blob: 37c96b1c5adddfbbc24cfcc5b7347ae8e61575bd [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <ostream>
#include <set>
#include <vector>
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
namespace {
// TODO(any): Remove following INTERP_FILTERS_ALL define, so that 12-tap filter
// is tested once 12-tap filter SIMD is done.
#undef INTERP_FILTERS_ALL
#define INTERP_FILTERS_ALL 4
// All single reference convolve tests are parameterized on block size,
// bit-depth, and function to test.
//
// Note that parameterizing on these variables (and not other parameters) is
// a conscious decision - Jenkins needs some degree of parallelization to run
// the tests within the time limit, but if the number of parameters increases
// too much, the gtest framework does not handle it well (increased overhead per
// test, huge amount of output to stdout, etc.).
//
// Also note that the test suites must be named with the architecture, e.g.,
// C, C_X, AVX2_X, ... The test suite that runs on Jenkins sometimes runs tests
// that cannot deal with intrinsics (e.g., the Valgrind tests on 32-bit x86
// binaries) and will disable tests using a filter like
// --gtest_filter=-:SSE4_1.*. If the test suites are not named this way, the
// testing infrastructure will not selectively filter them properly.
class BlockSize {
public:
BlockSize(int w, int h) : width_(w), height_(h) {}
int Width() const { return width_; }
int Height() const { return height_; }
bool operator<(const BlockSize &other) const {
if (Width() == other.Width()) {
return Height() < other.Height();
}
return Width() < other.Width();
}
bool operator==(const BlockSize &other) const {
return Width() == other.Width() && Height() == other.Height();
}
private:
int width_;
int height_;
};
// Block size / bit depth / test function used to parameterize the tests.
template <typename T>
class TestParam {
public:
TestParam(const BlockSize &block, int bd, T test_func)
: block_(block), bd_(bd), test_func_(test_func) {}
const BlockSize &Block() const { return block_; }
int BitDepth() const { return bd_; }
T TestFunction() const { return test_func_; }
bool operator==(const TestParam &other) const {
return Block() == other.Block() && BitDepth() == other.BitDepth() &&
TestFunction() == other.TestFunction();
}
private:
BlockSize block_;
int bd_;
T test_func_;
};
template <typename T>
std::ostream &operator<<(std::ostream &os, const TestParam<T> &test_arg) {
return os << "TestParam { width:" << test_arg.Block().Width()
<< " height:" << test_arg.Block().Height()
<< " bd:" << test_arg.BitDepth() << " }";
}
// Generate the list of all block widths / heights that need to be tested,
// includes chroma and luma sizes, for the given bit-depths. The test
// function is the same for all generated parameters.
template <typename T>
std::vector<TestParam<T>> GetTestParams(std::initializer_list<int> bit_depths,
T test_func) {
std::set<BlockSize> sizes;
for (int b = BLOCK_4X4; b < BLOCK_SIZES_ALL; ++b) {
const int w = block_size_wide[b];
const int h = block_size_high[b];
sizes.insert(BlockSize(w, h));
// Add in smaller chroma sizes as well.
if (w == 4 || h == 4) {
sizes.insert(BlockSize(w / 2, h / 2));
}
}
std::vector<TestParam<T>> result;
for (const BlockSize &block : sizes) {
for (int bd : bit_depths) {
result.push_back(TestParam<T>(block, bd, test_func));
}
}
return result;
}
template <typename T>
std::vector<TestParam<T>> GetLowbdTestParams(T test_func) {
return GetTestParams({ 8 }, test_func);
}
template <typename T>
::testing::internal::ParamGenerator<TestParam<T>> BuildLowbdParams(
T test_func) {
return ::testing::ValuesIn(GetLowbdTestParams(test_func));
}
// Test the test-parameters generators work as expected.
class AV1ConvolveParametersTest : public ::testing::Test {};
TEST_F(AV1ConvolveParametersTest, GetLowbdTestParams) {
auto v = GetLowbdTestParams(av1_convolve_x_sr_c);
ASSERT_EQ(27U, v.size());
for (const auto &p : v) {
ASSERT_EQ(8, p.BitDepth());
// Needed (instead of ASSERT_EQ(...) since gtest does not
// have built in printing for arbitrary functions, which
// causes a compilation error.
bool same_fn = av1_convolve_x_sr_c == p.TestFunction();
ASSERT_TRUE(same_fn);
}
}
template <typename T>
std::vector<TestParam<T>> GetHighbdTestParams(T test_func) {
return GetTestParams({ 10, 12 }, test_func);
}
template <typename T>
::testing::internal::ParamGenerator<TestParam<T>> BuildHighbdParams(
T test_func) {
return ::testing::ValuesIn(GetHighbdTestParams(test_func));
}
TEST_F(AV1ConvolveParametersTest, GetHighbdTestParams) {
auto v = GetHighbdTestParams(av1_highbd_convolve_x_sr_c);
ASSERT_EQ(54U, v.size());
int num_10 = 0;
int num_12 = 0;
for (const auto &p : v) {
ASSERT_TRUE(p.BitDepth() == 10 || p.BitDepth() == 12);
bool same_fn = av1_highbd_convolve_x_sr_c == p.TestFunction();
ASSERT_TRUE(same_fn);
if (p.BitDepth() == 10) {
++num_10;
} else {
++num_12;
}
}
ASSERT_EQ(num_10, num_12);
}
// AV1ConvolveTest is the base class that all convolve tests should derive from.
// It provides storage/methods for generating randomized buffers for both
// low bit-depth and high bit-depth, and setup/teardown methods for clearing
// system state. Implementors can get the bit-depth / block-size /
// test function by calling GetParam().
template <typename T>
class AV1ConvolveTest : public ::testing::TestWithParam<TestParam<T>> {
public:
virtual ~AV1ConvolveTest() { TearDown(); }
virtual void SetUp() override {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
}
virtual void TearDown() override { libaom_test::ClearSystemState(); }
// Randomizes the 8-bit input buffer and returns a pointer to it. Note that
// the pointer is safe to use with an 8-tap filter. The stride can range
// from width to (width + kPadding). Also note that the pointer is to the
// same memory location.
static constexpr int kInputPadding = 8;
// Get a pointer to a buffer with stride == width. Note that we must have
// the test param passed in explicitly -- the gtest framework does not
// support calling GetParam() within a templatized class.
// Note that FirstRandomInput8 always returns the same pointer -- if two
// inputs are needed, also use SecondRandomInput8.
const uint8_t *FirstRandomInput8(const TestParam<T> &param) {
// Note we can't call GetParam() directly -- gtest does not support
// this for parameterized types.
return RandomInput8(input8_1_, param);
}
const uint8_t *SecondRandomInput8(const TestParam<T> &param) {
return RandomInput8(input8_2_, param);
}
// Some of the intrinsics perform writes in 32 byte chunks. Moreover, some
// of the instrinsics assume that the stride is also a multiple of 32.
// To satisfy these constraints and also remain simple, output buffer strides
// are assumed MAX_SB_SIZE.
static constexpr int kOutputStride = MAX_SB_SIZE;
// Check that two 8-bit output buffers are identical.
void AssertOutputBufferEq(const uint8_t *p1, const uint8_t *p2, int width,
int height) {
ASSERT_TRUE(p1 != p2) << "Buffers must be at different memory locations";
for (int j = 0; j < height; ++j) {
if (memcmp(p1, p2, sizeof(*p1) * width) == 0) {
p1 += kOutputStride;
p2 += kOutputStride;
continue;
}
for (int i = 0; i < width; ++i) {
ASSERT_EQ(p1[i], p2[i])
<< width << "x" << height << " Pixel mismatch at (" << i << ", "
<< j << ")";
}
}
}
// Check that two 16-bit output buffers are identical.
void AssertOutputBufferEq(const uint16_t *p1, const uint16_t *p2, int width,
int height) {
ASSERT_TRUE(p1 != p2) << "Buffers must be in different memory locations";
for (int j = 0; j < height; ++j) {
if (memcmp(p1, p2, sizeof(*p1) * width) == 0) {
p1 += kOutputStride;
p2 += kOutputStride;
continue;
}
for (int i = 0; i < width; ++i) {
ASSERT_EQ(p1[i], p2[i])
<< width << "x" << height << " Pixel mismatch at (" << i << ", "
<< j << ")";
}
}
}
// Note that the randomized values are capped by bit-depth.
const uint16_t *FirstRandomInput16(const TestParam<T> &param) {
return RandomInput16(input16_1_, param);
}
const uint16_t *SecondRandomInput16(const TestParam<T> &param) {
return RandomInput16(input16_2_, param);
}
private:
const uint8_t *RandomInput8(uint8_t *p, const TestParam<T> &param) {
EXPECT_EQ(8, param.BitDepth());
EXPECT_GE(MAX_SB_SIZE, param.Block().Width());
EXPECT_GE(MAX_SB_SIZE, param.Block().Height());
const int padded_width = param.Block().Width() + kInputPadding;
const int padded_height = param.Block().Height() + kInputPadding;
Randomize(p, padded_width * padded_height);
return p + (kInputPadding / 2) * padded_width + kInputPadding / 2;
}
void Randomize(uint8_t *p, int size) {
for (int i = 0; i < size; ++i) {
p[i] = rnd_.Rand8();
}
}
const uint16_t *RandomInput16(uint16_t *p, const TestParam<T> &param) {
// Check that this is only called with high bit-depths.
EXPECT_TRUE(param.BitDepth() == 10 || param.BitDepth() == 12);
EXPECT_GE(MAX_SB_SIZE, param.Block().Width());
EXPECT_GE(MAX_SB_SIZE, param.Block().Height());
const int padded_width = param.Block().Width() + kInputPadding;
const int padded_height = param.Block().Height() + kInputPadding;
Randomize(p, padded_width * padded_height, param.BitDepth());
return p + (kInputPadding / 2) * padded_width + kInputPadding / 2;
}
void Randomize(uint16_t *p, int size, int bit_depth) {
for (int i = 0; i < size; ++i) {
p[i] = rnd_.Rand16() & ((1 << bit_depth) - 1);
}
}
static constexpr int kInputStride = MAX_SB_SIZE + kInputPadding;
libaom_test::ACMRandom rnd_;
// Statically allocate all the memory that is needed for the tests. Note
// that we cannot allocate output memory here. It must use DECLARE_ALIGNED,
// which is a C99 feature and interacts badly with C++ member variables.
uint8_t input8_1_[kInputStride * kInputStride];
uint8_t input8_2_[kInputStride * kInputStride];
uint16_t input16_1_[kInputStride * kInputStride];
uint16_t input16_2_[kInputStride * kInputStride];
};
////////////////////////////////////////////////////////
// Single reference convolve-x functions (low bit-depth)
////////////////////////////////////////////////////////
typedef void (*convolve_x_func)(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params);
class AV1ConvolveXTest : public AV1ConvolveTest<convolve_x_func> {
public:
void RunTest() {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int filter = EIGHTTAP_REGULAR; filter < INTERP_FILTERS_ALL;
++filter) {
InterpFilter f = static_cast<InterpFilter>(filter);
TestConvolve(sub_x, f);
}
}
}
private:
void TestConvolve(const int sub_x, const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(filter, width);
ConvolveParams conv_params1 = get_conv_params_no_round(0, 0, NULL, 0, 0, 8);
const uint8_t *input = FirstRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
av1_convolve_x_sr(input, width, reference, kOutputStride, width, height,
filter_params_x, sub_x, &conv_params1);
ConvolveParams conv_params2 = get_conv_params_no_round(0, 0, NULL, 0, 0, 8);
convolve_x_func test_func = GetParam().TestFunction();
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
test_func(input, width, test, kOutputStride, width, height, filter_params_x,
sub_x, &conv_params2);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1ConvolveXTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveXTest,
BuildLowbdParams(av1_convolve_x_sr_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveXTest,
BuildLowbdParams(av1_convolve_x_sr_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveXTest,
BuildLowbdParams(av1_convolve_x_sr_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1ConvolveXTest,
BuildLowbdParams(av1_convolve_x_sr_neon));
#endif
/////////////////////////////////////////////////////////
// Single reference convolve-x functions (high bit-depth)
/////////////////////////////////////////////////////////
typedef void (*highbd_convolve_x_func)(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params, int bd);
class AV1ConvolveXHighbdTest : public AV1ConvolveTest<highbd_convolve_x_func> {
public:
void RunTest() {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int filter = EIGHTTAP_REGULAR; filter < INTERP_FILTERS_ALL;
++filter) {
InterpFilter f = static_cast<InterpFilter>(filter);
TestConvolve(sub_x, f);
}
}
}
private:
void TestConvolve(const int sub_x, const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const int bit_depth = GetParam().BitDepth();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(filter, width);
ConvolveParams conv_params1 =
get_conv_params_no_round(0, 0, NULL, 0, 0, bit_depth);
const uint16_t *input = FirstRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
av1_highbd_convolve_x_sr(input, width, reference, kOutputStride, width,
height, filter_params_x, sub_x, &conv_params1,
bit_depth);
ConvolveParams conv_params2 =
get_conv_params_no_round(0, 0, NULL, 0, 0, bit_depth);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height,
filter_params_x, sub_x, &conv_params2, bit_depth);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1ConvolveXHighbdTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveXHighbdTest,
BuildHighbdParams(av1_highbd_convolve_x_sr_c));
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(SSSE3, AV1ConvolveXHighbdTest,
BuildHighbdParams(av1_highbd_convolve_x_sr_ssse3));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveXHighbdTest,
BuildHighbdParams(av1_highbd_convolve_x_sr_avx2));
#endif
////////////////////////////////////////////////////////
// Single reference convolve-y functions (low bit-depth)
////////////////////////////////////////////////////////
typedef void (*convolve_y_func)(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn);
class AV1ConvolveYTest : public AV1ConvolveTest<convolve_y_func> {
public:
void RunTest() {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (int filter = EIGHTTAP_REGULAR; filter < INTERP_FILTERS_ALL;
++filter) {
InterpFilter f = static_cast<InterpFilter>(filter);
TestConvolve(sub_y, f);
}
}
}
private:
void TestConvolve(const int sub_y, const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(filter, height);
const uint8_t *input = FirstRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
av1_convolve_y_sr(input, width, reference, kOutputStride, width, height,
filter_params_y, sub_y);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height,
filter_params_y, sub_y);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1ConvolveYTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveYTest,
BuildLowbdParams(av1_convolve_y_sr_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveYTest,
BuildLowbdParams(av1_convolve_y_sr_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveYTest,
BuildLowbdParams(av1_convolve_y_sr_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1ConvolveYTest,
BuildLowbdParams(av1_convolve_y_sr_neon));
#endif
/////////////////////////////////////////////////////////
// Single reference convolve-y functions (high bit-depth)
/////////////////////////////////////////////////////////
typedef void (*highbd_convolve_y_func)(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
int bd);
class AV1ConvolveYHighbdTest : public AV1ConvolveTest<highbd_convolve_y_func> {
public:
void RunTest() {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (int filter = EIGHTTAP_REGULAR; filter < INTERP_FILTERS_ALL;
++filter) {
InterpFilter f = static_cast<InterpFilter>(filter);
TestConvolve(sub_y, f);
}
}
}
private:
void TestConvolve(const int sub_y, const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const int bit_depth = GetParam().BitDepth();
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(filter, height);
const uint16_t *input = FirstRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
av1_highbd_convolve_y_sr(input, width, reference, kOutputStride, width,
height, filter_params_y, sub_y, bit_depth);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height,
filter_params_y, sub_y, bit_depth);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1ConvolveYHighbdTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveYHighbdTest,
BuildHighbdParams(av1_highbd_convolve_y_sr_c));
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(SSSE3, AV1ConvolveYHighbdTest,
BuildHighbdParams(av1_highbd_convolve_y_sr_ssse3));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveYHighbdTest,
BuildHighbdParams(av1_highbd_convolve_y_sr_avx2));
#endif
//////////////////////////////////////////////////////////////
// Single reference convolve-copy functions (low bit-depth)
//////////////////////////////////////////////////////////////
typedef void (*convolve_copy_func)(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride, int w,
int h);
class AV1ConvolveCopyTest : public AV1ConvolveTest<convolve_copy_func> {
public:
void RunTest() {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const uint8_t *input = FirstRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
aom_convolve_copy(input, width, reference, kOutputStride, width, height);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
};
// Note that even though these are AOM convolve functions, we are using the
// newer AV1 test framework.
TEST_P(AV1ConvolveCopyTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_neon));
#endif
#if HAVE_MSA
INSTANTIATE_TEST_SUITE_P(MSA, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_msa));
#endif
#if HAVE_DSPR2
INSTANTIATE_TEST_SUITE_P(DSPR2, AV1ConvolveCopyTest,
BuildLowbdParams(aom_convolve_copy_dspr2));
#endif
///////////////////////////////////////////////////////////////
// Single reference convolve-copy functions (high bit-depth)
///////////////////////////////////////////////////////////////
typedef void (*highbd_convolve_copy_func)(const uint16_t *src,
ptrdiff_t src_stride, uint16_t *dst,
ptrdiff_t dst_stride, int w, int h);
class AV1ConvolveCopyHighbdTest
: public AV1ConvolveTest<highbd_convolve_copy_func> {
public:
void RunTest() {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const uint16_t *input = FirstRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
aom_highbd_convolve_copy(input, width, reference, kOutputStride, width,
height);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1ConvolveCopyHighbdTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveCopyHighbdTest,
BuildHighbdParams(aom_highbd_convolve_copy_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveCopyHighbdTest,
BuildHighbdParams(aom_highbd_convolve_copy_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveCopyHighbdTest,
BuildHighbdParams(aom_highbd_convolve_copy_avx2));
#endif
/////////////////////////////////////////////////////////
// Single reference convolve-2D functions (low bit-depth)
/////////////////////////////////////////////////////////
typedef void (*convolve_2d_func)(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params);
class AV1Convolve2DTest : public AV1ConvolveTest<convolve_2d_func> {
public:
void RunTest() {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (int h_f = EIGHTTAP_REGULAR; h_f < INTERP_FILTERS_ALL; ++h_f) {
for (int v_f = EIGHTTAP_REGULAR; v_f < INTERP_FILTERS_ALL; ++v_f) {
TestConvolve(static_cast<InterpFilter>(h_f),
static_cast<InterpFilter>(v_f), sub_x, sub_y);
}
}
}
}
}
private:
void TestConvolve(const InterpFilter h_f, const InterpFilter v_f,
const int sub_x, const int sub_y) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(h_f, width);
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(v_f, height);
const uint8_t *input = FirstRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
ConvolveParams conv_params1 = get_conv_params_no_round(0, 0, NULL, 0, 0, 8);
av1_convolve_2d_sr(input, width, reference, kOutputStride, width, height,
filter_params_x, filter_params_y, sub_x, sub_y,
&conv_params1);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
ConvolveParams conv_params2 = get_conv_params_no_round(0, 0, NULL, 0, 0, 8);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height,
filter_params_x, filter_params_y, sub_x, sub_y,
&conv_params2);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1Convolve2DTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1Convolve2DTest,
BuildLowbdParams(av1_convolve_2d_sr_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1Convolve2DTest,
BuildLowbdParams(av1_convolve_2d_sr_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1Convolve2DTest,
BuildLowbdParams(av1_convolve_2d_sr_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1Convolve2DTest,
BuildLowbdParams(av1_convolve_2d_sr_neon));
#endif
//////////////////////////////////////////////////////////
// Single reference convolve-2d functions (high bit-depth)
//////////////////////////////////////////////////////////
typedef void (*highbd_convolve_2d_func)(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd);
class AV1Convolve2DHighbdTest
: public AV1ConvolveTest<highbd_convolve_2d_func> {
public:
void RunTest() {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (int h_f = EIGHTTAP_REGULAR; h_f < INTERP_FILTERS_ALL; ++h_f) {
for (int v_f = EIGHTTAP_REGULAR; v_f < INTERP_FILTERS_ALL; ++v_f) {
TestConvolve(static_cast<InterpFilter>(h_f),
static_cast<InterpFilter>(v_f), sub_x, sub_y);
}
}
}
}
}
private:
void TestConvolve(const InterpFilter h_f, const InterpFilter v_f,
const int sub_x, const int sub_y) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const int bit_depth = GetParam().BitDepth();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(h_f, width);
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(v_f, height);
const uint16_t *input = FirstRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
ConvolveParams conv_params1 =
get_conv_params_no_round(0, 0, NULL, 0, 0, bit_depth);
av1_highbd_convolve_2d_sr(input, width, reference, kOutputStride, width,
height, filter_params_x, filter_params_y, sub_x,
sub_y, &conv_params1, bit_depth);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
ConvolveParams conv_params2 =
get_conv_params_no_round(0, 0, NULL, 0, 0, bit_depth);
GetParam().TestFunction()(input, width, test, kOutputStride, width, height,
filter_params_x, filter_params_y, sub_x, sub_y,
&conv_params2, bit_depth);
AssertOutputBufferEq(reference, test, width, height);
}
};
TEST_P(AV1Convolve2DHighbdTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1Convolve2DHighbdTest,
BuildHighbdParams(av1_highbd_convolve_2d_sr_c));
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(SSSE3, AV1Convolve2DHighbdTest,
BuildHighbdParams(av1_highbd_convolve_2d_sr_ssse3));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1Convolve2DHighbdTest,
BuildHighbdParams(av1_highbd_convolve_2d_sr_avx2));
#endif
//////////////////////////
// Compound Convolve Tests
//////////////////////////
// The compound functions do not work for chroma block sizes. Provide
// a function to generate test parameters for just luma block sizes.
template <typename T>
std::vector<TestParam<T>> GetLumaTestParams(
std::initializer_list<int> bit_depths, T test_func) {
std::set<BlockSize> sizes;
for (int b = BLOCK_4X4; b < BLOCK_SIZES_ALL; ++b) {
const int w = block_size_wide[b];
const int h = block_size_high[b];
sizes.insert(BlockSize(w, h));
}
std::vector<TestParam<T>> result;
for (int bit_depth : bit_depths) {
for (const auto &block : sizes) {
result.push_back(TestParam<T>(block, bit_depth, test_func));
}
}
return result;
}
template <typename T>
std::vector<TestParam<T>> GetLowbdLumaTestParams(T test_func) {
return GetLumaTestParams({ 8 }, test_func);
}
template <typename T>
::testing::internal::ParamGenerator<TestParam<T>> BuildLowbdLumaParams(
T test_func) {
return ::testing::ValuesIn(GetLowbdLumaTestParams(test_func));
}
TEST_F(AV1ConvolveParametersTest, GetLowbdLumaTestParams) {
auto v = GetLowbdLumaTestParams(av1_dist_wtd_convolve_x_c);
ASSERT_EQ(22U, v.size());
for (const auto &e : v) {
ASSERT_EQ(8, e.BitDepth());
bool same_fn = av1_dist_wtd_convolve_x_c == e.TestFunction();
ASSERT_TRUE(same_fn);
}
}
template <typename T>
std::vector<TestParam<T>> GetHighbdLumaTestParams(T test_func) {
return GetLumaTestParams({ 10, 12 }, test_func);
}
TEST_F(AV1ConvolveParametersTest, GetHighbdLumaTestParams) {
auto v = GetHighbdLumaTestParams(av1_highbd_dist_wtd_convolve_x_c);
ASSERT_EQ(44U, v.size());
int num_10 = 0;
int num_12 = 0;
for (const auto &e : v) {
ASSERT_TRUE(10 == e.BitDepth() || 12 == e.BitDepth());
bool same_fn = av1_highbd_dist_wtd_convolve_x_c == e.TestFunction();
ASSERT_TRUE(same_fn);
if (e.BitDepth() == 10) {
++num_10;
} else {
++num_12;
}
}
ASSERT_EQ(num_10, num_12);
}
template <typename T>
::testing::internal::ParamGenerator<TestParam<T>> BuildHighbdLumaParams(
T test_func) {
return ::testing::ValuesIn(GetHighbdLumaTestParams(test_func));
}
// Compound cases also need to test different frame offsets and weightings.
class CompoundParam {
public:
CompoundParam(int fwd_offset, int bck_offset)
: fwd_offset_(fwd_offset), bck_offset_(bck_offset) {}
bool UseWtdCompAvg() const {
return bck_offset_ != (1 << (DIST_PRECISION_BITS - 1)) ||
fwd_offset_ != (1 << (DIST_PRECISION_BITS - 1));
}
int FwdOffset() const { return fwd_offset_; }
int BckOffset() const { return bck_offset_; }
private:
int fwd_offset_;
int bck_offset_;
};
std::vector<CompoundParam> GetCompoundParams() {
std::vector<CompoundParam> result;
result.push_back(CompoundParam(1 << (DIST_PRECISION_BITS - 1),
1 << (DIST_PRECISION_BITS - 1)));
for (int k = 0; k < 2; ++k) {
for (int l = 0; l < 4; ++l) {
result.push_back(CompoundParam(quant_dist_lookup_table[l][k],
quant_dist_lookup_table[l][1 - k]));
}
}
return result;
}
TEST_F(AV1ConvolveParametersTest, GetCompoundParams) {
auto v = GetCompoundParams();
ASSERT_EQ(9U, v.size());
ASSERT_FALSE(v[0].UseWtdCompAvg());
for (size_t i = 1; i < v.size(); ++i) {
ASSERT_TRUE(v[i].UseWtdCompAvg());
}
}
////////////////////////////////////////////////
// Compound convolve-x functions (low bit-depth)
////////////////////////////////////////////////
ConvolveParams GetConvolveParams(int do_average, CONV_BUF_TYPE *conv_buf,
int width, int bit_depth,
const CompoundParam &compound) {
ConvolveParams conv_params =
get_conv_params_no_round(do_average, 0, conv_buf, width, 1, bit_depth);
(void)compound;
conv_params.fwd_offset = compound.FwdOffset();
conv_params.bck_offset = compound.BckOffset();
return conv_params;
}
class AV1ConvolveXCompoundTest : public AV1ConvolveTest<convolve_x_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (int sub_pix = 0; sub_pix < 16; ++sub_pix) {
for (int f = EIGHTTAP_REGULAR; f < INTERP_FILTERS_ALL; ++f) {
for (const auto &c : compound_params) {
TestConvolve(sub_pix, static_cast<InterpFilter>(f), c);
}
}
}
}
protected:
virtual const InterpFilterParams *FilterParams(InterpFilter f,
const BlockSize &block) const {
return av1_get_interp_filter_params_with_block_size(f, block.Width());
}
virtual convolve_x_func ReferenceFunc() const {
return av1_dist_wtd_convolve_x;
}
private:
void TestConvolve(const int sub_pix, const InterpFilter filter,
const CompoundParam &compound) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const uint8_t *input1 = FirstRandomInput8(GetParam());
const uint8_t *input2 = SecondRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(ReferenceFunc(), input1, input2, reference, reference_conv_buf,
compound, sub_pix, filter);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound, sub_pix, filter);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
private:
void Convolve(convolve_x_func test_func, const uint8_t *src1,
const uint8_t *src2, uint8_t *dst, CONV_BUF_TYPE *conv_buf,
const CompoundParam &compound, const int sub_pix,
const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const InterpFilterParams *filter_params =
FilterParams(filter, GetParam().Block());
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, 8, compound);
test_func(src1, width, dst, kOutputStride, width, height, filter_params,
sub_pix, &conv_params);
conv_params = GetConvolveParams(1, conv_buf, kOutputStride, 8, compound);
test_func(src2, width, dst, kOutputStride, width, height, filter_params,
sub_pix, &conv_params);
}
};
TEST_P(AV1ConvolveXCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveXCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_x_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveXCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_x_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveXCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_x_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1ConvolveXCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_x_neon));
#endif
/////////////////////////////////////////////////
// Compound convolve-x functions (high bit-depth)
/////////////////////////////////////////////////
class AV1ConvolveXHighbdCompoundTest
: public AV1ConvolveTest<highbd_convolve_x_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (int sub_pix = 0; sub_pix < 16; ++sub_pix) {
for (int f = EIGHTTAP_REGULAR; f < INTERP_FILTERS_ALL; ++f) {
for (const auto &c : compound_params) {
TestConvolve(sub_pix, static_cast<InterpFilter>(f), c);
}
}
}
}
protected:
virtual const InterpFilterParams *FilterParams(InterpFilter f,
const BlockSize &block) const {
return av1_get_interp_filter_params_with_block_size(f, block.Width());
}
virtual highbd_convolve_x_func ReferenceFunc() const {
return av1_highbd_dist_wtd_convolve_x;
}
private:
void TestConvolve(const int sub_pix, const InterpFilter filter,
const CompoundParam &compound) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const uint16_t *input1 = FirstRandomInput16(GetParam());
const uint16_t *input2 = SecondRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(ReferenceFunc(), input1, input2, reference, reference_conv_buf,
compound, sub_pix, filter);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound, sub_pix, filter);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
void Convolve(highbd_convolve_x_func test_func, const uint16_t *src1,
const uint16_t *src2, uint16_t *dst, CONV_BUF_TYPE *conv_buf,
const CompoundParam &compound, const int sub_pix,
const InterpFilter filter) {
const int width = GetParam().Block().Width();
const int height = GetParam().Block().Height();
const int bit_depth = GetParam().BitDepth();
const InterpFilterParams *filter_params =
FilterParams(filter, GetParam().Block());
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, bit_depth, compound);
test_func(src1, width, dst, kOutputStride, width, height, filter_params,
sub_pix, &conv_params, bit_depth);
conv_params =
GetConvolveParams(1, conv_buf, kOutputStride, bit_depth, compound);
test_func(src2, width, dst, kOutputStride, width, height, filter_params,
sub_pix, &conv_params, bit_depth);
}
};
TEST_P(AV1ConvolveXHighbdCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(
C, AV1ConvolveXHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_x_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AV1ConvolveXHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_x_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1ConvolveXHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_x_avx2));
#endif
////////////////////////////////////////////////
// Compound convolve-y functions (low bit-depth)
////////////////////////////////////////////////
// Note that the X and Y convolve functions have the same type signature and
// logic; they only differentiate the filter parameters and reference function.
class AV1ConvolveYCompoundTest : public AV1ConvolveXCompoundTest {
protected:
virtual const InterpFilterParams *FilterParams(
InterpFilter f, const BlockSize &block) const override {
return av1_get_interp_filter_params_with_block_size(f, block.Height());
}
virtual convolve_x_func ReferenceFunc() const override {
return av1_dist_wtd_convolve_y;
}
};
TEST_P(AV1ConvolveYCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1ConvolveYCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_y_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1ConvolveYCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_y_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1ConvolveYCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_y_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1ConvolveYCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_y_neon));
#endif
/////////////////////////////////////////////////
// Compound convolve-y functions (high bit-depth)
/////////////////////////////////////////////////
// Again, the X and Y convolve functions have the same type signature and logic.
class AV1ConvolveYHighbdCompoundTest : public AV1ConvolveXHighbdCompoundTest {
virtual highbd_convolve_x_func ReferenceFunc() const override {
return av1_highbd_dist_wtd_convolve_y;
}
virtual const InterpFilterParams *FilterParams(
InterpFilter f, const BlockSize &block) const override {
return av1_get_interp_filter_params_with_block_size(f, block.Height());
}
};
TEST_P(AV1ConvolveYHighbdCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(
C, AV1ConvolveYHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_y_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AV1ConvolveYHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_y_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1ConvolveYHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_y_avx2));
#endif
//////////////////////////////////////////////////////
// Compound convolve-2d-copy functions (low bit-depth)
//////////////////////////////////////////////////////
typedef void (*compound_conv_2d_copy_func)(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w,
int h, ConvolveParams *conv_params);
class AV1Convolve2DCopyCompoundTest
: public AV1ConvolveTest<compound_conv_2d_copy_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (const auto &compound : compound_params) {
TestConvolve(compound);
}
}
private:
void TestConvolve(const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const uint8_t *input1 = FirstRandomInput8(GetParam());
const uint8_t *input2 = SecondRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(av1_dist_wtd_convolve_2d_copy, input1, input2, reference,
reference_conv_buf, compound);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
private:
void Convolve(compound_conv_2d_copy_func test_func, const uint8_t *src1,
const uint8_t *src2, uint8_t *dst, uint16_t *conv_buf,
const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, 8, compound);
test_func(src1, width, dst, kOutputStride, width, height, &conv_params);
conv_params = GetConvolveParams(1, conv_buf, kOutputStride, 8, compound);
test_func(src2, width, dst, kOutputStride, width, height, &conv_params);
}
};
TEST_P(AV1Convolve2DCopyCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1Convolve2DCopyCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_copy_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1Convolve2DCopyCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_copy_sse2));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1Convolve2DCopyCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_copy_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AV1Convolve2DCopyCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_copy_neon));
#endif
///////////////////////////////////////////////////////
// Compound convolve-2d-copy functions (high bit-depth)
///////////////////////////////////////////////////////
typedef void (*highbd_compound_conv_2d_copy_func)(const uint16_t *src,
int src_stride, uint16_t *dst,
int dst_stride, int w, int h,
ConvolveParams *conv_params,
int bd);
class AV1Convolve2DCopyHighbdCompoundTest
: public AV1ConvolveTest<highbd_compound_conv_2d_copy_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (const auto &compound : compound_params) {
TestConvolve(compound);
}
}
private:
void TestConvolve(const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const uint16_t *input1 = FirstRandomInput16(GetParam());
const uint16_t *input2 = SecondRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(av1_highbd_dist_wtd_convolve_2d_copy, input1, input2, reference,
reference_conv_buf, compound);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
void Convolve(highbd_compound_conv_2d_copy_func test_func,
const uint16_t *src1, const uint16_t *src2, uint16_t *dst,
uint16_t *conv_buf, const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const int bit_depth = GetParam().BitDepth();
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, bit_depth, compound);
test_func(src1, width, dst, kOutputStride, width, height, &conv_params,
bit_depth);
conv_params =
GetConvolveParams(1, conv_buf, kOutputStride, bit_depth, compound);
test_func(src2, width, dst, kOutputStride, width, height, &conv_params,
bit_depth);
}
};
TEST_P(AV1Convolve2DCopyHighbdCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(
C, AV1Convolve2DCopyHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_copy_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AV1Convolve2DCopyHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_copy_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1Convolve2DCopyHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_copy_avx2));
#endif
/////////////////////////////////////////////////
// Compound convolve-2d functions (low bit-depth)
/////////////////////////////////////////////////
class AV1Convolve2DCompoundTest : public AV1ConvolveTest<convolve_2d_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (int h_f = EIGHTTAP_REGULAR; h_f < INTERP_FILTERS_ALL; ++h_f) {
for (int v_f = EIGHTTAP_REGULAR; v_f < INTERP_FILTERS_ALL; ++v_f) {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (const auto &compound : compound_params) {
TestConvolve(static_cast<InterpFilter>(h_f),
static_cast<InterpFilter>(v_f), sub_x, sub_y,
compound);
}
}
}
}
}
}
private:
void TestConvolve(const InterpFilter h_f, const InterpFilter v_f,
const int sub_x, const int sub_y,
const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const uint8_t *input1 = FirstRandomInput8(GetParam());
const uint8_t *input2 = SecondRandomInput8(GetParam());
DECLARE_ALIGNED(32, uint8_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(av1_dist_wtd_convolve_2d, input1, input2, reference,
reference_conv_buf, compound, h_f, v_f, sub_x, sub_y);
DECLARE_ALIGNED(32, uint8_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound, h_f, v_f, sub_x, sub_y);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
private:
void Convolve(convolve_2d_func test_func, const uint8_t *src1,
const uint8_t *src2, uint8_t *dst, uint16_t *conv_buf,
const CompoundParam &compound, const InterpFilter h_f,
const InterpFilter v_f, const int sub_x, const int sub_y) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(h_f, width);
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(v_f, height);
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, 8, compound);
test_func(src1, width, dst, kOutputStride, width, height, filter_params_x,
filter_params_y, sub_x, sub_y, &conv_params);
conv_params = GetConvolveParams(1, conv_buf, kOutputStride, 8, compound);
test_func(src2, width, dst, kOutputStride, width, height, filter_params_x,
filter_params_y, sub_x, sub_y, &conv_params);
}
};
TEST_P(AV1Convolve2DCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(C, AV1Convolve2DCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_c));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, AV1Convolve2DCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_sse2));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(SSSE3, AV1Convolve2DCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_ssse3));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1Convolve2DCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1Convolve2DCompoundTest,
BuildLowbdLumaParams(av1_dist_wtd_convolve_2d_neon));
#endif
//////////////////////////////////////////////////
// Compound convolve-2d functions (high bit-depth)
//////////////////////////////////////////////////
class AV1Convolve2DHighbdCompoundTest
: public AV1ConvolveTest<highbd_convolve_2d_func> {
public:
void RunTest() {
auto compound_params = GetCompoundParams();
for (int h_f = EIGHTTAP_REGULAR; h_f < INTERP_FILTERS_ALL; ++h_f) {
for (int v_f = EIGHTTAP_REGULAR; v_f < INTERP_FILTERS_ALL; ++v_f) {
for (int sub_x = 0; sub_x < 16; ++sub_x) {
for (int sub_y = 0; sub_y < 16; ++sub_y) {
for (const auto &compound : compound_params) {
TestConvolve(static_cast<InterpFilter>(h_f),
static_cast<InterpFilter>(v_f), sub_x, sub_y,
compound);
}
}
}
}
}
}
private:
void TestConvolve(const InterpFilter h_f, const InterpFilter v_f,
const int sub_x, const int sub_y,
const CompoundParam &compound) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const uint16_t *input1 = FirstRandomInput16(GetParam());
const uint16_t *input2 = SecondRandomInput16(GetParam());
DECLARE_ALIGNED(32, uint16_t, reference[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, reference_conv_buf[MAX_SB_SQUARE]);
Convolve(av1_highbd_dist_wtd_convolve_2d, input1, input2, reference,
reference_conv_buf, compound, h_f, v_f, sub_x, sub_y);
DECLARE_ALIGNED(32, uint16_t, test[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, CONV_BUF_TYPE, test_conv_buf[MAX_SB_SQUARE]);
Convolve(GetParam().TestFunction(), input1, input2, test, test_conv_buf,
compound, h_f, v_f, sub_x, sub_y);
AssertOutputBufferEq(reference_conv_buf, test_conv_buf, width, height);
AssertOutputBufferEq(reference, test, width, height);
}
private:
void Convolve(highbd_convolve_2d_func test_func, const uint16_t *src1,
const uint16_t *src2, uint16_t *dst, uint16_t *conv_buf,
const CompoundParam &compound, const InterpFilter h_f,
const InterpFilter v_f, const int sub_x, const int sub_y) {
const BlockSize &block = GetParam().Block();
const int width = block.Width();
const int height = block.Height();
const InterpFilterParams *filter_params_x =
av1_get_interp_filter_params_with_block_size(h_f, width);
const InterpFilterParams *filter_params_y =
av1_get_interp_filter_params_with_block_size(v_f, height);
const int bit_depth = GetParam().BitDepth();
ConvolveParams conv_params =
GetConvolveParams(0, conv_buf, kOutputStride, bit_depth, compound);
test_func(src1, width, dst, kOutputStride, width, height, filter_params_x,
filter_params_y, sub_x, sub_y, &conv_params, bit_depth);
conv_params =
GetConvolveParams(1, conv_buf, kOutputStride, bit_depth, compound);
test_func(src2, width, dst, kOutputStride, width, height, filter_params_x,
filter_params_y, sub_x, sub_y, &conv_params, bit_depth);
}
};
TEST_P(AV1Convolve2DHighbdCompoundTest, RunTest) { RunTest(); }
INSTANTIATE_TEST_SUITE_P(
C, AV1Convolve2DHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_c));
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AV1Convolve2DHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1Convolve2DHighbdCompoundTest,
BuildHighbdLumaParams(av1_highbd_dist_wtd_convolve_2d_avx2));
#endif
} // namespace