| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/txfm_common.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/av1_txfm.h" |
| #include "av1/encoder/av1_fwd_txfm1d.h" |
| #include "av1/encoder/av1_fwd_txfm1d_cfg.h" |
| |
| static INLINE TxfmFunc fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { |
| switch (txfm_type) { |
| case TXFM_TYPE_DCT4: return av1_fdct4; |
| case TXFM_TYPE_DCT8: return av1_fdct8; |
| case TXFM_TYPE_DCT16: return av1_fdct16; |
| case TXFM_TYPE_DCT32: return av1_fdct32; |
| case TXFM_TYPE_DCT64: return av1_fdct64; |
| #if CONFIG_ADST_TUNED |
| case TXFM_TYPE_ADST4: return av2_fadst4; |
| case TXFM_TYPE_ADST8: return av2_fadst8; |
| case TXFM_TYPE_ADST16: return av2_fadst16; |
| #else |
| case TXFM_TYPE_ADST4: return av1_fadst4; |
| case TXFM_TYPE_ADST8: return av1_fadst8; |
| case TXFM_TYPE_ADST16: return av1_fadst16; |
| #endif // CONFIG_ADST_TUNED |
| case TXFM_TYPE_IDENTITY4: return av1_fidentity4_c; |
| case TXFM_TYPE_IDENTITY8: return av1_fidentity8_c; |
| case TXFM_TYPE_IDENTITY16: return av1_fidentity16_c; |
| case TXFM_TYPE_IDENTITY32: return av1_fidentity32_c; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, |
| const TXFM_2D_FLIP_CFG *cfg, int bd) { |
| // Take the shift from the larger dimension in the rectangular case. |
| const int8_t *shift = cfg->shift; |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) { |
| stage_range_col[i] = cfg->stage_range_col[i] + shift[0] + bd + 1; |
| } |
| |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) { |
| stage_range_row[i] = cfg->stage_range_row[i] + shift[0] + shift[1] + bd + 1; |
| } |
| } |
| |
| static INLINE void fwd_txfm2d_c(const int16_t *input, int32_t *output, |
| const int stride, const TXFM_2D_FLIP_CFG *cfg, |
| int32_t *buf, int bd) { |
| int c, r; |
| // Note when assigning txfm_size_col, we use the txfm_size from the |
| // row configuration and vice versa. This is intentionally done to |
| // accurately perform rectangular transforms. When the transform is |
| // rectangular, the number of columns will be the same as the |
| // txfm_size stored in the row cfg struct. It will make no difference |
| // for square transforms. |
| const int txfm_size_col = tx_size_wide[cfg->tx_size]; |
| const int txfm_size_row = tx_size_high[cfg->tx_size]; |
| // Take the shift from the larger dimension in the rectangular case. |
| const int8_t *shift = cfg->shift; |
| const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row); |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM); |
| assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM); |
| av1_gen_fwd_stage_range(stage_range_col, stage_range_row, cfg, bd); |
| |
| const int8_t cos_bit_col = cfg->cos_bit_col; |
| const int8_t cos_bit_row = cfg->cos_bit_row; |
| const TxfmFunc txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); |
| const TxfmFunc txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); |
| |
| // use output buffer as temp buffer |
| int32_t *temp_in = output; |
| int32_t *temp_out = output + txfm_size_row; |
| |
| // Columns |
| for (c = 0; c < txfm_size_col; ++c) { |
| if (cfg->ud_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) temp_in[r] = input[r * stride + c]; |
| } else { |
| for (r = 0; r < txfm_size_row; ++r) |
| // flip upside down |
| temp_in[r] = input[(txfm_size_row - r - 1) * stride + c]; |
| } |
| av1_round_shift_array(temp_in, txfm_size_row, -shift[0]); |
| txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); |
| av1_round_shift_array(temp_out, txfm_size_row, -shift[1]); |
| if (cfg->lr_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) |
| buf[r * txfm_size_col + c] = temp_out[r]; |
| } else { |
| for (r = 0; r < txfm_size_row; ++r) |
| // flip from left to right |
| buf[r * txfm_size_col + (txfm_size_col - c - 1)] = temp_out[r]; |
| } |
| } |
| |
| // Rows |
| for (r = 0; r < txfm_size_row; ++r) { |
| txfm_func_row(buf + r * txfm_size_col, output + r * txfm_size_col, |
| cos_bit_row, stage_range_row); |
| av1_round_shift_array(output + r * txfm_size_col, txfm_size_col, -shift[2]); |
| if ((abs(rect_type) % 2) == 1) { |
| // Multiply everything by Sqrt2 if the transform is rectangular and the |
| // size difference is a factor of 2 or 8. |
| for (c = 0; c < txfm_size_col; ++c) { |
| output[r * txfm_size_col + c] = round_shift( |
| (int64_t)output[r * txfm_size_col + c] * NewSqrt2, NewSqrt2Bits); |
| } |
| } |
| } |
| } |
| |
| void av1_fwd_txfm2d_4x8_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 8]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_4X8, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_8x4_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[8 * 4]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_8X4, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_8x16_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[8 * 16]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_8X16, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_16x8_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[16 * 8]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_16X8, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_16x32_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[16 * 32]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_16X32, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_32x16_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[32 * 16]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X16, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_4x16_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 16]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_4X16, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_16x4_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[16 * 4]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_16X4, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_8x32_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 8]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_8X32, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_32x8_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[32 * 8]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X8, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_4x4_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[4 * 4]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_4X4, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_8x8_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[8 * 8]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_8X8, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_16x16_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[16 * 16]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_16X16, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_32x32_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[32 * 32]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_64x64_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[64 * 64]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| |
| // Zero out top-right 32x32 area. |
| for (int row = 0; row < 32; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Zero out the bottom 64x32 area. |
| memset(output + 32 * 64, 0, 32 * 64 * sizeof(*output)); |
| // Re-pack non-zero coeffs in the first 32x32 indices. |
| for (int row = 1; row < 32; ++row) { |
| memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); |
| } |
| } |
| |
| void av1_fwd_txfm2d_32x64_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 64]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X64, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out the bottom 32x32 area. |
| memset(output + 32 * 32, 0, 32 * 32 * sizeof(*output)); |
| // Note: no repacking needed here. |
| } |
| |
| void av1_fwd_txfm2d_64x32_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[64 * 32]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X32, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| |
| // Zero out right 32x32 area. |
| for (int row = 0; row < 32; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Re-pack non-zero coeffs in the first 32x32 indices. |
| for (int row = 1; row < 32; ++row) { |
| memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); |
| } |
| } |
| |
| void av1_fwd_txfm2d_16x64_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 16]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_16X64, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out the bottom 16x32 area. |
| memset(output + 16 * 32, 0, 16 * 32 * sizeof(*output)); |
| // Note: no repacking needed here. |
| } |
| |
| void av1_fwd_txfm2d_64x16_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[64 * 16]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X16, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out right 32x16 area. |
| for (int row = 0; row < 16; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Re-pack non-zero coeffs in the first 32x16 indices. |
| for (int row = 1; row < 16; ++row) { |
| memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); |
| } |
| } |
| |
| #if CONFIG_FLEX_PARTITION |
| void av1_fwd_txfm2d_4x32_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 4]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_4X32, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_32x4_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[32 * 4]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X4, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| } |
| |
| void av1_fwd_txfm2d_8x64_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 8]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_8X64, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out the bottom 8x32 area. |
| memset(output + 8 * 32, 0, 8 * 32 * sizeof(*output)); |
| // Note: no repacking needed here. |
| } |
| |
| void av1_fwd_txfm2d_64x8_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[64 * 8]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X8, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out right 32x8 area. |
| for (int row = 0; row < 8; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Re-pack non-zero coeffs in the first 32x16 indices. |
| for (int row = 1; row < 8; ++row) { |
| memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); |
| } |
| } |
| |
| void av1_fwd_txfm2d_4x64_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 4]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_4X64, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out the bottom 4x32 area. |
| memset(output + 4 * 32, 0, 4 * 32 * sizeof(*output)); |
| // Note: no repacking needed here. |
| } |
| |
| void av1_fwd_txfm2d_64x4_c(const int16_t *input, int32_t *output, int stride, |
| TX_TYPE tx_type, int bd) { |
| int32_t txfm_buf[64 * 4]; |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X4, &cfg); |
| fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); |
| // Zero out right 32x4 area. |
| for (int row = 0; row < 4; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Re-pack non-zero coeffs in the first 32x4 indices. |
| for (int row = 1; row < 4; ++row) { |
| memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); |
| } |
| } |
| #endif // CONFIG_FLEX_PARTITION |
| |
| static const int8_t fwd_shift_4x4[3] = { 2, 0, 0 }; |
| static const int8_t fwd_shift_8x8[3] = { 2, -1, 0 }; |
| static const int8_t fwd_shift_16x16[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_32x32[3] = { 2, -4, 0 }; |
| static const int8_t fwd_shift_64x64[3] = { 0, -2, -2 }; |
| static const int8_t fwd_shift_4x8[3] = { 2, -1, 0 }; |
| static const int8_t fwd_shift_8x4[3] = { 2, -1, 0 }; |
| static const int8_t fwd_shift_8x16[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_16x8[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_16x32[3] = { 2, -4, 0 }; |
| static const int8_t fwd_shift_32x16[3] = { 2, -4, 0 }; |
| static const int8_t fwd_shift_32x64[3] = { 0, -2, -2 }; |
| static const int8_t fwd_shift_64x32[3] = { 2, -4, -2 }; |
| static const int8_t fwd_shift_4x16[3] = { 2, -1, 0 }; |
| static const int8_t fwd_shift_16x4[3] = { 2, -1, 0 }; |
| static const int8_t fwd_shift_8x32[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_32x8[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_16x64[3] = { 0, -2, 0 }; |
| static const int8_t fwd_shift_64x16[3] = { 2, -4, 0 }; |
| #if CONFIG_FLEX_PARTITION |
| static const int8_t fwd_shift_4x32[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_32x4[3] = { 2, -2, 0 }; |
| static const int8_t fwd_shift_8x64[3] = { 0, -2, 0 }; |
| static const int8_t fwd_shift_64x8[3] = { 2, -4, 0 }; |
| static const int8_t fwd_shift_4x64[3] = { 0, 0, 0 }; |
| static const int8_t fwd_shift_64x4[3] = { 2, -2, 0 }; |
| #endif // CONFIG_FLEX_PARTITION |
| |
| const int8_t *av1_fwd_txfm_shift_ls[TX_SIZES_ALL] = { |
| fwd_shift_4x4, fwd_shift_8x8, fwd_shift_16x16, fwd_shift_32x32, |
| fwd_shift_64x64, fwd_shift_4x8, fwd_shift_8x4, fwd_shift_8x16, |
| fwd_shift_16x8, fwd_shift_16x32, fwd_shift_32x16, fwd_shift_32x64, |
| fwd_shift_64x32, fwd_shift_4x16, fwd_shift_16x4, fwd_shift_8x32, |
| fwd_shift_32x8, fwd_shift_16x64, fwd_shift_64x16, |
| #if CONFIG_FLEX_PARTITION |
| fwd_shift_4x32, fwd_shift_32x4, fwd_shift_8x64, fwd_shift_64x8, |
| fwd_shift_4x64, fwd_shift_64x4, |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| |
| const int8_t av1_fwd_cos_bit_col[MAX_TXWH_IDX /*txw_idx*/] |
| [MAX_TXWH_IDX /*txh_idx*/] = { |
| { 13, 13, 13, 12, 13 }, |
| { 13, 13, 13, 12, 13 }, |
| { 13, 13, 13, 12, 13 }, |
| { 13, 13, 13, 12, 13 }, |
| { 13, 13, 13, 12, 13 } |
| }; |
| |
| const int8_t av1_fwd_cos_bit_row[MAX_TXWH_IDX /*txw_idx*/] |
| [MAX_TXWH_IDX /*txh_idx*/] = { |
| { 13, 13, 12, 12, 12 }, |
| { 13, 13, 13, 12, 12 }, |
| { 13, 13, 12, 13, 12 }, |
| { 12, 12, 13, 12, 11 }, |
| { 12, 12, 12, 11, 10 } |
| }; |
| |
| static const int8_t fdct4_range_mult2[4] = { 0, 2, 3, 3 }; |
| static const int8_t fdct8_range_mult2[6] = { 0, 2, 4, 5, 5, 5 }; |
| static const int8_t fdct16_range_mult2[8] = { 0, 2, 4, 6, 7, 7, 7, 7 }; |
| static const int8_t fdct32_range_mult2[10] = { 0, 2, 4, 6, 8, 9, 9, 9, 9, 9 }; |
| static const int8_t fdct64_range_mult2[12] = { 0, 2, 4, 6, 8, 10, |
| 11, 11, 11, 11, 11, 11 }; |
| |
| static const int8_t fadst4_range_mult2[7] = { 0, 2, 4, 3, 3, 3, 3 }; |
| static const int8_t fadst8_range_mult2[8] = { 0, 0, 1, 3, 3, 5, 5, 5 }; |
| static const int8_t fadst16_range_mult2[10] = { 0, 0, 1, 3, 3, 5, 5, 7, 7, 7 }; |
| |
| static const int8_t fidtx4_range_mult2[1] = { 1 }; |
| static const int8_t fidtx8_range_mult2[1] = { 2 }; |
| static const int8_t fidtx16_range_mult2[1] = { 3 }; |
| static const int8_t fidtx32_range_mult2[1] = { 4 }; |
| |
| #if 0 |
| const int8_t fwd_idtx_range_row[MAX_TXWH_IDX /*txw_idx*/] |
| [MAX_TXWH_IDX /*txh_idx*/] = { { 2, 4, 5, 0, 0 }, |
| { 3, 4, 5, 6, 0 }, |
| { 4, 5, 6, 7, 8 }, |
| { 0, 5, 6, 7, 8 }, |
| { 0, 0, 7, 8, |
| 9 } }; |
| #endif |
| |
| static const int8_t *fwd_txfm_range_mult2_list[TXFM_TYPES] = { |
| fdct4_range_mult2, fdct8_range_mult2, fdct16_range_mult2, |
| fdct32_range_mult2, fdct64_range_mult2, fadst4_range_mult2, |
| fadst8_range_mult2, fadst16_range_mult2, fidtx4_range_mult2, |
| fidtx8_range_mult2, fidtx16_range_mult2, fidtx32_range_mult2 |
| }; |
| |
| static INLINE void set_fwd_txfm_non_scale_range(TXFM_2D_FLIP_CFG *cfg) { |
| av1_zero(cfg->stage_range_col); |
| av1_zero(cfg->stage_range_row); |
| |
| const int8_t *range_mult2_col = fwd_txfm_range_mult2_list[cfg->txfm_type_col]; |
| if (cfg->txfm_type_col != TXFM_TYPE_INVALID) { |
| int stage_num_col = cfg->stage_num_col; |
| for (int i = 0; i < stage_num_col; ++i) |
| cfg->stage_range_col[i] = (range_mult2_col[i] + 1) >> 1; |
| } |
| |
| if (cfg->txfm_type_row != TXFM_TYPE_INVALID) { |
| int stage_num_row = cfg->stage_num_row; |
| const int8_t *range_mult2_row = |
| fwd_txfm_range_mult2_list[cfg->txfm_type_row]; |
| for (int i = 0; i < stage_num_row; ++i) { |
| cfg->stage_range_row[i] = |
| (range_mult2_col[cfg->stage_num_col - 1] + range_mult2_row[i] + 1) >> |
| 1; |
| } |
| } |
| } |
| |
| void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, |
| TXFM_2D_FLIP_CFG *cfg) { |
| assert(cfg != NULL); |
| cfg->tx_size = tx_size; |
| set_flip_cfg(tx_type, cfg); |
| const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; |
| const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| cfg->shift = av1_fwd_txfm_shift_ls[tx_size]; |
| cfg->cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx]; |
| cfg->cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx]; |
| cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col]; |
| cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row]; |
| cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col]; |
| cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row]; |
| set_fwd_txfm_non_scale_range(cfg); |
| } |
| |
| void fwd_stxfm_c(tran_low_t *src, tran_low_t *dst, const PREDICTION_MODE mode, |
| const uint8_t stx_idx, const int size) { |
| const int16_t *kernel = (size == 4) ? ist_4x4_kernel[mode][stx_idx][0] |
| : ist_8x8_kernel[mode][stx_idx][0]; |
| int coef; |
| int *out = dst; |
| assert(stx_idx < 4); |
| int shift = 7; |
| int offset = 1 << (shift - 1); |
| |
| int reduced_width, reduced_height; |
| if (size == 4) { |
| reduced_height = IST_4x4_HEIGHT; |
| reduced_width = IST_4x4_WIDTH; |
| } else { |
| reduced_height = IST_8x8_HEIGHT; |
| reduced_width = IST_8x8_WIDTH; |
| } |
| for (int j = 0; j < reduced_height; j++) { |
| int *srcPtr = src; |
| const int16_t *kernel_tmp = kernel; |
| coef = 0; |
| for (int i = 0; i < reduced_width; i++) { |
| coef += *srcPtr++ * *kernel_tmp++; |
| } |
| *out++ = (coef + offset) >> shift; |
| kernel += (size * size); |
| } |
| } |