blob: b87bb7da035e3101e6fe830788010132944f3306 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_COMMON_BLOCKD_H_
#define AOM_AV1_COMMON_BLOCKD_H_
#include "config/aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_scale/yv12config.h"
#include "av1/common/alloccommon.h"
#include "av1/common/cdef_block.h"
#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#define USE_B_QUANT_NO_TRELLIS 1
#define MAX_MB_PLANE 3
#define MAX_DIFFWTD_MASK_BITS 1
#define INTERINTRA_WEDGE_SIGN 0
#define MAX_NUM_NEIGHBORS 2
/*!\cond */
// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
enum {
DIFFWTD_38 = 0,
DIFFWTD_38_INV,
DIFFWTD_MASK_TYPES,
} UENUM1BYTE(DIFFWTD_MASK_TYPE);
enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
INTRA_ONLY_FRAME = 2, // replaces intra-only
S_FRAME = 3,
FRAME_TYPES,
} UENUM1BYTE(FRAME_TYPE);
static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}
static INLINE int is_inter_mode(PREDICTION_MODE mode) {
return mode >= INTER_MODE_START && mode < INTER_MODE_END;
}
typedef struct {
uint16_t *plane[MAX_MB_PLANE];
int stride[MAX_MB_PLANE];
} BUFFER_SET;
static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
}
static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
}
static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
static const PREDICTION_MODE lut[] = {
DC_PRED, // DC_PRED
V_PRED, // V_PRED
H_PRED, // H_PRED
D45_PRED, // D45_PRED
D135_PRED, // D135_PRED
D113_PRED, // D113_PRED
D157_PRED, // D157_PRED
D203_PRED, // D203_PRED
D67_PRED, // D67_PRED
SMOOTH_PRED, // SMOOTH_PRED
SMOOTH_V_PRED, // SMOOTH_V_PRED
SMOOTH_H_PRED, // SMOOTH_H_PRED
PAETH_PRED, // PAETH_PRED
NEARMV, // NEARMV
GLOBALMV, // GLOBALMV
NEWMV, // NEWMV
#if IMPROVED_AMVD
NEWMV, // AMVDNEWMV
#endif // IMPROVED_AMVD
#if CONFIG_WARPMV
WARPMV, // WARPMV
#endif // CONFIG_WARPMV
NEARMV, // NEAR_NEARMV
NEARMV, // NEAR_NEWMV
NEWMV, // NEW_NEARMV
GLOBALMV, // GLOBAL_GLOBALMV
NEWMV, // NEW_NEWMV
#if CONFIG_JOINT_MVD
NEWMV, // JOINT_NEWMV
#endif // CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
NEWMV, // JOINT_AMVDNEWMV
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#if CONFIG_OPTFLOW_REFINEMENT
NEARMV, // NEAR_NEARMV_OPTFLOW
NEARMV, // NEAR_NEWMV_OPTFLOW
NEWMV, // NEW_NEARMV_OPTFLOW
NEWMV, // NEW_NEWMV_OPTFLOW
#if CONFIG_JOINT_MVD
NEWMV, // JOINT_NEWMV_OPTFLOW
#endif // CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
NEWMV, // JOINT_AMVDNEWMV_OPTFLOW
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#endif // CONFIG_OPTFLOW_REFINEMENT
};
assert(NELEMENTS(lut) == MB_MODE_COUNT);
assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
return lut[mode];
}
static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
static const PREDICTION_MODE lut[] = {
MB_MODE_COUNT, // DC_PRED
MB_MODE_COUNT, // V_PRED
MB_MODE_COUNT, // H_PRED
MB_MODE_COUNT, // D45_PRED
MB_MODE_COUNT, // D135_PRED
MB_MODE_COUNT, // D113_PRED
MB_MODE_COUNT, // D157_PRED
MB_MODE_COUNT, // D203_PRED
MB_MODE_COUNT, // D67_PRED
MB_MODE_COUNT, // SMOOTH_PRED
MB_MODE_COUNT, // SMOOTH_V_PRED
MB_MODE_COUNT, // SMOOTH_H_PRED
MB_MODE_COUNT, // PAETH_PRED
MB_MODE_COUNT, // NEARMV
MB_MODE_COUNT, // GLOBALMV
MB_MODE_COUNT, // NEWMV
#if IMPROVED_AMVD
MB_MODE_COUNT, // AMVDNEWMV
#endif // IMPROVED_AMVD
#if CONFIG_WARPMV
MB_MODE_COUNT, // WARPMV
#endif // CONFIG_WARPMV
NEARMV, // NEAR_NEARMV
NEWMV, // NEAR_NEWMV
NEARMV, // NEW_NEARMV
GLOBALMV, // GLOBAL_GLOBALMV
NEWMV, // NEW_NEWMV
#if CONFIG_JOINT_MVD
NEARMV, // JOINT_NEWMV
#endif // CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
NEARMV, // JOINT_AMVDNEWMV
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#if CONFIG_OPTFLOW_REFINEMENT
NEARMV, // NEAR_NEARMV_OPTFLOW
NEWMV, // NEAR_NEWMV_OPTFLOW
NEARMV, // NEW_NEARMV_OPTFLOW
NEWMV, // NEW_NEWMV_OPTFLOW
#if CONFIG_JOINT_MVD
NEARMV, // JOINT_NEWMV_OPTFLOW
#endif // CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
NEARMV, // JOINT_AMVDNEWMV_OPTFLOW
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#endif // CONFIG_OPTFLOW_REFINEMENT
};
assert(NELEMENTS(lut) == MB_MODE_COUNT);
assert(is_inter_compound_mode(mode));
return lut[mode];
}
#if CONFIG_JOINT_MVD
// return whether current mode is joint MVD coding mode
static INLINE int is_joint_mvd_coding_mode(PREDICTION_MODE mode) {
return mode == JOINT_NEWMV
#if IMPROVED_AMVD
|| mode == JOINT_AMVDNEWMV
#endif // IMPROVED_AMVD
#if CONFIG_OPTFLOW_REFINEMENT
|| mode == JOINT_NEWMV_OPTFLOW
#if IMPROVED_AMVD
|| mode == JOINT_AMVDNEWMV_OPTFLOW
#endif // IMPROVED_AMVD
#endif // CONFIG_OPTFLOW_REFINEMENT
;
}
#endif // CONFIG_JOINT_MVD
static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEAR_NEARMV_OPTFLOW || mode == NEAR_NEWMV_OPTFLOW ||
mode == NEW_NEARMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEARMV);
}
static INLINE int have_nearmv_newmv_in_inter_mode(PREDICTION_MODE mode) {
return mode == NEAR_NEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_JOINT_MVD
is_joint_mvd_coding_mode(mode) ||
#endif // CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
mode == JOINT_AMVDNEWMV ||
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#if IMPROVED_AMVD && CONFIG_JOINT_MVD && CONFIG_OPTFLOW_REFINEMENT
mode == JOINT_AMVDNEWMV_OPTFLOW ||
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD && CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEARMV;
}
static INLINE int have_newmv_in_each_reference(PREDICTION_MODE mode) {
return mode == NEWMV ||
#if IMPROVED_AMVD
mode == AMVDNEWMV ||
#endif // IMPROVED_AMVD
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV;
}
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
// return whether current mode is joint AMVD coding mode
static INLINE int is_joint_amvd_coding_mode(PREDICTION_MODE mode) {
return mode == JOINT_AMVDNEWMV
#if CONFIG_OPTFLOW_REFINEMENT
|| mode == JOINT_AMVDNEWMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
;
}
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
#if CONFIG_IMPROVED_JMVD
// Scale the MVD for joint MVD coding mode based on the jmvd_scale_mode.
// The supported scale modes for JOINT_NEWMV mode is 0, 1, 2, 3, and 4.
// The supported scale modes for JOINT_AMVDNEWMV mode is 0, 1, and 2.
static INLINE void scale_other_mvd(MV *other_mvd, int jmvd_scaled_mode,
PREDICTION_MODE mode) {
// This scaling factor is only applied to joint mvd coding mode
if (!is_joint_mvd_coding_mode(mode)) return;
#if IMPROVED_AMVD
if (is_joint_amvd_coding_mode(mode)) {
if (jmvd_scaled_mode == 1) {
other_mvd->row = other_mvd->row * 2;
other_mvd->col = other_mvd->col * 2;
} else if (jmvd_scaled_mode == 2) {
other_mvd->row = other_mvd->row / 2;
other_mvd->col = other_mvd->col / 2;
}
assert(jmvd_scaled_mode < JOINT_AMVD_SCALE_FACTOR_CNT);
return;
}
#endif // IMPROVED_AMVD
if (is_joint_mvd_coding_mode(mode)) {
if (jmvd_scaled_mode == 1) {
other_mvd->row = other_mvd->row * 2;
} else if (jmvd_scaled_mode == 2) {
other_mvd->col = other_mvd->col * 2;
} else if (jmvd_scaled_mode == 3) {
other_mvd->row = other_mvd->row / 2;
} else if (jmvd_scaled_mode == 4) {
other_mvd->col = other_mvd->col / 2;
}
assert(jmvd_scaled_mode < JOINT_NEWMV_SCALE_FACTOR_CNT);
}
}
#endif // CONFIG_IMPROVED_JMVD
static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAR_NEWMV ||
#if IMPROVED_AMVD
mode == AMVDNEWMV ||
#endif // IMPROVED_AMVD
#if CONFIG_JOINT_MVD
is_joint_mvd_coding_mode(mode) ||
#endif // CONFIG_JOINT_MVD
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW ||
mode == NEW_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEARMV);
}
static INLINE int have_drl_index(PREDICTION_MODE mode) {
return have_nearmv_in_inter_mode(mode) || have_newmv_in_inter_mode(mode);
}
static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
}
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
typedef struct {
// Value of base colors for Y, U, and V
uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
// Number of base colors for Y (0) and UV (1)
uint8_t palette_size[2];
} PALETTE_MODE_INFO;
typedef struct {
FILTER_INTRA_MODE filter_intra_mode;
uint8_t use_filter_intra;
} FILTER_INTRA_MODE_INFO;
static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
};
#if CONFIG_RD_DEBUG
#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
#endif
typedef struct RD_STATS {
int rate;
int64_t dist;
// Please be careful of using rdcost, it's not guaranteed to be set all the
// time.
// TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
// these functions, make sure rdcost is always up-to-date according to
// rate/dist.
int64_t rdcost;
int64_t sse;
int skip_txfm; // sse should equal to dist when skip_txfm == 1
int zero_rate;
#if CONFIG_RD_DEBUG
int txb_coeff_cost[MAX_MB_PLANE];
// TODO(jingning): Temporary solution to silence stack over-size warning
// in handle_inter_mode. This should be fixed after rate-distortion
// optimization refactoring.
int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
[TXB_COEFF_COST_MAP_SIZE];
#endif // CONFIG_RD_DEBUG
} RD_STATS;
// This struct is used to group function args that are commonly
// sent together in functions related to interinter compound modes
typedef struct {
uint8_t *seg_mask;
int8_t wedge_index;
int8_t wedge_sign;
DIFFWTD_MASK_TYPE mask_type;
COMPOUND_TYPE type;
} INTERINTER_COMPOUND_DATA;
#if CONFIG_OPTFLOW_REFINEMENT
// Macros for optical flow experiment where offsets are added in nXn blocks
// rather than adding a single offset to the entire prediction unit.
#define OF_MIN_BSIZE_LOG2 2
#define OF_BSIZE_LOG2 3
// Block size to use to divide up the prediction unit
#define OF_MIN_BSIZE (1 << OF_MIN_BSIZE_LOG2)
#define OF_BSIZE (1 << OF_BSIZE_LOG2)
#define N_OF_OFFSETS_1D (1 << (MAX_SB_SIZE_LOG2 - OF_BSIZE_LOG2))
// Maximum number of offsets to be computed
#define N_OF_OFFSETS (N_OF_OFFSETS_1D * N_OF_OFFSETS_1D)
#else
#define N_OF_OFFSETS 1
#endif // CONFIG_OPTFLOW_REFINEMENT
/*! \brief Stores the coordinate/bsize for chroma plane. */
typedef struct CHROMA_REF_INFO {
/*! \brief Whether the current luma block also contains chroma info. */
int is_chroma_ref;
/*! \brief Whether the luma and chroma block has different coordinate. */
int offset_started;
/*! \brief If offset_started, this stores the mi_row of the chroma block. */
int mi_row_chroma_base;
/*! \brief If offset_started, this stores the mi_row of the chroma block. */
int mi_col_chroma_base;
/*! \brief The block size of the current luma block. */
BLOCK_SIZE bsize;
/*! \brief Stores the size of that the current chroma block needs to be coded
* at. */
BLOCK_SIZE bsize_base;
} CHROMA_REF_INFO;
#define INTER_TX_SIZE_BUF_LEN 16
#define TXK_TYPE_BUF_LEN 64
/*!\endcond */
/*! \brief Stores the prediction/txfm mode of the current coding block
*/
typedef struct MB_MODE_INFO {
/*****************************************************************************
* \name General Info of the Coding Block
****************************************************************************/
/**@{*/
/*! \brief The block size of the current coding block */
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type[PARTITION_STRUCTURE_NUM];
/*! \brief Starting mi_row of current coding block */
int mi_row_start;
/*! \brief Starting mi_col of current coding block */
int mi_col_start;
/*! \brief The partition type of the current coding block. */
PARTITION_TYPE partition;
/*! \brief The prediction mode used */
PREDICTION_MODE mode;
#if CONFIG_IMPROVED_JMVD
/*! \brief The JMVD scaling mode for the current coding block. The supported
* scale modes for JOINT_NEWMV mode is 0, 1, 2, 3, and 4. The supported scale
* modes for JOINT_AMVDNEWMV mode is 0, 1, and 2.*/
int jmvd_scale_mode;
#endif // CONFIG_IMPROVED_JMVD
/*! \brief The forward skip mode for the current coding block. */
uint8_t fsc_mode[2];
/*! \brief The UV mode when intra is used */
UV_PREDICTION_MODE uv_mode;
/*! \brief The q index for the current coding block. */
int current_qindex;
/**@}*/
/*****************************************************************************
* \name Inter Mode Info
****************************************************************************/
/**@{*/
/*! \brief The motion vectors used by the current inter mode */
int_mv mv[2];
/*! \brief The reference frames for the MV */
MV_REFERENCE_FRAME ref_frame[2];
#if CONFIG_NEW_TX_PARTITION
/*! \brief Transform partition type. */
TX_PARTITION_TYPE tx_partition_type[INTER_TX_SIZE_BUF_LEN];
#endif // CONFIG_NEW_TX_PARTITION
/*! \brief Filter used in subpel interpolation. */
int interp_fltr;
#if CONFIG_FLEX_MVRES
/*! The maximum mv_precision allowed for the given partition block. */
MvSubpelPrecision max_mv_precision;
/*! The mv_precision used by the given partition block. */
MvSubpelPrecision pb_mv_precision;
/*! The most probable mv_precision used by the given partition block. */
MvSubpelPrecision most_probable_pb_mv_precision;
/*!
* The precision_set of the current frame.
*/
uint8_t mb_precision_set;
#endif
/*! \brief The motion mode used by the inter prediction. */
MOTION_MODE motion_mode;
/*! \brief Number of samples used by spatial warp prediction */
uint8_t num_proj_ref;
/*! \brief The number of overlapped neighbors above/left for obmc/warp motion
* mode. */
uint8_t overlappable_neighbors[2];
/*! \brief The parameters used in warp motion mode. */
#if CONFIG_EXTENDED_WARP_PREDICTION
WarpedMotionParams wm_params[2];
#else
WarpedMotionParams wm_params;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
/*! \brief The type of intra mode used by inter-intra */
INTERINTRA_MODE interintra_mode;
/*! \brief The type of wedge used in interintra mode. */
int8_t interintra_wedge_index;
/*! \brief Struct that stores the data used in interinter compound mode. */
INTERINTER_COMPOUND_DATA interinter_comp;
#if CONFIG_BAWP
/*! \brief The block level bawp enabling flag*/
int8_t bawp_flag;
/*! \brief The bawp parameters weight*/
int16_t bawp_alpha[3][2]; //[yuv][ref0/1], current only [0][0] is used.
/*! \brief The bawp parameters offset*/
int32_t bawp_beta[3][2]; //[yuv][ref0/1], current only [0][0] is used.
#endif // CONFIG_BAWP
/**@}*/
/*****************************************************************************
* \name Intra Mode Info
****************************************************************************/
/**@{*/
/*! \brief Directional mode delta: the angle is base angle + (angle_delta *
* step). */
int8_t angle_delta[PLANE_TYPES];
/*! \brief The type of filter intra mode used (if applicable). */
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
/*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
int8_t cfl_alpha_signs;
/*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
uint8_t cfl_alpha_idx;
#if CONFIG_IMPROVED_CFL
/*! \brief Chroma from Luma: Index of the CfL mode */
uint8_t cfl_idx;
/*! \brief The implicitly derived scaling factors*/
int cfl_implicit_alpha[2]; //[u/v]
#endif
/*! \brief Stores the size and colors of palette mode */
PALETTE_MODE_INFO palette_mode_info;
/*! \brief Reference line index for multiple reference line selection. */
uint8_t mrl_index;
#if CONFIG_AIMC
/*! \brief mode index of y mode and y delta angle after re-ordering. */
uint8_t y_mode_idx;
/*! \brief mode index of uv mode after re-ordering. */
uint8_t uv_mode_idx;
/*! \brief joint mode index of y mode and y delta angle before re-ordering. */
uint8_t joint_y_mode_delta_angle;
/*! \brief re-ordered mode list for y mode and y delta angle. */
uint8_t y_intra_mode_list[LUMA_MODE_COUNT];
/*! \brief re-ordered mode list for uv mode. */
uint8_t uv_intra_mode_list[UV_INTRA_MODES];
#endif // CONFIG_AIMC
/**@}*/
/*****************************************************************************
* \name Transform Info
****************************************************************************/
/**@{*/
/*! \brief Whether to skip transforming and sending. */
int8_t skip_txfm[PARTITION_STRUCTURE_NUM];
/*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
TX_SIZE tx_size;
/*! \brief Transform size when recursive txfm tree is on. */
uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN];
/**@}*/
/*****************************************************************************
* \name Loop Filter Info
****************************************************************************/
/**@{*/
/*! \copydoc MACROBLOCKD::delta_lf_from_base */
int8_t delta_lf_from_base;
/*! \copydoc MACROBLOCKD::delta_lf */
int8_t delta_lf[FRAME_LF_COUNT];
/**@}*/
/*****************************************************************************
* \name Bitfield for Memory Reduction
****************************************************************************/
/**@{*/
/*! \brief The segment id */
uint8_t segment_id : 3;
/*! \brief Only valid when temporal update if off. */
uint8_t seg_id_predicted : 1;
/*! \brief Which ref_mv to use */
uint8_t ref_mv_idx : 3;
/*! \brief Inter skip mode */
#if CONFIG_SKIP_MODE_ENHANCEMENT
uint8_t skip_mode : 2;
#else
uint8_t skip_mode : 1;
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
/*! \brief Whether intrabc is used. */
uint8_t use_intrabc[PARTITION_STRUCTURE_NUM];
#if CONFIG_BVP_IMPROVEMENT
/*! \brief Intrabc BV prediction mode. */
uint8_t intrabc_mode;
/*! \brief Index of ref_bv. */
uint8_t intrabc_drl_idx;
/*! \brief Which ref_bv to use. */
int_mv ref_bv;
#endif // CONFIG_BVP_IMPROVEMENT
#if CONFIG_WARP_REF_LIST
/*! \brief Which index to use for warp base parameter. */
uint8_t warp_ref_idx;
/*! \brief Maximum number of warp reference indices to use for warp base
* parameter. */
uint8_t max_num_warp_candidates;
#endif // CONFIG_WARP_REF_LIST
/*! \brief Indicates if masked compound is used(1) or not (0). */
uint8_t comp_group_idx : 1;
/*! \brief Whether to use interintra wedge */
uint8_t use_wedge_interintra : 1;
/*! \brief CDEF strength per BLOCK_64X64 */
int8_t cdef_strength : 4;
/*! \brief chroma block info for sub-8x8 cases */
CHROMA_REF_INFO chroma_ref_info;
#if CONFIG_CCSO
#if CONFIG_CCSO_EXT
/*! \brief Whether to use cross-component sample offset for the Y plane. */
uint8_t ccso_blk_y : 2;
#endif
/*! \brief Whether to use cross-component sample offset for the U plane. */
uint8_t ccso_blk_u : 2;
/*! \brief Whether to use cross-component sample offset for the V plane. */
uint8_t ccso_blk_v : 2;
#endif
/**@}*/
#if CONFIG_RD_DEBUG
/*! \brief RD info used for debugging */
RD_STATS rd_stats;
/*! \brief The current row in unit of 4x4 blocks for debugging */
int mi_row;
/*! \brief The current col in unit of 4x4 blocks for debugging */
int mi_col;
#endif
#if CONFIG_INSPECTION
/*! \brief Whether we are skipping the current rows or columns. */
int16_t tx_skip[TXK_TYPE_BUF_LEN];
#endif
} MB_MODE_INFO;
#if CONFIG_C071_SUBBLK_WARPMV
/*! \brief Stores the subblock motion info of the current coding block
*/
// Note that this can not be stored in MB_MODE_INFO, because The MB_MODE_INFO is
// only physically stored for the first sunblock of a block, the info of the
// rest subblocks in the same block are only pointed to the first subblock and
// is not physically stored.
typedef struct SUBMB_INFO {
/*! \brief Stored subblock mv for reference. */
int_mv mv[2];
} SUBMB_INFO;
#endif // CONFIG_C071_SUBBLK_WARPMV
/*!\cond */
// Get the start plane for semi-decoupled partitioning
static INLINE int get_partition_plane_start(int tree_type) {
return tree_type == CHROMA_PART;
}
// Get the end plane for semi-decoupled partitioning
static INLINE int get_partition_plane_end(int tree_type, int num_planes) {
return (tree_type == LUMA_PART) ? 1 : num_planes;
}
/*! \brief Stores partition structure of the current block. */
typedef struct PARTITION_TREE {
/*! \brief Pointer to the parent node. */
struct PARTITION_TREE *parent;
/*! \brief Pointers to the children if the current block is further split. */
struct PARTITION_TREE *sub_tree[4];
/*! \brief The partition type used to split the current block. */
PARTITION_TYPE partition;
/*! \brief Block size of the current block. */
BLOCK_SIZE bsize;
/*! \brief Whether the chroma block info is ready. */
int is_settled;
/*! \brief The row coordinate of the current block in units of mi. */
int mi_row;
/*! \brief The col coordinate of the current block in units of mi. */
int mi_col;
/*! \brief The index of current node among its siblings. i.e. current ==
* current->parent->sub_tree[current->index]. */
int index;
/*! \brief Data related to the chroma block that the current luma block
* corresponds to. */
CHROMA_REF_INFO chroma_ref_info;
} PARTITION_TREE;
PARTITION_TREE *av1_alloc_ptree_node(PARTITION_TREE *parent, int index);
void av1_free_ptree_recursive(PARTITION_TREE *ptree);
typedef struct SB_INFO {
int mi_row;
int mi_col;
PARTITION_TREE *ptree_root[2];
#if CONFIG_FLEX_MVRES
MvSubpelPrecision sb_mv_precision;
#endif // CONFIG_FLEX_MVRES
} SB_INFO;
void av1_reset_ptree_in_sbi(SB_INFO *sbi, TREE_TYPE tree_type);
static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi, int tree_type) {
return mbmi->use_intrabc[tree_type == CHROMA_PART];
}
static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
assert(mode < UV_INTRA_MODES);
static const PREDICTION_MODE uv2y[] = {
DC_PRED, // UV_DC_PRED
V_PRED, // UV_V_PRED
H_PRED, // UV_H_PRED
D45_PRED, // UV_D45_PRED
D135_PRED, // UV_D135_PRED
D113_PRED, // UV_D113_PRED
D157_PRED, // UV_D157_PRED
D203_PRED, // UV_D203_PRED
D67_PRED, // UV_D67_PRED
SMOOTH_PRED, // UV_SMOOTH_PRED
SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
PAETH_PRED, // UV_PAETH_PRED
DC_PRED, // UV_CFL_PRED
INTRA_INVALID, // UV_INTRA_MODES
INTRA_INVALID, // UV_MODE_INVALID
};
return uv2y[mode];
}
static INLINE int is_inter_ref_frame(MV_REFERENCE_FRAME ref_frame) {
return ref_frame != INTRA_FRAME && ref_frame != INTRA_FRAME_INDEX &&
ref_frame != NONE_FRAME;
}
#if CONFIG_TIP
static INLINE int is_tip_ref_frame(MV_REFERENCE_FRAME ref_frame) {
return ref_frame == TIP_FRAME;
}
#endif // CONFIG_TIP
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi, int tree_type) {
return is_intrabc_block(mbmi, tree_type) ||
is_inter_ref_frame(mbmi->ref_frame[0]);
}
/*!\brief Returns whether the current block size is square */
static INLINE int is_square_block(BLOCK_SIZE bsize) {
return block_size_high[bsize] == block_size_wide[bsize];
}
#if CONFIG_EXT_RECUR_PARTITIONS
/*!\brief Returns whether the current block size has height > width. */
static INLINE bool is_tall_block(BLOCK_SIZE bsize) {
return block_size_high[bsize] > block_size_wide[bsize];
}
/*!\brief Returns whether the current block size has width > height. */
static INLINE bool is_wide_block(BLOCK_SIZE bsize) {
return block_size_high[bsize] < block_size_wide[bsize];
}
/*!\brief Returns the partition type for a non-square block based on the symbol
* transmitted through the bitstream. */
static INLINE PARTITION_TYPE get_partition_from_symbol_rec_block(
BLOCK_SIZE bsize, PARTITION_TYPE_REC partition_rec) {
if (is_wide_block(bsize))
return partition_map_from_symbol_block_wgth[partition_rec];
else if (is_tall_block(bsize))
return partition_map_from_symbol_block_hgtw[partition_rec];
else
return PARTITION_INVALID;
}
/*!\brief Returns the partition type for a non-square block based on the symbol
* transmitted through the bitstream when extended partition is disabled. */
static INLINE PARTITION_TYPE
get_partition_noext_from_symbol_rec_block(BLOCK_SIZE bsize, int symbol) {
if (symbol == 0) {
return PARTITION_NONE;
} else {
const int is_wide = is_wide_block(bsize);
const PARTITION_TYPE partition_longside_2way =
is_wide ? PARTITION_VERT : PARTITION_HORZ;
const PARTITION_TYPE partition_shortside_2way =
is_wide ? PARTITION_HORZ : PARTITION_VERT;
if (symbol == 1)
return partition_longside_2way;
else if (symbol == 2)
return partition_shortside_2way;
else
return PARTITION_INVALID;
}
}
/*!\brief Returns the symbol to be transmitted through the bitstream for
* a non-square block based on the partition type. */
static INLINE PARTITION_TYPE_REC get_symbol_from_partition_rec_block(
BLOCK_SIZE bsize, PARTITION_TYPE partition) {
assert(bsize < BLOCK_SIZES_ALL);
assert(partition < EXT_PARTITION_TYPES);
if (is_wide_block(bsize))
return symbol_map_from_partition_block_wgth[partition];
else if (is_tall_block(bsize))
return symbol_map_from_partition_block_hgtw[partition];
else
return PARTITION_INVALID_REC;
}
/*!\brief Returns the symbol to be transmitted through the bitstream for
* a non-square block based on the partition type when extended partition is
* disabled. */
static INLINE PARTITION_TYPE_REC get_symbol_from_partition_noext_rec_block(
BLOCK_SIZE bsize, PARTITION_TYPE partition) {
assert(bsize < BLOCK_SIZES_ALL);
assert(partition < EXT_PARTITION_TYPES);
if (partition >= PARTITION_TYPES) return PARTITION_INVALID_REC;
if (partition == PARTITION_NONE) return 0;
PARTITION_TYPE partition_longside_2way =
is_wide_block(bsize) ? PARTITION_VERT : PARTITION_HORZ;
if (is_bsize_geq(BLOCK_8X8, bsize) || is_bsize_geq(bsize, BLOCK_64X64)) {
return partition == partition_longside_2way ? 1 : PARTITION_INVALID_REC;
} else {
return partition == partition_longside_2way ? 1 : 2;
}
}
/*!\brief Returns the symbol to be transmitted through the bitstream for the
* middle block of extended partition.
* \note "limited_partition" refers to the fact that the middle block of
* extended partition cannot be split in the same direction as the extended
* partition. */
static INLINE PARTITION_TYPE get_symbol_from_limited_partition(
PARTITION_TYPE part, PARTITION_TYPE parent_part) {
assert(part != PARTITION_INVALID);
assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3);
static const int partition_to_symbol_map[NUM_LIMITED_PARTITION_PARENTS]
[EXT_PARTITION_TYPES] = {
// PARTITION_HORZ_3
{ 0, PARTITION_INVALID_REC, 1, 2,
3 },
// PARTITION_VERT_3
{ 0, 1, PARTITION_INVALID_REC, 2,
3 },
};
const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1;
const int symbol = partition_to_symbol_map[dir][part];
return symbol;
}
/*!\brief Returns the symbol to be transmitted through the bitstream for the
* middle block of extended partition when extended partition is disabled.
* \note "limited_partition" refers to the fact that the middle block of
* extended partition cannot be split in the same direction as the extended
* partition. */
static INLINE PARTITION_TYPE get_symbol_from_limited_partition_noext(
PARTITION_TYPE part, PARTITION_TYPE parent_part) {
assert(part != PARTITION_INVALID);
assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3);
static const int partition_to_symbol_map[NUM_LIMITED_PARTITION_PARENTS]
[EXT_PARTITION_TYPES] = {
// PARTITION_HORZ_3
{ 0, PARTITION_INVALID_REC, 1,
PARTITION_INVALID_REC,
PARTITION_INVALID_REC },
// PARTITION_VERT_3
{ 0, 1, PARTITION_INVALID_REC,
PARTITION_INVALID_REC,
PARTITION_INVALID_REC },
};
const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1;
const int symbol = partition_to_symbol_map[dir][part];
return symbol;
}
/*!\brief Returns the partition type based on the symbol transmitted through the
* bitstream for the middle block of extended partition. \note
* "limited_partition" refers to the fact that the middle block of extended
* partition cannot be split in the same direction as the extended partition. */
static INLINE PARTITION_TYPE
get_limited_partition_from_symbol(int symbol, PARTITION_TYPE parent_part) {
assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3);
static const PARTITION_TYPE horz3_parts[EXT_PARTITION_TYPES - 1] = {
PARTITION_NONE, /* PARTITION_HORZ, */ PARTITION_VERT, PARTITION_HORZ_3,
PARTITION_VERT_3
};
static const PARTITION_TYPE vert3_parts[EXT_PARTITION_TYPES - 1] = {
PARTITION_NONE, PARTITION_HORZ, /* PARTITION_VERT, */ PARTITION_HORZ_3,
PARTITION_VERT_3
};
switch (parent_part) {
case PARTITION_HORZ_3: return horz3_parts[symbol];
case PARTITION_VERT_3: return vert3_parts[symbol];
default:
assert(0 &&
"Invalid parent partition in get_limited_partition from symbol");
return PARTITION_INVALID;
}
}
/*!\brief Returns the partition type based on the symbol transmitted through the
* bitstream for the middle block of extended partition when extended partition
* is disabled. \note "limited_partition" refers to the fact that the middle
* block of extended partition cannot be split in the same direction as the
* extended partition. */
static INLINE PARTITION_TYPE get_limited_partition_noext_from_symbol(
int symbol, PARTITION_TYPE parent_part) {
assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3);
static const PARTITION_TYPE horz3_parts[LIMITED_PARTITION_TYPES] = {
PARTITION_NONE, PARTITION_VERT
};
static const PARTITION_TYPE vert3_parts[LIMITED_PARTITION_TYPES] = {
PARTITION_NONE, PARTITION_HORZ
};
switch (parent_part) {
case PARTITION_HORZ_3: return horz3_parts[symbol];
case PARTITION_VERT_3: return vert3_parts[symbol];
default:
assert(0 &&
"Invalid parent partition in get_limited_partition from symbol");
return PARTITION_INVALID;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
return is_inter_ref_frame(mbmi->ref_frame[1]);
}
#if CONFIG_AIMC
PREDICTION_MODE av1_get_joint_mode(const MB_MODE_INFO *mi);
#else
PREDICTION_MODE av1_get_block_mode(const MB_MODE_INFO *mi);
#endif // CONFIG_AIMC
static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
TransformationType type) {
const PREDICTION_MODE mode = mbmi->mode;
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
const int block_size_allowed =
AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
block_size_allowed;
}
static INLINE int is_partition_point(BLOCK_SIZE bsize) {
#if CONFIG_EXT_RECUR_PARTITIONS
return bsize != BLOCK_4X4 && bsize < BLOCK_SIZES;
#else
return is_square_block(bsize) && bsize >= BLOCK_8X8 && bsize < BLOCK_SIZES;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_4X4: return 0;
case BLOCK_8X8: return 1;
case BLOCK_16X16: return 2;
case BLOCK_32X32: return 3;
case BLOCK_64X64: return 4;
case BLOCK_128X128: return 5;
default: return SQR_BLOCK_SIZES;
}
}
// For a square block size 'bsize', returns the size of the sub-blocks used by
// the given partition type. If the partition produces sub-blocks of different
// sizes, then the function returns the largest sub-block size.
// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
// Conversion tables).
// Note: the input block size should be square.
// Otherwise it's considered invalid.
static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (partition == PARTITION_INVALID) {
return BLOCK_INVALID;
} else {
#if CONFIG_EXT_RECUR_PARTITIONS
if (is_partition_point(bsize))
return subsize_lookup[partition][bsize];
else
return partition == PARTITION_NONE ? bsize : BLOCK_INVALID;
#else // CONFIG_EXT_RECUR_PARTITIONS
const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
return sqr_bsize_idx >= SQR_BLOCK_SIZES
? BLOCK_INVALID
: subsize_lookup[partition][sqr_bsize_idx];
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
}
#if CONFIG_H_PARTITION
// Get the block size of the ith sub-block in a block partitioned via an
// h-partition mode.
static INLINE BLOCK_SIZE get_h_partition_subsize(BLOCK_SIZE bsize, int index,
PARTITION_TYPE partition) {
assert(partition == PARTITION_HORZ_3 || partition == PARTITION_VERT_3);
assert(index >= 0 && index <= 3);
if (!is_partition_point(bsize) ||
subsize_lookup[partition][bsize] == BLOCK_INVALID) {
return BLOCK_INVALID;
}
if (index == 0 || index == 3) {
return subsize_lookup[partition][bsize];
} else {
static const BLOCK_SIZE mid_sub_block_hpart[BLOCK_SIZES] = {
BLOCK_INVALID, // BLOCK_4X4
BLOCK_INVALID, // BLOCK_4X8
BLOCK_INVALID, // BLOCK_8X4
BLOCK_INVALID, // BLOCK_8X8
BLOCK_4X8, // BLOCK_8X16
BLOCK_8X4, // BLOCK_16X8
BLOCK_8X8, // BLOCK_16X16
BLOCK_8X16, // BLOCK_16X32
BLOCK_16X8, // BLOCK_32X16
BLOCK_16X16, // BLOCK_32X32
BLOCK_16X32, // BLOCK_32X64
BLOCK_32X16, // BLOCK_64X32
BLOCK_32X32, // BLOCK_64X64
BLOCK_INVALID, // BLOCK_64X128
BLOCK_INVALID, // BLOCK_128X64
BLOCK_INVALID, // BLOCK_128X128
};
return mid_sub_block_hpart[bsize];
}
}
// Get the mi_row offset of the ith sub-block in a block partitioned via an
// h-partition mode.
static INLINE int get_h_partition_offset_mi_row(BLOCK_SIZE bsize, int index,
PARTITION_TYPE partition) {
assert(get_h_partition_subsize(bsize, index, partition) != BLOCK_INVALID);
const int hbh = mi_size_high[bsize] >> 1;
assert(hbh > 0);
if (partition == PARTITION_VERT_3) {
return index == 2 ? hbh : 0;
} else {
const int qbh = hbh >> 1;
assert(qbh > 0);
switch (index) {
case 0: return 0;
case 1:
case 2: return qbh;
case 3: return 3 * qbh;
default: assert(0); return -1;
}
}
}
// Get the mi_col offset of the ith sub-block in a block partitioned via an
// h-partition mode.
static INLINE int get_h_partition_offset_mi_col(BLOCK_SIZE bsize, int index,
PARTITION_TYPE partition) {
assert(get_h_partition_subsize(bsize, index, partition) != BLOCK_INVALID);
const int hbw = mi_size_wide[bsize] >> 1;
assert(hbw > 0);
if (partition == PARTITION_HORZ_3) {
return index == 2 ? hbw : 0;
} else {
const int qbw = hbw >> 1;
assert(qbw > 0);
switch (index) {
case 0: return 0;
case 1:
case 2: return qbw;
case 3: return 3 * qbw;
default: assert(0); return -1;
}
}
}
#endif // CONFIG_H_PARTITION
static INLINE int is_partition_valid(BLOCK_SIZE bsize, PARTITION_TYPE p) {
#if CONFIG_EXT_RECUR_PARTITIONS
if (p == PARTITION_SPLIT) return 0;
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (is_partition_point(bsize))
return get_partition_subsize(bsize, p) < BLOCK_SIZES_ALL;
else
return p == PARTITION_NONE;
}
static INLINE void initialize_chroma_ref_info(int mi_row, int mi_col,
BLOCK_SIZE bsize,
CHROMA_REF_INFO *info) {
info->is_chroma_ref = 1;
info->offset_started = 0;
info->mi_row_chroma_base = mi_row;
info->mi_col_chroma_base = mi_col;
info->bsize = bsize;
info->bsize_base = bsize;
}
// Decide whether a block needs coding multiple chroma coding blocks in it at
// once to get around sub-4x4 coding.
static INLINE int have_nz_chroma_ref_offset(BLOCK_SIZE bsize,
PARTITION_TYPE partition,
int subsampling_x,
int subsampling_y) {
const int bw = block_size_wide[bsize] >> subsampling_x;
const int bh = block_size_high[bsize] >> subsampling_y;
const int bw_less_than_4 = bw < 4;
const int bh_less_than_4 = bh < 4;
const int hbw_less_than_4 = bw < 8;
const int hbh_less_than_4 = bh < 8;
const int qbw_less_than_4 = bw < 16;
const int qbh_less_than_4 = bh < 16;
switch (partition) {
case PARTITION_NONE: return bw_less_than_4 || bh_less_than_4;
case PARTITION_HORZ: return bw_less_than_4 || hbh_less_than_4;
case PARTITION_VERT: return hbw_less_than_4 || bh_less_than_4;
case PARTITION_SPLIT: return hbw_less_than_4 || hbh_less_than_4;
#if CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_H_PARTITION
case PARTITION_HORZ_3: return hbw_less_than_4 || qbh_less_than_4;
case PARTITION_VERT_3: return qbw_less_than_4 || hbh_less_than_4;
#else
case PARTITION_HORZ_3: return bw_less_than_4 || qbh_less_than_4;
case PARTITION_VERT_3: return qbw_less_than_4 || bh_less_than_4;
#endif // CONFIG_H_PARTITION
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_VERT_A:
case PARTITION_VERT_B: return hbw_less_than_4 || hbh_less_than_4;
case PARTITION_HORZ_4: return bw_less_than_4 || qbh_less_than_4;
case PARTITION_VERT_4: return qbw_less_than_4 || bh_less_than_4;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default:
assert(0 && "Invalid partition type!");
return 0;
break;
}
}
// Decide whether a subblock is the main chroma reference when its parent block
// needs coding multiple chroma coding blocks at once. The function returns a
// flag indicating whether the mode info used for the combined chroma block is
// located in the subblock.
static INLINE int is_sub_partition_chroma_ref(PARTITION_TYPE partition,
int index, BLOCK_SIZE bsize,
BLOCK_SIZE parent_bsize, int ss_x,
int ss_y, int is_offset_started) {
(void)is_offset_started;
(void)parent_bsize;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int plane_w = bw >> ss_x;
const int plane_h = bh >> ss_y;
const int plane_w_less_than_4 = plane_w < 4;
const int plane_h_less_than_4 = plane_h < 4;
switch (partition) {
case PARTITION_NONE: return 1;
case PARTITION_HORZ:
case PARTITION_VERT: return index == 1;
case PARTITION_SPLIT:
if (is_offset_started) {
return index == 3;
} else {
if (plane_w_less_than_4 && plane_h_less_than_4)
return index == 3;
else if (plane_w_less_than_4)
return index == 1 || index == 3;
else if (plane_h_less_than_4)
return index == 2 || index == 3;
else
return 1;
}
#if CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_H_PARTITION
case PARTITION_VERT_3:
case PARTITION_HORZ_3: return index == 3;
#else
case PARTITION_VERT_3:
case PARTITION_HORZ_3: return index == 2;
#endif // CONFIG_H_PARTITION
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_VERT_A:
case PARTITION_VERT_B:
if (is_offset_started) {
return index == 2;
} else {
const int smallest_w = block_size_wide[parent_bsize] >> (ss_x + 1);
const int smallest_h = block_size_high[parent_bsize] >> (ss_y + 1);
const int smallest_w_less_than_4 = smallest_w < 4;
const int smallest_h_less_than_4 = smallest_h < 4;
if (smallest_w_less_than_4 && smallest_h_less_than_4) {
return index == 2;
} else if (smallest_w_less_than_4) {
if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
return index == 2;
} else if (partition == PARTITION_HORZ_A) {
return index == 1 || index == 2;
} else {
return index == 0 || index == 2;
}
} else if (smallest_h_less_than_4) {
if (partition == PARTITION_HORZ_A || partition == PARTITION_HORZ_B) {
return index == 2;
} else if (partition == PARTITION_VERT_A) {
return index == 1 || index == 2;
} else {
return index == 0 || index == 2;
}
} else {
return 1;
}
}
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
if (is_offset_started) {
return index == 3;
} else {
if ((partition == PARTITION_HORZ_4 && plane_h_less_than_4) ||
(partition == PARTITION_VERT_4 && plane_w_less_than_4)) {
return index == 1 || index == 3;
} else {
return 1;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
default:
assert(0 && "Invalid partition type!");
return 0;
break;
}
}
static INLINE void set_chroma_ref_offset_size(
int mi_row, int mi_col, PARTITION_TYPE partition, BLOCK_SIZE bsize,
BLOCK_SIZE parent_bsize, int ss_x, int ss_y, CHROMA_REF_INFO *info,
const CHROMA_REF_INFO *parent_info) {
const int plane_w = block_size_wide[bsize] >> ss_x;
const int plane_h = block_size_high[bsize] >> ss_y;
const int plane_w_less_than_4 = plane_w < 4;
const int plane_h_less_than_4 = plane_h < 4;
#if !CONFIG_EXT_RECUR_PARTITIONS
const int hpplane_w = block_size_wide[parent_bsize] >> (ss_x + 1);
const int hpplane_h = block_size_high[parent_bsize] >> (ss_y + 1);
const int hpplane_w_less_than_4 = hpplane_w < 4;
const int hpplane_h_less_than_4 = hpplane_h < 4;
const int mi_row_mid_point =
parent_info->mi_row_chroma_base + (mi_size_high[parent_bsize] >> 1);
const int mi_col_mid_point =
parent_info->mi_col_chroma_base + (mi_size_wide[parent_bsize] >> 1);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
assert(parent_info->offset_started == 0);
switch (partition) {
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_VERT_3:
case PARTITION_HORZ_3:
#endif // CONFIG_EXT_RECUR_PARTITIONS
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
info->bsize_base = parent_bsize;
break;
case PARTITION_SPLIT:
if (plane_w_less_than_4 && plane_h_less_than_4) {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
info->bsize_base = parent_bsize;
} else if (plane_w_less_than_4) {
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ);
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
if (mi_row == parent_info->mi_row_chroma_base) {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
} else {
info->mi_row_chroma_base =
parent_info->mi_row_chroma_base + mi_size_high[bsize];
}
} else {
assert(plane_h_less_than_4);
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT);
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
if (mi_col == parent_info->mi_col_chroma_base) {
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
} else {
info->mi_col_chroma_base =
parent_info->mi_col_chroma_base + mi_size_wide[bsize];
}
}
break;
#if !CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_VERT_A:
case PARTITION_VERT_B:
if ((hpplane_w_less_than_4 && hpplane_h_less_than_4) ||
(hpplane_w_less_than_4 &&
(partition == PARTITION_VERT_A || partition == PARTITION_VERT_B)) ||
(hpplane_h_less_than_4 &&
(partition == PARTITION_HORZ_A || partition == PARTITION_HORZ_B))) {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
info->bsize_base = parent_bsize;
} else if (hpplane_w_less_than_4) {
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ);
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
if (mi_row == parent_info->mi_row_chroma_base) {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
} else {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base +
(mi_size_high[parent_bsize] >> 1);
}
} else {
assert(hpplane_h_less_than_4);
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT);
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
if (mi_col == parent_info->mi_col_chroma_base) {
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
} else {
info->mi_col_chroma_base = parent_info->mi_col_chroma_base +
(mi_size_wide[parent_bsize] >> 1);
}
}
break;
case PARTITION_HORZ_4:
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ);
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
if (mi_row < mi_row_mid_point) {
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
} else {
info->mi_row_chroma_base = mi_row_mid_point;
}
break;
case PARTITION_VERT_4:
info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT);
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
if (mi_col < mi_col_mid_point) {
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
} else {
info->mi_col_chroma_base = mi_col_mid_point;
}
break;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
default: assert(0 && "Invalid partition type!"); break;
}
}
static INLINE void set_chroma_ref_info(int mi_row, int mi_col, int index,
BLOCK_SIZE bsize, CHROMA_REF_INFO *info,
const CHROMA_REF_INFO *parent_info,
BLOCK_SIZE parent_bsize,
PARTITION_TYPE parent_partition,
int ss_x, int ss_y) {
assert(bsize < BLOCK_SIZES_ALL);
initialize_chroma_ref_info(mi_row, mi_col, bsize, info);
if (parent_info == NULL) return;
if (parent_info->is_chroma_ref) {
if (parent_info->offset_started) {
if (is_sub_partition_chroma_ref(parent_partition, index, bsize,
parent_bsize, ss_x, ss_y, 1)) {
info->is_chroma_ref = 1;
} else {
info->is_chroma_ref = 0;
}
info->offset_started = 1;
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
info->bsize_base = parent_info->bsize_base;
} else if (have_nz_chroma_ref_offset(parent_bsize, parent_partition, ss_x,
ss_y)) {
info->offset_started = 1;
info->is_chroma_ref = is_sub_partition_chroma_ref(
parent_partition, index, bsize, parent_bsize, ss_x, ss_y, 0);
set_chroma_ref_offset_size(mi_row, mi_col, parent_partition, bsize,
parent_bsize, ss_x, ss_y, info, parent_info);
}
} else {
info->is_chroma_ref = 0;
info->offset_started = 1;
info->mi_row_chroma_base = parent_info->mi_row_chroma_base;
info->mi_col_chroma_base = parent_info->mi_col_chroma_base;
info->bsize_base = parent_info->bsize_base;
}
}
#if CONFIG_MISMATCH_DEBUG
static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
int mi_row, int tx_blk_col, int tx_blk_row,
int subsampling_x, int subsampling_y) {
*pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
(tx_blk_col << MI_SIZE_LOG2);
*pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
(tx_blk_row << MI_SIZE_LOG2);
}
#endif // CONFIG_MISMATCH_DEBUG
enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
struct buf_2d {
uint16_t *buf;
uint16_t *buf0;
int width;
int height;
int stride;
};
typedef struct eob_info {
uint16_t eob;
uint16_t max_scan_line;
} eob_info;
typedef struct {
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
eob_info eob_data[MAX_MB_PLANE]
[MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
} CB_BUFFER;
typedef struct macroblockd_plane {
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
ENTROPY_CONTEXT *above_entropy_context;
ENTROPY_CONTEXT *left_entropy_context;
// The dequantizers below are true dequantizers used only in the
// dequantization process. They have the same coefficient
// shift/scale as TX.
int32_t seg_dequant_QTX[MAX_SEGMENTS][2];
// Pointer to color index map of:
// - Current coding block, on encoder side.
// - Current superblock, on decoder side.
uint8_t *color_index_map;
// block size in pixels
uint8_t width, height;
qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
} MACROBLOCKD_PLANE;
#define BLOCK_OFFSET(i) ((i) << 4)
#if CONFIG_LR_MERGE_COEFFS
#define LR_BANK_SIZE 4
#else
#define LR_BANK_SIZE 1
#endif // CONFIG_LR_MERGE_COEFFS
/*!\endcond */
/*!\brief Parameters related to Wiener Filter */
typedef struct {
/*!
* Vertical filter kernel.
*/
DECLARE_ALIGNED(16, InterpKernel, vfilter);
/*!
* Horizontal filter kernel.
*/
DECLARE_ALIGNED(16, InterpKernel, hfilter);
#if CONFIG_LR_MERGE_COEFFS
/*!
* Best Reference from dynamic bank
*/
int bank_ref;
#endif // CONFIG_LR_MERGE_COEFFS
} WienerInfo;
/*!\brief Parameters related to Wiener Filter Bank */
typedef struct {
/*!
* Bank of filter infos
*/
WienerInfo filter[LR_BANK_SIZE];
/*!
* Size of the bank
*/
int bank_size;
/*!
* Pointer to the most current filter
*/
int bank_ptr;
} WienerInfoBank;
/*!\brief Parameters related to Sgrproj Filter */
typedef struct {
/*!
* Parameter index.
*/
int ep;
/*!
* Weights for linear combination of filtered versions
*/
int xqd[2];
#if CONFIG_LR_MERGE_COEFFS
/*!
* Best Reference from dynamic bank
*/
int bank_ref;
#endif // CONFIG_LR_MERGE_COEFFS
} SgrprojInfo;
/*!\brief Parameters related to Sgrproj Filter Bank */
typedef struct {
/*!
* Bank of filter infos
*/
SgrprojInfo filter[LR_BANK_SIZE];
/*!
* Size of the bank
*/
int bank_size;
/*!
* Pointer to the most current filter
*/
int bank_ptr;
} SgrprojInfoBank;
#if CONFIG_WIENER_NONSEP
#define WIENERNS_MAX_CLASSES 1
#define NUM_WIENERNS_CLASS_INIT_LUMA 1
#define NUM_WIENERNS_CLASS_INIT_CHROMA 1
// Need two of the WIENERNS_YUV_MAX to store potential center taps. Adjust
// accordingly.
#define WIENERNS_YUV_MAX 32
// Special symbol to indicate the set of all classes.
#define ALL_WIENERNS_CLASSES -17
/*!
* Nonseparable Wiener filter parameters.
*/
typedef struct {
/*!
* Filter data - number of classes
*/
int num_classes;
/*!
* Filter data - taps
*/
DECLARE_ALIGNED(16, int16_t,
allfiltertaps[WIENERNS_MAX_CLASSES * WIENERNS_YUV_MAX]);
#if CONFIG_LR_MERGE_COEFFS
/*!
* Best Reference from dynamic bank for each class.
*/
int bank_ref_for_class[WIENERNS_MAX_CLASSES];
#endif // CONFIG_LR_MERGE_COEFFS
} WienerNonsepInfo;
/*!\brief Parameters related to Nonseparable Wiener Filter Bank */
typedef struct {
/*!
* Bank of filter infos
*/
WienerNonsepInfo filter[LR_BANK_SIZE];
/*!
* Size of the bank for each class.
*/
int bank_size_for_class[WIENERNS_MAX_CLASSES];
/*!
* Pointer to the most current filter for each class.
*/
int bank_ptr_for_class[WIENERNS_MAX_CLASSES];
} WienerNonsepInfoBank;
int16_t *nsfilter_taps(WienerNonsepInfo *nsinfo, int wiener_class_id);
const int16_t *const_nsfilter_taps(const WienerNonsepInfo *nsinfo,
int wiener_class_id);
void copy_nsfilter_taps_for_class(WienerNonsepInfo *to_info,
const WienerNonsepInfo *from_info,
int wiener_class_id);
void copy_nsfilter_taps(WienerNonsepInfo *to_info,
const WienerNonsepInfo *from_info);
#endif // CONFIG_WIENER_NONSEP
/*!\cond */
#if CONFIG_DEBUG
#define CFL_SUB8X8_VAL_MI_SIZE (4)
#define CFL_SUB8X8_VAL_MI_SQUARE \
(CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
#endif // CONFIG_DEBUG
#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
#define CFL_BUF_LINE (32)
#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
typedef struct cfl_ctx {
// Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
// shifts)
uint16_t recon_buf_q3[CFL_BUF_SQUARE];
// Q3 AC contributions (reconstructed luma pixels - tx block avg)
int16_t ac_buf_q3[CFL_BUF_SQUARE];
#if CONFIG_IMPROVED_CFL
// above luma reconstruction buffer
uint16_t recon_yuv_buf_above[MAX_MB_PLANE][CFL_BUF_LINE];
// left luma reconstruction buffer
uint16_t recon_yuv_buf_left[MAX_MB_PLANE][CFL_BUF_LINE];
// luma neighboring pixel average
uint16_t avg_l;
#endif
// Cache the DC_PRED when performing RDO, so it does not have to be recomputed
// for every scaling parameter
int dc_pred_is_cached[CFL_PRED_PLANES];
// The DC_PRED cache is disable when decoding
int use_dc_pred_cache;
// Only cache the first row of the DC_PRED
int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
// Height and width currently used in the CfL prediction buffer.
int buf_height, buf_width;
int are_parameters_computed;
// Chroma subsampling
int subsampling_x, subsampling_y;
// Whether the reconstructed luma pixels need to be stored
int store_y;
#if CONFIG_DEBUG
int rate;
#endif // CONFIG_DEBUG
} CFL_CTX;
typedef struct dist_wtd_comp_params {
int fwd_offset;
int bck_offset;
} DIST_WTD_COMP_PARAMS;
struct scale_factors;
/*!\endcond */
#if CONFIG_REF_MV_BANK
#define REF_MV_BANK_SIZE 4
/*! \brief Variables related to reference MV bank. */
typedef struct {
/*!
* Number of ref MVs in the buffer.
*/
int rmb_count[MODE_CTX_REF_FRAMES];
/*!
* Index corresponding to the first ref MV in the buffer.
*/
int rmb_start_idx[MODE_CTX_REF_FRAMES];
/*!
* Circular buffer storing the ref MVs.
*/
CANDIDATE_MV rmb_buffer[MODE_CTX_REF_FRAMES][REF_MV_BANK_SIZE];
/*!
* Total number of mbmi updates conducted in SB
*/
int rmb_sb_hits;
} REF_MV_BANK;
#endif // CONFIG_REF_MV_BANK
#if CONFIG_WARP_REF_LIST
#define WARP_PARAM_BANK_SIZE 4
/*! \brief Variables related to reference warp parameters bank. */
typedef struct {
/*!
* Number of warp parameters in the buffer.
*/
int wpb_count[INTER_REFS_PER_FRAME];
/*!
* Index corresponding to the first warp parameters in the buffer.
*/
int wpb_start_idx[INTER_REFS_PER_FRAME];
/*!
* Circular buffer storing the warp parameters.
*/
WarpedMotionParams wpb_buffer[INTER_REFS_PER_FRAME][WARP_PARAM_BANK_SIZE];
/*!
* Total number of mbmi updates conducted in SB
*/
int wpb_sb_hits;
} WARP_PARAM_BANK;
#endif // CONFIG_WARP_REF_LIST
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
/*! \brief Variables related to mvp list of skip mode.*/
typedef struct {
//! MV list
CANDIDATE_MV ref_mv_stack[USABLE_REF_MV_STACK_SIZE];
//! reference list 0 reference frame index
MV_REFERENCE_FRAME ref_frame0[USABLE_REF_MV_STACK_SIZE];
//! reference list 1 reference frame index
MV_REFERENCE_FRAME ref_frame1[USABLE_REF_MV_STACK_SIZE];
//! The weights used to compute the ref mvs.
uint16_t weight[USABLE_REF_MV_STACK_SIZE];
//! Number of ref mvs in the drl.
uint8_t ref_mv_count;
//! context
int16_t mode_context[MODE_CTX_REF_FRAMES]; // to be updated
//! Global mvs
int_mv global_mvs[2];
} SKIP_MODE_MVP_LIST;
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
/*! \brief Variables related to current coding block.
*
* This is a common set of variables used by both encoder and decoder.
* Most/all of the pointers are mere pointers to actual arrays are allocated
* elsewhere. This is mostly for coding convenience.
*/
typedef struct macroblockd {
/**
* \name Position of current macroblock in mi units
*/
/**@{*/
int mi_row; /*!< Row position in mi units. */
int mi_col; /*!< Column position in mi units. */
/**@}*/
/*!
* Same as cm->mi_params.mi_stride, copied here for convenience.
*/
int mi_stride;
#if CONFIG_REF_MV_BANK
/**
* \name Reference MV bank info.
*/
/**@{*/
#if !CONFIG_C043_MVP_IMPROVEMENTS
REF_MV_BANK *ref_mv_bank_pt; /*!< Pointer to bank to refer to */
#endif
REF_MV_BANK ref_mv_bank; /*!< Ref mv bank to update */
/**@}*/
#endif // CONFIG_REF_MV_BANK
#if CONFIG_WARP_REF_LIST
/**
* \name Reference warp parameters bank info.
*/
/**@{*/
WARP_PARAM_BANK warp_param_bank; /*!< Ref warp parameters bank to update */
#if !WARP_CU_BANK
WARP_PARAM_BANK *warp_param_bank_pt; /*!< Pointer to bank to refer to */
#endif //! WARP_CU_BANK
/**@}*/
#endif // CONFIG_WARP_REF_LIST
/*!
* True if current block transmits chroma information.
* More detail:
* Smallest supported block size for both luma and chroma plane is 4x4. Hence,
* in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
* blocks smaller than 8x8 maybe combined into one chroma block.
* For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
* luma blocks. Then, a single chroma block of size 4x4 will cover the area of
* these four luma blocks. This is implemented in bitstream as follows:
* - There are four MB_MODE_INFO structs for the four luma blocks.
* - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
* any information for chroma planes.
* - Last block will have is_chroma_ref = true and transmits chroma
* information for the 4x4 chroma block that covers whole 8x8 area covered by
* four luma blocks.
* Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
*/
bool is_chroma_ref;
/*!
* Info specific to each plane.
*/
struct macroblockd_plane plane[MAX_MB_PLANE];
/*!
* Tile related info.
*/
TileInfo tile;
/*!
* Appropriate offset inside cm->mi_params.mi_grid_base based on current
* mi_row and mi_col.
*/
MB_MODE_INFO **mi;
#if CONFIG_C071_SUBBLK_WARPMV
/*!
* Appropriate offset inside cm->mi_params.submi_grid_base based on current
* mi_row and mi_col.
*/
SUBMB_INFO **submi;
#endif // CONFIG_C071_SUBBLK_WARPMV
/*!
* True if 4x4 block above the current block is available.
*/
bool up_available;
/*!
* True if 4x4 block to the left of the current block is available.
*/
bool left_available;
/*!
* True if the above chrome reference block is available.
*/
bool chroma_up_available;
/*!
* True if the left chrome reference block is available.
*/
bool chroma_left_available;
/*!
* MB_MODE_INFO for 4x4 block to the left of the current block, if
* left_available == true; otherwise NULL.
*/
MB_MODE_INFO *left_mbmi;
/*!
* MB_MODE_INFO for 4x4 block above the current block, if
* up_available == true; otherwise NULL.
*/
MB_MODE_INFO *above_mbmi;
#if CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING
/*!
* MB_MODE_INFO for 4x4 block to the bottom-left of the current block, if
* left_available == true; otherwise NULL.
*/
MB_MODE_INFO *bottom_left_mbmi;
/*!
* MB_MODE_INFO for 4x4 block to the top-right of the current block, if
* up_available == true; otherwise NULL.
*/
MB_MODE_INFO *above_right_mbmi;
#endif // CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING
/*!
* Neighboring blocks' mbmi
* if no available mbmi, set to be NULL.
*/
MB_MODE_INFO *neighbors[MAX_NUM_NEIGHBORS];
/*!
* Above chroma reference block if is_chroma_ref == true for the current block
* and chroma_up_available == true; otherwise NULL.
* See also: the special case logic when current chroma block covers more than
* one luma blocks in set_mi_row_col().
*/
MB_MODE_INFO *chroma_left_mbmi;
/*!
* Left chroma reference block if is_chroma_ref == true for the current block
* and chroma_left_available == true; otherwise NULL.
* See also: the special case logic when current chroma block covers more than
* one luma blocks in set_mi_row_col().
*/
MB_MODE_INFO *chroma_above_mbmi;
/*!
* SB_INFO for the superblock that the current coding block is located in
*/
SB_INFO *sbi;
/*!
* Appropriate offset based on current 'mi_row' and 'mi_col', inside
* 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
* 'MACROBLOCK' structs.
*/
TX_TYPE *tx_type_map;
/*!
* Stride for 'tx_type_map'. Note that this may / may not be same as
* 'mi_stride', depending on which actual array 'tx_type_map' points to.
*/
int tx_type_map_stride;
#if CONFIG_CROSS_CHROMA_TX
/*!
* Array of CCTX types.
*/
CctxType *cctx_type_map;
/*!
* Stride for 'cctx_type_map'. Note that this may / may not be same as
* 'mi_stride', depending on which actual array 'cctx_type_map' points to.
*/
int cctx_type_map_stride;
#endif // CONFIG_CROSS_CHROMA_TX
/**
* \name Distance of this macroblock from frame edges in 1/8th pixel units.
*/
/**@{*/
int mb_to_left_edge; /*!< Distance from left edge */
int mb_to_right_edge; /*!< Distance from right edge */
int mb_to_top_edge; /*!< Distance from top edge */
int mb_to_bottom_edge; /*!< Distance from bottom edge */
/**@}*/
/*!
* tree_type specifies whether luma and chroma component in current coded
* block shares the same tree or not.
*/
TREE_TYPE tree_type;
/*!
* An array for recording whether an mi(4x4) is coded. Reset at sb level.
* For the first dimension, index == 0 corresponds to LUMA_PART and
* SHARED_PART. Index == 1 corresponds to SHARED_PART.
*/
// TODO(any): Convert to bit field instead.
uint8_t is_mi_coded[2][MAX_MIB_SQUARE];
/*!
* Stride of the is_mi_coded array.
*/
int is_mi_coded_stride;
/*!
* Scale factors for reference frames of the current block.
* These are pointers into 'cm->ref_scale_factors'.
*/
const struct scale_factors *block_ref_scale_factors[2];
/*!
* - On encoder side: points to cpi->source, which is the buffer containing
* the current *source* frame (maybe filtered).
* - On decoder side: points to cm->cur_frame->buf, which is the buffer into
* which current frame is being *decoded*.
*/
const YV12_BUFFER_CONFIG *cur_buf;
/*!
* Entropy contexts for the above blocks.
* above_entropy_context[i][j] corresponds to above entropy context for ith
* plane and jth mi column of this *frame*, wrt current 'mi_row'.
* These are pointers into 'cm->above_contexts.entropy'.
*/
ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
/*!
* Entropy contexts for the left blocks.
* left_entropy_context[i][j] corresponds to left entropy context for ith
* plane and jth mi row of this *superblock*, wrt current 'mi_col'.
* Note: These contain actual data, NOT pointers.
*/
ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
/*!
* Partition contexts for the above blocks.
* above_partition_context[p][i] corresponds to above partition context for
* ith mi column of the plane pth in this *frame*, wrt current 'mi_row'. This
* is a pointer into 'cm->above_contexts.partition'.
*/
PARTITION_CONTEXT *above_partition_context[MAX_MB_PLANE];
/*!
* Partition contexts for the left blocks.
* left_partition_context[p][i] corresponds to left partition context for ith
* mi row of pth plane in this *superblock*, wrt current 'mi_col'.
* Note: These contain actual data, NOT pointers.
*/
PARTITION_CONTEXT left_partition_context[MAX_MB_PLANE][MAX_MIB_SIZE];
/*!
* Transform contexts for the above blocks.
* above_txfm_context[i] corresponds to above transform context for ith mi col
* from the current position (mi row and mi column) for this *frame*.
* This is a pointer into 'cm->above_contexts.txfm'.
*/
TXFM_CONTEXT *above_txfm_context;
/*!
* Transform contexts for the left blocks.
* left_txfm_context[i] corresponds to left transform context for ith mi row
* from the current position (mi_row and mi_col) for this *superblock*.
* This is a pointer into 'left_txfm_context_buffer'.
*/
TXFM_CONTEXT *left_txfm_context;
/*!
* left_txfm_context_buffer[i] is the left transform context for ith mi_row
* in this *superblock*.
* Behaves like an internal actual buffer which 'left_txt_context' points to,
* and never accessed directly except to fill in initial default values.
*/
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
/**
* \name Default values for the two restoration filters for each plane.
* Default values for the two restoration filters for each plane.
* These values are used as reference values when writing the bitstream. That
* is, we transmit the delta between the actual values in
* cm->rst_info[plane].unit_info[unit_idx] and these reference values.
*/
/**@{*/
WienerInfoBank wiener_info[MAX_MB_PLANE]; /*!< Refs for Wiener filter*/
SgrprojInfoBank sgrproj_info[MAX_MB_PLANE]; /*!< Refs for SGR filter */
#if CONFIG_WIENER_NONSEP
/*!
* Nonseparable Wiener filter information for all planes.
*/
WienerNonsepInfoBank wienerns_info[MAX_MB_PLANE];
#endif // CONFIG_WIENER_NONSEP
/**@}*/
/**
* \name Block dimensions in MB_MODE_INFO units.
*/
/**@{*/
uint8_t width; /*!< Block width in MB_MODE_INFO units */
uint8_t height; /*!< Block height in MB_MODE_INFO units */
/**@}*/
/*!
* Contains the motion vector candidates found during motion vector prediction
* process. ref_mv_stack[i] contains the candidates for ith type of
* reference frame (single/compound). The actual number of candidates found in
* ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
* or mbmi_ext->ref_mv_count[i] (encoder side).
*/
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
/*!
* weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
* DRL (dynamic reference list) mode contexts.
*/
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
/*!
* skip_mvp_candidate_list is the MVP list for skip mode.
*/
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
SKIP_MODE_MVP_LIST skip_mvp_candidate_list;
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
#if CONFIG_WARP_REF_LIST
/*!
* warp_param_stack contains the predicted warp parameters
*/
WARP_CANDIDATE warp_param_stack[INTER_REFS_PER_FRAME]
[MAX_WARP_REF_CANDIDATES];
/*!
* valid number of candidates in the warp_param_stack.
*/
uint8_t valid_num_warp_candidates[INTER_REFS_PER_FRAME];
#endif // CONFIG_WARP_REF_LIST
#if !CONFIG_EXT_RECUR_PARTITIONS
/*!
* True if this is the last vertical rectangular block in a VERTICAL or
* VERTICAL_4 partition.
*/
bool is_last_vertical_rect;
/*!
* True if this is the 1st horizontal rectangular block in a HORIZONTAL or
* HORIZONTAL_4 partition.
*/
bool is_first_horizontal_rect;
#if CONFIG_C043_MVP_IMPROVEMENTS
/*!
* True if this is the last horizontal rectangular block in a HORIZONTAL or
* HORIZONTAL_4 partition.
*/
bool is_last_horizontal_rect;
/*!
* True if this is the 1st vertical rectangular block in a VERTICAL or
* VERTICAL_4 partition.
*/
bool is_first_vertical_rect;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#endif // !CONFIG_EXT_RECUR_PARTITIONS
/*!
* Counts of each reference frame in the above and left neighboring blocks.
* NOTE: Take into account both single and comp references.
*/
uint8_t neighbors_ref_counts[INTER_REFS_PER_FRAME];
/*!
* Current CDFs of all the symbols for the current tile.
*/
FRAME_CONTEXT *tile_ctx;
/*!
* Bit depth: copied from cm->seq_params.bit_depth for convenience.
*/
int bd;
/*!
* Quantizer index for each segment (base qindex + delta for each segment).
*/
int qindex[MAX_SEGMENTS];
/*!
* lossless[s] is true if segment 's' is coded losslessly.
*/
int lossless[MAX_SEGMENTS];
/*!
* Q index for the coding blocks in this superblock will be stored in
* mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
* true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
* the base, and adding any transmitted delta qindex on top of it.
* Precisely, this is the latest qindex used by the first coding block of a
* non-skip superblock in the current tile; OR
* same as cm->quant_params.base_qindex (if not explicitly set yet).
* Note: This is 'CurrentQIndex' in the AV1 spec.
*/
int current_base_qindex;
/*!
* Same as cm->features.cur_frame_force_integer_mv.
*/
int cur_frame_force_integer_mv;
/*!
* Pointer to cm->error.
*/
struct aom_internal_error_info *error_info;
/*!
* Same as cm->global_motion.
*/
const WarpedMotionParams *global_motion;
/*!
* Since actual frame level loop filtering level value is not available
* at the beginning of the tile (only available during actual filtering)
* at encoder side.we record the delta_lf (against the frame level loop
* filtering level) and code the delta between previous superblock's delta
* lf and current delta lf. It is equivalent to the delta between previous
* superblock's actual lf and current lf.
*/
int8_t delta_lf_from_base;
/*!
* We have four frame filter levels for different plane and direction. So, to
* support the per superblock update, we need to add a few more params:
* 0. delta loop filter level for y plane vertical
* 1. delta loop filter level for y plane horizontal
* 2. delta loop filter level for u plane
* 3. delta loop filter level for v plane
* To make it consistent with the reference to each filter level in segment,
* we need to -1, since
* - SEG_LVL_ALT_LF_Y_V = 1;
* - SEG_LVL_ALT_LF_Y_H = 2;
* - SEG_LVL_ALT_LF_U = 3;
* - SEG_LVL_ALT_LF_V = 4;
*/
int8_t delta_lf[FRAME_LF_COUNT];
/*!
* cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
* current superblock has already been read from (decoder) / written to
* (encoder) the bitstream; and false otherwise.
* More detail:
* 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
* non-skip coding block. So, we need this array to keep track of whether CDEF
* strengths for the given CDEF units have been transmitted yet or not.
* 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
* fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
* superblock size is 128x128). Hence the array size is 4.
* 3. In the current implementation, CDEF strength for this CDEF unit is
* stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
* cm->mi_params.mi_grid_base).
*/
bool cdef_transmitted[CDEF_IN_SB];
/*!
* Mask for this block used for compound prediction.
*/
DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
/*!
* CFL (chroma from luma) related parameters.
*/
CFL_CTX cfl;
/*!
* Offset to plane[p].color_index_map.
* Currently:
* - On encoder side, this is always 0 as 'color_index_map' is allocated per
* *coding block* there.
* - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
* memory pointing to the base of a *superblock* there, and we need an offset
* to it to get the color index map for current coding block.
*/
uint16_t color_index_map_offset[2];
/*!
* Temporary buffer used for convolution in case of compound reference only
* for (weighted or uniform) averaging operation.
* There are pointers to actual buffers allocated elsewhere: e.g.
* - In decoder, 'pbi->td.tmp_conv_dst' or
* 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
* - In encoder, 'x->tmp_conv_dst' or
* 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
*/
CONV_BUF_TYPE *tmp_conv_dst;
/*!
* Temporary buffers used to build OBMC prediction by above (index 0) and left
* (index 1) predictors respectively.
* tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
* There are pointers to actual buffers allocated elsewhere: e.g.
* - In decoder, 'pbi->td.tmp_obmc_bufs' or
* 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
* -In encoder, 'x->tmp_pred_bufs' or
* 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
*/
uint16_t *tmp_obmc_bufs[2];
/*!
* Enable IST for current coding block.
*/
uint8_t enable_ist;
#if CONFIG_CCSO
#if CONFIG_CCSO_EXT
/** ccso blk y */
uint8_t ccso_blk_y;
#endif
/** ccso blk u */
uint8_t ccso_blk_u;
/** ccso blk v */
uint8_t ccso_blk_v;
#endif
#if CONFIG_CONTEXT_DERIVATION
/** buffer to store AOM_PLANE_U txfm coefficient signs */
int32_t tmp_sign[1024];
/** variable to store AOM_PLANE_U eob value */
uint16_t eob_u;
#endif // CONFIG_CONTEXT_DERIVATION
#if CONFIG_CONTEXT_DERIVATION
/** variable to store eob_u flag */
uint8_t eob_u_flag;
#endif // CONFIG_CONTEXT_DERIVATION
} MACROBLOCKD;
/*!\cond */
/*
static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
}
static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? CONVERT_TO_BYTEPTR(buf16)
: buf16;
}
*/
static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
PLANE_TYPE plane_type) {
static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
DCT_DCT, // DC_PRED
ADST_DCT, // V_PRED
DCT_ADST, // H_PRED
DCT_DCT, // D45_PRED
ADST_ADST, // D135_PRED
ADST_DCT, // D113_PRED
DCT_ADST, // D157_PRED
DCT_ADST, // D203_PRED
ADST_DCT, // D67_PRED
ADST_ADST, // SMOOTH_PRED
ADST_DCT, // SMOOTH_V_PRED
DCT_ADST, // SMOOTH_H_PRED
ADST_ADST, // PAETH_PRED
};
const PREDICTION_MODE mode =
(plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
assert(mode < INTRA_MODES);
return _intra_mode_to_tx_type[mode];
}
static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
return bsize > BLOCK_4X4;
}
// Number of transform types in each set type for intra blocks
static const int av1_num_ext_tx_set_intra[EXT_TX_SET_TYPES] = { 1, 1, 4,
6, 11, 15,
#if CONFIG_ATC_NEWTXSETS
7
#endif // CONFIG_ATC_NEWTXSETS
};
#if CONFIG_ATC_NEWTXSETS && CONFIG_ATC_REDUCED_TXSET
static const int av1_num_reduced_tx_set = 2;
#endif // CONFIG_ATC_NEWTXSETS && CONFIG_ATC_REDUCED_TXSET
// Number of transform types in each set type
static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1, 2, 5, 7, 12, 16,
};
static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
#if CONFIG_ATC_NEWTXSETS
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
#endif // CONFIG_ATC_NEWTXSETS
};
#if CONFIG_ATC_NEWTXSETS
static const int av1_mdtx_used_flag[EXT_TX_SIZES][INTRA_MODES][TX_TYPES] = {
{
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 },
{ 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0 },
}, // size_class: 0
{
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0 },
}, // size_class: 1
{
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0 },
}, // size_class: 2
{
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
}, // size_class: 3
};
#endif // CONFIG_ATC_NEWTXSETS
static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
0x080F, // DC_PRED: 0000 1000 0000 1111
0x040F, // V_PRED: 0000 0100 0000 1111
0x080F, // H_PRED: 0000 1000 0000 1111
0x020F, // D45_PRED: 0000 0010 0000 1111
0x080F, // D135_PRED: 0000 1000 0000 1111
0x040F, // D113_PRED: 0000 0100 0000 1111
0x080F, // D157_PRED: 0000 1000 0000 1111
0x080F, // D203_PRED: 0000 1000 0000 1111
0x040F, // D67_PRED: 0000 0100 0000 1111
0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
};
static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
0x0001, // 0000 0000 0000 0001
0x0201, // 0000 0010 0000 0001
0x020F, // 0000 0010 0000 1111
0x0E0F, // 0000 1110 0000 1111
0x0FFF, // 0000 1111 1111 1111
0xFFFF, // 1111 1111 1111 1111
#if CONFIG_ATC_NEWTXSETS
0xFFFF,
#endif // CONFIG_ATC_NEWTXSETS
};
#if CONFIG_ATC_NEWTXSETS
static const uint16_t av1_md_trfm_used_flag[EXT_TX_SIZES][INTRA_MODES] = {
{
0x218F,
0x148F,
0x290F,
0x01CF,
0x218F,
0x508F,
0x218F,
0x290F,
0x148F,
0x01CF,
0x118F,
0x218F,
0x3C0D,
}, // size_class: 0
{
0x019F,
0x148F,
0x290F,
0x01CF,
0x01AF,
0x10AF,
0x019F,
0x211F,
0x00EF,
0x01CF,
0x019F,
0x01AF,
0x2C0F,
}, // size_class: 1
{
0x019F,
0x04AF,
0x091F,
0x019F,
0x019F,
0x01AF,
0x019F,
0x015F,
0x01AF,
0x019F,
0x019F,
0x01AF,
0x1C0F,
}, // size_class: 2
{
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
}, // size_class: 3
};
#endif // CONFIG_ATC_NEWTXSETS
static const TxSetType av1_ext_tx_set_lookup[2][2] = {
{ EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
{ EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
};
static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
if (tx_size_sqr_up == TX_32X32)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
#if CONFIG_ATC_REDUCED_TXSET
if (use_reduced_set) return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_NEW_TX_SET;
#else
if (use_reduced_set)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
#endif // CONFIG_ATC_REDUCED_TXSET
#if CONFIG_ATC_NEWTXSETS
if (is_inter) {
const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
} else {
return EXT_NEW_TX_SET;
}
#else
const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
#endif // CONFIG_ATC_NEWTXSETS
}
// Maps tx set types to the indices.
static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
{ // Intra
#if CONFIG_ATC_NEWTXSETS
0, -1, -1, -1, -1, -1, 1 },
#else
0, -1, 2, 1, -1, -1 },
#endif // CONFIG_ATC_NEWTXSETS
{ // Inter
0, 3, -1, -1, 2, 1 },
};
static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const TxSetType set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
return ext_tx_set_index[is_inter][set_type];
}
static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const int set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
return is_inter ? av1_num_ext_tx_set[set_type]
: av1_num_ext_tx_set_intra[set_type];
}
#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
if (bsize == BLOCK_4X4)
return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
return max_rect_tx_size;
else
return largest_tx_size;
}
static const uint8_t mode_to_angle_map[] = {
0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
};
// Converts block_index for given transform size to index of the block in raster
// order.
static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
int block_idx) {
// For transform size 4x8, the possible block_idx values are 0 & 2, because
// block_idx values are incremented in steps of size 'tx_width_unit x
// tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
// block number 1 in raster order, inside an 8x8 MI block.
// For any other transform size, the two indices are equivalent.
return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
}
// Inverse of above function.
// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
int raster_order) {
assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
// We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
}
static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd,
TX_SIZE tx_size,
int is_screen_content_type) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (is_inter_block(mbmi, xd->tree_type) || plane_type != PLANE_TYPE_Y ||
xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
is_screen_content_type)
return DCT_DCT;
return intra_mode_to_tx_type(mbmi, plane_type);
}
// Implements the get_plane_residual_size() function in the spec (Section
// 5.11.38. Get plane residual size function).
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
int subsampling_x,
int subsampling_y) {
assert(bsize < BLOCK_SIZES_ALL);
assert(subsampling_x >= 0 && subsampling_x < 2);
assert(subsampling_y >= 0 && subsampling_y < 2);
return ss_size_lookup[bsize][subsampling_x][subsampling_y];
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
assert(bsize < BLOCK_SIZES_ALL);
int max_blocks_wide = block_size_wide[bsize];
if (xd->mb_to_right_edge < 0) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
}
// Scale the width in the transform block unit.
return max_blocks_wide >> MI_SIZE_LOG2;
}
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_high = block_size_high[bsize];
if (xd->mb_to_bottom_edge < 0) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
}
// Scale the height in the transform block unit.
return max_blocks_high >> MI_SIZE_LOG2;
}
static INLINE int get_plane_tx_unit_height(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
int row, int ss_y) {
const int max_plane_blocks_high = max_block_high(xd, plane_bsize, plane);
const int mu_plane_blocks_high =
AOMMIN(mi_size_high[BLOCK_64X64] >> ss_y, max_plane_blocks_high);
return AOMMIN(mu_plane_blocks_high + (row >> ss_y), max_plane_blocks_high);
}
static INLINE int get_plane_tx_unit_width(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
int col, int ss_x) {
const int max_plane_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int mu_plane_blocks_wide =
AOMMIN(mi_size_wide[BLOCK_64X64] >> ss_x, max_plane_blocks_wide);
return AOMMIN(mu_plane_blocks_wide + (col >> ss_x), max_plane_blocks_wide);
}
/*!\brief Returns the index of luma/chroma based on the current partition tree
* type.
*
* If the tree_type includes luma, returns 0, else returns 1. */
static INLINE int av1_get_sdp_idx(TREE_TYPE tree_type) {
switch (tree_type) {
case SHARED_PART:
case LUMA_PART: return 0;
case CHROMA_PART: return 1; break;
default: assert(0 && "Invalid tree type"); return 0;
}
}
/*!\brief Returns bsize at which the current block needs to be coded.
*
* If the current plane is AOM_PLANE_Y, returns the current block size.
* If the luma and chroma trees are shared, and the current plane is chroma,
* then the corresponding luma block size is stored in
* CHROMA_REF_INFO::bsize_base.
* If the luma and chroma trees are decoupled, then the bsize is stored in
* MB_BLOCK_INFO::sb_type with the appropriate index.
* */
static INLINE BLOCK_SIZE get_bsize_base(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, int plane) {
BLOCK_SIZE bsize_base = BLOCK_INVALID;
if (xd->tree_type == SHARED_PART) {
bsize_base =
plane ? mbmi->chroma_ref_info.bsize_base : mbmi->sb_type[PLANE_TYPE_Y];
} else {
bsize_base = mbmi->sb_type[av1_get_sdp_idx(xd->tree_type)];
}
return bsize_base;
}
static INLINE BLOCK_SIZE get_mb_plane_block_size(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
int plane, int subsampling_x,
int subsampling_y) {
assert(subsampling_x >= 0 && subsampling_x < 2);
assert(subsampling_y >= 0 && subsampling_y < 2);
const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane);
return get_plane_block_size(bsize_base, subsampling_x, subsampling_y);
}
// These are only needed to support lpf multi-thread.
// Because xd is shared among all the threads workers, xd->tree_type does not
// contain the valid tree_type, so we are passing in the tree_type
static INLINE BLOCK_SIZE get_bsize_base_from_tree_type(const MB_MODE_INFO *mbmi,
TREE_TYPE tree_type,
int plane) {
BLOCK_SIZE bsize_base = BLOCK_INVALID;
if (tree_type == SHARED_PART) {
bsize_base =
plane ? mbmi->chroma_ref_info.bsize_base : mbmi->sb_type[PLANE_TYPE_Y];
} else {
bsize_base = mbmi->sb_type[av1_get_sdp_idx(tree_type)];
}
return bsize_base;
}
static INLINE BLOCK_SIZE get_mb_plane_block_size_from_tree_type(
const MB_MODE_INFO *mbmi, TREE_TYPE tree_type, int plane, int subsampling_x,
int subsampling_y) {
assert(subsampling_x >= 0 && subsampling_x < 2);
assert(subsampling_y >= 0 && subsampling_y < 2);
const BLOCK_SIZE bsize_base =
get_bsize_base_from_tree_type(mbmi, tree_type, plane);
return get_plane_block_size(bsize_base, subsampling_x, subsampling_y);
}
/*
* Logic to generate the lookup tables:
*
* TX_SIZE txs = max_txsize_rect_lookup[bsize];
* for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
* txs = sub_tx_size_map[txs];
* const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
* const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
* const int bw_uint_log2 = mi_size_wide_log2[bsize];
* const int stride_log2 = bw_uint_log2 - tx_w_log2;
*/
static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
int blk_col) {
static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
};
static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
};
static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
};
const int index =
((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
(blk_col >> tw_w_log2_table[bsize]);
assert(index < INTER_TX_SIZE_BUF_LEN);
return index;
}
#if CONFIG_INSPECTION
/*
* Here is the logic to generate the lookup tables:
*
* TX_SIZE txs = max_txsize_rect_lookup[bsize];
* for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
* txs = sub_tx_size_map[txs];
* const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
* const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
* const int bw_uint_log2 = mi_size_wide_log2[bsize];
* const int stride_log2 = bw_uint_log2 - tx_w_log2;
*/
static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
int blk_col) {
int index = 0;
#if CONFIG_NEW_TX_PARTITION
assert(bsize < BLOCK_SIZES_ALL);
TX_SIZE txs = max_txsize_rect_lookup[bsize];
// Get smallest possible sub_tx size
txs = smallest_sub_tx_size_map[txs];
const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
const int bw_uint_log2 = mi_size_wide_log2[bsize];
const int stride_log2 = bw_uint_log2 - tx_w_log2;
index = ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2);
assert(index < TXK_TYPE_BUF_LEN);
return index;
#endif // CONFIG_NEW_TX_PARTITION
static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
};
static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
};
static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
};
index = ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
(blk_col >> tw_w_log2_table[bsize]);
assert(index < TXK_TYPE_BUF_LEN);
return index;
}
#endif // CONFIG_INSPECTION
static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
int blk_col, TX_SIZE tx_size,
TX_TYPE tx_type) {
const int stride = xd->tx_type_map_stride;
xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
const int txw = tx_size_wide_unit[tx_size];
const int txh = tx_size_high_unit[tx_size];
// The 16x16 unit is due to the constraint from tx_64x64 which sets the
// maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
// size, the constraint takes effect in 32x16 / 16x32 size too. To solve
// the intricacy, cover all the 16x16 units inside a 64 level transform.
if (txw == tx_size_wide_unit[TX_64X64] ||
txh == tx_size_high_unit[TX_64X64]) {
const int tx_unit = tx_size_wide_unit[TX_16X16];
for (int idy = 0; idy < txh; idy += tx_unit) {
for (int idx = 0; idx < txw; idx += tx_unit) {
xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
}
}
}
}
#if CONFIG_CROSS_CHROMA_TX
#if CCTX_C2_DROPPED
// Determine whether or not to keep the second chroma channel (C2).
static INLINE int keep_chroma_c2(CctxType cctx_type) {
return
#if !CCTX_DROP_45
cctx_type == CCTX_MINUS45 || cctx_type == CCTX_45 ||
#endif // !CCTX_DROP_45
#if !CCTX_DROP_30
cctx_type == CCTX_MINUS30 || cctx_type == CCTX_30 ||
#endif // !CCTX_DROP_30
#if !CCTX_DROP_60
cctx_type == CCTX_MINUS60 || cctx_type == CCTX_60 ||
#endif // !CCTX_DROP_60
cctx_type == CCTX_NONE;
}
#endif
// When the current block is chroma reference, obtain amounts of mi offsets to
// its corresponding luma region. Otherwise set the offsets to 0.
static INLINE void get_chroma_mi_offsets(MACROBLOCKD *const xd,
#if !CONFIG_EXT_RECUR_PARTITIONS
TX_SIZE tx_size,
#endif // !CONFIG_EXT_RECUR_PARTITIONS
int *row_offset, int *col_offset) {
#if CONFIG_EXT_RECUR_PARTITIONS
*row_offset = xd->mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
*col_offset = xd->mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
#else
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
*row_offset =
(xd->mi_row & 0x01) && (tx_size_high_unit[tx_size] & 0x01) && ss_y;
*col_offset =
(xd->mi_col & 0x01) && (tx_size_wide_unit[tx_size] & 0x01) && ss_x;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
static INLINE void update_cctx_array(MACROBLOCKD *const xd, int blk_row,
int blk_col, int blk_row_offset,
int blk_col_offset, TX_SIZE tx_size,
CctxType cctx_type) {
const int stride = xd->cctx_type_map_stride;
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
assert(xd->is_chroma_ref);
// For sub 8x8 block, offsets will be applied to reach the mi_row and mi_col
// of the >= 8x8 block area. Transform block size is upscaled to match the
// luma block size.
const int br = (blk_row << ss_y) - blk_row_offset;
const int bc = (blk_col << ss_x) - blk_col_offset;
const int txw = tx_size_wide_unit[tx_size] << ss_x;
const int txh = tx_size_high_unit[tx_size] << ss_y;
// To make cctx_type available for its right and bottom neighbors, cover
// all elements in cctx_type_map within the transform block range with the
// current cctx type
for (int idy = 0; idy < txh; idy++)
memset(&xd->cctx_type_map[(br + idy) * stride + bc], cctx_type,
txw * sizeof(xd->cctx_type_map[0]));
}
static INLINE CctxType av1_get_cctx_type(const MACROBLOCKD *xd, int blk_row,
int blk_col) {
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const int br = blk_row << pd->subsampling_y;
const int bc = blk_col << pd->subsampling_x;
return xd->cctx_type_map[br * xd->cctx_type_map_stride + bc];
}
#endif // CONFIG_CROSS_CHROMA_TX
static INLINE int tx_size_is_depth0(TX_SIZE tx_size, BLOCK_SIZE bsize) {
TX_SIZE ctx_size = max_txsize_rect_lookup[bsize];
return ctx_size == tx_size;
}
#if !CONFIG_NEW_TX_PARTITION
static INLINE int tx_size_to_depth(TX_SIZE tx_size, BLOCK_SIZE bsize) {
TX_SIZE ctx_size = max_txsize_rect_lookup[bsize];
int depth = 0;
while (tx_size != ctx_size) {
depth++;
ctx_size = sub_tx_size_map[ctx_size];
assert(depth <= MAX_TX_DEPTH);
}
return depth;
}
#endif
/*
* If secondary transform is enabled (IST) :
* Bits 4~5 of tx_type stores secondary tx_type
* Bits 0~3 of tx_type stores primary tx_type
*
* This function masks secondary transform type used by the transform block
*
*/
static INLINE void disable_secondary_tx_type(TX_TYPE *tx_type) {
*tx_type &= 0x0f;
}
/*
* This function masks primary transform type used by the transform block
*/
static INLINE void disable_primary_tx_type(TX_TYPE *tx_type) {
*tx_type &= 0xf0;
}
/*
* This function returns primary transform type used by the transform block
*/
static INLINE TX_TYPE get_primary_tx_type(TX_TYPE tx_type) {
return tx_type & 0x0f;
}
/*
* This function returns secondary transform type used by the transform block
*/
static INLINE TX_TYPE get_secondary_tx_type(TX_TYPE tx_type) {
return (tx_type >> 4);
}
/*
* This function checks and returns 1 if secondary transform type needs to be
* signaled for the transform block
*/
static INLINE int block_signals_sec_tx_type(const MACROBLOCKD *xd,
TX_SIZE tx_size, TX_TYPE tx_type,
int eob) {
const MB_MODE_INFO *mbmi = xd->mi[0];
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra) {
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
} else {
intra_dir = mbmi->mode;
}
const BLOCK_SIZE bs = mbmi->sb_type[PLANE_TYPE_Y];
const TX_TYPE primary_tx_type = get_primary_tx_type(tx_type);
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int sb_size = (width >= 8 && height >= 8) ? 8 : 4;
bool ist_eob = 1;
// Updated EOB condition
if (((sb_size == 4) && (eob > IST_4x4_HEIGHT)) ||
((sb_size == 8) && (eob > IST_8x8_HEIGHT))) {
ist_eob = 0;
}
const int is_depth0 = tx_size_is_depth0(tx_size, bs);
const int code_stx =
(primary_tx_type == DCT_DCT || primary_tx_type == ADST_ADST) &&
(intra_dir < PAETH_PRED) &&
!(mbmi->filter_intra_mode_info.use_filter_intra) && is_depth0 && ist_eob;
return code_stx;
}
/*
* This function returns the tx_type used by the transform block
*
* If secondary transform is enabled (IST) :
* Bits 4~5 of tx_type stores secondary tx_type
* Bits 0~3 of tx_type stores primary tx_type
*/
static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
PLANE_TYPE plane_type, int blk_row,
int blk_col, TX_SIZE tx_size,
int reduced_tx_set) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (xd->lossless[mbmi->segment_id]) {
return DCT_DCT;
}
if (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] &&
!is_inter_block(mbmi, xd->tree_type) && plane_type == PLANE_TYPE_Y) {
return IDTX;
}
TX_TYPE tx_type;
if (plane_type == PLANE_TYPE_Y) {
tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
} else {
if (is_inter_block(mbmi, xd->tree_type)) {
// scale back to y plane's coordinate