, int which_inverse,
int mask_base, const uint8_t *src0,
int src0_stride, const uint8_t *src1,
int src1_stride, int h, int w) {
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff =
abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_c(uint8_t *mask,
DIFFWTD_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
int h, int w) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w);
break;
case DIFFWTD_38_INV:
diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w);
break;
default: assert(0);
}
}
static AOM_FORCE_INLINE void diffwtd_mask_highbd(
uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
const unsigned int bd) {
assert(bd >= 8);
if (bd == 8) {
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
} else {
const unsigned int bd_shift = bd - 8;
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
}
}
void av1_build_compound_diffwtd_mask_highbd_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
break;
default: assert(0);
}
}
static AOM_INLINE void init_wedge_master_masks() {
int i, j;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
// Note: index [0] stores the masters, and [1] its complement.
// Generate prototype by shifting the masters
int shift = h / 4;
for (i = 0; i < h; i += 2) {
shift_copy(wedge_master_oblique_even,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
MASK_MASTER_SIZE);
shift--;
shift_copy(wedge_master_oblique_odd,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
MASK_MASTER_SIZE);
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
}
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - mskx;
}
}
}
static AOM_INLINE void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
const int wtypes = wedge_params->wedge_types;
if (wtypes == 0) continue;
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
int w;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[0][w] = dst;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[1][w] = dst;
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
8, 8, 4, 4, 2, 2
};
/* clang-format on */
static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
BLOCK_SIZE plane_bsize,
INTERINTRA_MODE mode) {
int i, j;
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
mask += stride;
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
mask += stride;
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j)
mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
mask += stride;
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
memset(mask, 32, bw * sizeof(mask[0]));
mask += stride;
}
break;
}
}
static AOM_INLINE void init_smooth_interintra_masks() {
for (int m = 0; m < INTERINTRA_MODES; ++m) {
for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
const int bw = block_size_wide[bs];
const int bh = block_size_high[bs];
if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
m);
}
}
}
#if CONFIG_OPTFLOW_REFINEMENT
// Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity
// in hardware.
#define OPFL_CLAMP_MV_DELTA 1
#define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS)
static INLINE int opfl_get_subblock_size(int bw, int bh, int plane) {
return (plane || (bh <= 8 && bw <= 8)) ? OF_MIN_BSIZE : OF_BSIZE;
}
void av1_opfl_build_inter_predictor(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf,
InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint8_t *pred_dst) {
assert(cm->seq_params.order_hint_info.enable_order_hint);
#if CONFIG_SDP
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
#else
const int is_intrabc = is_intrabc_block(mi);
#endif // CONFIG_SDP
// Do references one at a time
const int is_compound = 0;
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype),
mi->motion_mode == WARPED_CAUSAL };
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
#if CONFIG_SDP
const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = mi->sb_type;
#endif
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
#if CONFIG_SDP
is_cur_buf_hbd(xd), mi->use_intrabc[0], sf, pre_buf,
#else
is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf,
#endif // CONFIG_SDP
#if CONFIG_REMOVE_DUAL_FILTER
mi->interp_fltr);
#else
mi->interp_filters);
#endif // CONFIG_REMOVE_DUAL_FILTER
inter_pred_params->conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi);
if (inter_pred_params->mode == WARP_PRED) return;
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
av1_build_one_inter_predictor(pred_dst, bw, &mi->mv[ref].as_mv,
inter_pred_params, xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
// Note: grad_prec_bits param returned correspond to the precision
// of the gradient information in bits assuming gradient
// computed at unit pixel step normalization is 0 scale.
// Negative values indicate gradient returned at reduced precision, and
// positive values indicate gradient returned at higher precision.
void av1_compute_subpel_gradients_mc_highbd(
MACROBLOCKD *xd, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint8_t **mc_buf, InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, int *grad_prec_bits,
int16_t *x_grad, int16_t *y_grad) {
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
// Original predictor
const MV mv_orig = mi->mv[ref].as_mv;
MV mv_modified = mv_orig;
uint16_t tmp_buf1[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
uint16_t tmp_buf2[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
uint8_t *tmp_buf1_8 = CONVERT_TO_BYTEPTR(tmp_buf1);
uint8_t *tmp_buf2_8 = CONVERT_TO_BYTEPTR(tmp_buf2);
// X gradient
// Get predictor to the left
mv_modified.col = mv_orig.col - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf1_8, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor to the right
mv_modified.col = mv_orig.col + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf2_8, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_highbd_subtract_block(bh, bw, x_grad, bw, CONVERT_TO_BYTEPTR(tmp_buf2),
bw, CONVERT_TO_BYTEPTR(tmp_buf1), bw, xd->bd);
// Y gradient
// Get predictor below
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf1_8, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor above
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf2_8, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_highbd_subtract_block(bh, bw, y_grad, bw, CONVERT_TO_BYTEPTR(tmp_buf2),
bw, CONVERT_TO_BYTEPTR(tmp_buf1), bw, xd->bd);
}
// Note: grad_prec_bits param returned correspond to the precision
// of the gradient information in bits assuming gradient
// computed at unit pixel step normalization is 0 scale.
// Negative values indicate gradient returned at reduced precision, and
// positive values indicate gradient returned at higher precision.
void av1_compute_subpel_gradients_mc_lowbd(
MACROBLOCKD *xd, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint8_t **mc_buf, InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, int *grad_prec_bits,
int16_t *x_grad, int16_t *y_grad) {
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
// Original predictor
const MV mv_orig = mi->mv[ref].as_mv;
MV mv_modified = mv_orig;
uint8_t tmp_buf1[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
uint8_t tmp_buf2[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
// X gradient
// Get predictor to the left
mv_modified.col = mv_orig.col - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor to the right
mv_modified.col = mv_orig.col + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_subtract_block(bh, bw, x_grad, bw, tmp_buf2, bw, tmp_buf1, bw);
// Y gradient
// Get predictor below
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor above
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_subtract_block(bh, bw, y_grad, bw, tmp_buf2, bw, tmp_buf1, bw);
}
void av1_bicubic_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad,
int16_t *y_grad, const int bw,
const int bh) {
#if OPFL_BICUBIC_GRAD
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
int id_prev, id_prev2, id_next, id_next2, is_boundary;
int32_t temp = 0;
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_prev = AOMMAX(j - 1, 0);
id_prev2 = AOMMAX(j - 2, 0);
id_next = AOMMIN(j + 1, bw - 1);
id_next2 = AOMMIN(j + 2, bw - 1);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] -
pred_src[i * bw + id_prev]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[i * bw + id_next2] -
pred_src[i * bw + id_prev2]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_prev = AOMMAX(i - 1, 0);
id_prev2 = AOMMAX(i - 2, 0);
id_next = AOMMIN(i + 1, bh - 1);
id_next2 = AOMMIN(i + 2, bh - 1);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] -
pred_src[id_prev * bw + j]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[id_next2 * bw + j] -
pred_src[id_prev2 * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
}
}
#else
(void)pred_src;
(void)x_grad;
(void)y_grad;
(void)bw;
(void)bh;
#endif // OPFL_BICUBIC_GRAD
}
void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src,
int16_t *x_grad, int16_t *y_grad,
const int bw, const int bh) {
av1_bicubic_grad_interpolation_c(pred_src, x_grad, y_grad, bw, bh);
}
#if OPFL_BILINEAR_GRAD
void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad,
int16_t *y_grad, const int bw,
const int bh) {
int id_next, id_prev, is_boundary;
int32_t temp = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_next = AOMMIN(j + 1, bw - 1);
id_prev = AOMMAX(j - 1, 0);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_next = AOMMIN(i + 1, bh - 1);
id_prev = AOMMAX(i - 1, 0);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
}
}
}
#endif // OPFL_BILINEAR_GRAD
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh,
int *grad_prec_bits, int16_t *x_grad,
int16_t *y_grad, int is_hbd) {
// Reuse pixels in pred_dst to compute gradients
#if OPFL_BILINEAR_GRAD
(void)is_hbd;
av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh);
#else
if (is_hbd)
av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh);
else
av1_bicubic_grad_interpolation(pred_dst, x_grad, y_grad, bw, bh);
#endif // OPFL_BILINEAR_GRAD
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
}
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
// Optical flow based mv refinement computation function:
//
// p0, pstride0: predictor 0 and its stride
// p1, pstride1: predictor 1 and its stride
// gx0, gy0: x and y gradients for p0
// gx1, gy1: x and y gradients for p1
// gstride: stride for all the gradients assumed to be the same
// bw, bh: block dimensions
// d0: distances of p0 to current frame, where positive value refers to p0
// before the current frame.
// d1: distances of p1 to current frame, where positive value refers to p1
// before the current frame.
// max_prec_bits: maximum offset in bits
// vx0, vy0: output high resolution mv offset for p0
// vx1, vy1: output high resolution mv offset for p1
void av1_opfl_mv_refinement_lowbd(const uint8_t *p0, int pstride0,
const uint8_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1,
int grad_prec_bits, int mv_prec_bits,
int *vx0, int *vy0, int *vx1, int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int64_t u = d0 * gx0[i * gstride + j] - d1 * gx1[i * gstride + j];
const int64_t v = d0 * gy0[i * gstride + j] - d1 * gy1[i * gstride + j];
const int64_t w = d0 * (p0[i * pstride0 + j] - p1[i * pstride1 + j]);
su2 += (u * u);
suv += (u * v);
sv2 += (v * v);
suw += (u * w);
svw += (v * w);
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) << OPFL_RLS_PARAM_BITS;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = (int64_t)clamp((int)su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
sv2 = (int64_t)clamp((int)sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suv = (int64_t)clamp((int)suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suw = (int64_t)clamp((int)suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
svw = (int64_t)clamp((int)svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det == 0) return;
const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits);
const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits);
*vx0 = (int)divide_and_round_signed(det_x, det);
*vy0 = (int)divide_and_round_signed(det_y, det);
const int tx1 = (*vx0) * d1;
const int ty1 = (*vy0) * d1;
*vx1 = (int)divide_and_round_signed(tx1, d0);
*vy1 = (int)divide_and_round_signed(ty1, d0);
}
void av1_opfl_mv_refinement_highbd(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1,
int grad_prec_bits, int mv_prec_bits,
int *vx0, int *vy0, int *vx1, int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int64_t u = d0 * gx0[i * gstride + j] - d1 * gx1[i * gstride + j];
const int64_t v = d0 * gy0[i * gstride + j] - d1 * gy1[i * gstride + j];
const int64_t w = d0 * (p0[i * pstride0 + j] - p1[i * pstride1 + j]);
su2 += (u * u);
suv += (u * v);
sv2 += (v * v);
suw += (u * w);
svw += (v * w);
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) << OPFL_RLS_PARAM_BITS;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = (int64_t)clamp((int)su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
sv2 = (int64_t)clamp((int)sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suv = (int64_t)clamp((int)suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suw = (int64_t)clamp((int)suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
svw = (int64_t)clamp((int)svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det == 0) return;
const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits);
const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits);
*vx0 = (int)divide_and_round_signed(det_x, det);
*vy0 = (int)divide_and_round_signed(det_y, det);
const int tx1 = (*vx0) * d1;
const int ty1 = (*vy0) * d1;
*vx1 = (int)divide_and_round_signed(tx1, d0);
*vy1 = (int)divide_and_round_signed(ty1, d0);
}
#if OPFL_COMBINE_INTERP_GRAD_LS
// Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
void av1_opfl_mv_refinement_interp_grad(const int16_t *pdiff, int pstride0,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int d0,
int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int u = gx[i * gstride + j];
const int v = gy[i * gstride + j];
const int w = pdiff[i * pstride0 + j];
su2 += (u * u);
suv += (u * v);
sv2 += (v * v);
suw += (u * w);
svw += (v * w);
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) << OPFL_RLS_PARAM_BITS;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = (int64_t)clamp((int)su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
sv2 = (int64_t)clamp((int)sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suv = (int64_t)clamp((int)suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suw = (int64_t)clamp((int)suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
svw = (int64_t)clamp((int)svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det == 0) return;
const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits);
const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits);
*vx0 = (int)divide_and_round_signed(det_x, det);
*vy0 = (int)divide_and_round_signed(det_y, det);
const int tx1 = (*vx0) * d1;
const int ty1 = (*vy0) * d1;
*vx1 = (int)divide_and_round_signed(tx1, d0);
*vy1 = (int)divide_and_round_signed(ty1, d0);
}
#endif // OPFL_COMBINE_INTERP_GRAD_LS
int av1_opfl_mv_refinement_nxn_interp_grad_c(
const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int n, int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0, int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
#if OPFL_COMBINE_INTERP_GRAD_LS
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement_interp_grad(
pdiff + (i * pstride + j), pstride, gx + (i * gstride + j),
gy + (i * gstride + j), gstride, n, n, d0, d1, grad_prec_bits,
mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, vx1 + n_blocks,
vy1 + n_blocks);
n_blocks++;
}
}
#else
(void)pdiff;
(void)pstride;
(void)gx;
(void)gy;
(void)gstride;
(void)bw;
(void)bh;
(void)n;
(void)d0;
(void)d1;
(void)grad_prec_bits;
(void)mv_prec_bits;
(void)vx0;
(void)vy0;
(void)vx1;
(void)vy1;
#endif // OPFL_COMBINE_INTERP_GRAD_LS
return n_blocks;
}
// Function to compute optical flow offsets in nxn blocks
int av1_opfl_mv_refinement_nxn_highbd_c(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int n,
int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement_highbd(
p0 + (i * pstride0 + j), pstride0, p1 + (i * pstride1 + j), pstride1,
gx0 + (i * gstride + j), gy0 + (i * gstride + j),
gx1 + (i * gstride + j), gy1 + (i * gstride + j), gstride, n, n, d0,
d1, grad_prec_bits, mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks,
vx1 + n_blocks, vy1 + n_blocks);
n_blocks++;
}
}
return n_blocks;
}
// Function to compute optical flow offsets in nxn blocks
int av1_opfl_mv_refinement_nxn_lowbd_c(const uint8_t *p0, int pstride0,
const uint8_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int n,
int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement_lowbd(
p0 + (i * pstride0 + j), pstride0, p1 + (i * pstride1 + j), pstride1,
gx0 + (i * gstride + j), gy0 + (i * gstride + j),
gx1 + (i * gstride + j), gy1 + (i * gstride + j), gstride, n, n, d0,
d1, grad_prec_bits, mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks,
vx1 + n_blocks, vy1 + n_blocks);
n_blocks++;
}
}
return n_blocks;
}
#if OPFL_COMBINE_INTERP_GRAD_LS
static AOM_FORCE_INLINE void compute_pred_using_interp_grad(
const uint8_t *src1, const uint8_t *src2, int16_t *dst1, int16_t *dst2,
int bw, int bh, int d0, int d1) {
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
// To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1. Since d0 and d1 are
// at most 5 bits, this clamping is only required in highbd, but it is
// also added here for consistency.
int32_t tmp_dst =
d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j];
dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
tmp_dst = d0 * ((int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j]);
dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
}
}
}
#endif // OPFL_COMBINE_INTERP_GRAD_LS
void av1_copy_pred_array_c(const uint8_t *src1, const uint8_t *src2,
int16_t *dst1, int16_t *dst2, int bw, int bh, int d0,
int d1) {
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
#if OPFL_COMBINE_INTERP_GRAD_LS
compute_pred_using_interp_grad(src1, src2, dst1, dst2, bw, bh, d0, d1);
#else
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
for (int i = 0; i < bh; ++i)
for (int j = 0; j < bw; ++j) dst1[i * bw + j] = (int16_t)src1[i * bw + j];
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
(void)src1;
(void)dst1;
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
(void)bw;
(void)bh;
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
}
#if OPFL_COMBINE_INTERP_GRAD_LS
static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd(
const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2,
int bw, int bh, int d0, int d1) {
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
// To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1.
int32_t tmp_dst =
d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j];
dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
tmp_dst = d0 * ((int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j]);
dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
}
}
}
#endif // OPFL_COMBINE_INTERP_GRAD_LS
void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2,
int16_t *dst1, int16_t *dst2, int bw, int bh,
int d0, int d1) {
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
#if OPFL_COMBINE_INTERP_GRAD_LS
compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1);
#else
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
for (int i = 0; i < bh; ++i)
for (int j = 0; j < bw; ++j) dst1[i * bw + j] = (int16_t)src1[i * bw + j];
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
(void)src1;
(void)dst1;
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
(void)bw;
(void)bh;
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
}
static int get_optflow_based_mv_highbd(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi,
int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0,
int16_t *gx1, int16_t *gy1, int *vx0, int *vy0, int *vx1, int *vy1,
uint16_t *dst0, uint16_t *dst1) {
const int target_prec = MV_REFINE_PREC_BITS;
// Convert output MV to 1/16th pel
assert(MV_REFINE_PREC_BITS >= 3);
for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) {
mv_refined[mvi * 2].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2 + 1].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2 + 1].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3);
}
// Obtain d0 and d1
const RefCntBuffer *const r0_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const RefCntBuffer *const r1_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]);
int d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r0_buf->order_hint);
int d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r1_buf->order_hint);
if (d0 == 0 || d1 == 0) return target_prec;
// Obrain P0 and P1
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
CONVERT_TO_BYTEPTR(dst0));
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
CONVERT_TO_BYTEPTR(dst1));
int n_blocks = 1;
int grad_prec_bits;
int n = opfl_get_subblock_size(bw, bh, plane);
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
// Compute gradients of P0 and P1 with interpolation
#if OPFL_COMBINE_INTERP_GRAD_LS
(void)gx1;
(void)gy1;
// Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1
int16_t *tmp0 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
int16_t *tmp1 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0,
is_cur_buf_hbd(xd));
n_blocks = av1_opfl_mv_refinement_nxn_interp_grad(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec,
vx0, vy0, vx1, vy1);
aom_free(tmp0);
aom_free(tmp1);
#else
int16_t *tmp =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
av1_copy_pred_array_highbd(dst0, NULL, tmp, NULL, bw, bh, d0, d1);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx0, gy0,
is_cur_buf_hbd(xd));
av1_copy_pred_array_highbd(dst1, NULL, tmp, NULL, bw, bh, d0, d1);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx1, gy1,
is_cur_buf_hbd(xd));
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
aom_free(tmp);
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
// Compute gradients of P0 and P1 with MC
av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params0, calc_subpel_params_func, 0,
&grad_prec_bits, gx0, gy0);
av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params1, calc_subpel_params_func, 1,
&grad_prec_bits, gx1, gy1);
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
for (int i = 0; i < n_blocks; i++) {
#if OPFL_CLAMP_MV_DELTA
mv_refined[i * 2].as_mv.row +=
clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2].as_mv.col +=
clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2 + 1].as_mv.row +=
clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2 + 1].as_mv.col +=
clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
#else
mv_refined[i * 2].as_mv.row += vy0[i];
mv_refined[i * 2].as_mv.col += vx0[i];
mv_refined[i * 2 + 1].as_mv.row += vy1[i];
mv_refined[i * 2 + 1].as_mv.col += vx1[i];
#endif
}
return target_prec;
}
static int get_optflow_based_mv_lowbd(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi,
int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0,
int16_t *gx1, int16_t *gy1, int *vx0, int *vy0, int *vx1, int *vy1,
uint8_t *dst0, uint8_t *dst1) {
const int target_prec = MV_REFINE_PREC_BITS;
// Convert output MV to 1/16th pel
assert(MV_REFINE_PREC_BITS >= 3);
for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) {
mv_refined[mvi * 2].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2 + 1].as_mv.row *= 1 << (MV_REFINE_PREC_BITS - 3);
mv_refined[mvi * 2 + 1].as_mv.col *= 1 << (MV_REFINE_PREC_BITS - 3);
}
// Obtain d0 and d1
const RefCntBuffer *const r0_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const RefCntBuffer *const r1_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]);
int d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r0_buf->order_hint);
int d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r1_buf->order_hint);
if (d0 == 0 || d1 == 0) return target_prec;
// Obrain P0 and P1
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0);
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1);
int n_blocks = 1;
int grad_prec_bits;
int n = opfl_get_subblock_size(bw, bh, plane);
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
// Compute gradients of P0 and P1 with interpolation
#if OPFL_COMBINE_INTERP_GRAD_LS
(void)gx1;
(void)gy1;
// Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1
int16_t *tmp0 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
int16_t *tmp1 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
av1_copy_pred_array(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0,
is_cur_buf_hbd(xd));
n_blocks = av1_opfl_mv_refinement_nxn_interp_grad(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec,
vx0, vy0, vx1, vy1);
aom_free(tmp0);
aom_free(tmp1);
#else
int16_t *tmp =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
av1_copy_pred_array(dst0, NULL, tmp, NULL, bw, bh, d0, d1);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx0, gy0,
is_cur_buf_hbd(xd));
av1_copy_pred_array(dst1, NULL, tmp, NULL, bw, bh, d0, d1);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx1, gy1,
is_cur_buf_hbd(xd));
n_blocks = av1_opfl_mv_refinement_nxn_lowbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
aom_free(tmp);
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
// Compute gradients of P0 and P1 with MC
av1_compute_subpel_gradients_mc_lowbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params0, calc_subpel_params_func, 0,
&grad_prec_bits, gx0, gy0);
av1_compute_subpel_gradients_mc_lowbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params1, calc_subpel_params_func, 1,
&grad_prec_bits, gx1, gy1);
n_blocks = av1_opfl_mv_refinement_nxn_lowbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
for (int i = 0; i < n_blocks; i++) {
#if OPFL_CLAMP_MV_DELTA
mv_refined[i * 2].as_mv.row +=
clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2].as_mv.col +=
clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2 + 1].as_mv.row +=
clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2 + 1].as_mv.col +=
clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
#else
mv_refined[i * 2].as_mv.row += vy0[i];
mv_refined[i * 2].as_mv.col += vx0[i];
mv_refined[i * 2 + 1].as_mv.row += vy1[i];
mv_refined[i * 2 + 1].as_mv.col += vx1[i];
#endif
}
return target_prec;
}
// Makes the interpredictor for the region by dividing it up into nxn blocks
// and running the interpredictor code on each one.
void make_inter_pred_of_nxn(uint8_t *dst, int dst_stride,
int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd,
int mi_x, int mi_y, int ref, uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, int n,
SubpelParams *subpel_params) {
int n_blocks = 0;
int w = inter_pred_params->orig_block_width;
int h = inter_pred_params->orig_block_height;
assert(w % n == 0);
assert(h % n == 0);
CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst;
inter_pred_params->block_width = n;
inter_pred_params->block_height = n;
uint8_t *pre;
int src_stride = 0;
// Process whole nxn blocks.
for (int j = 0; j <= h - n; j += n) {
for (int i = 0; i <= w - n; i += n) {
calc_subpel_params_func(&(mv_refined[n_blocks * 2 + ref].as_mv),
inter_pred_params, xd, mi_x + i, mi_y + j, ref, 1,
mc_buf, &pre, subpel_params, &src_stride);
av1_make_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params);
n_blocks++;
dst += n;
inter_pred_params->conv_params.dst += n;
inter_pred_params->pix_col += n;
}
dst -= w;
inter_pred_params->conv_params.dst -= w;
inter_pred_params->pix_col -= w;
dst += n * dst_stride;
inter_pred_params->conv_params.dst +=
n * inter_pred_params->conv_params.dst_stride;
inter_pred_params->pix_row += n;
}
inter_pred_params->conv_params.dst = orig_conv_dst;
}
// Use a second pass of motion compensation to rebuild inter predictor
void av1_opfl_rebuild_inter_predictor(
uint8_t *dst, int dst_stride, int plane, int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int ref, uint8_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
int w = inter_pred_params->block_width;
int h = inter_pred_params->block_height;
int n = opfl_get_subblock_size(w, h, plane);
make_inter_pred_of_nxn(dst, dst_stride, mv_refined, inter_pred_params, xd,
mi_x, mi_y, ref, mc_buf, calc_subpel_params_func, n,
&subpel_params);
}
#endif // CONFIG_OPTFLOW_REFINEMENT
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
init_wedge_masks();
init_smooth_interintra_masks();
}
static AOM_INLINE void build_masked_compound_no_round(
uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, InterPredParams *inter_pred_params) {
const int ssy = inter_pred_params->subsampling_y;
const int ssx = inter_pred_params->subsampling_x;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
const int mask_stride = block_size_wide[sb_type];
if (inter_pred_params->use_hbd_buf) {
aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, mask_stride, w, h, ssx,
ssy, &inter_pred_params->conv_params,
inter_pred_params->bit_depth);
} else {
aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, mask_stride, w, h, ssx, ssy,
&inter_pred_params->conv_params);
}
}
static void make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
uint8_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params) {
const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
BLOCK_SIZE sb_type = inter_pred_params->sb_type;
// We're going to call av1_make_inter_predictor to generate a prediction into
// a temporary buffer, then will blend that temporary buffer with that from
// the other reference.
DECLARE_ALIGNED(32, uint8_t, tmp_buf[2 * MAX_SB_SQUARE]);
uint8_t *tmp_dst =
inter_pred_params->use_hbd_buf ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf;
const int tmp_buf_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
int org_dst_stride = inter_pred_params->conv_params.dst_stride;
CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
inter_pred_params->conv_params.dst = tmp_buf16;
inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
assert(inter_pred_params->conv_params.do_average == 0);
// This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE,
inter_pred_params, subpel_params);
if (!inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_DIFFWTD) {
av1_build_compound_diffwtd_mask_d16(
comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
inter_pred_params->block_width, &inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
build_masked_compound_no_round(
dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
comp_data, sb_type, inter_pred_params->block_height,
inter_pred_params->block_width, inter_pred_params);
}
void av1_build_one_inter_predictor(
uint8_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int ref, uint8_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint8_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
#if CONFIG_OPTFLOW_REFINEMENT
0, /* use_optflow_refinement */
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, &src, &subpel_params, &src_stride);
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
}
}
// True if the following hold:
// 1. Not intrabc and not build_for_obmc
// 2. At least one dimension is size 4 with subsampling
// 3. If sub-sampled, none of the previous blocks around the sub-sample
// are intrabc or inter-blocks
static bool is_sub8x8_inter(const MACROBLOCKD *xd, int plane, BLOCK_SIZE bsize,
int is_intrabc, int build_for_obmc) {
if (is_intrabc || build_for_obmc) {
return false;
}
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const int is_sub4_x = (block_size_wide[bsize] == 4) && ss_x;
const int is_sub4_y = (block_size_high[bsize] == 4) && ss_y;
if (!is_sub4_x && !is_sub4_y) {
return false;
}
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start = is_sub4_y ? -1 : 0;
const int col_start = is_sub4_x ? -1 : 0;
for (int row = row_start; row <= 0; ++row) {
for (int col = col_start; col <= 0; ++col) {
const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
#if CONFIG_SDP
if (!is_inter_block(this_mbmi, xd->tree_type)) return false;
if (is_intrabc_block(this_mbmi, xd->tree_type)) return false;
#else
if (!is_inter_block(this_mbmi)) return false;
if (is_intrabc_block(this_mbmi)) return false;
#endif
}
}
return true;
}
static void build_inter_predictors_sub8x8(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int mi_x, int mi_y, uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
#if CONFIG_SDP
const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = mi->sb_type;
#endif
struct macroblockd_plane *const pd = &xd->plane[plane];
const bool ss_x = pd->subsampling_x;
const bool ss_y = pd->subsampling_y;
const int b4_w = block_size_wide[bsize] >> ss_x;
const int b4_h = block_size_high[bsize] >> ss_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
const int b8_w = block_size_wide[plane_bsize];
const int b8_h = block_size_high[plane_bsize];
const int is_compound = has_second_ref(mi);
assert(!is_compound);
#if CONFIG_SDP
assert(!is_intrabc_block(mi, xd->tree_type));
#else
assert(!is_intrabc_block(mi));
#endif
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
int row = row_start;
for (int y = 0; y < b8_h; y += b4_h) {
int col = col_start;
for (int x = 0; x < b8_w; x += b4_w) {
MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
int ref = 0;
const RefCntBuffer *ref_buf =
get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *const sf = ref_scale_factors;
const struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
const MV mv = this_mbmi->mv[ref].as_mv;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y,
pre_x + x, pd->subsampling_x, pd->subsampling_y,
#if CONFIG_SDP
xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc[0], sf,
#else
xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf,
#endif
&pre_buf,
#if CONFIG_REMOVE_DUAL_FILTER
this_mbmi->interp_fltr
#else
this_mbmi->interp_filters
#endif // CONFIG_REMOVE_DUAL_FILTER
);
inter_pred_params.conv_params =
get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd);
av1_build_one_inter_predictor(dst, dst_buf->stride, &mv,
&inter_pred_params, xd, mi_x + x, mi_y + y,
ref, mc_buf, calc_subpel_params_func);
++col;
}
++row;
}
}
static void build_inter_predictors_8x8_and_bigger(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
const int is_compound = has_second_ref(mi);
#if CONFIG_SDP
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
#else
const int is_intrabc = is_intrabc_block(mi);
#endif
assert(IMPLIES(is_intrabc, !is_compound));
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf;
int is_global[2] = { 0, 0 };
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
#if CONFIG_SDP
const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = mi->sb_type;
#endif
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const int row_start =
(block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0;
const int col_start =
(block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
#if CONFIG_OPTFLOW_REFINEMENT
int_mv mv_refined[2 * N_OF_OFFSETS];
const int use_optflow_refinement =
(mi->mode > NEW_NEWMV ||
(cm->features.opfl_refine_type == REFINE_ALL &&
mi->mode != GLOBAL_GLOBALMV &&
mi->interinter_comp.type == COMPOUND_AVERAGE)) &&
is_compound && is_opfl_refine_allowed(cm, mi);
assert(IMPLIES(mi->mode > NEW_NEWMV,
cm->features.opfl_refine_type == REFINE_SWITCHABLE));
assert(IMPLIES(use_optflow_refinement, !build_for_obmc));
// Optical flow refinement with masked comp types or with non-sharp
// interpolation filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
#if CONFIG_REMOVE_DUAL_FILTER
assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP,
cm->features.opfl_refine_type == REFINE_ALL));
#else
assert(
IMPLIES(use_optflow_refinement &&
(mi->interp_filters.as_filters.x_filter != MULTITAP_SHARP ||
mi->interp_filters.as_filters.y_filter != MULTITAP_SHARP),
cm->features.opfl_refine_type == REFINE_ALL));
#endif
// Arrays to hold optical flow offsets.
int vx0[N_OF_OFFSETS] = { 0 };
int vx1[N_OF_OFFSETS] = { 0 };
int vy0[N_OF_OFFSETS] = { 0 };
int vy1[N_OF_OFFSETS] = { 0 };
// Pointers to gradient and dst buffers
int16_t *gx0, *gy0, *gx1, *gy1;
uint8_t *dst0 = NULL, *dst1 = NULL;
if (use_optflow_refinement && plane == 0) {
// Allocate gradient and dst buffers
gx0 = aom_memalign(32, 2 * MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*gx0));
gx1 = aom_memalign(32, 2 * MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*gx1));
gy0 = gx0 + (MAX_SB_SIZE * MAX_SB_SIZE);
gy1 = gx1 + (MAX_SB_SIZE * MAX_SB_SIZE);
// Initialize refined mv
const MV mv0 = mi->mv[0].as_mv;
const MV mv1 = mi->mv[1].as_mv;
for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) {
mv_refined[mvi * 2].as_mv = mv0;
mv_refined[mvi * 2 + 1].as_mv = mv1;
}
// Refine MV using optical flow. The final output MV will be in 1/16
// precision.
if (is_cur_buf_hbd(xd)) {
dst0 = CONVERT_TO_BYTEPTR(
aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint16_t)));
dst1 = CONVERT_TO_BYTEPTR(
aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint16_t)));
get_optflow_based_mv_highbd(
cm, xd, plane, mi, mv_refined, bw, bh, mi_x, mi_y, mc_buf,
calc_subpel_params_func, gx0, gy0, gx1, gy1, vx0, vy0, vx1, vy1,
CONVERT_TO_SHORTPTR(dst0), CONVERT_TO_SHORTPTR(dst1));
aom_free(CONVERT_TO_SHORTPTR(dst0));
aom_free(CONVERT_TO_SHORTPTR(dst1));
} else {
dst0 =
(uint8_t *)aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint8_t));
dst1 =
(uint8_t *)aom_calloc(1, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(uint8_t));
get_optflow_based_mv_lowbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x,
mi_y, mc_buf, calc_subpel_params_func, gx0,
gy0, gx1, gy1, vx0, vy0, vx1, vy1, dst0, dst1);
aom_free(dst0);
aom_free(dst1);
}
aom_free(gx0);
aom_free(gx1);
}
#endif // CONFIG_OPTFLOW_REFINEMENT
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
const MV mv = mi->mv[ref].as_mv;
const WarpTypesAllowed warp_types = { is_global[ref],
mi->motion_mode == WARPED_CAUSAL };
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
#if CONFIG_SDP
is_cur_buf_hbd(xd), mi->use_intrabc[0], sf, pre_buf,
#else
is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf,
#endif
#if CONFIG_REMOVE_DUAL_FILTER
mi->interp_fltr
#else
mi->interp_filters
#endif // CONFIG_REMOVE_DUAL_FILTER
);
if (is_compound) av1_init_comp_mode(&inter_pred_params);
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
if (!build_for_obmc)
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
if (is_masked_compound_type(mi->interinter_comp.type)) {
#if CONFIG_SDP
inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y];
#else
inter_pred_params.sb_type = mi->sb_type;
#endif
inter_pred_params.mask_comp = mi->interinter_comp;
if (ref == 1) {
inter_pred_params.conv_params.do_average = 0;
inter_pred_params.comp_mode = MASK_COMP;
}
// Assign physical buffer.
inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
}
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optflow_refinement && plane == 0) {
int n = opfl_get_subblock_size(bw, bh, plane);
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(
#if CONFIG_REMOVE_DUAL_FILTER
mi->interp_fltr,
#else
mi->interp_filters.as_filters.x_filter,
#endif // CONFIG_REMOVE_DUAL_FILTER
n);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(
#if CONFIG_REMOVE_DUAL_FILTER
mi->interp_fltr,
#else
mi->interp_filters.as_filters.y_filter,
#endif // CONFIG_REMOVE_DUAL_FILTER
n);
av1_opfl_rebuild_inter_predictor(dst, dst_buf->stride, plane, mv_refined,
&inter_pred_params, xd, mi_x, mi_y, ref,
mc_buf, calc_subpel_params_func);
continue;
}
#endif // CONFIG_OPTFLOW_REFINEMENT
av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
}
void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi, int build_for_obmc,
int bw, int bh, int mi_x, int mi_y,
uint8_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
#if CONFIG_SDP
if (is_sub8x8_inter(xd, plane, mi->sb_type[PLANE_TYPE_Y],
is_intrabc_block(mi, xd->tree_type), build_for_obmc)) {
#else
if (is_sub8x8_inter(xd, plane, mi->sb_type, is_intrabc_block(mi),
build_for_obmc)) {
#endif
assert(bw < 8 || bh < 8);
build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf,
calc_subpel_params_func);
} else {
build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, build_for_obmc, bw,
bh, mi_x, mi_y, mc_buf,
calc_subpel_params_func);
}
}
void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &planes[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf,
const int num_planes) {
if (src != NULL) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
const int is_uv = i > 0;
#if CONFIG_SDP
setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type[PLANE_TYPE_Y],
src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, sf, pd->subsampling_x, pd->subsampling_y);
#else
setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i],
src->crop_widths[is_uv], src->crop_heights[is_uv],
src->strides[is_uv], mi_row, mi_col, sf,
pd->subsampling_x, pd->subsampling_y);
#endif
}
}
}
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 };
DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 64, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
64, 64, 64, 64, 64, 64, 64, 64 };
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
case 64: return obmc_mask_64;
default: assert(0); return NULL;
}
}
static INLINE void increment_uint8_t_ptr(MACROBLOCKD *xd, int rel_mi_row,
int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *mi,
void *fun_ctxt, const int num_planes) {
(void)xd;
(void)rel_mi_row;
(void)rel_mi_col;
(void)op_mi_size;
(void)dir;
(void)mi;
++*(uint8_t *)fun_ctxt;
(void)num_planes;
}
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->overlappable_neighbors[0] = 0;
mbmi->overlappable_neighbors[1] = 0;
#if CONFIG_SDP
if (!is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y])) return;
#else
if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return;
#endif
foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[0]);
if (mbmi->overlappable_neighbors[0]) return;
foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
// block-size of current plane is smaller than 8x8, always only blend with the
// left neighbor(s) (skip blending with the above side).
#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd, int dir) {
assert(is_motion_variation_allowed_bsize(bsize));
const BLOCK_SIZE bsize_plane =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return 1; break;
#else
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return dir == 0; break;
#endif
default: return 0;
}
}
void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
#if CONFIG_NEW_REF_SIGNALING
mbmi->ref_frame[1] = INVALID_IDX;
#else
mbmi->ref_frame[1] = NONE_FRAME;
#endif // CONFIG_NEW_REF_SIGNALING
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
return;
}
struct obmc_inter_pred_ctxt {
uint8_t **adjacent;
int *adjacent_stride;
};
static INLINE void build_obmc_inter_pred_above(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) {
(void)above_mi;
(void)rel_mi_row;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
#if CONFIG_SDP
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
#endif
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_col];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
const uint8_t *const mask = av1_get_obmc_mask(bh);
const int is_hbd = is_cur_buf_hbd(xd);
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
else
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bw, bh);
}
}
static INLINE void build_obmc_inter_pred_left(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) {
(void)left_mi;
(void)rel_mi_col;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
#if CONFIG_SDP
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
#endif
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y;
const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
const uint8_t *const mask = av1_get_obmc_mask(bw);
const int is_hbd = is_cur_buf_hbd(xd);
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
else
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bw, bh);
}
}
// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
#if CONFIG_SDP
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
#endif
// handle above row
struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
foreach_overlappable_nb_above(cm, xd,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_obmc_inter_pred_above, &ctxt_above);
// handle left column
struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_obmc_inter_pred_left, &ctxt_left);
}
void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1,
uint8_t **dst_buf2) {
if (is_cur_buf_hbd(xd)) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
dst_buf1[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
dst_buf1[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
dst_buf2[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
dst_buf2[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
} else {
dst_buf1[0] = xd->tmp_obmc_bufs[0];
dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
dst_buf2[0] = xd->tmp_obmc_bufs[1];
dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}
}
void av1_setup_build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
const int num_planes) {
#if CONFIG_SDP
const BLOCK_SIZE a_bsize =
AOMMAX(BLOCK_8X8, above_mbmi->sb_type[PLANE_TYPE_Y]);
#else
const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
#endif
const int above_mi_col = xd->mi_col + rel_mi_col;
av1_modify_neighbor_predictor_for_obmc(above_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
NULL, pd->subsampling_x, pd->subsampling_y);
}
const int num_refs = 1 + has_second_ref(above_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const sf =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = sf;
if ((!av1_is_valid_scale(sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf,
num_planes);
}
xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
xd->mb_to_right_edge =
ctxt->mb_to_far_edge +
(xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8;
}
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi,
struct build_prediction_ctxt *ctxt,
const int num_planes) {
#if CONFIG_SDP
const BLOCK_SIZE l_bsize =
AOMMAX(BLOCK_8X8, left_mbmi->sb_type[PLANE_TYPE_Y]);
#else
const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
#endif
const int left_mi_row = xd->mi_row + rel_mi_row;
av1_modify_neighbor_predictor_for_obmc(left_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
NULL, pd->subsampling_x, pd->subsampling_y);
}
const int num_refs = 1 + has_second_ref(left_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const ref_scale_factors =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = ref_scale_factors;
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col,
ref_scale_factors, num_planes);
}
xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row));
xd->mb_to_bottom_edge =
ctxt->mb_to_far_edge +
GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE);
}
static AOM_INLINE void combine_interintra(
INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred, int compstride, const uint8_t *interpred,
int interstride, const uint8_t *intrapred, int intrastride) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (av1_is_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subw = 2 * mi_size_wide[bsize] == bw;
const int subh = 2 * mi_size_high[bsize] == bh;
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
interpred, interstride, mask, block_size_wide[bsize],
bw, bh, subw, subh);
}
return;
}
const uint8_t *mask = smooth_interintra_mask_buf[mode][plane_bsize];
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred,
interstride, mask, bw, bw, bh, 0, 0);
}
static AOM_INLINE void combine_interintra_highbd(
INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred8, int compstride, const uint8_t *interpred8,
int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (av1_is_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * mi_size_high[bsize] == bh;
const int subw = 2 * mi_size_wide[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bw, bh, subw, subh, bd);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bw, bh, 0, 0,
bd);
}
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
const BUFFER_SET *ctx,
uint8_t *dst, int dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
#if CONFIG_SDP
assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0);
#else
assert(xd->mi[0]->use_intrabc == 0);
#endif
av1_predict_intra_block(cm, xd, pd->width, pd->height,
max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
FILTER_INTRA_MODES, ctx->plane[plane],
ctx->stride[plane], dst, dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride) {
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
if (is_cur_buf_hbd(xd)) {
combine_interintra_highbd(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride, xd->bd);
return;
}
combine_interintra(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride);
}
// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *pred, int stride,
const BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
if (is_cur_buf_hbd(xd)) {
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor),
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, pred, stride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
} else {
DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
intrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
MAX_SB_SIZE);
}
}