blob: 3a40e66b5ba63d007948816c1aea54935387d799 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <emmintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/encoder/av1_quantize.h"
#include "aom_dsp/x86/quantize_x86.h"
void aom_quantize_b_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr,
const int32_t *round_ptr, const int32_t *quant_ptr,
const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 16;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] =
ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS);
thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant,
dequant_ptr, &dequant, quant_shift_ptr, &shift);
// Do DC and first 15 AC.
coeff0 = load_coefficients(coeff_ptr);
coeff1 = load_coefficients(coeff_ptr + 8);
// Poor man's abs().
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff(&qcoeff0, round, quant, shift);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
// Reinsert signs
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr);
store_coefficients(qcoeff1, qcoeff_ptr + 8);
coeff0 = calculate_dqcoeff(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = calculate_dqcoeff(qcoeff1, dequant);
store_coefficients(coeff0, dqcoeff_ptr);
store_coefficients(coeff1, dqcoeff_ptr + 8);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = load_coefficients(coeff_ptr + index);
coeff1 = load_coefficients(coeff_ptr + index + 8);
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0,
&mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero);
index += 16;
continue;
}
calculate_qcoeff(&qcoeff0, round, quant, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr + index);
store_coefficients(qcoeff1, qcoeff_ptr + index + 8);
coeff0 = calculate_dqcoeff(qcoeff0, dequant);
coeff1 = calculate_dqcoeff(qcoeff1, dequant);
store_coefficients(coeff0, dqcoeff_ptr + index);
store_coefficients(coeff1, dqcoeff_ptr + index + 8);
index += 16;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val = ROUND_POWER_OF_TWO(
dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS);
if (abs_coeff <
(zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}
void aom_quantize_b_32x32_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr,
const int32_t *round_ptr, const int32_t *quant_ptr,
const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 16;
const int log_scale = 1;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m128i log_scale_vec = _mm_set1_epi16(log_scale);
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] =
ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS);
thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
// Shift with rounding.
zbin = _mm_add_epi16(zbin, log_scale_vec);
round = _mm_add_epi16(round, log_scale_vec);
zbin = _mm_srli_epi16(zbin, log_scale);
round = _mm_srli_epi16(round, log_scale);
zbin = _mm_sub_epi16(zbin, one);
// Do DC and first 15 AC.
coeff0 = load_coefficients(coeff_ptr);
coeff1 = load_coefficients(coeff_ptr + 8);
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
// Reinsert signs
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr);
store_coefficients(qcoeff1, qcoeff_ptr + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr,
&log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + 8, &log_scale);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = load_coefficients(coeff_ptr + index);
coeff1 = load_coefficients(coeff_ptr + index + 8);
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0,
&mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero);
index += 16;
continue;
}
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr + index);
store_coefficients(qcoeff1, qcoeff_ptr + index + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero,
dqcoeff_ptr + index, &log_scale);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + index + 8, &log_scale);
index += 16;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val = ROUND_POWER_OF_TWO(
dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS);
if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}
void aom_quantize_b_64x64_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr,
const int32_t *round_ptr, const int32_t *quant_ptr,
const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 16;
const int log_scale = 2;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m128i log_scale_vec = _mm_set1_epi16(log_scale);
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] =
ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS);
thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
// Shift with rounding.
zbin = _mm_add_epi16(zbin, log_scale_vec);
round = _mm_add_epi16(round, log_scale_vec);
zbin = _mm_srli_epi16(zbin, log_scale);
round = _mm_srli_epi16(round, log_scale);
zbin = _mm_sub_epi16(zbin, one);
// Do DC and first 15 AC.
coeff0 = load_coefficients(coeff_ptr);
coeff1 = load_coefficients(coeff_ptr + 8);
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
// Reinsert signs
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr);
store_coefficients(qcoeff1, qcoeff_ptr + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr,
&log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + 8, &log_scale);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = load_coefficients(coeff_ptr + index);
coeff1 = load_coefficients(coeff_ptr + index + 8);
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign);
update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0,
&mask0);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero);
index += 16;
continue;
}
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr + index);
store_coefficients(qcoeff1, qcoeff_ptr + index + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero,
dqcoeff_ptr + index, &log_scale);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + index + 8, &log_scale);
index += 16;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val = ROUND_POWER_OF_TWO(
dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS);
if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}