blob: ca7a97a2d836ebe9df96e351b70f6ef02c681dab [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <stdbool.h>
#include <memory>
#include <tuple>
#include "aom_mem/aom_mem.h"
#include "av1/encoder/rdopt.h"
#include "test/util.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
namespace {
using std::get;
using std::tuple;
/** Get the (i, j) value from the input; if i or j is outside of the width
* or height, the nearest pixel value is returned.
*/
static int get_nearest_pix(const int *buf, int w, int h, int i, int j) {
int offset = AOMMAX(AOMMIN(i, w - 1), 0) + w * AOMMAX(AOMMIN(j, h - 1), 0);
return buf[offset];
}
/** Given the image data, creates a new image with padded values, so an
* 8-tap filter can be convolved. The padded value is the same as the closest
* value in the image. Returns a pointer to the start of the image in the
* padded data. Must be freed with free_pad_8tap. The output will be either
* 8-bit or 16-bit, depending on the high bit-depth (high_bd) field.
*/
static uint16_t *pad_8tap_convolve(const int *data, int w, int h) {
// SIMD optimizations require the width to be a multiple of 8 and the height
// to be multiples of 4.
assert(w % 8 == 0);
assert(h % 4 == 0);
// For an 8-tap filter, we need to pad with 3 lines on top and on the left,
// and 4 lines on the right and bottom, for 7 extra lines.
const int pad_w = w + 7;
const int pad_h = h + 7;
uint16_t *dst =
(uint16_t *)aom_memalign(32, sizeof(uint16_t) * pad_w * pad_h);
if (dst == nullptr) {
EXPECT_NE(dst, nullptr);
return nullptr;
}
for (int j = 0; j < pad_h; ++j) {
for (int i = 0; i < pad_w; ++i) {
const int v = get_nearest_pix(data, w, h, i - 3, j - 3);
dst[i + j * pad_w] = v;
}
}
return dst + (w + 7) * 3 + 3;
}
static int stride_8tap(int width) { return width + 7; }
static void free_pad_8tap(uint16_t *padded, int width) {
aom_free(padded - (width + 7) * 3 - 3);
}
struct Pad8TapConvolveDeleter {
Pad8TapConvolveDeleter(const int width) : width(width) {}
void operator()(uint16_t *p) {
if (p != nullptr) {
free_pad_8tap(p, width);
}
}
const int width;
};
struct MallocBdDeleter {
explicit MallocBdDeleter(void) {}
void operator()(uint16_t *p) { aom_free(p); }
};
class EdgeDetectBrightnessTest :
// Parameters are (brightness, width, height, high bit depth representation,
// bit depth).
public ::testing::TestWithParam<tuple<int, int, int, int> > {
protected:
void SetUp() override {
// Allocate a (width by height) array of luma values in orig_.
// padded_ will be filled by the pad() call, which adds a border around
// the orig_. The output_ array has enough space for the computation.
const int brightness = GET_PARAM(0);
const int width = GET_PARAM(1);
const int height = GET_PARAM(2);
// Create the padded image of uniform brightness.
std::unique_ptr<int[]> orig(new int[width * height]);
ASSERT_NE(orig, nullptr);
for (int i = 0; i < width * height; ++i) {
orig[i] = brightness;
}
input_ = pad_8tap_convolve(orig.get(), width, height);
ASSERT_NE(input_, nullptr);
output_ = (uint16_t *)aom_memalign(32, sizeof(uint16_t) * width * height);
ASSERT_NE(output_, nullptr);
}
void TearDown() override {
const int width = GET_PARAM(1);
free_pad_8tap(input_, width);
aom_free(output_);
}
// Skip the tests where brightness exceeds the bit-depth; we run into this
// issue because of gtest's limitation on valid combinations of test
// parameters. Also skip the tests where bit depth is greater than 8, but
// high bit depth representation is not set.
bool should_skip() const {
const int brightness = GET_PARAM(0);
const int bd = GET_PARAM(3);
if (brightness >= (1 << bd)) {
return true;
}
return false;
}
uint16_t *input_;
uint16_t *output_;
};
TEST_P(EdgeDetectBrightnessTest, BlurUniformBrightness) {
// Some combination of parameters are non-sensical, due to limitations
// of the testing framework. Ignore these.
if (should_skip()) {
return;
}
// For varying levels of brightness, the algorithm should
// produce the same output.
const int brightness = GET_PARAM(0);
const int width = GET_PARAM(1);
const int height = GET_PARAM(2);
const int bd = GET_PARAM(3);
av1_gaussian_blur(input_, stride_8tap(width), width, height, output_, bd);
for (int i = 0; i < width * height; ++i) {
ASSERT_EQ(brightness, output_[i]);
}
}
// No edges on a uniformly bright image.
TEST_P(EdgeDetectBrightnessTest, DetectUniformBrightness) {
if (should_skip()) {
return;
}
const int width = GET_PARAM(1);
const int height = GET_PARAM(2);
const int bd = GET_PARAM(3);
ASSERT_EQ(
0,
av1_edge_exists(input_, stride_8tap(width), width, height, bd).magnitude);
}
INSTANTIATE_TEST_SUITE_P(ImageBrightnessTests, EdgeDetectBrightnessTest,
::testing::Combine(
// Brightness
::testing::Values(0, 1, 2, 127, 128, 129, 254, 255,
256, 511, 512, 1023, 1024, 2048,
4095),
// Width
::testing::Values(8, 16, 32),
// Height
::testing::Values(4, 8, 12, 32),
// Bit depth
::testing::Values(8, 10, 12)));
class EdgeDetectImageTest :
// Parameters are (width, height, high bit depth representation, bit depth).
public ::testing::TestWithParam<tuple<int, int, int> > {};
// Generate images with black on one side and white on the other.
TEST_P(EdgeDetectImageTest, BlackWhite) {
const int width = GET_PARAM(0);
const int height = GET_PARAM(1);
const int bd = GET_PARAM(2);
const int white = (1 << bd) - 1;
std::unique_ptr<int[]> orig(new int[width * height]);
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
if (i < width / 2) {
orig[i + j * width] = 0;
} else {
orig[i + j * width] = white;
}
}
}
std::unique_ptr<uint16_t[], Pad8TapConvolveDeleter> padded(
pad_8tap_convolve(orig.get(), width, height),
Pad8TapConvolveDeleter(width));
ASSERT_NE(padded, nullptr);
// Value should be between 556 and 560.
ASSERT_LE(556,
av1_edge_exists(padded.get(), stride_8tap(width), width, height, bd)
.magnitude);
ASSERT_GE(560,
av1_edge_exists(padded.get(), stride_8tap(width), width, height, bd)
.magnitude);
}
// Hardcoded blur tests.
static const int luma[32] = { 241, 147, 7, 90, 184, 103, 28, 186,
2, 248, 49, 242, 114, 146, 127, 22,
121, 228, 167, 108, 158, 174, 41, 168,
214, 99, 184, 109, 114, 247, 117, 119 };
static const uint16_t expected[] = { 161, 138, 119, 118, 123, 118, 113, 122,
143, 140, 134, 133, 134, 126, 116, 114,
147, 149, 145, 142, 143, 138, 126, 118,
164, 156, 148, 144, 148, 148, 138, 126 };
static void hardcoded_blur_test_aux(void) {
const int w = 8;
const int h = 4;
for (int bd = 8; bd <= 12; bd += 2) {
// Skip the tests where bit depth is greater than 8, but high bit depth
// representation is not set.
std::unique_ptr<uint16_t[], MallocBdDeleter> output(
(uint16_t *)aom_memalign(32, sizeof(uint16_t) * w * h),
MallocBdDeleter());
ASSERT_NE(output, nullptr);
std::unique_ptr<uint16_t[], Pad8TapConvolveDeleter> padded(
pad_8tap_convolve(luma, w, h), Pad8TapConvolveDeleter(w));
ASSERT_NE(padded, nullptr);
av1_gaussian_blur(padded.get(), stride_8tap(w), w, h, output.get(), bd);
for (int i = 0; i < w * h; ++i) {
uint16_t *buf = output.get();
ASSERT_EQ(expected[i], buf[i]);
}
// If we multiply the inputs by a constant factor, the output should not
// vary more than 0.5 * factor.
for (int c = 2; c < (1 << (bd - 8)); ++c) {
int scaled_luma[32];
for (int i = 0; i < 32; ++i) {
scaled_luma[i] = luma[i] * c;
}
padded.reset(pad_8tap_convolve(scaled_luma, w, h));
ASSERT_NE(padded, nullptr);
av1_gaussian_blur(padded.get(), stride_8tap(w), w, h, output.get(), bd);
for (int i = 0; i < w * h; ++i) {
uint16_t *buf = output.get();
ASSERT_GE(c / 2, abs(expected[i] * c - buf[i]));
}
}
}
}
TEST(EdgeDetectImageTest, HardcodedBlurTest) { hardcoded_blur_test_aux(); }
TEST(EdgeDetectImageTest, SobelTest) {
// Randomly generated 3x3. Compute Sobel for middle value.
const uint16_t buf8_16[9] = { 241, 147, 7, 90, 184, 103, 28, 186, 2 };
const int stride = 3;
sobel_xy result = av1_sobel(buf8_16, stride, 1, 1);
ASSERT_EQ(234, result.x);
ASSERT_EQ(140, result.y);
// Verify it works for high bit-depth values as well.
const uint16_t buf16[9] = { 241, 147, 7, 90, 184, 2003, 1028, 186, 2 };
result = av1_sobel(buf16, stride, 1, 1);
ASSERT_EQ(-2566, result.x);
ASSERT_EQ(-860, result.y);
}
INSTANTIATE_TEST_SUITE_P(EdgeDetectImages, EdgeDetectImageTest,
::testing::Combine(
// Width
::testing::Values(8, 16, 32),
// Height
::testing::Values(4, 8, 12, 32),
// Bit depth
::testing::Values(8, 10, 12)));
} // namespace