| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| /*!\defgroup gf_group_algo Golden Frame Group |
| * \ingroup high_level_algo |
| * Algorithms regarding determining the length of GF groups and defining GF |
| * group structures. |
| * @{ |
| */ |
| /*! @} - end defgroup gf_group_algo */ |
| |
| #include <stdint.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom/aom_encoder.h" |
| |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/av1_common_int.h" |
| |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/gop_structure.h" |
| #include "av1/encoder/pass2_strategy.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/subgop.h" |
| #include "av1/encoder/rc_utils.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/use_flat_gop_model_params.h" |
| #include "av1/encoder/encode_strategy.h" |
| #include "av1/encoder/encoder_utils.h" |
| |
| #define DEFAULT_KF_BOOST 2300 |
| #define DEFAULT_GF_BOOST 2000 |
| #define GROUP_ADAPTIVE_MAXQ 1 |
| static void init_gf_stats(GF_GROUP_STATS *gf_stats); |
| |
| // Calculate an active area of the image that discounts formatting |
| // bars and partially discounts other 0 energy areas. |
| #define MIN_ACTIVE_AREA 0.5 |
| #define MAX_ACTIVE_AREA 1.0 |
| static double calculate_active_area(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame) { |
| const double active_pct = |
| 1.0 - |
| ((this_frame->intra_skip_pct / 2) + |
| ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); |
| return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| #define ACT_AREA_CORRECTION 0.5 |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { |
| p->stats_in = position; |
| } |
| |
| static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { |
| if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; |
| |
| *fps = *p->stats_in; |
| ++p->stats_in; |
| return 1; |
| } |
| |
| static int input_stats_lap(TWO_PASS *p, FIRSTPASS_STATS *fps) { |
| if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; |
| |
| *fps = *p->stats_in; |
| /* Move old stats[0] out to accommodate for next frame stats */ |
| memmove(p->frame_stats_arr[0], p->frame_stats_arr[1], |
| (p->stats_buf_ctx->stats_in_end - p->stats_in - 1) * |
| sizeof(FIRSTPASS_STATS)); |
| p->stats_buf_ctx->stats_in_end--; |
| return 1; |
| } |
| |
| // Read frame stats at an offset from the current position. |
| static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { |
| if ((offset >= 0 && p->stats_in + offset >= p->stats_buf_ctx->stats_in_end) || |
| (offset < 0 && p->stats_in + offset < p->stats_buf_ctx->stats_in_start)) { |
| return NULL; |
| } |
| |
| return &p->stats_in[offset]; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->weight -= frame->weight; |
| section->intra_error -= frame->intra_error; |
| section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->intra_skip_pct -= frame->intra_skip_pct; |
| section->inactive_zone_rows -= frame->inactive_zone_rows; |
| section->inactive_zone_cols -= frame->inactive_zone_cols; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| // This function returns the maximum target rate per frame. |
| static int frame_max_bits(const RATE_CONTROL *rc, |
| const AV1EncoderConfig *oxcf) { |
| int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * |
| (int64_t)oxcf->rc_cfg.vbrmax_section) / |
| 100; |
| if (max_bits < 0) |
| max_bits = 0; |
| else if (max_bits > rc->max_frame_bandwidth) |
| max_bits = rc->max_frame_bandwidth; |
| |
| return (int)max_bits; |
| } |
| |
| static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75, |
| 0.80, 0.85, 0.90, |
| 0.95, 0.95, 0.95 }; |
| #define ERR_DIVISOR 96.0 |
| static double calc_correction_factor(double err_per_mb, int q) { |
| const double error_term = err_per_mb / ERR_DIVISOR; |
| const int index = q >> 5; |
| // Adjustment to power term based on qindex |
| const double power_term = |
| q_pow_term[index] + |
| (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); |
| assert(error_term >= 0.0); |
| return fclamp(pow(error_term, power_term), 0.05, 5.0); |
| } |
| |
| static void twopass_update_bpm_factor(TWO_PASS *twopass) { |
| // Based on recent history adjust expectations of bits per macroblock. |
| double last_group_rate_err = |
| (double)twopass->rolling_arf_group_actual_bits / |
| DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); |
| last_group_rate_err = AOMMAX(0.25, AOMMIN(4.0, last_group_rate_err)); |
| twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; |
| twopass->bpm_factor = AOMMAX(0.25, AOMMIN(4.0, twopass->bpm_factor)); |
| } |
| |
| static int qbpm_enumerator(int rate_err_tol) { |
| return 1250000 + ((300000 * AOMMIN(75, AOMMAX(rate_err_tol - 25, 0))) / 75); |
| } |
| |
| // Similar to find_qindex_by_rate() function in ratectrl.c, but includes |
| // calculation of a correction_factor. |
| static int find_qindex_by_rate_with_correction( |
| int desired_bits_per_mb, aom_bit_depth_t bit_depth, double error_per_mb, |
| double group_weight_factor, int rate_err_tol, int best_qindex, |
| int worst_qindex) { |
| assert(best_qindex <= worst_qindex); |
| int low = best_qindex; |
| int high = worst_qindex; |
| |
| while (low < high) { |
| const int mid = (low + high) >> 1; |
| const double mid_factor = calc_correction_factor(error_per_mb, mid); |
| const double q = av1_convert_qindex_to_q(mid, bit_depth); |
| const int enumerator = qbpm_enumerator(rate_err_tol); |
| const int mid_bits_per_mb = |
| (int)((enumerator * mid_factor * group_weight_factor) / q); |
| |
| if (mid_bits_per_mb > desired_bits_per_mb) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| return low; |
| } |
| |
| /*!\brief Choose a target maximum Q for a group of frames |
| * |
| * \ingroup rate_control |
| * |
| * This function is used to estimate a suitable maximum Q for a |
| * group of frames. Inititally it is called to get a crude estimate |
| * for the whole clip. It is then called for each ARF/GF group to get |
| * a revised estimate for that group. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] av_frame_err The average per frame coded error score |
| * for frames making up this section/group. |
| * \param[in] inactive_zone Used to mask off /ignore part of the |
| * frame. The most common use case is where |
| * a wide format video (e.g. 16:9) is |
| * letter-boxed into a more square format. |
| * Here we want to ignore the bands at the |
| * top and bottom. |
| * \param[in] av_target_bandwidth The target bits per frame |
| * \param[in] group_weight_factor A correction factor allowing the algorithm |
| * to correct for errors over time. |
| * |
| * \return The maximum Q for frames in the group. |
| */ |
| static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err, |
| double inactive_zone, |
| int av_target_bandwidth, |
| double group_weight_factor) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| inactive_zone = fclamp(inactive_zone, 0.0, 1.0); |
| |
| if (av_target_bandwidth <= 0) { |
| return rc->worst_quality; // Highest value allowed |
| } else { |
| const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.mi_params.MBs; |
| const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); |
| const double av_err_per_mb = av_frame_err / active_mbs; |
| const int target_norm_bits_per_mb = |
| (int)((uint64_t)av_target_bandwidth << BPER_MB_NORMBITS) / active_mbs; |
| int rate_err_tol = AOMMIN(rc_cfg->under_shoot_pct, rc_cfg->over_shoot_pct); |
| |
| twopass_update_bpm_factor(&cpi->twopass); |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| int q = find_qindex_by_rate_with_correction( |
| target_norm_bits_per_mb, cpi->common.seq_params.bit_depth, |
| av_err_per_mb, group_weight_factor, rate_err_tol, rc->best_quality, |
| rc->worst_quality); |
| |
| // Restriction on active max q for constrained quality mode. |
| if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->qp); |
| return q; |
| } |
| } |
| |
| #define SR_DIFF_PART 0.0015 |
| #define MOTION_AMP_PART 0.003 |
| #define INTRA_PART 0.005 |
| #define DEFAULT_DECAY_LIMIT 0.75 |
| #define LOW_SR_DIFF_TRHESH 0.1 |
| #define SR_DIFF_MAX 128.0 |
| #define NCOUNT_FRAME_II_THRESH 5.0 |
| |
| static double get_sr_decay_rate(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *frame) { |
| const int num_mbs = frame_info->num_mbs; |
| double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; |
| double sr_decay = 1.0; |
| double modified_pct_inter; |
| double modified_pcnt_intra; |
| const double motion_amplitude_factor = |
| frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); |
| |
| modified_pct_inter = frame->pcnt_inter; |
| if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < |
| (double)NCOUNT_FRAME_II_THRESH) { |
| modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; |
| } |
| modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); |
| |
| if ((sr_diff > LOW_SR_DIFF_TRHESH)) { |
| sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); |
| sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - |
| (MOTION_AMP_PART * motion_amplitude_factor) - |
| (INTRA_PART * modified_pcnt_intra); |
| } |
| return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); |
| } |
| |
| // This function gives an estimate of how badly we believe the prediction |
| // quality is decaying from frame to frame. |
| static double get_zero_motion_factor(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *frame) { |
| const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; |
| double sr_decay = get_sr_decay_rate(frame_info, frame); |
| return AOMMIN(sr_decay, zero_motion_pct); |
| } |
| |
| #define ZM_POWER_FACTOR 0.75 |
| |
| static double get_prediction_decay_rate(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *next_frame) { |
| const double sr_decay_rate = get_sr_decay_rate(frame_info, next_frame); |
| const double zero_motion_factor = |
| (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), |
| ZM_POWER_FACTOR)); |
| |
| return AOMMAX(zero_motion_factor, |
| (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); |
| } |
| |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int detect_transition_to_still(TWO_PASS *const twopass, |
| const int min_gf_interval, |
| const int frame_interval, |
| const int still_interval, |
| const double loop_decay_rate, |
| const double last_decay_rate) { |
| // Break clause to detect very still sections after motion |
| // For example a static image after a fade or other transition |
| // instead of a clean scene cut. |
| if (frame_interval > min_gf_interval && loop_decay_rate >= 0.999 && |
| last_decay_rate < 0.9) { |
| int j; |
| // Look ahead a few frames to see if static condition persists... |
| for (j = 0; j < still_interval; ++j) { |
| const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; |
| if (stats >= twopass->stats_buf_ctx->stats_in_end) break; |
| |
| if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; |
| } |
| // Only if it does do we signal a transition to still. |
| return j == still_interval; |
| } |
| return 0; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this. |
| static int detect_flash(const TWO_PASS *twopass, const int offset) { |
| const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); |
| |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // compared to pcnt_inter. |
| return next_frame != NULL && |
| next_frame->pcnt_second_ref > next_frame->pcnt_inter && |
| next_frame->pcnt_second_ref >= 0.5; |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation. |
| static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, |
| GF_GROUP_STATS *gf_stats) { |
| const double pct = stats->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats. |
| gf_stats->this_frame_mv_in_out = stats->mv_in_out_count * pct; |
| gf_stats->mv_in_out_accumulator += gf_stats->this_frame_mv_in_out; |
| gf_stats->abs_mv_in_out_accumulator += fabs(gf_stats->this_frame_mv_in_out); |
| |
| // Accumulate a measure of how uniform (or conversely how random) the motion |
| // field is (a ratio of abs(mv) / mv). |
| if (pct > 0.05) { |
| const double mvr_ratio = |
| fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); |
| const double mvc_ratio = |
| fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); |
| |
| gf_stats->mv_ratio_accumulator += |
| pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); |
| gf_stats->mv_ratio_accumulator += |
| pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); |
| } |
| } |
| |
| static void accumulate_this_frame_stats(const FIRSTPASS_STATS *stats, |
| const double mod_frame_err, |
| GF_GROUP_STATS *gf_stats) { |
| gf_stats->gf_group_err += mod_frame_err; |
| #if GROUP_ADAPTIVE_MAXQ |
| gf_stats->gf_group_raw_error += stats->coded_error; |
| #endif |
| gf_stats->gf_group_skip_pct += stats->intra_skip_pct; |
| gf_stats->gf_group_inactive_zone_rows += stats->inactive_zone_rows; |
| } |
| |
| static void accumulate_next_frame_stats(const FIRSTPASS_STATS *stats, |
| const FRAME_INFO *frame_info, |
| const int flash_detected, |
| const int frames_since_key, |
| const int cur_idx, |
| GF_GROUP_STATS *gf_stats) { |
| accumulate_frame_motion_stats(stats, gf_stats); |
| // sum up the metric values of current gf group |
| gf_stats->avg_sr_coded_error += stats->sr_coded_error; |
| gf_stats->avg_tr_coded_error += stats->tr_coded_error; |
| gf_stats->avg_pcnt_second_ref += stats->pcnt_second_ref; |
| gf_stats->avg_pcnt_third_ref += stats->pcnt_third_ref; |
| gf_stats->avg_new_mv_count += stats->new_mv_count; |
| gf_stats->avg_wavelet_energy += stats->frame_avg_wavelet_energy; |
| if (fabs(stats->raw_error_stdev) > 0.000001) { |
| gf_stats->non_zero_stdev_count++; |
| gf_stats->avg_raw_err_stdev += stats->raw_error_stdev; |
| } |
| |
| // Accumulate the effect of prediction quality decay |
| if (!flash_detected) { |
| gf_stats->last_loop_decay_rate = gf_stats->loop_decay_rate; |
| gf_stats->loop_decay_rate = get_prediction_decay_rate(frame_info, stats); |
| |
| gf_stats->decay_accumulator = |
| gf_stats->decay_accumulator * gf_stats->loop_decay_rate; |
| |
| // Monitor for static sections. |
| if ((frames_since_key + cur_idx - 1) > 1) { |
| gf_stats->zero_motion_accumulator = |
| AOMMIN(gf_stats->zero_motion_accumulator, |
| get_zero_motion_factor(frame_info, stats)); |
| } |
| } |
| } |
| |
| static void average_gf_stats(const int total_frame, |
| const FIRSTPASS_STATS *last_stat, |
| GF_GROUP_STATS *gf_stats) { |
| if (total_frame) { |
| gf_stats->avg_sr_coded_error /= total_frame; |
| gf_stats->avg_tr_coded_error /= total_frame; |
| gf_stats->avg_pcnt_second_ref /= total_frame; |
| if (total_frame - 1) { |
| gf_stats->avg_pcnt_third_ref_nolast = |
| (gf_stats->avg_pcnt_third_ref - last_stat->pcnt_third_ref) / |
| (total_frame - 1); |
| } else { |
| gf_stats->avg_pcnt_third_ref_nolast = |
| gf_stats->avg_pcnt_third_ref / total_frame; |
| } |
| gf_stats->avg_pcnt_third_ref /= total_frame; |
| gf_stats->avg_new_mv_count /= total_frame; |
| gf_stats->avg_wavelet_energy /= total_frame; |
| } |
| |
| if (gf_stats->non_zero_stdev_count) |
| gf_stats->avg_raw_err_stdev /= gf_stats->non_zero_stdev_count; |
| } |
| |
| static void get_features_from_gf_stats(const GF_GROUP_STATS *gf_stats, |
| const GF_FRAME_STATS *first_frame, |
| const GF_FRAME_STATS *last_frame, |
| const int num_mbs, |
| const int constrained_gf_group, |
| const int kf_zeromotion_pct, |
| const int num_frames, float *features) { |
| *features++ = (float)gf_stats->abs_mv_in_out_accumulator; |
| *features++ = (float)(gf_stats->avg_new_mv_count / num_mbs); |
| *features++ = (float)gf_stats->avg_pcnt_second_ref; |
| *features++ = (float)gf_stats->avg_pcnt_third_ref; |
| *features++ = (float)gf_stats->avg_pcnt_third_ref_nolast; |
| *features++ = (float)(gf_stats->avg_sr_coded_error / num_mbs); |
| *features++ = (float)(gf_stats->avg_tr_coded_error / num_mbs); |
| *features++ = (float)(gf_stats->avg_wavelet_energy / num_mbs); |
| *features++ = (float)(constrained_gf_group); |
| *features++ = (float)gf_stats->decay_accumulator; |
| *features++ = (float)(first_frame->frame_coded_error / num_mbs); |
| *features++ = (float)(first_frame->frame_sr_coded_error / num_mbs); |
| *features++ = (float)(first_frame->frame_tr_coded_error / num_mbs); |
| *features++ = (float)(first_frame->frame_err / num_mbs); |
| *features++ = (float)(kf_zeromotion_pct); |
| *features++ = (float)(last_frame->frame_coded_error / num_mbs); |
| *features++ = (float)(last_frame->frame_sr_coded_error / num_mbs); |
| *features++ = (float)(last_frame->frame_tr_coded_error / num_mbs); |
| *features++ = (float)num_frames; |
| *features++ = (float)gf_stats->mv_ratio_accumulator; |
| *features++ = (float)gf_stats->non_zero_stdev_count; |
| } |
| |
| #define BOOST_FACTOR 12.5 |
| static double baseline_err_per_mb(const FRAME_INFO *frame_info) { |
| unsigned int screen_area = frame_info->frame_height * frame_info->frame_width; |
| |
| // Use a different error per mb factor for calculating boost for |
| // different formats. |
| if (screen_area <= 640 * 360) { |
| return 500.0; |
| } else { |
| return 1000.0; |
| } |
| } |
| |
| static double calc_frame_boost(const RATE_CONTROL *rc, |
| const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| double this_frame_mv_in_out, double max_boost) { |
| double frame_boost; |
| const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], |
| frame_info->bit_depth); |
| const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); |
| const double active_area = calculate_active_area(frame_info, this_frame); |
| int num_mbs = frame_info->num_mbs; |
| |
| // Correct for any inactive region in the image |
| num_mbs = (int)AOMMAX(1, num_mbs * active_area); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, |
| this_frame->intra_error * active_area) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error); |
| frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; |
| |
| // Increase boost for frames where new data coming into frame (e.g. zoom out). |
| // Slightly reduce boost if there is a net balance of motion out of the frame |
| // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| // In the extreme case the boost is halved. |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| return AOMMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static double calc_kf_frame_boost(const RATE_CONTROL *rc, |
| const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| double *sr_accumulator, double max_boost) { |
| double frame_boost; |
| const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], |
| frame_info->bit_depth); |
| const double boost_q_correction = AOMMIN((0.50 + (lq * 0.015)), 2.00); |
| const double active_area = calculate_active_area(frame_info, this_frame); |
| int num_mbs = frame_info->num_mbs; |
| |
| // Correct for any inactive region in the image |
| num_mbs = (int)AOMMAX(1, num_mbs * active_area); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, |
| this_frame->intra_error * active_area) / |
| DOUBLE_DIVIDE_CHECK( |
| (this_frame->coded_error + *sr_accumulator) * active_area); |
| |
| // Update the accumulator for second ref error difference. |
| // This is intended to give an indication of how much the coded error is |
| // increasing over time. |
| *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); |
| *sr_accumulator = AOMMAX(0.0, *sr_accumulator); |
| |
| // Q correction and scaling |
| // The 40.0 value here is an experimentally derived baseline minimum. |
| // This value is in line with the minimum per frame boost in the alt_ref |
| // boost calculation. |
| frame_boost = ((frame_boost + 40.0) * boost_q_correction); |
| |
| return AOMMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static int get_projected_gfu_boost(const RATE_CONTROL *rc, int gfu_boost, |
| int frames_to_project, |
| int num_stats_used_for_gfu_boost) { |
| /* |
| * If frames_to_project is equal to num_stats_used_for_gfu_boost, |
| * it means that gfu_boost was calculated over frames_to_project to |
| * begin with(ie; all stats required were available), hence return |
| * the original boost. |
| */ |
| if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost; |
| |
| double min_boost_factor = sqrt(rc->baseline_gf_interval); |
| // Get the current tpl factor (number of frames = frames_to_project). |
| double tpl_factor = av1_get_gfu_boost_projection_factor( |
| min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project); |
| // Get the tpl factor when number of frames = num_stats_used_for_prior_boost. |
| double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor( |
| min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost); |
| int projected_gfu_boost = |
| (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats); |
| return projected_gfu_boost; |
| } |
| |
| #define GF_MAX_BOOST 90.0 |
| #define MIN_DECAY_FACTOR 0.01 |
| int av1_calc_arf_boost(const TWO_PASS *twopass, const RATE_CONTROL *rc, |
| FRAME_INFO *frame_info, int offset, int f_frames, |
| int b_frames, int *num_fpstats_used, |
| int *num_fpstats_required) { |
| int i; |
| GF_GROUP_STATS gf_stats; |
| init_gf_stats(&gf_stats); |
| double boost_score = (double)NORMAL_BOOST; |
| int arf_boost; |
| int flash_detected = 0; |
| if (num_fpstats_used) *num_fpstats_used = 0; |
| |
| // Search forward from the proposed arf/next gf position. |
| for (i = 0; i < f_frames; ++i) { |
| const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(this_frame, &gf_stats); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| gf_stats.decay_accumulator *= |
| get_prediction_decay_rate(frame_info, this_frame); |
| gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : gf_stats.decay_accumulator; |
| } |
| |
| boost_score += |
| gf_stats.decay_accumulator * |
| calc_frame_boost(rc, frame_info, this_frame, |
| gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); |
| if (num_fpstats_used) (*num_fpstats_used)++; |
| } |
| |
| arf_boost = (int)boost_score; |
| |
| // Reset for backward looking loop. |
| boost_score = 0.0; |
| init_gf_stats(&gf_stats); |
| // Search backward towards last gf position. |
| for (i = -1; i >= -b_frames; --i) { |
| const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(this_frame, &gf_stats); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Cumulative effect of prediction quality decay. |
| if (!flash_detected) { |
| gf_stats.decay_accumulator *= |
| get_prediction_decay_rate(frame_info, this_frame); |
| gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : gf_stats.decay_accumulator; |
| } |
| |
| boost_score += |
| gf_stats.decay_accumulator * |
| calc_frame_boost(rc, frame_info, this_frame, |
| gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); |
| if (num_fpstats_used) (*num_fpstats_used)++; |
| } |
| arf_boost += (int)boost_score; |
| |
| if (num_fpstats_required) { |
| *num_fpstats_required = f_frames + b_frames; |
| if (num_fpstats_used) { |
| arf_boost = get_projected_gfu_boost(rc, arf_boost, *num_fpstats_required, |
| *num_fpstats_used); |
| } |
| } |
| |
| if (arf_boost < ((b_frames + f_frames) * 50)) |
| arf_boost = ((b_frames + f_frames) * 50); |
| |
| return arf_boost; |
| } |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, |
| const FIRSTPASS_STATS *end, |
| int section_length) { |
| const FIRSTPASS_STATS *s = begin; |
| double intra_error = 0.0; |
| double coded_error = 0.0; |
| int i = 0; |
| |
| while (s < end && i < section_length) { |
| intra_error += s->intra_error; |
| coded_error += s->coded_error; |
| ++s; |
| ++i; |
| } |
| |
| return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); |
| } |
| |
| /*!\brief Calculates the bit target for this GF/ARF group |
| * |
| * \ingroup rate_control |
| * |
| * Calculates the total bits to allocate in this GF/ARF group. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] gf_group_err Cumulative coded error score for the |
| * frames making up this group. |
| * |
| * \return The target total number of bits for this GF/ARF group. |
| */ |
| static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, |
| double gf_group_err) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| int64_t total_group_bits; |
| |
| // Calculate the bits to be allocated to the group as a whole. |
| if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { |
| total_group_bits = (int64_t)(twopass->kf_group_bits * |
| (gf_group_err / twopass->kf_group_error_left)); |
| } else { |
| total_group_bits = 0; |
| } |
| |
| // Clamp odd edge cases. |
| total_group_bits = (total_group_bits < 0) ? 0 |
| : (total_group_bits > twopass->kf_group_bits) |
| ? twopass->kf_group_bits |
| : total_group_bits; |
| |
| // Clip based on user supplied data rate variability limit. |
| if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) |
| total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; |
| |
| return total_group_bits; |
| } |
| |
| // Calculate the number of bits to assign to boosted frames in a group. |
| static int calculate_boost_bits(int frame_count, int boost, |
| int64_t total_group_bits) { |
| int allocation_chunks; |
| |
| // return 0 for invalid inputs (could arise e.g. through rounding errors) |
| if (!boost || (total_group_bits <= 0)) return 0; |
| |
| if (frame_count <= 0) return (int)(AOMMIN(total_group_bits, INT_MAX)); |
| |
| allocation_chunks = (frame_count * 100) + boost; |
| |
| // Prevent overflow. |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of extra bits for use in the boosted frame or frames. |
| return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), |
| 0); |
| } |
| |
| // Calculate the boost factor based on the number of bits assigned, i.e. the |
| // inverse of calculate_boost_bits(). |
| static int calculate_boost_factor(int frame_count, int bits, |
| int64_t total_group_bits) { |
| aom_clear_system_state(); |
| return (int)(100.0 * frame_count * bits / (total_group_bits - bits)); |
| } |
| |
| // Reduce the number of bits assigned to keyframe or arf if necessary, to |
| // prevent bitrate spikes that may break level constraints. |
| // frame_type: 0: keyframe; 1: arf. |
| static int adjust_boost_bits_for_target_level(const AV1_COMP *const cpi, |
| RATE_CONTROL *const rc, |
| int bits_assigned, |
| int64_t group_bits, |
| int frame_type) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| const int temporal_layer_id = cm->temporal_layer_id; |
| const int spatial_layer_id = cm->spatial_layer_id; |
| for (int index = 0; index < seq_params->operating_points_cnt_minus_1 + 1; |
| ++index) { |
| if (!is_in_operating_point(seq_params->operating_point_idc[index], |
| temporal_layer_id, spatial_layer_id)) { |
| continue; |
| } |
| |
| const AV1_LEVEL target_level = |
| cpi->level_params.target_seq_level_idx[index]; |
| if (target_level >= SEQ_LEVELS) continue; |
| |
| assert(is_valid_seq_level_idx(target_level)); |
| |
| const double level_bitrate_limit = av1_get_max_bitrate_for_level( |
| target_level, seq_params->tier[0], seq_params->profile); |
| const int target_bits_per_frame = |
| (int)(level_bitrate_limit / cpi->framerate); |
| if (frame_type == 0) { |
| // Maximum bits for keyframe is 8 times the target_bits_per_frame. |
| const int level_enforced_max_kf_bits = target_bits_per_frame * 8; |
| if (bits_assigned > level_enforced_max_kf_bits) { |
| const int frames = rc->frames_to_key - 1; |
| rc->kf_boost = calculate_boost_factor( |
| frames, level_enforced_max_kf_bits, group_bits); |
| bits_assigned = calculate_boost_bits(frames, rc->kf_boost, group_bits); |
| } |
| } else if (frame_type == 1) { |
| // Maximum bits for arf is 4 times the target_bits_per_frame. |
| const int level_enforced_max_arf_bits = target_bits_per_frame * 4; |
| if (bits_assigned > level_enforced_max_arf_bits) { |
| rc->gfu_boost = calculate_boost_factor( |
| rc->baseline_gf_interval, level_enforced_max_arf_bits, group_bits); |
| bits_assigned = calculate_boost_bits(rc->baseline_gf_interval, |
| rc->gfu_boost, group_bits); |
| } |
| } else { |
| assert(0); |
| } |
| } |
| |
| return bits_assigned; |
| } |
| |
| // Allocate bits to each frame in a GF / ARF group |
| double layer_fraction[MAX_ARF_LAYERS + 1] = { 1.0, 0.70, 0.55, 0.60, |
| 0.60, 1.0, 1.0 }; |
| static void allocate_gf_group_bits(GF_GROUP *gf_group, RATE_CONTROL *const rc, |
| int64_t gf_group_bits, int gf_arf_bits, |
| int key_frame, int use_arf) { |
| int64_t total_group_bits = gf_group_bits; |
| int base_frame_bits; |
| const int gf_group_size = gf_group->size; |
| int layer_frames[MAX_ARF_LAYERS + 1] = { 0 }; |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| // === [frame_index == 0] === |
| int frame_index = !!key_frame; |
| |
| // Subtract the extra bits set aside for ARF frames from the Group Total |
| if (use_arf) total_group_bits -= gf_arf_bits; |
| |
| int num_frames = |
| AOMMAX(1, rc->baseline_gf_interval - (rc->frames_since_key == 0)); |
| base_frame_bits = (int)(total_group_bits / num_frames); |
| |
| if (use_arf) { |
| for (; frame_index < gf_group->size; ++frame_index) { |
| if (gf_group->update_type[frame_index] == ARF_UPDATE) { |
| gf_group->bit_allocation[frame_index] = gf_arf_bits; |
| ++frame_index; |
| break; |
| } |
| } |
| } |
| |
| // Check the number of frames in each layer in case we have a |
| // non standard group length. |
| int max_arf_layer = gf_group->max_layer_depth - 1; |
| for (int idx = frame_index; idx < gf_group_size; ++idx) { |
| if ((gf_group->update_type[idx] == ARF_UPDATE) || |
| (gf_group->update_type[idx] == KFFLT_UPDATE) || |
| (gf_group->update_type[idx] == INTNL_ARF_UPDATE)) { |
| layer_frames[gf_group->layer_depth[idx]]++; |
| } |
| } |
| |
| // Allocate extra bits to each ARF layer |
| int i; |
| int layer_extra_bits[MAX_ARF_LAYERS + 1] = { 0 }; |
| for (i = 1; i <= max_arf_layer; ++i) { |
| double fraction = (i == max_arf_layer) ? 1.0 : layer_fraction[i]; |
| layer_extra_bits[i] = |
| (int)((gf_arf_bits * fraction) / AOMMAX(1, layer_frames[i])); |
| gf_arf_bits -= (int)(gf_arf_bits * fraction); |
| } |
| |
| // Now combine ARF layer and baseline bits to give total bits for each frame. |
| int arf_extra_bits; |
| for (int idx = frame_index; idx < gf_group_size; ++idx) { |
| switch (gf_group->update_type[idx]) { |
| case ARF_UPDATE: |
| case INTNL_ARF_UPDATE: |
| case KFFLT_UPDATE: |
| arf_extra_bits = layer_extra_bits[gf_group->layer_depth[idx]]; |
| gf_group->bit_allocation[idx] = base_frame_bits + arf_extra_bits; |
| break; |
| case INTNL_OVERLAY_UPDATE: |
| case KFFLT_OVERLAY_UPDATE: |
| case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break; |
| default: gf_group->bit_allocation[idx] = base_frame_bits; break; |
| } |
| } |
| |
| // Set the frame following the current GOP to 0 bit allocation. For ARF |
| // groups, this next frame will be overlay frame, which is the first frame |
| // in the next GOP. For GF group, next GOP will overwrite the rate allocation. |
| // Setting this frame to use 0 bit (of out the current GOP budget) will |
| // simplify logics in reference frame management. |
| gf_group->bit_allocation[gf_group_size] = 0; |
| } |
| |
| // Returns true if KF group and GF group both are almost completely static. |
| static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion, |
| int is_lap_enabled) { |
| if (is_lap_enabled) { |
| /* |
| * when LAP enabled kf_zero_motion is not reliable, so use strict |
| * constraint on gf_zero_motion. |
| */ |
| return (gf_zero_motion >= 0.999); |
| } else { |
| return (gf_zero_motion >= 0.995) && |
| (kf_zero_motion >= STATIC_KF_GROUP_THRESH); |
| } |
| } |
| |
| #define ARF_ABS_ZOOM_THRESH 4.4 |
| static INLINE int detect_gf_cut(AV1_COMP *cpi, int frame_index, int cur_start, |
| int flash_detected, int active_max_gf_interval, |
| int active_min_gf_interval, |
| GF_GROUP_STATS *gf_stats) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| InitialDimensions *const initial_dimensions = &cpi->initial_dimensions; |
| // Motion breakout threshold for loop below depends on image size. |
| const double mv_ratio_accumulator_thresh = |
| (initial_dimensions->height + initial_dimensions->width) / 4.0; |
| |
| if (!flash_detected) { |
| // Break clause to detect very still sections after motion. For example, |
| // a static image after a fade or other transition. |
| if (detect_transition_to_still( |
| twopass, rc->min_gf_interval, frame_index - cur_start, 5, |
| gf_stats->loop_decay_rate, gf_stats->last_loop_decay_rate)) { |
| return 1; |
| } |
| } |
| |
| // Some conditions to breakout after min interval. |
| if (frame_index - cur_start >= active_min_gf_interval && |
| // If possible don't break very close to a kf |
| (rc->frames_to_key - frame_index >= rc->min_gf_interval) && |
| ((frame_index - cur_start) & 0x01) && !flash_detected && |
| (gf_stats->mv_ratio_accumulator > mv_ratio_accumulator_thresh || |
| gf_stats->abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) { |
| return 1; |
| } |
| |
| // If almost totally static, we will not use the the max GF length later, |
| // so we can continue for more frames. |
| if (((frame_index - cur_start) >= active_max_gf_interval + 1) && |
| !is_almost_static(gf_stats->zero_motion_accumulator, |
| twopass->kf_zeromotion_pct, cpi->lap_enabled)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| #define MAX_PAD_GF_CHECK 6 // padding length to check for gf length |
| #define AVG_SI_THRES 0.6 // thres for average silouette |
| #define GF_SHRINK_OUTPUT 0 // print output for gf length decision |
| int determine_high_err_gf(double *errs, int *is_high, double *si, int len, |
| double *ratio, int gf_start, int gf_end, |
| int before_pad) { |
| (void)gf_start; |
| (void)gf_end; |
| (void)before_pad; |
| // alpha and beta controls the threshold placement |
| // e.g. a smaller alpha makes the lower group more rigid |
| const double alpha = 0.5; |
| const double beta = 1 - alpha; |
| double mean = 0; |
| double mean_low = 0; |
| double mean_high = 0; |
| double prev_mean_low = 0; |
| double prev_mean_high = 0; |
| int count_low = 0; |
| int count_high = 0; |
| // calculate mean of errs |
| for (int i = 0; i < len; i++) { |
| mean += errs[i]; |
| } |
| mean /= len; |
| // separate into two initial groups with greater / lower than mean |
| for (int i = 0; i < len; i++) { |
| if (errs[i] <= mean) { |
| is_high[i] = 0; |
| count_low++; |
| prev_mean_low += errs[i]; |
| } else { |
| is_high[i] = 1; |
| count_high++; |
| prev_mean_high += errs[i]; |
| } |
| } |
| prev_mean_low /= AOMMAX(1, count_low); |
| prev_mean_high /= AOMMAX(1, count_high); |
| // kmeans to refine |
| int count = 0; |
| while (count < 10) { |
| // re-group |
| mean_low = 0; |
| mean_high = 0; |
| count_low = 0; |
| count_high = 0; |
| double thres = prev_mean_low * alpha + prev_mean_high * beta; |
| for (int i = 0; i < len; i++) { |
| if (errs[i] <= thres) { |
| is_high[i] = 0; |
| count_low++; |
| mean_low += errs[i]; |
| } else { |
| is_high[i] = 1; |
| count_high++; |
| mean_high += errs[i]; |
| } |
| } |
| mean_low /= AOMMAX(1, count_low); |
| mean_high /= AOMMAX(1, count_high); |
| |
| // break if not changed much |
| if (fabs((mean_low - prev_mean_low) / (prev_mean_low + 0.00001)) < |
| 0.00001 && |
| fabs((mean_high - prev_mean_high) / (prev_mean_high + 0.00001)) < |
| 0.00001) |
| break; |
| |
| // update means |
| prev_mean_high = mean_high; |
| prev_mean_low = mean_low; |
| |
| count++; |
| } |
| |
| // count how many jumps of group changes |
| int num_change = 0; |
| for (int i = 0; i < len - 1; i++) { |
| if (is_high[i] != is_high[i + 1]) num_change++; |
| } |
| |
| // get silhouette as a measure of the classification quality |
| double avg_si = 0; |
| // ai: avg dist of its own class, bi: avg dist to the other class |
| double ai, bi; |
| if (count_low > 1 && count_high > 1) { |
| for (int i = 0; i < len; i++) { |
| ai = 0; |
| bi = 0; |
| // calculate average distance to everyone in the same group |
| // and in the other group |
| for (int j = 0; j < len; j++) { |
| if (i == j) continue; |
| if (is_high[i] == is_high[j]) { |
| ai += fabs(errs[i] - errs[j]); |
| } else { |
| bi += fabs(errs[i] - errs[j]); |
| } |
| } |
| if (is_high[i] == 0) { |
| ai = ai / (count_low - 1); |
| bi = bi / count_high; |
| } else { |
| ai = ai / (count_high - 1); |
| bi = bi / count_low; |
| } |
| if (ai <= bi) { |
| si[i] = 1 - ai / (bi + 0.00001); |
| } else { |
| si[i] = bi / (ai + 0.00001) - 1; |
| } |
| avg_si += si[i]; |
| } |
| avg_si /= len; |
| } |
| |
| int reset = 0; |
| *ratio = mean_high / (mean_low + 0.00001); |
| // if the two groups too similar, or |
| // if too many numbers of changes, or |
| // silhouette is too small, not confident |
| // reset everything to 0 later so we fallback to the original decision |
| if (*ratio < 1.3 || num_change > AOMMAX(len / 3, 6) || |
| avg_si < AVG_SI_THRES) { |
| reset = 1; |
| } |
| |
| #if GF_SHRINK_OUTPUT |
| printf("\n"); |
| for (int i = 0; i < len; i++) { |
| printf("%d: err %.1f, ishigh %d, si %.2f, (i=%d)\n", |
| gf_start + i - before_pad, errs[i], is_high[i], si[i], gf_end); |
| } |
| printf( |
| "count: %d, mean_high: %.1f, mean_low: %.1f, avg_si: %.2f, num_change: " |
| "%d, ratio %.2f, reset: %d\n", |
| count, mean_high, mean_low, avg_si, num_change, |
| mean_high / (mean_low + 0.000001), reset); |
| #endif |
| |
| if (reset) { |
| memset(is_high, 0, sizeof(is_high[0]) * len); |
| memset(si, 0, sizeof(si[0]) * len); |
| } |
| return reset; |
| } |
| |
| #if GROUP_ADAPTIVE_MAXQ |
| #define RC_FACTOR_MIN 0.75 |
| #define RC_FACTOR_MAX 1.25 |
| #endif // GROUP_ADAPTIVE_MAXQ |
| #define MIN_FWD_KF_INTERVAL 8 |
| #define MIN_SHRINK_LEN 6 // the minimum length of gf if we are shrinking |
| #define SI_HIGH AVG_SI_THRES // high quality classification |
| #define SI_LOW 0.3 // very unsure classification |
| // this function finds an low error frame previously to the current last frame |
| // in the gf group, and set the last frame to it. |
| // The resulting last frame is then returned by *cur_last_ptr |
| // *cur_start_ptr and cut_pos[n] could also change due to shrinking |
| // previous gf groups |
| void set_last_prev_low_err(int *cur_start_ptr, int *cur_last_ptr, int *cut_pos, |
| int count_cuts, int before_pad, double ratio, |
| int *is_high, double *si, int prev_lows, |
| int min_shrink_len) { |
| int n; |
| int cur_start = *cur_start_ptr; |
| int cur_last = *cur_last_ptr; |
| for (n = cur_last; n >= cur_start + min_shrink_len; n--) { |
| // try to find a point that is very probable to be good |
| if (is_high[n - cur_start + before_pad] == 0 && |
| si[n - cur_start + before_pad] > SI_HIGH) { |
| *cur_last_ptr = n; |
| return; |
| } |
| } |
| // could not find a low-err point, then let's try find an "unsure" |
| // point at least |
| for (n = cur_last; n >= cur_start + min_shrink_len; n--) { |
| if ((is_high[n - cur_start + before_pad] == 0) || |
| (is_high[n - cur_start + before_pad] && |
| si[n - cur_start + before_pad] < SI_LOW)) { |
| *cur_last_ptr = n; |
| return; |
| } |
| } |
| if (prev_lows) { |
| // try with shrinking previous all_zero interval |
| for (n = cur_start + min_shrink_len - 1; n > cur_start; n--) { |
| if (is_high[n - cur_start + before_pad] == 0 && |
| si[n - cur_start + before_pad] > SI_HIGH) { |
| int tentative_start = n - min_shrink_len; |
| // check if the previous interval can shrink this much |
| int available = |
| tentative_start - cut_pos[count_cuts - 2] > min_shrink_len && |
| cur_start - tentative_start < prev_lows; |
| // shrinking too agressively may worsen performance |
| // set stricter thres for shorter length |
| double ratio_thres = |
| 1.0 * (cur_start - tentative_start) / (double)(min_shrink_len) + |
| 1.0; |
| |
| if (available && (ratio > ratio_thres)) { |
| cut_pos[count_cuts - 1] = tentative_start; |
| *cur_start_ptr = tentative_start; |
| *cur_last_ptr = n; |
| return; |
| } |
| } |
| } |
| } |
| if (prev_lows) { |
| // try with shrinking previous all_zero interval with unsure points |
| for (n = cur_start + min_shrink_len - 1; n > cur_start; n--) { |
| if ((is_high[n - cur_start + before_pad] == 0) || |
| (is_high[n - cur_start + before_pad] && |
| si[n - cur_start + before_pad] < SI_LOW)) { |
| int tentative_start = n - min_shrink_len; |
| // check if the previous interval can shrink this much |
| int available = |
| tentative_start - cut_pos[count_cuts - 2] > min_shrink_len && |
| cur_start - tentative_start < prev_lows; |
| // shrinking too agressively may worsen performance |
| double ratio_thres = |
| 1.0 * (cur_start - tentative_start) / (double)(min_shrink_len) + |
| 1.0; |
| |
| if (available && (ratio > ratio_thres)) { |
| cut_pos[count_cuts - 1] = tentative_start; |
| *cur_start_ptr = tentative_start; |
| *cur_last_ptr = n; |
| return; |
| } |
| } |
| } |
| } // prev_lows |
| return; |
| } |
| |
| /*!\brief Determine the length of future GF groups. |
| * |
| * \ingroup gf_group_algo |
| * This function decides the gf group length of future frames in batch |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] max_gop_length Maximum length of the GF group |
| * \param[in] max_intervals Maximum number of intervals to decide |
| * \param[in] curr_frame_type Frame type of the current frame in subgop |
| * |
| * \return Nothing is returned. Instead, cpi->rc.gf_intervals is |
| * changed to store the decided GF group lengths. |
| */ |
| static void calculate_gf_length(AV1_COMP *cpi, int max_gop_length, |
| int max_intervals, FRAME_TYPE curr_frame_type) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| FRAME_INFO *frame_info = &cpi->frame_info; |
| int i; |
| |
| int flash_detected; |
| |
| aom_clear_system_state(); |
| av1_zero(next_frame); |
| |
| // Is current subgop the first subgop in kf-interval. |
| // This does not include special condition - all intra frames, |
| // where frames_to_key <=1 and subgop contains key frame. |
| const int is_keyframe_subgop = |
| rc->frames_to_key > 1 && curr_frame_type == KEY_FRAME; |
| if (has_no_stats_stage(cpi)) { |
| for (i = 0; i < MAX_NUM_GF_INTERVALS; i++) { |
| rc->gf_intervals[i] = AOMMIN(rc->max_gf_interval, max_gop_length); |
| if (cpi->oxcf.gf_cfg.lag_in_frames >= MIN_GF_INTERVAL) |
| rc->gf_intervals[i] = |
| AOMMIN(rc->gf_intervals[i], cpi->oxcf.gf_cfg.lag_in_frames); |
| // When there exists a single subgop in a kf-interval, correct the |
| // gf_interval appropriately. |
| if (rc->gf_intervals[i] >= rc->frames_to_key && is_keyframe_subgop) |
| rc->gf_intervals[i] = rc->gf_intervals[i] - 1; |
| } |
| rc->cur_gf_index = 0; |
| rc->intervals_till_gf_calculate_due = MAX_NUM_GF_INTERVALS; |
| return; |
| } |
| |
| // TODO(urvang): Try logic to vary min and max interval based on q. |
| const int active_min_gf_interval = rc->min_gf_interval; |
| const int active_max_gf_interval = |
| AOMMIN(rc->max_gf_interval, max_gop_length); |
| const int min_shrink_int = AOMMAX(MIN_SHRINK_LEN, active_min_gf_interval); |
| |
| i = 0; |
| max_intervals = cpi->lap_enabled ? 1 : max_intervals; |
| int cut_pos[MAX_NUM_GF_INTERVALS + 1] = { 0 }; |
| int count_cuts = 1; |
| int cur_start = 0, cur_last; |
| int cut_here; |
| int prev_lows = 0; |
| GF_GROUP_STATS gf_stats; |
| init_gf_stats(&gf_stats); |
| while (count_cuts < max_intervals + 1) { |
| ++i; |
| |
| // reaches next key frame, break here |
| if (i >= rc->frames_to_key) { |
| cut_pos[count_cuts] = AOMMIN(i, active_max_gf_interval); |
| // When there exists a single subgop in a kf-interval, correct the |
| // gf_interval appropriately. gf-interval always accounts only for the |
| // total number of inter frames in the sub-gop. |
| // |
| // Special conditions - when KEY_FRAME is accounted in gf-interval: |
| // If all intra case: kf-min-dist = kf-max-dist = 0, then frames_to_key |
| // is 0. Hence gf-interval will account for KEY_FRAME. |
| // Similarly if frames_to_key is 1 due to kf-min-dist = 0 or 1, |
| // kf-max-dist = 1 or scenecut or application forced key, also if the |
| // curr_frame_type == KEY_FRAME, which is the only frame in subgop, |
| // then gf-interval will account for KEY_FRAME. |
| if (is_keyframe_subgop) cut_pos[count_cuts] = cut_pos[count_cuts] - 1; |
| count_cuts++; |
| break; |
| } |
| |
| if (i == (cpi->oxcf.gf_cfg.lag_in_frames - 1) && |
| (cpi->oxcf.gf_cfg.lag_in_frames >= MIN_GF_INTERVAL)) { |
| // Enforce lag in frames |
| cut_here = 1; |
| } else if (i - cur_start >= rc->static_scene_max_gf_interval) { |
| // reached maximum len, but nothing special yet (almost static) |
| // let's look at the next interval |
| cut_here = 1; |
| } else { |
| // reaches last frame, break |
| if (EOF == input_stats(twopass, &next_frame)) { |
| cut_pos[count_cuts] = i - 1; |
| count_cuts++; |
| break; |
| } |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, 0); |
| // TODO(bohanli): remove redundant accumulations here, or unify |
| // this and the ones in define_gf_group |
| accumulate_next_frame_stats(&next_frame, frame_info, flash_detected, |
| rc->frames_since_key, i, &gf_stats); |
| |
| cut_here = detect_gf_cut(cpi, i, cur_start, flash_detected, |
| active_max_gf_interval, active_min_gf_interval, |
| &gf_stats); |
| } |
| if (cut_here) { |
| cur_last = i - 1; // the current last frame in the gf group |
| if (cpi->oxcf.kf_cfg.fwd_kf_enabled && rc->next_is_fwd_key) { |
| const int frames_left = rc->frames_to_key - i; |
| const int min_int = AOMMIN(MIN_FWD_KF_INTERVAL, active_min_gf_interval); |
| if (frames_left < min_int) { |
| cur_last = rc->frames_to_key - min_int - 1; |
| } |
| } |
| // only try shrinking if interval smaller than active_max_gf_interval |
| if (cur_last - cur_start <= active_max_gf_interval) { |
| // determine in the current decided gop the higher and lower errs |
| int n; |
| double ratio; |
| |
| // load neighboring coded errs |
| int is_high[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; |
| double errs[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; |
| double si[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; |
| int before_pad = |
| AOMMIN(MAX_PAD_GF_CHECK, rc->frames_since_key - 1 + cur_start); |
| int after_pad = |
| AOMMIN(MAX_PAD_GF_CHECK, rc->frames_to_key - cur_last - 1); |
| for (n = cur_start - before_pad; n <= cur_last + after_pad; n++) { |
| if (start_pos + n - 1 > twopass->stats_buf_ctx->stats_in_end) { |
| after_pad = n - cur_last - 1; |
| assert(after_pad >= 0); |
| break; |
| } else if (start_pos + n - 1 < |
| twopass->stats_buf_ctx->stats_in_start) { |
| before_pad = cur_start - n - 1; |
| continue; |
| } |
| errs[n + before_pad - cur_start] = (start_pos + n - 1)->coded_error; |
| } |
| const int len = before_pad + after_pad + cur_last - cur_start + 1; |
| const int reset = determine_high_err_gf( |
| errs, is_high, si, len, &ratio, cur_start, cur_last, before_pad); |
| |
| // if the current frame may have high error, try shrinking |
| if (is_high[cur_last - cur_start + before_pad] == 1 || |
| (!reset && si[cur_last - cur_start + before_pad] < SI_LOW)) { |
| // try not to cut in high err area |
| set_last_prev_low_err(&cur_start, &cur_last, cut_pos, count_cuts, |
| before_pad, ratio, is_high, si, prev_lows, |
| min_shrink_int); |
| } // if current frame high error |
| // count how many trailing lower error frames we have in this decided |
| // gf group |
| prev_lows = 0; |
| for (n = cur_last - 1; n > cur_start + min_shrink_int; n--) { |
| if (is_high[n - cur_start + before_pad] == 0 && |
| (si[n - cur_start + before_pad] > SI_HIGH || reset)) { |
| prev_lows++; |
| } else { |
| break; |
| } |
| } |
| } |
| cut_pos[count_cuts] = cur_last; |
| count_cuts++; |
| |
| // reset pointers to the shrinked location |
| twopass->stats_in = start_pos + cur_last; |
| cur_start = cur_last; |
| i = cur_last; |
| |
| // reset accumulators |
| init_gf_stats(&gf_stats); |
| } |
| } |
| |
| // save intervals |
| rc->intervals_till_gf_calculate_due = count_cuts - 1; |
| for (int n = 1; n < count_cuts; n++) { |
| int point_next_key = |
| (cpi->oxcf.kf_cfg.fwd_kf_enabled && cpi->rc.next_is_fwd_key && |
| ((cut_pos[n] - cut_pos[n - 1]) == rc->frames_to_key)); |
| rc->gf_intervals[n - 1] = |
| cut_pos[n] - cut_pos[n - 1] + (point_next_key ? 1 : 0); |
| } |
| rc->cur_gf_index = 0; |
| twopass->stats_in = start_pos; |
| |
| #if GF_SHRINK_OUTPUT |
| printf("\nf_to_key: %d, count_cut: %d. ", rc->frames_to_key, count_cuts); |
| for (int n = 0; n < count_cuts; n++) { |
| printf("%d ", cut_pos[n]); |
| } |
| printf("\n"); |
| |
| for (int n = 0; n < rc->intervals_till_gf_calculate_due; n++) { |
| printf("%d ", rc->gf_intervals[n]); |
| } |
| printf("\n\n"); |
| #endif |
| } |
| |
| static void correct_frames_to_key(AV1_COMP *cpi) { |
| int lookahead_size = |
| (int)av1_lookahead_depth(cpi->lookahead, cpi->compressor_stage); |
| if (lookahead_size < |
| av1_lookahead_pop_sz(cpi->lookahead, cpi->compressor_stage)) { |
| cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size); |
| } else if (cpi->frames_left > 0) { |
| // Correct frames to key based on limit |
| cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, cpi->frames_left); |
| } |
| } |
| |
| static int is_last_subgop(AV1_COMP *cpi) { |
| const int lookahead_size = |
| (int)av1_lookahead_depth(cpi->lookahead, cpi->compressor_stage); |
| // Check if last subgop in the clip. |
| const int is_last_sub = (cpi->oxcf.gf_cfg.lag_in_frames > lookahead_size) && |
| (lookahead_size == cpi->rc.frames_to_key); |
| return is_last_sub; |
| } |
| |
| /*!\brief Define a GF group in one pass mode when no look ahead stats are |
| * available. |
| * |
| * \ingroup gf_group_algo |
| * This function defines the structure of a GF group, along with various |
| * parameters regarding bit-allocation and quality setup in the special |
| * case of one pass encoding where no lookahead stats are avialable. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] curr_frame_type Frame type of the current frame in subgop |
| * |
| * \return Nothing is returned. Instead, cpi->gf_group is changed. |
| */ |
| static void define_gf_group_pass0(AV1_COMP *cpi, FRAME_TYPE curr_frame_type) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| GF_GROUP *const gf_group = &cpi->gf_group; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| int target; |
| |
| if (oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_set_golden_update(cpi); |
| } else { |
| rc->baseline_gf_interval = rc->gf_intervals[rc->cur_gf_index]; |
| rc->intervals_till_gf_calculate_due--; |
| rc->cur_gf_index++; |
| } |
| |
| // correct frames_to_key when lookahead queue is flushing |
| correct_frames_to_key(cpi); |
| |
| if (rc->baseline_gf_interval > rc->frames_to_key) { |
| rc->baseline_gf_interval = rc->frames_to_key; |
| } |
| |
| // To introduce forward kf, baseline_gf_interval needs to point to keyframe |
| // in the next subgop appropriately. |
| // However baseline_gf_intervals need not be incremented for following |
| // conditions. |
| // (1) When there exist single subgop in the kf-interval, |
| // rc->baseline_gf_interval is already pointing to the next key frame. |
| // (2) When more than one subgop exists in kf-interval, when rc->frames_to_key |
| // is not equal to baseline_gf_interval + 1. |
| // (3) When the current subgop is the end of the clip, next key frame will not |
| // be available. |
| |
| if (cpi->oxcf.kf_cfg.fwd_kf_enabled && cpi->rc.next_is_fwd_key && |
| (curr_frame_type != KEY_FRAME || |
| rc->baseline_gf_interval + 1 == rc->frames_to_key) && |
| !is_last_subgop(cpi)) |
| rc->baseline_gf_interval++; |
| rc->gfu_boost = DEFAULT_GF_BOOST; |
| // This will effectively use qindex returned by 'get_gf_high_motion_quality()' |
| // for level 1 frames. |
| rc->arf_boost_factor = 0.0f; |
| rc->constrained_gf_group = |
| (rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0; |
| |
| // TODO(sarahparker): finish bit allocation for one pass pyramid. |
| gf_group->max_layer_depth_allowed = |
| AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS); |
| |
| // Rare case when the look-ahead is less than the target GOP length, can't |
| // generate ARF frame. |
| if (rc->baseline_gf_interval > gf_cfg->lag_in_frames || |
| !is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) || |
| rc->baseline_gf_interval < rc->min_gf_interval) |
| gf_group->max_layer_depth_allowed = 0; |
| |
| // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) |
| av1_gop_setup_structure(cpi); |
| |
| // Allocate bits to each of the frames in the GF group. |
| // TODO(sarahparker) Extend this to work with pyramid structure. |
| for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) { |
| const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index]; |
| if (oxcf->rc_cfg.mode == AOM_CBR) { |
| if (cur_update_type == KEY_FRAME) { |
| target = av1_calc_iframe_target_size_one_pass_cbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type); |
| } |
| } else { |
| if (cur_update_type == KEY_FRAME) { |
| target = av1_calc_iframe_target_size_one_pass_vbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type); |
| } |
| } |
| gf_group->bit_allocation[cur_index] = target; |
| } |
| } |
| |
| static INLINE void set_baseline_gf_interval(AV1_COMP *cpi, int arf_position, |
| int active_max_gf_interval, |
| int use_alt_ref, |
| FRAME_TYPE curr_frame_type) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| // Set the interval until the next gf. |
| // If forward keyframes are enabled, ensure the final gf group obeys the |
| // MIN_FWD_KF_INTERVAL. |
| const int is_last_kf = |
| (twopass->stats_in - arf_position + rc->frames_to_key) >= |
| twopass->stats_buf_ctx->stats_in_end; |
| |
| if (cpi->oxcf.kf_cfg.fwd_kf_enabled && use_alt_ref && !is_last_kf && |
| cpi->rc.next_is_fwd_key) { |
| if (arf_position == rc->frames_to_key) { |
| rc->baseline_gf_interval = arf_position; |
| if (curr_frame_type != KEY_FRAME) |
| rc->baseline_gf_interval = rc->baseline_gf_interval + 1; |
| // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL |
| } else if ((rc->frames_to_key - arf_position < |
| AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) && |
| (rc->frames_to_key != arf_position)) { |
| // if possible, merge the last two gf groups |
| if (rc->frames_to_key <= active_max_gf_interval) { |
| rc->baseline_gf_interval = rc->frames_to_key; |
| if (curr_frame_type != KEY_FRAME) |
| rc->baseline_gf_interval = rc->baseline_gf_interval + 1; |
| rc->intervals_till_gf_calculate_due = 0; |
| // if merging the last two gf groups creates a group that is too long, |
| // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL |
| } else { |
| rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL; |
| rc->intervals_till_gf_calculate_due = 0; |
| } |
| } else { |
| rc->baseline_gf_interval = arf_position; |
| } |
| } else { |
| rc->baseline_gf_interval = arf_position; |
| } |
| assert(rc->baseline_gf_interval > 0); |
| } |
| |
| // initialize GF_GROUP_STATS |
| static void init_gf_stats(GF_GROUP_STATS *gf_stats) { |
| gf_stats->gf_group_err = 0.0; |
| gf_stats->gf_group_raw_error = 0.0; |
| gf_stats->gf_group_skip_pct = 0.0; |
| gf_stats->gf_group_inactive_zone_rows = 0.0; |
| |
| gf_stats->mv_ratio_accumulator = 0.0; |
| gf_stats->decay_accumulator = 1.0; |
| gf_stats->zero_motion_accumulator = 1.0; |
| gf_stats->loop_decay_rate = 1.0; |
| gf_stats->last_loop_decay_rate = 1.0; |
| gf_stats->this_frame_mv_in_out = 0.0; |
| gf_stats->mv_in_out_accumulator = 0.0; |
| gf_stats->abs_mv_in_out_accumulator = 0.0; |
| |
| gf_stats->avg_sr_coded_error = 0.0; |
| gf_stats->avg_tr_coded_error = 0.0; |
| gf_stats->avg_pcnt_second_ref = 0.0; |
| gf_stats->avg_pcnt_third_ref = 0.0; |
| gf_stats->avg_pcnt_third_ref_nolast = 0.0; |
| gf_stats->avg_new_mv_count = 0.0; |
| gf_stats->avg_wavelet_energy = 0.0; |
| gf_stats->avg_raw_err_stdev = 0.0; |
| gf_stats->non_zero_stdev_count = 0; |
| } |
| |
| // Analyse and define a gf/arf group. |
| #define MAX_GF_BOOST 5400 |
| /*!\brief Define a GF group. |
| * |
| * \ingroup gf_group_algo |
| * This function defines the structure of a GF group, along with various |
| * parameters regarding bit-allocation and quality setup. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] this_frame First pass statistics structure |
| * \param[in] frame_params Structure with frame parameters |
| * \param[in] max_gop_length Maximum length of the GF group |
| * |
| * \return Nothing is returned. Instead, cpi->gf_group is changed. |
| */ |
| static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, |
| EncodeFrameParams *frame_params, |
| int max_gop_length) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| GF_GROUP *gf_group = &cpi->gf_group; |
| FRAME_INFO *frame_info = &cpi->frame_info; |
| const GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| int i; |
| |
| int flash_detected; |
| int64_t gf_group_bits; |
| const int is_intra_only = rc->frames_since_key == 0; |
| |
| cpi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1); |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (!is_intra_only) { |
| av1_zero(cpi->gf_group); |
| } |
| |
| aom_clear_system_state(); |
| av1_zero(next_frame); |
| |
| if (has_no_stats_stage(cpi)) { |
| define_gf_group_pass0(cpi, frame_params->frame_type); |
| return; |
| } |
| |
| // correct frames_to_key when lookahead queue is emptying |
| if (cpi->lap_enabled) { |
| correct_frames_to_key(cpi); |
| } |
| |
| GF_GROUP_STATS gf_stats; |
| init_gf_stats(&gf_stats); |
| GF_FRAME_STATS first_frame_stats, last_frame_stats; |
| |
| const int can_disable_arf = !gf_cfg->gf_min_pyr_height; |
| |
| // Load stats for the current frame. |
| double mod_frame_err = 0.0; |
| |
| // Note the error of the frame at the start of the group. This will be |
| // the GF frame error if we code a normal gf. |
| first_frame_stats.frame_err = mod_frame_err; |
| first_frame_stats.frame_coded_error = this_frame->coded_error; |
| first_frame_stats.frame_sr_coded_error = this_frame->sr_coded_error; |
| first_frame_stats.frame_tr_coded_error = this_frame->tr_coded_error; |
| |
| // TODO(urvang): Try logic to vary min and max interval based on q. |
| const int active_min_gf_interval = rc->min_gf_interval; |
| const int active_max_gf_interval = |
| AOMMIN(rc->max_gf_interval, max_gop_length); |
| |
| i = 0; |
| // get the determined gf group length from rc->gf_intervals |
| while (i <= rc->gf_intervals[rc->cur_gf_index]) { |
| ++i; |
| // Accumulate error score of frames in this gf group. |
| mod_frame_err = 0.0; |
| // accumulate stats for this frame |
| accumulate_this_frame_stats(this_frame, mod_frame_err, &gf_stats); |
| |
| // read in the next frame |
| if (EOF == input_stats(twopass, &next_frame)) { |
| // Avoid baseline_gf_interval being set as 0 at EOF |
| if (rc->frames_to_key <= 1 && i == 1) i++; |
| break; |
| } |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, 0); |
| |
| // accumulate stats for next frame |
| accumulate_next_frame_stats(&next_frame, frame_info, flash_detected, |
| rc->frames_since_key, i, &gf_stats); |
| |
| *this_frame = next_frame; |
| } |
| // save the errs for the last frame |
| last_frame_stats.frame_coded_error = next_frame.coded_error; |
| last_frame_stats.frame_sr_coded_error = next_frame.sr_coded_error; |
| last_frame_stats.frame_tr_coded_error = next_frame.tr_coded_error; |
| |
| rc->intervals_till_gf_calculate_due--; |
| rc->cur_gf_index++; |
| |
| // Was the group length constrained by the requirement for a new KF? |
| rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; |
| |
| const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cm->mi_params.MBs; |
| assert(num_mbs > 0); |
| |
| average_gf_stats(i, &next_frame, &gf_stats); |
| |
| // Disable internal ARFs for "still" gf groups. |
| // zero_motion_accumulator: minimum percentage of (0,0) motion; |
| // avg_sr_coded_error: average of the SSE per pixel of each frame; |
| // avg_raw_err_stdev: average of the standard deviation of (0,0) |
| // motion error per block of each frame. |
| const int can_disable_internal_arfs = gf_cfg->gf_min_pyr_height <= 1; |
| if (can_disable_internal_arfs && |
| gf_stats.zero_motion_accumulator > MIN_ZERO_MOTION && |
| gf_stats.avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && |
| gf_stats.avg_raw_err_stdev < MAX_RAW_ERR_VAR) { |
| cpi->internal_altref_allowed = 0; |
| } |
| |
| int use_alt_ref; |
| if (can_disable_arf) { |
| use_alt_ref = |
| !is_almost_static(gf_stats.zero_motion_accumulator, |
| twopass->kf_zeromotion_pct, cpi->lap_enabled) && |
| rc->use_arf_in_this_kf_group && (i <= gf_cfg->lag_in_frames) && |
| (i >= MIN_GF_INTERVAL); |
| |
| // TODO(urvang): Improve and use model for VBR, CQ etc as well. |
| if (use_alt_ref && rc_cfg->mode == AOM_Q && rc_cfg->qp <= 200) { |
| aom_clear_system_state(); |
| float features[21]; |
| get_features_from_gf_stats( |
| &gf_stats, &first_frame_stats, &last_frame_stats, num_mbs, |
| rc->constrained_gf_group, twopass->kf_zeromotion_pct, i, features); |
| // Infer using ML model. |
| float score; |
| av1_nn_predict(features, &av1_use_flat_gop_nn_config, 1, &score); |
| use_alt_ref = (score <= 0.0); |
| } |
| } else { |
| use_alt_ref = |
| rc->use_arf_in_this_kf_group && (i <= gf_cfg->lag_in_frames) && (i > 2); |
| } |
| |
| #define REDUCE_GF_LENGTH_THRESH 4 |
| #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 |
| #define REDUCE_GF_LENGTH_BY 1 |
| int alt_offset = 0; |
| // The length reduction strategy is tweaked for certain cases, and doesn't |
| // work well for certain other cases. |
| const int allow_gf_length_reduction = |
| ((rc_cfg->mode == AOM_Q && rc_cfg->qp <= 128) || |
| !cpi->internal_altref_allowed) && |
| !av1_find_subgop_config_exact(&cpi->subgop_config_set, i - 1, |
| SUBGOP_IN_GOP_LAST) && |
| !is_lossless_requested(rc_cfg); |
| |
| if (allow_gf_length_reduction && use_alt_ref) { |
| // adjust length of this gf group if one of the following condition met |
| // 1: only one overlay frame left and this gf is too long |
| // 2: next gf group is too short to have arf compared to the current gf |
| |
| // maximum length of next gf group |
| const int next_gf_len = rc->frames_to_key - i; |
| // the next gf is probably going to have a ARF but it will be shorter than |
| // this gf |
| const int unbalanced_gf = |
| i > REDUCE_GF_LENGTH_TO_KEY_THRESH && |
| next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && |
| next_gf_len + 1 >= rc->min_gf_interval; |
| |
| if (unbalanced_gf) { |
| const int roll_back = REDUCE_GF_LENGTH_BY; |
| // Reduce length only if active_min_gf_interval will be respected later. |
| if (i - roll_back >= active_min_gf_interval + 1) { |
| alt_offset = -roll_back; |
| i -= roll_back; |
| rc->intervals_till_gf_calculate_due = 0; |
| } |
| } |
| } |
| |
| // Should we use the alternate reference frame. |
| if (use_alt_ref) { |
| gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height; |
| set_baseline_gf_interval(cpi, (i - 1), active_max_gf_interval, use_alt_ref, |
| frame_params->frame_type); |
| |
| const int forward_frames = (rc->frames_to_key - i + 1 >= (i - 1)) |
| ? (i - 1) |
| : AOMMAX(0, rc->frames_to_key - i + 1); |
| |
| // Calculate the boost for alt ref. |
| rc->gfu_boost = av1_calc_arf_boost( |
| twopass, rc, frame_info, alt_offset, forward_frames, (i - 1), |
| cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, |
| cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL); |
| } else { |
| reset_fpf_position(twopass, start_pos); |
| gf_group->max_layer_depth_allowed = 0; |
| set_baseline_gf_interval(cpi, (i - 1), active_max_gf_interval, use_alt_ref, |
| frame_params->frame_type); |
| |
| rc->gfu_boost = AOMMIN( |
| MAX_GF_BOOST, |
| av1_calc_arf_boost( |
| twopass, rc, frame_info, alt_offset, (i - 1), 0, |
| cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, |
| cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL)); |
| } |
| |
| // rc->gf_intervals assumes the usage of alt_ref, therefore adding one overlay |
| // frame to the next gf. If no alt_ref is used, should substract 1 frame from |
| // the next gf group. |
| // TODO(bohanli): should incorporate the usage of alt_ref into |
| // calculate_gf_length |
| if (rc->intervals_till_gf_calculate_due > 0) { |
| rc->gf_intervals[rc->cur_gf_index]--; |
| } |
| |
| #define LAST_ALR_BOOST_FACTOR 0.2f |
| rc->arf_boost_factor = 1.0; |
| if (use_alt_ref && !is_lossless_requested(rc_cfg)) { |
| // Reduce the boost of altref in the last gf group |
| if (rc->frames_to_key - i + 1 == REDUCE_GF_LENGTH_BY || |
| rc->frames_to_key - i + 1 == 0) { |
| rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; |
| } |
| } |
| |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| if (cpi->lap_enabled) { |
| // Since we don't have enough stats to know the actual error of the |
| // gf group, we assume error of each frame to be equal to 1 and set |
| // the error of the group as baseline_gf_interval. |
| gf_stats.gf_group_err = rc->baseline_gf_interval; |
| } |
| // Calculate the bits to be allocated to the gf/arf group as a whole |
| gf_group_bits = calculate_total_gf_group_bits(cpi, gf_stats.gf_group_err); |
| rc->gf_group_bits = gf_group_bits; |
| |
| #if GROUP_ADAPTIVE_MAXQ |
| // Calculate an estimate of the maxq needed for the group. |
| // We are more agressive about correcting for sections |
| // where there could be significant overshoot than for easier |
| // sections where we do not wish to risk creating an overshoot |
| // of the allocated bit budget. |
| if ((rc_cfg->mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { |
| const int vbr_group_bits_per_frame = |
| (int)(gf_group_bits / rc->baseline_gf_interval); |
| const double group_av_err = |
| gf_stats.gf_group_raw_error / rc->baseline_gf_interval; |
| const double group_av_skip_pct = |
| gf_stats.gf_group_skip_pct / rc->baseline_gf_interval; |
| const double group_av_inactive_zone = |
| ((gf_stats.gf_group_inactive_zone_rows * 2) / |
| (rc->baseline_gf_interval * (double)cm->mi_params.mb_rows)); |
| |
| int tmp_q; |
| // rc factor is a weight factor that corrects for local rate control drift. |
| double rc_factor = 1.0; |
| int64_t bits = rc_cfg->target_bandwidth; |
| |
| if (bits > 0) { |
| int rate_error; |
| |
| rate_error = (int)((rc->vbr_bits_off_target * 100) / bits); |
| rate_error = clamp(rate_error, -100, 100); |
| if (rate_error > 0) { |
| rc_factor = AOMMAX(RC_FACTOR_MIN, (double)(100 - rate_error) / 100.0); |
| } else { |
| rc_factor = AOMMIN(RC_FACTOR_MAX, (double)(100 - rate_error) / 100.0); |
| } |
| } |
| |
| tmp_q = get_twopass_worst_quality( |
| cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), |
| vbr_group_bits_per_frame, rc_factor); |
| rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1); |
| } |
| #endif |
| |
| // Adjust KF group bits and error remaining. |
| twopass->kf_group_error_left -= (int64_t)gf_stats.gf_group_err; |
| |
| // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) |
| av1_gop_setup_structure(cpi); |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| if (frame_params->frame_type != KEY_FRAME) { |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_pos, twopass->stats_buf_ctx->stats_in_end, |
| rc->baseline_gf_interval); |
| } |
| |
| // Reset rolling actual and target bits counters for ARF groups. |
| twopass->rolling_arf_group_target_bits = 1; |
| twopass->rolling_arf_group_actual_bits = 1; |
| |
| av1_gop_bit_allocation(cpi, rc, gf_group, |
| frame_params->frame_type == KEY_FRAME, use_alt_ref, |
| gf_group_bits); |
| } |
| |
| // #define FIXED_ARF_BITS |
| #ifdef FIXED_ARF_BITS |
| #define ARF_BITS_FRACTION 0.75 |
| #endif |
| void av1_gop_bit_allocation(const AV1_COMP *cpi, RATE_CONTROL *const rc, |
| GF_GROUP *gf_group, int is_key_frame, int use_arf, |
| int64_t gf_group_bits) { |
| // Calculate the extra bits to be used for boosted frame(s) |
| #ifdef FIXED_ARF_BITS |
| int gf_arf_bits = (int)(ARF_BITS_FRACTION * gf_group_bits); |
| #else |
| int gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, |
| rc->gfu_boost, gf_group_bits); |
| #endif |
| |
| gf_arf_bits = adjust_boost_bits_for_target_level(cpi, rc, gf_arf_bits, |
| gf_group_bits, 1); |
| |
| // Allocate bits to each of the frames in the GF group. |
| allocate_gf_group_bits(gf_group, rc, gf_group_bits, gf_arf_bits, is_key_frame, |
| use_arf); |
| } |
| |
| // Minimum % intra coding observed in first pass (1.0 = 100%) |
| #define MIN_INTRA_LEVEL 0.25 |
| // Minimum ratio between the % of intra coding and inter coding in the first |
| // pass after discounting neutral blocks (discounting neutral blocks in this |
| // way helps catch scene cuts in clips with very flat areas or letter box |
| // format clips with image padding. |
| #define INTRA_VS_INTER_THRESH 2.0 |
| // Hard threshold where the first pass chooses intra for almost all blocks. |
| // In such a case even if the frame is not a scene cut coding a key frame |
| // may be a good option. |
| #define VERY_LOW_INTER_THRESH 0.05 |
| // Maximum threshold for the relative ratio of intra error score vs best |
| // inter error score. |
| #define KF_II_ERR_THRESHOLD 2.5 |
| // In real scene cuts there is almost always a sharp change in the intra |
| // or inter error score. |
| #define ERR_CHANGE_THRESHOLD 0.4 |
| // For real scene cuts we expect an improvment in the intra inter error |
| // ratio in the next frame. |
| #define II_IMPROVEMENT_THRESHOLD 3.5 |
| #define KF_II_MAX 128.0 |
| |
| // Threshold for use of the lagging second reference frame. High second ref |
| // usage may point to a transient event like a flash or occlusion rather than |
| // a real scene cut. |
| // We adapt the threshold based on number of frames in this key-frame group so |
| // far. |
| static double get_second_ref_usage_thresh(int frame_count_so_far) { |
| const int adapt_upto = 32; |
| const double min_second_ref_usage_thresh = 0.085; |
| const double second_ref_usage_thresh_max_delta = 0.035; |
| if (frame_count_so_far >= adapt_upto) { |
| return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta; |
| } |
| return min_second_ref_usage_thresh + |
| ((double)frame_count_so_far / (adapt_upto - 1)) * |
| second_ref_usage_thresh_max_delta; |
| } |
| |
| static int test_candidate_kf(TWO_PASS *twopass, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *next_frame, |
| int frame_count_so_far, enum aom_rc_mode rc_mode, |
| int scenecut_mode) { |
| int is_viable_kf = 0; |
| double pcnt_intra = 1.0 - this_frame->pcnt_inter; |
| double modified_pcnt_inter = |
| this_frame->pcnt_inter - this_frame->pcnt_neutral; |
| const double second_ref_usage_thresh = |
| get_second_ref_usage_thresh(frame_count_so_far); |
| int total_frames_to_test = SCENE_CUT_KEY_TEST_INTERVAL; |
| int count_for_tolerable_prediction = 3; |
| int num_future_frames = 0; |
| FIRSTPASS_STATS curr_frame; |
| |
| if (scenecut_mode == ENABLE_SCENECUT_MODE_1) { |
| curr_frame = *this_frame; |
| const FIRSTPASS_STATS *const start_position = twopass->stats_in; |
| for (num_future_frames = 0; num_future_frames < SCENE_CUT_KEY_TEST_INTERVAL; |
| num_future_frames++) |
| if (EOF == input_stats(twopass, &curr_frame)) break; |
| reset_fpf_position(twopass, start_position); |
| if (num_future_frames < 3) { |
| return 0; |
| } else { |
| total_frames_to_test = 3; |
| count_for_tolerable_prediction = 1; |
| } |
| } |
| |
| // Does the frame satisfy the primary criteria of a key frame? |
| // See above for an explanation of the test criteria. |
| // If so, then examine how well it predicts subsequent frames. |
| if (IMPLIES(rc_mode == AOM_Q, frame_count_so_far >= 3) && |
| (this_frame->pcnt_second_ref < second_ref_usage_thresh) && |
| (next_frame->pcnt_second_ref < second_ref_usage_thresh) && |
| ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || |
| ((pcnt_intra > MIN_INTRA_LEVEL) && |
| (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && |
| ((this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < |
| KF_II_ERR_THRESHOLD) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > |
| ERR_CHANGE_THRESHOLD) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > |
| ERR_CHANGE_THRESHOLD) || |
| ((next_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > |
| II_IMPROVEMENT_THRESHOLD))))) { |
| int i; |
| const FIRSTPASS_STATS *start_pos = twopass->stats_in; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| |
| // Examine how well the key frame predicts subsequent frames. |
| for (i = 0; i < total_frames_to_test; ++i) { |
| // Get the next frame details |
| FIRSTPASS_STATS local_next_frame; |
| if (EOF == input_stats(twopass, &local_next_frame)) break; |
| double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
| |
| if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; |
| |
| // Cumulative effect of decay in prediction quality. |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator *= local_next_frame.pcnt_inter; |
| else |
| decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; |
| |
| // Keep a running total. |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses. |
| if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
| (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < |
| 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (local_next_frame.intra_error < 200)) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > count_for_tolerable_prediction)) { |
| is_viable_kf = 1; |
| } else { |
| is_viable_kf = 0; |
| } |
| |
| // Reset the file position |
| reset_fpf_position(twopass, start_pos); |
| } |
| return is_viable_kf; |
| } |
| |
| #define FRAMES_TO_CHECK_DECAY 8 |
| #define KF_MIN_FRAME_BOOST 80.0 |
| #define KF_MAX_FRAME_BOOST 128.0 |
| #define MIN_KF_BOOST 600 // Minimum boost for non-static KF interval |
| #define MAX_KF_BOOST 3200 |
| #define MIN_STATIC_KF_BOOST 5400 // Minimum boost for static KF interval |
| |
| static int detect_app_forced_key(AV1_COMP *cpi) { |
| if (cpi->oxcf.kf_cfg.fwd_kf_enabled) cpi->rc.next_is_fwd_key = 1; |
| int num_frames_to_app_forced_key = get_forced_keyframe_position( |
| cpi->lookahead, cpi->lookahead->max_sz, cpi->compressor_stage); |
| if (num_frames_to_app_forced_key != -1) cpi->rc.next_is_fwd_key = 0; |
| return num_frames_to_app_forced_key; |
| } |
| |
| static int get_projected_kf_boost(AV1_COMP *cpi) { |
| /* |
| * If num_stats_used_for_kf_boost >= frames_to_key, then |
| * all stats needed for prior boost calculation are available. |
| * Hence projecting the prior boost is not needed in this cases. |
| */ |
| if (cpi->rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key) |
| return cpi->rc.kf_boost; |
| |
| // Get the current tpl factor (number of frames = frames_to_key). |
| double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key); |
| // Get the tpl factor when number of frames = num_stats_used_for_kf_boost. |
| double tpl_factor_num_stats = |
| av1_get_kf_boost_projection_factor(cpi->rc.num_stats_used_for_kf_boost); |
| int projected_kf_boost = |
| (int)rint((tpl_factor * cpi->rc.kf_boost) / tpl_factor_num_stats); |
| return projected_kf_boost; |
| } |
| |
| /*!\brief Determine the location of the next key frame |
| * |
| * \ingroup gf_group_algo |
| * This function decides the placement of the next key frame when a |
| * scenecut is detected or the maximum key frame distance is reached. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] this_frame Pointer to first pass stats |
| * \param[out] kf_group_err The total error in the KF group |
| * \param[in] num_frames_to_detect_scenecut Maximum lookahead frames. |
| * |
| * \return Number of frames to the next key. |
| */ |
| static int define_kf_interval(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, |
| double *kf_group_err, |
| int num_frames_to_detect_scenecut) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; |
| double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; |
| FIRSTPASS_STATS last_frame = { 0 }; |
| double decay_accumulator = 1.0; |
| int i = 0, j; |
| int frames_to_key = 1; |
| int frames_since_key = rc->frames_since_key + 1; |
| FRAME_INFO *const frame_info = &cpi->frame_info; |
| int num_stats_used_for_kf_boost = 1; |
| int scenecut_detected = 0; |
| |
| int num_frames_to_next_key = detect_app_forced_key(cpi); |
| |
| if (num_frames_to_detect_scenecut == 0) { |
| if (num_frames_to_next_key != -1) |
| return num_frames_to_next_key; |
| else |
| return rc->frames_to_key; |
| } |
| |
| if (num_frames_to_next_key != -1) |
| num_frames_to_detect_scenecut = |
| AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key); |
| |
| // Initialize the decay rates for the recent frames to check |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; |
| |
| i = 0; |
| while (twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && |
| frames_to_key < num_frames_to_detect_scenecut) { |
| // Accumulate total number of stats available till next key frame |
| num_stats_used_for_kf_boost++; |
| |
| // Load the next frame's stats. |
| last_frame = *this_frame; |
| input_stats(twopass, this_frame); |
| |
| // Provided that we are not at the end of the file... |
| if ((cpi->rc.enable_scenecut_detection > 0) && kf_cfg->auto_key && |
| twopass->stats_in < twopass->stats_buf_ctx->stats_in_end) { |
| double loop_decay_rate; |
| |
| // Check for a scene cut. |
| if (frames_since_key >= kf_cfg->key_freq_min && |
| test_candidate_kf(twopass, &last_frame, this_frame, twopass->stats_in, |
| frames_since_key, oxcf->rc_cfg.mode, |
| cpi->rc.enable_scenecut_detection)) { |
| scenecut_detected = 1; |
| break; |
| } |
| |
| // How fast is the prediction quality decaying? |
| loop_decay_rate = |
| get_prediction_decay_rate(frame_info, twopass->stats_in); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concerned with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // static scene. |
| if (frames_since_key >= kf_cfg->key_freq_min && |
| detect_transition_to_still(twopass, rc->min_gf_interval, i, |
| kf_cfg->key_freq_max - i, loop_decay_rate, |
| decay_accumulator)) { |
| scenecut_detected = 1; |
| // In the case of transition followed by a static scene, the key frame |
| // could be a good predictor for the following frames, therefore we |
| // do not use an arf. |
| rc->use_arf_in_this_kf_group = 0; |
| break; |
| } |
| |
| // Step on to the next frame. |
| ++frames_to_key; |
| ++frames_since_key; |
| |
| // If we don't have a real key frame within the next two |
| // key_freq_max intervals then break out of the loop. |
| if (frames_to_key >= 2 * kf_cfg->key_freq_max) break; |
| } else { |
| ++frames_to_key; |
| ++frames_since_key; |
| } |
| ++i; |
| } |
| |
| if (kf_group_err != NULL) |
| rc->num_stats_used_for_kf_boost = num_stats_used_for_kf_boost; |
| |
| if (cpi->lap_enabled && !scenecut_detected) |
| frames_to_key = num_frames_to_next_key; |
| |
| if (kf_cfg->fwd_kf_enabled && scenecut_detected) rc->next_is_fwd_key = 0; |
| |
| return frames_to_key; |
| } |
| |
| static double get_kf_group_avg_error(TWO_PASS *twopass, |
| const FIRSTPASS_STATS *first_frame, |
| const FIRSTPASS_STATS *start_position, |
| int frames_to_key) { |
| FIRSTPASS_STATS cur_frame = *first_frame; |
| int num_frames, i; |
| double kf_group_avg_error = 0.0; |
| |
| reset_fpf_position(twopass, start_position); |
| |
| for (i = 0; i < frames_to_key; ++i) { |
| kf_group_avg_error += cur_frame.coded_error; |
| if (EOF == input_stats(twopass, &cur_frame)) break; |
| } |
| num_frames = i + 1; |
| num_frames = AOMMIN(num_frames, frames_to_key); |
| kf_group_avg_error = kf_group_avg_error / num_frames; |
| |
| return (kf_group_avg_error); |
| } |
| |
| static int64_t get_kf_group_bits(AV1_COMP *cpi, double kf_group_err, |
| double kf_group_avg_error) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| int64_t kf_group_bits; |
| if (cpi->lap_enabled) { |
| kf_group_bits = (int64_t)rc->frames_to_key * rc->avg_frame_bandwidth; |
| if (cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap) { |
| const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.mi_params.MBs; |
| |
| double vbr_corpus_complexity_lap = |
| cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap / 10.0; |
| /* Get the average corpus complexity of the frame */ |
| vbr_corpus_complexity_lap = vbr_corpus_complexity_lap * num_mbs; |
| kf_group_bits = (int64_t)( |
| kf_group_bits * (kf_group_avg_error / vbr_corpus_complexity_lap)); |
| } |
| } else { |
| kf_group_bits = (int64_t)(twopass->bits_left * |
| (kf_group_err / twopass->modified_error_left)); |
| } |
| |
| return kf_group_bits; |
| } |
| |
| static int calc_avg_stats(AV1_COMP *cpi, FIRSTPASS_STATS *avg_frame_stat) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FIRSTPASS_STATS cur_frame; |
| av1_zero(cur_frame); |
| int num_frames = 0; |
| // Accumulate total stat using available number of stats. |
| for (num_frames = 0; num_frames < (rc->frames_to_key - 1); ++num_frames) { |
| if (EOF == input_stats(twopass, &cur_frame)) break; |
| av1_accumulate_stats(avg_frame_stat, &cur_frame); |
| } |
| |
| if (num_frames < 2) { |
| return num_frames; |
| } |
| // Average the total stat |
| avg_frame_stat->weight = avg_frame_stat->weight / num_frames; |
| avg_frame_stat->intra_error = avg_frame_stat->intra_error / num_frames; |
| avg_frame_stat->frame_avg_wavelet_energy = |
| avg_frame_stat->frame_avg_wavelet_energy / num_frames; |
| avg_frame_stat->coded_error = avg_frame_stat->coded_error / num_frames; |
| avg_frame_stat->sr_coded_error = avg_frame_stat->sr_coded_error / num_frames; |
| avg_frame_stat->pcnt_inter = avg_frame_stat->pcnt_inter / num_frames; |
| avg_frame_stat->pcnt_motion = avg_frame_stat->pcnt_motion / num_frames; |
| avg_frame_stat->pcnt_second_ref = |
| avg_frame_stat->pcnt_second_ref / num_frames; |
| avg_frame_stat->pcnt_neutral = avg_frame_stat->pcnt_neutral / num_frames; |
| avg_frame_stat->intra_skip_pct = avg_frame_stat->intra_skip_pct / num_frames; |
| avg_frame_stat->inactive_zone_rows = |
| avg_frame_stat->inactive_zone_rows / num_frames; |
| avg_frame_stat->inactive_zone_cols = |
| avg_frame_stat->inactive_zone_cols / num_frames; |
| avg_frame_stat->MVr = avg_frame_stat->MVr / num_frames; |
| avg_frame_stat->mvr_abs = avg_frame_stat->mvr_abs / num_frames; |
| avg_frame_stat->MVc = avg_frame_stat->MVc / num_frames; |
| avg_frame_stat->mvc_abs = avg_frame_stat->mvc_abs / num_frames; |
| avg_frame_stat->MVrv = avg_frame_stat->MVrv / num_frames; |
| avg_frame_stat->MVcv = avg_frame_stat->MVcv / num_frames; |
| avg_frame_stat->mv_in_out_count = |
| avg_frame_stat->mv_in_out_count / num_frames; |
| avg_frame_stat->new_mv_count = avg_frame_stat->new_mv_count / num_frames; |
| avg_frame_stat->count = avg_frame_stat->count / num_frames; |
| avg_frame_stat->duration = avg_frame_stat->duration / num_frames; |
| |
| return num_frames; |
| } |
| |
| static double get_kf_boost_score(AV1_COMP *cpi, double kf_raw_err, |
| double *zero_motion_accumulator, |
| double *sr_accumulator, int use_avg_stat) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FRAME_INFO *const frame_info = &cpi->frame_info; |
| FIRSTPASS_STATS frame_stat; |
| av1_zero(frame_stat); |
| int i = 0, num_stat_used = 0; |
| double boost_score = 0.0; |
| const double kf_max_boost = |
| cpi->oxcf.rc_cfg.mode == AOM_Q |
| ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), |
| KF_MAX_FRAME_BOOST) |
| : KF_MAX_FRAME_BOOST; |
| |
| // Calculate the average using available number of stats. |
| if (use_avg_stat) num_stat_used = calc_avg_stats(cpi, &frame_stat); |
| |
| for (i = num_stat_used; i < (rc->frames_to_key - 1); ++i) { |
| if (!use_avg_stat && EOF == input_stats(twopass, &frame_stat)) break; |
| |
| // Monitor for static sections. |
| // For the first frame in kf group, the second ref indicator is invalid. |
| if (i > 0) { |
| *zero_motion_accumulator = |
| AOMMIN(*zero_motion_accumulator, |
| get_zero_motion_factor(frame_info, &frame_stat)); |
| } else { |
| *zero_motion_accumulator = frame_stat.pcnt_inter - frame_stat.pcnt_motion; |
| } |
| |
| // Not all frames in the group are necessarily used in calculating boost. |
| if ((*sr_accumulator < (kf_raw_err * 1.50)) && |
| (i <= rc->max_gf_interval * 2)) { |
| double frame_boost; |
| double zm_factor; |
| |
| // Factor 0.75-1.25 based on how much of frame is static. |
| zm_factor = (0.75 + (*zero_motion_accumulator / 2.0)); |
| |
| if (i < 2) *sr_accumulator = 0.0; |
| frame_boost = calc_kf_frame_boost(rc, frame_info, &frame_stat, |
| sr_accumulator, kf_max_boost); |
| boost_score += frame_boost * zm_factor; |
| } |
| } |
| return boost_score; |
| } |
| |
| /*!\brief Interval(in seconds) to clip key-frame distance to in LAP. |
| */ |
| #define MAX_KF_BITS_INTERVAL_SINGLE_PASS 5 |
| |
| /*!\brief Determine the next key frame group |
| * |
| * \ingroup gf_group_algo |
| * This function decides the placement of the next key frame, and |
| * calculates the bit allocation of the KF group and the keyframe itself. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] this_frame Pointer to first pass stats |
| * |
| * \return Nothing is returned. |
| */ |
| static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &cpi->gf_group; |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; |
| const FIRSTPASS_STATS first_frame = *this_frame; |
| FIRSTPASS_STATS next_frame; |
| av1_zero(next_frame); |
| |
| rc->frames_since_key = 0; |
| // Use arfs if possible. |
| rc->use_arf_in_this_kf_group = is_altref_enabled( |
| oxcf->gf_cfg.lag_in_frames, oxcf->gf_cfg.enable_auto_arf); |
| |
| // Reset the GF group data structures. |
| av1_zero(*gf_group); |
| |
| // KF is always a GF so clear frames till next gf counter. |
| rc->frames_till_gf_update_due = 0; |
| |
| rc->frames_to_key = 1; |
| |
| if (has_no_stats_stage(cpi)) { |
| int num_frames_to_app_forced_key = detect_app_forced_key(cpi); |
| rc->this_key_frame_forced = |
| current_frame->frame_number != 0 && rc->frames_to_key == 0; |
| if (num_frames_to_app_forced_key != -1) |
| rc->frames_to_key = num_frames_to_app_forced_key; |
| else |
| rc->frames_to_key = AOMMAX(1, kf_cfg->key_freq_max); |
| correct_frames_to_key(cpi); |
| rc->kf_boost = DEFAULT_KF_BOOST; |
| gf_group->update_type[0] = KF_UPDATE; |
| return; |
| } |
| int i; |
| const FIRSTPASS_STATS *const start_position = twopass->stats_in; |
| int kf_bits = 0; |
| double zero_motion_accumulator = 1.0; |
| double boost_score = 0.0; |
| double kf_raw_err = 0.0; |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double sr_accumulator = 0.0; |
| double kf_group_avg_error = 0.0; |
| int frames_to_key, frames_to_key_clipped = INT_MAX; |
| int64_t kf_group_bits_clipped = INT64_MAX; |
| |
| // Is this a forced key frame by interval. |
| rc->this_key_frame_forced = rc->next_key_frame_forced; |
| |
| twopass->kf_group_bits = 0; // Total bits available to kf group |
| twopass->kf_group_error_left = 0; // Group modified error score. |
| |
| kf_raw_err = this_frame->intra_error; |
| kf_mod_err = 0.0; |
| |
| frames_to_key = |
| define_kf_interval(cpi, this_frame, &kf_group_err, kf_cfg->key_freq_max); |
| |
| if (frames_to_key != -1) |
| rc->frames_to_key = AOMMIN(kf_cfg->key_freq_max, frames_to_key); |
| else |
| rc->frames_to_key = kf_cfg->key_freq_max; |
| |
| if (cpi->lap_enabled) correct_frames_to_key(cpi); |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural interval |
| // is between 1x and 2x. |
| if (kf_cfg->auto_key && rc->frames_to_key > kf_cfg->key_freq_max) { |
| FIRSTPASS_STATS tmp_frame = first_frame; |
| |
| rc->frames_to_key /= 2; |
| |
| // Reset to the start of the group. |
| reset_fpf_position(twopass, start_position); |
| |
| kf_group_err = 0.0; |
| |
| // Rescan to get the correct error data for the forced kf group. |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| if (EOF == input_stats(twopass, &tmp_frame)) break; |
| } |
| rc->next_key_frame_forced = 1; |
| |
| } else if (rc->frames_to_key >= kf_cfg->key_freq_max) { |
| rc->next_key_frame_forced = 1; |
| } else { |
| rc->next_key_frame_forced = 0; |
| } |
| |
| if (kf_cfg->fwd_kf_enabled) rc->next_is_fwd_key |= rc->next_key_frame_forced; |
| |
| // Special case for the last key frame of the file. |
| if (twopass->stats_in >= twopass->stats_buf_ctx->stats_in_end) { |
| // Accumulate kf group error. |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if ((twopass->bits_left > 0 && twopass->modified_error_left > 0.0) || |
| (cpi->lap_enabled && oxcf->rc_cfg.mode != AOM_Q)) { |
| // Maximum number of bits for a single normal frame (not key frame). |
| const int max_bits = frame_max_bits(rc, oxcf); |
| |
| // Maximum number of bits allocated to the key frame group. |
| int64_t max_grp_bits; |
| |
| if (oxcf->rc_cfg.vbr_corpus_complexity_lap) { |
| kf_group_avg_error = get_kf_group_avg_error( |
| twopass, &first_frame, start_position, rc->frames_to_key); |
| } |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section. |
| twopass->kf_group_bits = |
| get_kf_group_bits(cpi, kf_group_err, kf_group_avg_error); |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; |
| if (twopass->kf_group_bits > max_grp_bits) |
| twopass->kf_group_bits = max_grp_bits; |
| } else { |
| twopass->kf_group_bits = 0; |
| } |
| twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); |
| |
| if (cpi->lap_enabled) { |
| // In the case of single pass based on LAP, frames to key may have an |
| // inaccurate value, and hence should be clipped to an appropriate |
| // interval. |
| frames_to_key_clipped = |
| (int)(MAX_KF_BITS_INTERVAL_SINGLE_PASS * cpi->framerate); |
| |
| // This variable calculates the bits allocated to kf_group with a clipped |
| // frames_to_key. |
| if (rc->frames_to_key > frames_to_key_clipped) { |
| kf_group_bits_clipped = |
| (int64_t)((double)twopass->kf_group_bits * frames_to_key_clipped / |
| rc->frames_to_key); |
| } |
| } |
| |
| // Reset the first pass file position. |
| reset_fpf_position(twopass, start_position); |
| |
| // Scan through the kf group collating various stats used to determine |
| // how many bits to spend on it. |
| boost_score = get_kf_boost_score(cpi, kf_raw_err, &zero_motion_accumulator, |
| &sr_accumulator, 0); |
| reset_fpf_position(twopass, start_position); |
| // Store the zero motion percentage |
| twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key); |
| |
| rc->kf_boost = (int)boost_score; |
| |
| if (cpi->lap_enabled) { |
| if (oxcf->rc_cfg.mode == AOM_Q) { |
| rc->kf_boost = get_projected_kf_boost(cpi); |
| } else { |
| // TODO(any): Explore using average frame stats for AOM_Q as well. |
| boost_score = get_kf_boost_score( |
| cpi, kf_raw_err, &zero_motion_accumulator, &sr_accumulator, 1); |
| reset_fpf_position(twopass, start_position); |
| rc->kf_boost += (int)boost_score; |
| } |
| } |
| |
| // Special case for static / slide show content but don't apply |
| // if the kf group is very short. |
| if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) && |
| (rc->frames_to_key > 8)) { |
| rc->kf_boost = AOMMAX(rc->kf_boost, MIN_STATIC_KF_BOOST); |
| } else { |
| // Apply various clamps for min and max boost |
| rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); |
| rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); |
| #ifdef STRICT_RC |
| rc->kf_boost = AOMMIN(rc->kf_boost, MAX_KF_BOOST); |
| #endif |
| } |
| |
| // Work out how many bits to allocate for the key frame itself. |
| // In case of LAP enabled for VBR, if the frames_to_key value is |
| // very high, we calculate the bits based on a clipped value of |
| // frames_to_key. |
| kf_bits = calculate_boost_bits( |
| AOMMIN(rc->frames_to_key, frames_to_key_clipped) - 1, rc->kf_boost, |
| AOMMIN(twopass->kf_group_bits, kf_group_bits_clipped)); |
| // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost, |
| // kf_bits, twopass->kf_zeromotion_pct); |
| kf_bits = adjust_boost_bits_for_target_level(cpi, rc, kf_bits, |
| twopass->kf_group_bits, 0); |
| |
| twopass->kf_group_bits -= kf_bits; |
| |
| // Save the bits to spend on the key frame. |
| gf_group->bit_allocation[0] = kf_bits; |
| gf_group->update_type[0] = KF_UPDATE; |
| |
| // Note the total error score of the kf group minus the key frame itself. |
| if (cpi->lap_enabled) |
| // As we don't have enough stats to know the actual error of the group, |
| // we assume the complexity of each frame to be equal to 1, and set the |
| // error as the number of frames in the group(minus the keyframe). |
| twopass->kf_group_error_left = (int)(rc->frames_to_key - 1); |
| else |
| twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| twopass->modified_error_left -= kf_group_err; |
| } |
| |
| static int is_skippable_frame(const AV1_COMP *cpi) { |
| if (has_no_stats_stage(cpi)) return 0; |
| // If the current frame does not have non-zero motion vector detected in the |
| // first pass, and so do its previous and forward frames, then this frame |
| // can be skipped for partition check, and the partition size is assigned |
| // according to the variance |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| return (!frame_is_intra_only(&cpi->common) && |
| twopass->stats_in - 2 > twopass->stats_buf_ctx->stats_in_start && |
| twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && |
| (twopass->stats_in - 1)->pcnt_inter - |
| (twopass->stats_in - 1)->pcnt_motion == |
| 1 && |
| (twopass->stats_in - 2)->pcnt_inter - |
| (twopass->stats_in - 2)->pcnt_motion == |
| 1 && |
| twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); |
| } |
| |
| #define ARF_STATS_OUTPUT 0 |
| #if ARF_STATS_OUTPUT |
| unsigned int arf_count = 0; |
| #endif |
| #define DEFAULT_GRP_WEIGHT 1.0 |
| |
| static int get_section_target_bandwidth(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| int section_target_bandwidth; |
| const int frames_left = (int)(twopass->stats_buf_ctx->total_stats->count - |
| current_frame->frame_number); |
| if (cpi->lap_enabled) |
| section_target_bandwidth = (int)rc->avg_frame_bandwidth; |
| else |
| section_target_bandwidth = (int)(twopass->bits_left / frames_left); |
| return section_target_bandwidth; |
| } |
| |
| static void process_first_pass_stats(AV1_COMP *cpi, |
| FIRSTPASS_STATS *this_frame) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| |
| if (cpi->oxcf.rc_cfg.mode != AOM_Q && current_frame->frame_number == 0 && |
| cpi->twopass.stats_buf_ctx->total_stats && |
| cpi->twopass.stats_buf_ctx->total_left_stats) { |
| if (cpi->lap_enabled) { |
| /* |
| * Accumulate total_stats using available limited number of stats, |
| * and assign it to total_left_stats. |
| */ |
| *cpi->twopass.stats_buf_ctx->total_left_stats = |
| *cpi->twopass.stats_buf_ctx->total_stats; |
| } |
| // Special case code for first frame. |
| const int section_target_bandwidth = get_section_target_bandwidth(cpi); |
| const double section_length = |
| twopass->stats_buf_ctx->total_left_stats->count; |
| const double section_error = |
| twopass->stats_buf_ctx->total_left_stats->coded_error / section_length; |
| const double section_intra_skip = |
| twopass->stats_buf_ctx->total_left_stats->intra_skip_pct / |
| section_length; |
| const double section_inactive_zone = |
| (twopass->stats_buf_ctx->total_left_stats->inactive_zone_rows * 2) / |
| ((double)cm->mi_params.mb_rows * section_length); |
| const int tmp_q = get_twopass_worst_quality( |
| cpi, section_error, section_intra_skip + section_inactive_zone, |
| section_target_bandwidth, DEFAULT_GRP_WEIGHT); |
| |
| rc->active_worst_quality = tmp_q; |
| rc->ni_av_qi = tmp_q; |
| rc->last_q[INTER_FRAME] = tmp_q; |
| rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth); |
| rc->avg_frame_qindex[INTER_FRAME] = tmp_q; |
| rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.rc_cfg.best_allowed_q) / 2; |
| rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; |
| } |
| |
| int err = 0; |
| if (cpi->lap_enabled) { |
| err = input_stats_lap(twopass, this_frame); |
| } else { |
| err = input_stats(twopass, this_frame); |
| } |
| if (err == EOF) return; |
| |
| { |
| const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cm->mi_params.MBs; |
| // The multiplication by 256 reverses a scaling factor of (>> 8) |
| // applied when combining MB error values for the frame. |
| twopass->mb_av_energy = log((this_frame->intra_error / num_mbs) + 1.0); |
| twopass->frame_avg_haar_energy = |
| log((this_frame->frame_avg_wavelet_energy / num_mbs) + 1.0); |
| } |
| |
| // Update the total stats remaining structure. |
| if (twopass->stats_buf_ctx->total_left_stats) |
| subtract_stats(twopass->stats_buf_ctx->total_left_stats, this_frame); |
| |
| // Set the frame content type flag. |
| if (this_frame->intra_skip_pct >= FC_ANIMATION_THRESH) |
| twopass->fr_content_type = FC_GRAPHICS_ANIMATION; |
| else |
| twopass->fr_content_type = FC_NORMAL; |
| } |
| |
| static void setup_target_rate(AV1_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| GF_GROUP *const gf_group = &cpi->gf_group; |
| |
| int target_rate = gf_group->bit_allocation[gf_group->index]; |
| |
| if (has_no_stats_stage(cpi)) { |
| av1_rc_set_frame_target(cpi, target_rate, cpi->common.width, |
| cpi->common.height); |
| } |
| |
| rc->base_frame_target = target_rate; |
| } |
| |
| void av1_get_second_pass_params(AV1_COMP *cpi, |
| EncodeFrameParams *const frame_params) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &cpi->gf_group; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| if (is_stat_consumption_stage(cpi) && !twopass->stats_in) return; |
| |
| if (gf_group->index < gf_group->size) { |
| assert(gf_group->index < gf_group->size); |
| const int update_type = gf_group->update_type[gf_group->index]; |
| |
| setup_target_rate(cpi); |
|