blob: b2b546a48aced6e3ebeefc57d8af22966f67bc03 [file] [log] [blame]
// Copyright 2019 Joe Drago. All rights reserved.
// SPDX-License-Identifier: BSD-2-Clause
#include "avif/internal.h"
#include <assert.h>
#include <string.h>
#include <time.h>
#define MAX_ASSOCIATIONS 16
struct ipmaArray
{
uint8_t associations[MAX_ASSOCIATIONS];
avifBool essential[MAX_ASSOCIATIONS];
uint8_t count;
};
static void ipmaPush(struct ipmaArray * ipma, uint8_t assoc, avifBool essential)
{
ipma->associations[ipma->count] = assoc;
ipma->essential[ipma->count] = essential;
++ipma->count;
}
// Used to store offsets in meta boxes which need to point at mdat offsets that
// aren't known yet. When an item's mdat payload is written, all registered fixups
// will have this now-known offset "fixed up".
typedef struct avifOffsetFixup
{
size_t offset;
} avifOffsetFixup;
AVIF_ARRAY_DECLARE(avifOffsetFixupArray, avifOffsetFixup, fixup);
static const char alphaURN[] = AVIF_URN_ALPHA0;
static const size_t alphaURNSize = sizeof(alphaURN);
static const char xmpContentType[] = AVIF_CONTENT_TYPE_XMP;
static const size_t xmpContentTypeSize = sizeof(xmpContentType);
static void writeConfigBox(avifRWStream * s, avifCodecConfigurationBox * cfg, const char * configPropName);
// ---------------------------------------------------------------------------
// avifSetTileConfiguration
static int floorLog2(uint32_t n)
{
assert(n > 0);
int count = 0;
while (n != 0) {
++count;
n >>= 1;
}
return count - 1;
}
// Splits tilesLog2 into *tileDim1Log2 and *tileDim2Log2, considering the ratio of dim1 to dim2.
//
// Precondition:
// dim1 >= dim2
// Postcondition:
// tilesLog2 == *tileDim1Log2 + *tileDim2Log2
// *tileDim1Log2 >= *tileDim2Log2
static void splitTilesLog2(uint32_t dim1, uint32_t dim2, int tilesLog2, int * tileDim1Log2, int * tileDim2Log2)
{
assert(dim1 >= dim2);
uint32_t ratio = dim1 / dim2;
int diffLog2 = floorLog2(ratio);
int subtract = tilesLog2 - diffLog2;
if (subtract < 0) {
subtract = 0;
}
*tileDim2Log2 = subtract / 2;
*tileDim1Log2 = tilesLog2 - *tileDim2Log2;
assert(*tileDim1Log2 >= *tileDim2Log2);
}
// Set the tile configuration: the number of tiles and the tile size.
//
// Tiles improve encoding and decoding speeds when multiple threads are available. However, for
// image coding, the total tile boundary length affects the compression efficiency because intra
// prediction can't go across tile boundaries. So the more tiles there are in an image, the worse
// the compression ratio is. For a given number of tiles, making the tile size close to a square
// tends to reduce the total tile boundary length inside the image. Use more tiles along the longer
// dimension of the image to make the tile size closer to a square.
void avifSetTileConfiguration(int threads, uint32_t width, uint32_t height, int * tileRowsLog2, int * tileColsLog2)
{
*tileRowsLog2 = 0;
*tileColsLog2 = 0;
if (threads > 1) {
// Avoid small tiles because they are particularly bad for image coding.
//
// Use no more tiles than the number of threads. Aim for one tile per thread. Using more
// than one thread inside one tile could be less efficient. Using more tiles than the
// number of threads would result in a compression penalty without much benefit.
const uint32_t kMinTileArea = 512 * 512;
const uint32_t kMaxTiles = 32;
uint32_t imageArea = width * height;
uint32_t tiles = (imageArea + kMinTileArea - 1) / kMinTileArea;
if (tiles > kMaxTiles) {
tiles = kMaxTiles;
}
if (tiles > (uint32_t)threads) {
tiles = threads;
}
int tilesLog2 = floorLog2(tiles);
// If the image's width is greater than the height, use more tile columns than tile rows.
if (width >= height) {
splitTilesLog2(width, height, tilesLog2, tileColsLog2, tileRowsLog2);
} else {
splitTilesLog2(height, width, tilesLog2, tileRowsLog2, tileColsLog2);
}
}
}
// ---------------------------------------------------------------------------
// avifCodecEncodeOutput
avifCodecEncodeOutput * avifCodecEncodeOutputCreate(void)
{
avifCodecEncodeOutput * encodeOutput = (avifCodecEncodeOutput *)avifAlloc(sizeof(avifCodecEncodeOutput));
memset(encodeOutput, 0, sizeof(avifCodecEncodeOutput));
if (!avifArrayCreate(&encodeOutput->samples, sizeof(avifEncodeSample), 1)) {
goto error;
}
return encodeOutput;
error:
avifCodecEncodeOutputDestroy(encodeOutput);
return NULL;
}
void avifCodecEncodeOutputAddSample(avifCodecEncodeOutput * encodeOutput, const uint8_t * data, size_t len, avifBool sync)
{
avifEncodeSample * sample = (avifEncodeSample *)avifArrayPushPtr(&encodeOutput->samples);
avifRWDataSet(&sample->data, data, len);
sample->sync = sync;
}
void avifCodecEncodeOutputDestroy(avifCodecEncodeOutput * encodeOutput)
{
for (uint32_t sampleIndex = 0; sampleIndex < encodeOutput->samples.count; ++sampleIndex) {
avifRWDataFree(&encodeOutput->samples.sample[sampleIndex].data);
}
avifArrayDestroy(&encodeOutput->samples);
avifFree(encodeOutput);
}
// ---------------------------------------------------------------------------
// avifEncoderItem
// one "item" worth for encoder
typedef struct avifEncoderItem
{
uint16_t id;
uint8_t type[4];
avifCodec * codec; // only present on image items
avifCodecEncodeOutput * encodeOutput; // AV1 sample data
avifRWData metadataPayload; // Exif/XMP data
avifCodecConfigurationBox av1C; // Harvested in avifEncoderFinish(), if encodeOutput has samples
// TODO(yguyon): Rename or add av2C
uint32_t cellIndex; // Which row-major cell index corresponds to this item. only present on image items
avifBool alpha;
avifBool hiddenImage; // A hidden image item has (flags & 1) equal to 1 in its ItemInfoEntry.
const char * infeName;
size_t infeNameSize;
const char * infeContentType;
size_t infeContentTypeSize;
avifOffsetFixupArray mdatFixups;
uint16_t irefToID; // if non-zero, make an iref from this id -> irefToID
const char * irefType;
uint32_t gridCols; // if non-zero (legal range [1-256]), this is a grid item
uint32_t gridRows; // if non-zero (legal range [1-256]), this is a grid item
// the reconstructed image of a grid item will be trimmed to these dimensions (only present on grid items)
uint32_t gridWidth;
uint32_t gridHeight;
uint32_t extraLayerCount; // if non-zero (legal range [1-(AVIF_MAX_AV1_LAYER_COUNT-1)]), this is a layered AV1 image
uint16_t dimgFromID; // if non-zero, make an iref from dimgFromID -> this id
struct ipmaArray ipma;
} avifEncoderItem;
AVIF_ARRAY_DECLARE(avifEncoderItemArray, avifEncoderItem, item);
// ---------------------------------------------------------------------------
// avifEncoderItemReference
// pointer to one "item" interested in
typedef avifEncoderItem * avifEncoderItemReference;
AVIF_ARRAY_DECLARE(avifEncoderItemReferenceArray, avifEncoderItemReference, ref);
// ---------------------------------------------------------------------------
// avifEncoderFrame
typedef struct avifEncoderFrame
{
uint64_t durationInTimescales;
} avifEncoderFrame;
AVIF_ARRAY_DECLARE(avifEncoderFrameArray, avifEncoderFrame, frame);
// ---------------------------------------------------------------------------
// avifEncoderData
typedef struct avifEncoderData
{
avifEncoderItemArray items;
avifEncoderFrameArray frames;
// Map the encoder settings quality and qualityAlpha to quantizer and quantizerAlpha
int quantizer;
int quantizerAlpha;
// tileRowsLog2 and tileColsLog2 are the actual tiling values after automatic tiling is handled
int tileRowsLog2;
int tileColsLog2;
avifEncoder lastEncoder;
// lastQuantizer and lastQuantizerAlpha are the quantizer and quantizerAlpha values used last
// time
int lastQuantizer;
int lastQuantizerAlpha;
// lastTileRowsLog2 and lastTileColsLog2 are the actual tiling values used last time
int lastTileRowsLog2;
int lastTileColsLog2;
avifImage * imageMetadata;
uint16_t lastItemID;
uint16_t primaryItemID;
avifBool singleImage; // if true, the AVIF_ADD_IMAGE_FLAG_SINGLE flag was set on the first call to avifEncoderAddImage()
avifBool alphaPresent;
// Fields specific to AV1/AV2
const char * imageItemType; // "av01" for AV1 ("av02" for AV2 if AVIF_CODEC_AVM)
const char * configPropName; // "av1C" for AV1 ("av2C" for AV2 if AVIF_CODEC_AVM)
} avifEncoderData;
static void avifEncoderDataDestroy(avifEncoderData * data);
// Returns NULL if a memory allocation failed.
static avifEncoderData * avifEncoderDataCreate()
{
avifEncoderData * data = (avifEncoderData *)avifAlloc(sizeof(avifEncoderData));
if (!data) {
return NULL;
}
memset(data, 0, sizeof(avifEncoderData));
data->imageMetadata = avifImageCreateEmpty();
if (!data->imageMetadata) {
goto error;
}
if (!avifArrayCreate(&data->items, sizeof(avifEncoderItem), 8)) {
goto error;
}
if (!avifArrayCreate(&data->frames, sizeof(avifEncoderFrame), 1)) {
goto error;
}
return data;
error:
avifEncoderDataDestroy(data);
return NULL;
}
static avifEncoderItem * avifEncoderDataCreateItem(avifEncoderData * data, const char * type, const char * infeName, size_t infeNameSize, uint32_t cellIndex)
{
avifEncoderItem * item = (avifEncoderItem *)avifArrayPushPtr(&data->items);
++data->lastItemID;
item->id = data->lastItemID;
memcpy(item->type, type, sizeof(item->type));
item->infeName = infeName;
item->infeNameSize = infeNameSize;
item->encodeOutput = avifCodecEncodeOutputCreate();
item->cellIndex = cellIndex;
if (!avifArrayCreate(&item->mdatFixups, sizeof(avifOffsetFixup), 4)) {
goto error;
}
return item;
error:
avifCodecEncodeOutputDestroy(item->encodeOutput);
--data->lastItemID;
avifArrayPop(&data->items);
return NULL;
}
static avifEncoderItem * avifEncoderDataFindItemByID(avifEncoderData * data, uint16_t id)
{
for (uint32_t itemIndex = 0; itemIndex < data->items.count; ++itemIndex) {
avifEncoderItem * item = &data->items.item[itemIndex];
if (item->id == id) {
return item;
}
}
return NULL;
}
static void avifEncoderDataDestroy(avifEncoderData * data)
{
for (uint32_t i = 0; i < data->items.count; ++i) {
avifEncoderItem * item = &data->items.item[i];
if (item->codec) {
avifCodecDestroy(item->codec);
}
avifCodecEncodeOutputDestroy(item->encodeOutput);
avifRWDataFree(&item->metadataPayload);
avifArrayDestroy(&item->mdatFixups);
}
if (data->imageMetadata) {
avifImageDestroy(data->imageMetadata);
}
avifArrayDestroy(&data->items);
avifArrayDestroy(&data->frames);
avifFree(data);
}
static void avifEncoderItemAddMdatFixup(avifEncoderItem * item, const avifRWStream * s)
{
avifOffsetFixup * fixup = (avifOffsetFixup *)avifArrayPushPtr(&item->mdatFixups);
fixup->offset = avifRWStreamOffset(s);
}
// ---------------------------------------------------------------------------
// avifItemPropertyDedup - Provides ipco deduplication
typedef struct avifItemProperty
{
uint8_t index;
size_t offset;
size_t size;
} avifItemProperty;
AVIF_ARRAY_DECLARE(avifItemPropertyArray, avifItemProperty, property);
typedef struct avifItemPropertyDedup
{
avifItemPropertyArray properties;
avifRWStream s; // Temporary stream for each new property, checked against already-written boxes for deduplications
avifRWData buffer; // Temporary storage for 's'
uint8_t nextIndex; // 1-indexed, incremented every time another unique property is finished
} avifItemPropertyDedup;
static void avifItemPropertyDedupDestroy(avifItemPropertyDedup * dedup);
static avifItemPropertyDedup * avifItemPropertyDedupCreate(void)
{
avifItemPropertyDedup * dedup = (avifItemPropertyDedup *)avifAlloc(sizeof(avifItemPropertyDedup));
memset(dedup, 0, sizeof(avifItemPropertyDedup));
if (!avifArrayCreate(&dedup->properties, sizeof(avifItemProperty), 8)) {
goto error;
}
avifRWDataRealloc(&dedup->buffer, 2048); // This will resize automatically (if necessary)
return dedup;
error:
avifItemPropertyDedupDestroy(dedup);
return NULL;
}
static void avifItemPropertyDedupDestroy(avifItemPropertyDedup * dedup)
{
avifArrayDestroy(&dedup->properties);
avifRWDataFree(&dedup->buffer);
avifFree(dedup);
}
// Resets the dedup's temporary write stream in preparation for a single item property's worth of writing
static void avifItemPropertyDedupStart(avifItemPropertyDedup * dedup)
{
avifRWStreamStart(&dedup->s, &dedup->buffer);
}
// This compares the newly written item property (in the dedup's temporary storage buffer) to
// already-written properties (whose offsets/sizes in outputStream are recorded in the dedup). If a
// match is found, the previous item's index is used. If this new property is unique, it is
// assigned the next available property index, written to the output stream, and its offset/size in
// the output stream is recorded in the dedup for future comparisons.
//
// This function always returns a valid 1-indexed property index for usage in a property association
// (ipma) box later. If the most recent property was a duplicate of a previous property, the return
// value will be the index of the original property, otherwise it will be the index of the newly
// created property.
static uint8_t avifItemPropertyDedupFinish(avifItemPropertyDedup * dedup, avifRWStream * outputStream)
{
const size_t newPropertySize = avifRWStreamOffset(&dedup->s);
for (size_t i = 0; i < dedup->properties.count; ++i) {
avifItemProperty * property = &dedup->properties.property[i];
if ((property->size == newPropertySize) &&
!memcmp(&outputStream->raw->data[property->offset], dedup->buffer.data, newPropertySize)) {
// We've already written this exact property, reuse it
return property->index;
}
}
// Write a new property, and remember its location in the output stream for future deduplication
avifItemProperty * property = (avifItemProperty *)avifArrayPushPtr(&dedup->properties);
property->index = ++dedup->nextIndex; // preincrement so the first new index is 1 (as ipma is 1-indexed)
property->size = newPropertySize;
property->offset = avifRWStreamOffset(outputStream);
avifRWStreamWrite(outputStream, dedup->buffer.data, newPropertySize);
return property->index;
}
// ---------------------------------------------------------------------------
static const avifScalingMode noScaling = { { 1, 1 }, { 1, 1 } };
avifEncoder * avifEncoderCreate(void)
{
avifEncoder * encoder = (avifEncoder *)avifAlloc(sizeof(avifEncoder));
if (!encoder) {
return NULL;
}
memset(encoder, 0, sizeof(avifEncoder));
encoder->maxThreads = 1;
encoder->speed = AVIF_SPEED_DEFAULT;
encoder->keyframeInterval = 0;
encoder->timescale = 1;
encoder->repetitionCount = AVIF_REPETITION_COUNT_INFINITE;
encoder->quality = AVIF_QUALITY_DEFAULT;
encoder->qualityAlpha = AVIF_QUALITY_DEFAULT;
encoder->minQuantizer = AVIF_QUANTIZER_BEST_QUALITY;
encoder->maxQuantizer = AVIF_QUANTIZER_WORST_QUALITY;
encoder->minQuantizerAlpha = AVIF_QUANTIZER_BEST_QUALITY;
encoder->maxQuantizerAlpha = AVIF_QUANTIZER_WORST_QUALITY;
encoder->tileRowsLog2 = 0;
encoder->tileColsLog2 = 0;
encoder->autoTiling = AVIF_FALSE;
encoder->scalingMode = noScaling;
encoder->data = avifEncoderDataCreate();
encoder->csOptions = avifCodecSpecificOptionsCreate();
if (!encoder->data || !encoder->csOptions) {
avifEncoderDestroy(encoder);
return NULL;
}
return encoder;
}
void avifEncoderDestroy(avifEncoder * encoder)
{
if (encoder->csOptions) {
avifCodecSpecificOptionsDestroy(encoder->csOptions);
}
if (encoder->data) {
avifEncoderDataDestroy(encoder->data);
}
avifFree(encoder);
}
avifResult avifEncoderSetCodecSpecificOption(avifEncoder * encoder, const char * key, const char * value)
{
return avifCodecSpecificOptionsSet(encoder->csOptions, key, value);
}
static void avifEncoderBackupSettings(avifEncoder * encoder)
{
avifEncoder * lastEncoder = &encoder->data->lastEncoder;
// lastEncoder->data is only used to mark that lastEncoder is initialized. lastEncoder->data
// must not be dereferenced.
lastEncoder->data = encoder->data;
lastEncoder->codecChoice = encoder->codecChoice;
lastEncoder->maxThreads = encoder->maxThreads;
lastEncoder->speed = encoder->speed;
lastEncoder->keyframeInterval = encoder->keyframeInterval;
lastEncoder->timescale = encoder->timescale;
lastEncoder->repetitionCount = encoder->repetitionCount;
lastEncoder->extraLayerCount = encoder->extraLayerCount;
lastEncoder->minQuantizer = encoder->minQuantizer;
lastEncoder->maxQuantizer = encoder->maxQuantizer;
lastEncoder->minQuantizerAlpha = encoder->minQuantizerAlpha;
lastEncoder->maxQuantizerAlpha = encoder->maxQuantizerAlpha;
encoder->data->lastQuantizer = encoder->data->quantizer;
encoder->data->lastQuantizerAlpha = encoder->data->quantizerAlpha;
encoder->data->lastTileRowsLog2 = encoder->data->tileRowsLog2;
encoder->data->lastTileColsLog2 = encoder->data->tileColsLog2;
lastEncoder->scalingMode = encoder->scalingMode;
}
// This function detects changes made on avifEncoder. It returns true on success (i.e., if every
// change is valid), or false on failure (i.e., if any setting that can't change was changed). It
// reports a bitwise-OR of detected changes in encoderChanges.
static avifBool avifEncoderDetectChanges(const avifEncoder * encoder, avifEncoderChanges * encoderChanges)
{
const avifEncoder * lastEncoder = &encoder->data->lastEncoder;
*encoderChanges = 0;
if (!lastEncoder->data) {
// lastEncoder is not initialized.
return AVIF_TRUE;
}
if ((lastEncoder->codecChoice != encoder->codecChoice) || (lastEncoder->maxThreads != encoder->maxThreads) ||
(lastEncoder->speed != encoder->speed) || (lastEncoder->keyframeInterval != encoder->keyframeInterval) ||
(lastEncoder->timescale != encoder->timescale) || (lastEncoder->repetitionCount != encoder->repetitionCount) ||
(lastEncoder->extraLayerCount != encoder->extraLayerCount)) {
return AVIF_FALSE;
}
if (encoder->data->lastQuantizer != encoder->data->quantizer) {
*encoderChanges |= AVIF_ENCODER_CHANGE_QUANTIZER;
}
if (encoder->data->lastQuantizerAlpha != encoder->data->quantizerAlpha) {
*encoderChanges |= AVIF_ENCODER_CHANGE_QUANTIZER_ALPHA;
}
if (lastEncoder->minQuantizer != encoder->minQuantizer) {
*encoderChanges |= AVIF_ENCODER_CHANGE_MIN_QUANTIZER;
}
if (lastEncoder->maxQuantizer != encoder->maxQuantizer) {
*encoderChanges |= AVIF_ENCODER_CHANGE_MAX_QUANTIZER;
}
if (lastEncoder->minQuantizerAlpha != encoder->minQuantizerAlpha) {
*encoderChanges |= AVIF_ENCODER_CHANGE_MIN_QUANTIZER_ALPHA;
}
if (lastEncoder->maxQuantizerAlpha != encoder->maxQuantizerAlpha) {
*encoderChanges |= AVIF_ENCODER_CHANGE_MAX_QUANTIZER_ALPHA;
}
if (encoder->data->lastTileRowsLog2 != encoder->data->tileRowsLog2) {
*encoderChanges |= AVIF_ENCODER_CHANGE_TILE_ROWS_LOG2;
}
if (encoder->data->lastTileColsLog2 != encoder->data->tileColsLog2) {
*encoderChanges |= AVIF_ENCODER_CHANGE_TILE_COLS_LOG2;
}
if (memcmp(&lastEncoder->scalingMode, &encoder->scalingMode, sizeof(avifScalingMode)) != 0) {
*encoderChanges |= AVIF_ENCODER_CHANGE_SCALING_MODE;
}
if (encoder->csOptions->count > 0) {
*encoderChanges |= AVIF_ENCODER_CHANGE_CODEC_SPECIFIC;
}
return AVIF_TRUE;
}
// This function is used in two codepaths:
// * writing color *item* properties
// * writing color *track* properties
//
// Item properties must have property associations with them and can be deduplicated (by reusing
// these associations), so this function leverages the ipma and dedup arguments to do this.
//
// Track properties, however, are implicitly associated by the track in which they are contained, so
// there is no need to build a property association box (ipma), and no way to deduplicate/reuse a
// property. In this case, the ipma and dedup properties should/will be set to NULL, and this
// function will avoid using them.
static void avifEncoderWriteColorProperties(avifRWStream * outputStream,
const avifImage * imageMetadata,
struct ipmaArray * ipma,
avifItemPropertyDedup * dedup)
{
avifRWStream * s = outputStream;
if (dedup) {
assert(ipma);
// Use the dedup's temporary stream for box writes
s = &dedup->s;
}
if (imageMetadata->icc.size > 0) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker colr = avifRWStreamWriteBox(s, "colr", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteChars(s, "prof", 4); // unsigned int(32) colour_type;
avifRWStreamWrite(s, imageMetadata->icc.data, imageMetadata->icc.size);
avifRWStreamFinishBox(s, colr);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_FALSE);
}
}
// HEIF 6.5.5.1, from Amendment 3 allows multiple colr boxes: "at most one for a given value of colour type"
// Therefore, *always* writing an nclx box, even if an a prof box was already written above.
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker colr = avifRWStreamWriteBox(s, "colr", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteChars(s, "nclx", 4); // unsigned int(32) colour_type;
avifRWStreamWriteU16(s, imageMetadata->colorPrimaries); // unsigned int(16) colour_primaries;
avifRWStreamWriteU16(s, imageMetadata->transferCharacteristics); // unsigned int(16) transfer_characteristics;
avifRWStreamWriteU16(s, imageMetadata->matrixCoefficients); // unsigned int(16) matrix_coefficients;
avifRWStreamWriteU8(s, (imageMetadata->yuvRange == AVIF_RANGE_FULL) ? 0x80 : 0); // unsigned int(1) full_range_flag;
// unsigned int(7) reserved = 0;
avifRWStreamFinishBox(s, colr);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_FALSE);
}
// Write Content Light Level Information, if present
if (imageMetadata->clli.maxCLL || imageMetadata->clli.maxPALL) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker clli = avifRWStreamWriteBox(s, "clli", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU16(s, imageMetadata->clli.maxCLL); // unsigned int(16) max_content_light_level;
avifRWStreamWriteU16(s, imageMetadata->clli.maxPALL); // unsigned int(16) max_pic_average_light_level;
avifRWStreamFinishBox(s, clli);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_FALSE);
}
}
// Write (Optional) Transformations
if (imageMetadata->transformFlags & AVIF_TRANSFORM_PASP) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker pasp = avifRWStreamWriteBox(s, "pasp", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU32(s, imageMetadata->pasp.hSpacing); // unsigned int(32) hSpacing;
avifRWStreamWriteU32(s, imageMetadata->pasp.vSpacing); // unsigned int(32) vSpacing;
avifRWStreamFinishBox(s, pasp);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_FALSE);
}
}
if (imageMetadata->transformFlags & AVIF_TRANSFORM_CLAP) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker clap = avifRWStreamWriteBox(s, "clap", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU32(s, imageMetadata->clap.widthN); // unsigned int(32) cleanApertureWidthN;
avifRWStreamWriteU32(s, imageMetadata->clap.widthD); // unsigned int(32) cleanApertureWidthD;
avifRWStreamWriteU32(s, imageMetadata->clap.heightN); // unsigned int(32) cleanApertureHeightN;
avifRWStreamWriteU32(s, imageMetadata->clap.heightD); // unsigned int(32) cleanApertureHeightD;
avifRWStreamWriteU32(s, imageMetadata->clap.horizOffN); // unsigned int(32) horizOffN;
avifRWStreamWriteU32(s, imageMetadata->clap.horizOffD); // unsigned int(32) horizOffD;
avifRWStreamWriteU32(s, imageMetadata->clap.vertOffN); // unsigned int(32) vertOffN;
avifRWStreamWriteU32(s, imageMetadata->clap.vertOffD); // unsigned int(32) vertOffD;
avifRWStreamFinishBox(s, clap);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_TRUE);
}
}
if (imageMetadata->transformFlags & AVIF_TRANSFORM_IROT) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker irot = avifRWStreamWriteBox(s, "irot", AVIF_BOX_SIZE_TBD);
uint8_t angle = imageMetadata->irot.angle & 0x3;
avifRWStreamWrite(s, &angle, 1); // unsigned int (6) reserved = 0; unsigned int (2) angle;
avifRWStreamFinishBox(s, irot);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_TRUE);
}
}
if (imageMetadata->transformFlags & AVIF_TRANSFORM_IMIR) {
if (dedup) {
avifItemPropertyDedupStart(dedup);
}
avifBoxMarker imir = avifRWStreamWriteBox(s, "imir", AVIF_BOX_SIZE_TBD);
uint8_t mode = imageMetadata->imir.mode & 0x1;
avifRWStreamWrite(s, &mode, 1); // unsigned int (7) reserved = 0; unsigned int (1) mode;
avifRWStreamFinishBox(s, imir);
if (dedup) {
ipmaPush(ipma, avifItemPropertyDedupFinish(dedup, outputStream), AVIF_TRUE);
}
}
}
// Write unassociated metadata items (EXIF, XMP) to a small meta box inside of a trak box.
// These items are implicitly associated with the track they are contained within.
static void avifEncoderWriteTrackMetaBox(avifEncoder * encoder, avifRWStream * s)
{
// Count how many non-image items (such as EXIF/XMP) are being written
uint32_t metadataItemCount = 0;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (memcmp(item->type, encoder->data->imageItemType, 4) != 0) {
++metadataItemCount;
}
}
if (metadataItemCount == 0) {
// Don't even bother writing the trak meta box
return;
}
avifBoxMarker meta = avifRWStreamWriteFullBox(s, "meta", AVIF_BOX_SIZE_TBD, 0, 0);
avifBoxMarker hdlr = avifRWStreamWriteFullBox(s, "hdlr", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(s, 0); // unsigned int(32) pre_defined = 0;
avifRWStreamWriteChars(s, "pict", 4); // unsigned int(32) handler_type;
avifRWStreamWriteZeros(s, 12); // const unsigned int(32)[3] reserved = 0;
avifRWStreamWriteChars(s, "libavif", 8); // string name; (writing null terminator)
avifRWStreamFinishBox(s, hdlr);
avifBoxMarker iloc = avifRWStreamWriteFullBox(s, "iloc", AVIF_BOX_SIZE_TBD, 0, 0);
uint8_t offsetSizeAndLengthSize = (4 << 4) + (4 << 0); // unsigned int(4) offset_size;
// unsigned int(4) length_size;
avifRWStreamWrite(s, &offsetSizeAndLengthSize, 1); //
avifRWStreamWriteZeros(s, 1); // unsigned int(4) base_offset_size;
// unsigned int(4) reserved;
avifRWStreamWriteU16(s, (uint16_t)metadataItemCount); // unsigned int(16) item_count;
for (uint32_t trakItemIndex = 0; trakItemIndex < encoder->data->items.count; ++trakItemIndex) {
avifEncoderItem * item = &encoder->data->items.item[trakItemIndex];
if (memcmp(item->type, encoder->data->imageItemType, 4) == 0) {
// Skip over all non-metadata items
continue;
}
avifRWStreamWriteU16(s, item->id); // unsigned int(16) item_ID;
avifRWStreamWriteU16(s, 0); // unsigned int(16) data_reference_index;
avifRWStreamWriteU16(s, 1); // unsigned int(16) extent_count;
avifEncoderItemAddMdatFixup(item, s); //
avifRWStreamWriteU32(s, 0 /* set later */); // unsigned int(offset_size*8) extent_offset;
avifRWStreamWriteU32(s, (uint32_t)item->metadataPayload.size); // unsigned int(length_size*8) extent_length;
}
avifRWStreamFinishBox(s, iloc);
avifBoxMarker iinf = avifRWStreamWriteFullBox(s, "iinf", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU16(s, (uint16_t)metadataItemCount); // unsigned int(16) entry_count;
for (uint32_t trakItemIndex = 0; trakItemIndex < encoder->data->items.count; ++trakItemIndex) {
avifEncoderItem * item = &encoder->data->items.item[trakItemIndex];
if (memcmp(item->type, encoder->data->imageItemType, 4) == 0) {
continue;
}
assert(!item->hiddenImage);
avifBoxMarker infe = avifRWStreamWriteFullBox(s, "infe", AVIF_BOX_SIZE_TBD, 2, 0);
avifRWStreamWriteU16(s, item->id); // unsigned int(16) item_ID;
avifRWStreamWriteU16(s, 0); // unsigned int(16) item_protection_index;
avifRWStreamWrite(s, item->type, 4); // unsigned int(32) item_type;
avifRWStreamWriteChars(s, item->infeName, item->infeNameSize); // string item_name; (writing null terminator)
if (item->infeContentType && item->infeContentTypeSize) { // string content_type; (writing null terminator)
avifRWStreamWriteChars(s, item->infeContentType, item->infeContentTypeSize);
}
avifRWStreamFinishBox(s, infe);
}
avifRWStreamFinishBox(s, iinf);
avifRWStreamFinishBox(s, meta);
}
static void avifWriteGridPayload(avifRWData * data, uint32_t gridCols, uint32_t gridRows, uint32_t gridWidth, uint32_t gridHeight)
{
// ISO/IEC 23008-12 6.6.2.3.2
// aligned(8) class ImageGrid {
// unsigned int(8) version = 0;
// unsigned int(8) flags;
// FieldLength = ((flags & 1) + 1) * 16;
// unsigned int(8) rows_minus_one;
// unsigned int(8) columns_minus_one;
// unsigned int(FieldLength) output_width;
// unsigned int(FieldLength) output_height;
// }
uint8_t gridFlags = ((gridWidth > 65535) || (gridHeight > 65535)) ? 1 : 0;
avifRWStream s;
avifRWStreamStart(&s, data);
avifRWStreamWriteU8(&s, 0); // unsigned int(8) version = 0;
avifRWStreamWriteU8(&s, gridFlags); // unsigned int(8) flags;
avifRWStreamWriteU8(&s, (uint8_t)(gridRows - 1)); // unsigned int(8) rows_minus_one;
avifRWStreamWriteU8(&s, (uint8_t)(gridCols - 1)); // unsigned int(8) columns_minus_one;
if (gridFlags & 1) {
avifRWStreamWriteU32(&s, gridWidth); // unsigned int(FieldLength) output_width;
avifRWStreamWriteU32(&s, gridHeight); // unsigned int(FieldLength) output_height;
} else {
uint16_t tmpWidth = (uint16_t)gridWidth;
uint16_t tmpHeight = (uint16_t)gridHeight;
avifRWStreamWriteU16(&s, tmpWidth); // unsigned int(FieldLength) output_width;
avifRWStreamWriteU16(&s, tmpHeight); // unsigned int(FieldLength) output_height;
}
avifRWStreamFinishWrite(&s);
}
static avifResult avifEncoderDataCreateExifItem(avifEncoderData * data, const avifRWData * exif)
{
size_t exifTiffHeaderOffset;
const avifResult result = avifGetExifTiffHeaderOffset(exif->data, exif->size, &exifTiffHeaderOffset);
if (result != AVIF_RESULT_OK) {
// Couldn't find the TIFF header
return result;
}
avifEncoderItem * exifItem = avifEncoderDataCreateItem(data, "Exif", "Exif", 5, 0);
if (!exifItem) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
exifItem->irefToID = data->primaryItemID;
exifItem->irefType = "cdsc";
const uint32_t offset32bit = avifHTONL((uint32_t)exifTiffHeaderOffset);
avifRWDataRealloc(&exifItem->metadataPayload, sizeof(offset32bit) + exif->size);
memcpy(exifItem->metadataPayload.data, &offset32bit, sizeof(offset32bit));
memcpy(exifItem->metadataPayload.data + sizeof(offset32bit), exif->data, exif->size);
return AVIF_RESULT_OK;
}
static avifResult avifEncoderDataCreateXMPItem(avifEncoderData * data, const avifRWData * xmp)
{
avifEncoderItem * xmpItem = avifEncoderDataCreateItem(data, "mime", "XMP", 4, 0);
if (!xmpItem) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
xmpItem->irefToID = data->primaryItemID;
xmpItem->irefType = "cdsc";
xmpItem->infeContentType = xmpContentType;
xmpItem->infeContentTypeSize = xmpContentTypeSize;
avifRWDataSet(&xmpItem->metadataPayload, xmp->data, xmp->size);
return AVIF_RESULT_OK;
}
// Same as avifImageCopy() but pads the dstImage with border pixel values to reach dstWidth and dstHeight.
// Returns NULL if a memory allocation failed.
static avifImage * avifImageCopyAndPad(const avifImage * srcImage, uint32_t dstWidth, uint32_t dstHeight)
{
avifImage * dstImage = avifImageCreateEmpty();
if (!dstImage) {
return NULL;
}
// Copy all fields but do not allocate.
if (avifImageCopy(dstImage, srcImage, (avifPlanesFlag)0) != AVIF_RESULT_OK) {
avifImageDestroy(dstImage);
return NULL;
}
assert(dstWidth >= srcImage->width);
assert(dstHeight >= srcImage->height);
dstImage->width = dstWidth;
dstImage->height = dstHeight;
if (srcImage->yuvPlanes[AVIF_CHAN_Y]) {
const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_YUV);
if (allocationResult != AVIF_RESULT_OK) {
avifImageDestroy(dstImage);
return NULL;
}
}
if (srcImage->alphaPlane) {
const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_A);
if (allocationResult != AVIF_RESULT_OK) {
avifImageDestroy(dstImage);
return NULL;
}
}
const avifBool usesU16 = avifImageUsesU16(srcImage);
for (int plane = AVIF_CHAN_Y; plane <= AVIF_CHAN_A; ++plane) {
const uint8_t * srcRow = avifImagePlane(srcImage, plane);
const uint32_t srcRowBytes = avifImagePlaneRowBytes(srcImage, plane);
const uint32_t srcPlaneWidth = avifImagePlaneWidth(srcImage, plane);
const uint32_t srcPlaneHeight = avifImagePlaneHeight(srcImage, plane); // 0 for A if no alpha and 0 for UV if 4:0:0.
const size_t srcPlaneWidthBytes = (size_t)srcPlaneWidth << usesU16;
uint8_t * dstRow = avifImagePlane(dstImage, plane);
const uint32_t dstRowBytes = avifImagePlaneRowBytes(dstImage, plane);
const uint32_t dstPlaneWidth = avifImagePlaneWidth(dstImage, plane);
const uint32_t dstPlaneHeight = avifImagePlaneHeight(dstImage, plane); // 0 for A if no alpha and 0 for UV if 4:0:0.
const size_t dstPlaneWidthBytes = (size_t)dstPlaneWidth << usesU16;
for (uint32_t j = 0; j < srcPlaneHeight; ++j) {
memcpy(dstRow, srcRow, srcPlaneWidthBytes);
// Pad columns.
if (dstPlaneWidth > srcPlaneWidth) {
if (usesU16) {
uint16_t * dstRow16 = (uint16_t *)dstRow;
for (uint32_t x = srcPlaneWidth; x < dstPlaneWidth; ++x) {
dstRow16[x] = dstRow16[srcPlaneWidth - 1];
}
} else {
memset(&dstRow[srcPlaneWidth], dstRow[srcPlaneWidth - 1], dstPlaneWidth - srcPlaneWidth);
}
}
srcRow += srcRowBytes;
dstRow += dstRowBytes;
}
// Pad rows.
for (uint32_t j = srcPlaneHeight; j < dstPlaneHeight; ++j) {
memcpy(dstRow, dstRow - dstRowBytes, dstPlaneWidthBytes);
dstRow += dstRowBytes;
}
}
return dstImage;
}
static int avifQualityToQuantizer(int quality, int minQuantizer, int maxQuantizer)
{
int quantizer;
if (quality == AVIF_QUALITY_DEFAULT) {
// In older libavif releases, avifEncoder didn't have the quality and qualityAlpha fields.
// Supply a default value for quantizer.
quantizer = (minQuantizer + maxQuantizer) / 2;
quantizer = AVIF_CLAMP(quantizer, 0, 63);
} else {
quality = AVIF_CLAMP(quality, 0, 100);
quantizer = ((100 - quality) * 63 + 50) / 100;
}
return quantizer;
}
// Adds the items for a single cell or a grid of cells. Outputs the topLevelItemID which is
// the only item if there is exactly one cell, or the grid item for multiple cells.
// Note: The topLevelItemID output argument has the type uint16_t* instead of avifEncoderItem** because
// the avifEncoderItem pointer may be invalidated by a call to avifEncoderDataCreateItem().
static avifResult avifEncoderAddImageItems(avifEncoder * encoder,
uint32_t gridCols,
uint32_t gridRows,
uint32_t gridWidth,
uint32_t gridHeight,
avifBool alpha,
uint16_t * topLevelItemID)
{
const uint32_t cellCount = gridCols * gridRows;
const char * infeName = alpha ? "Alpha" : "Color";
const size_t infeNameSize = 6;
if (cellCount > 1) {
avifEncoderItem * gridItem = avifEncoderDataCreateItem(encoder->data, "grid", infeName, infeNameSize, 0);
avifWriteGridPayload(&gridItem->metadataPayload, gridCols, gridRows, gridWidth, gridHeight);
gridItem->alpha = alpha;
gridItem->gridCols = gridCols;
gridItem->gridRows = gridRows;
gridItem->gridWidth = gridWidth;
gridItem->gridHeight = gridHeight;
*topLevelItemID = gridItem->id;
}
for (uint32_t cellIndex = 0; cellIndex < cellCount; ++cellIndex) {
avifEncoderItem * item =
avifEncoderDataCreateItem(encoder->data, encoder->data->imageItemType, infeName, infeNameSize, cellIndex);
AVIF_CHECKERR(item, AVIF_RESULT_OUT_OF_MEMORY);
item->codec = avifCodecCreate(encoder->codecChoice, AVIF_CODEC_FLAG_CAN_ENCODE);
AVIF_CHECKERR(item->codec, AVIF_RESULT_NO_CODEC_AVAILABLE);
item->codec->csOptions = encoder->csOptions;
item->codec->diag = &encoder->diag;
item->alpha = alpha;
item->extraLayerCount = encoder->extraLayerCount;
if (cellCount > 1) {
item->dimgFromID = *topLevelItemID;
item->hiddenImage = AVIF_TRUE;
} else {
*topLevelItemID = item->id;
}
}
return AVIF_RESULT_OK;
}
static avifCodecType avifEncoderGetCodecType(const avifEncoder * encoder)
{
// TODO(yguyon): Rework when AVIF_CODEC_CHOICE_AUTO can be AVM
assert((encoder->codecChoice != AVIF_CODEC_CHOICE_AUTO) ||
(strcmp(avifCodecName(encoder->codecChoice, AVIF_CODEC_FLAG_CAN_ENCODE), "avm") != 0));
return avifCodecTypeFromChoice(encoder->codecChoice, AVIF_CODEC_FLAG_CAN_ENCODE);
}
// This function is called after every color frame is encoded. It returns AVIF_TRUE if a keyframe needs to be forced for the next
// alpha frame to be encoded, AVIF_FALSE otherwise.
static avifBool avifEncoderDataShouldForceKeyframeForAlpha(const avifEncoderData * data,
const avifEncoderItem * colorItem,
avifAddImageFlags addImageFlags)
{
if (!data->alphaPresent) {
// There is no alpha plane.
return AVIF_FALSE;
}
if (addImageFlags & AVIF_ADD_IMAGE_FLAG_SINGLE) {
// Not an animated image.
return AVIF_FALSE;
}
if (data->frames.count == 0) {
// data->frames.count is the number of frames that have been encoded so far by previous calls to avifEncoderAddImage. If
// this is the first frame, there is no need to force keyframe.
return AVIF_FALSE;
}
const uint32_t colorFramesOutputSoFar = colorItem->encodeOutput->samples.count;
const avifBool isLaggedOutput = (data->frames.count + 1) != colorFramesOutputSoFar;
if (isLaggedOutput) {
// If the encoder is operating with lag, then there is no way to determine if the last encoded frame was a keyframe until
// the encoder outputs it (after the lag). So do not force keyframe for alpha channel in this case.
return AVIF_FALSE;
}
return colorItem->encodeOutput->samples.sample[colorFramesOutputSoFar - 1].sync;
}
static avifResult avifEncoderAddImageInternal(avifEncoder * encoder,
uint32_t gridCols,
uint32_t gridRows,
const avifImage * const * cellImages,
uint64_t durationInTimescales,
avifAddImageFlags addImageFlags)
{
// -----------------------------------------------------------------------
// Verify encoding is possible
if (!avifCodecName(encoder->codecChoice, AVIF_CODEC_FLAG_CAN_ENCODE)) {
return AVIF_RESULT_NO_CODEC_AVAILABLE;
}
if (encoder->extraLayerCount >= AVIF_MAX_AV1_LAYER_COUNT) {
avifDiagnosticsPrintf(&encoder->diag, "extraLayerCount [%u] must be less than %d", encoder->extraLayerCount, AVIF_MAX_AV1_LAYER_COUNT);
return AVIF_RESULT_INVALID_ARGUMENT;
}
// -----------------------------------------------------------------------
// Validate images
const uint32_t cellCount = gridCols * gridRows;
if (cellCount == 0) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
const avifImage * firstCell = cellImages[0];
const avifImage * bottomRightCell = cellImages[cellCount - 1];
if ((firstCell->depth != 8) && (firstCell->depth != 10) && (firstCell->depth != 12)) {
return AVIF_RESULT_UNSUPPORTED_DEPTH;
}
if (!firstCell->width || !firstCell->height || !bottomRightCell->width || !bottomRightCell->height) {
return AVIF_RESULT_NO_CONTENT;
}
// HEIF (ISO 23008-12:2017), Section 6.6.2.3.1:
// All input images shall have exactly the same width and height; call those tile_width and tile_height.
// HEIF (ISO 23008-12:2017), Section 6.6.2.3.1:
// The reconstructed image is formed by tiling the input images into a grid with a column width
// (potentially excluding the right-most column) equal to tile_width and a row height (potentially
// excluding the bottom-most row) equal to tile_height, without gap or overlap, and then
// trimming on the right and the bottom to the indicated output_width and output_height.
// Consider the combined input cellImages as the user's final output intent.
// Right and bottom cells may be padded below so that all tiles are tileWidth by tileHeight,
// and the output cropped to gridWidth by gridHeight.
const uint32_t tileWidth = firstCell->width;
const uint32_t tileHeight = firstCell->height;
const uint32_t gridWidth = (gridCols - 1) * tileWidth + bottomRightCell->width;
const uint32_t gridHeight = (gridRows - 1) * tileHeight + bottomRightCell->height;
for (uint32_t cellIndex = 0; cellIndex < cellCount; ++cellIndex) {
const avifImage * cellImage = cellImages[cellIndex];
const uint32_t expectedCellWidth = ((cellIndex + 1) % gridCols) ? tileWidth : bottomRightCell->width;
const uint32_t expectedCellHeight = (cellIndex < (cellCount - gridCols)) ? tileHeight : bottomRightCell->height;
if ((cellImage->width != expectedCellWidth) || (cellImage->height != expectedCellHeight)) {
return AVIF_RESULT_INVALID_IMAGE_GRID;
}
}
if ((bottomRightCell->width > tileWidth) || (bottomRightCell->height > tileHeight)) {
return AVIF_RESULT_INVALID_IMAGE_GRID;
}
if ((cellCount > 1) &&
!avifAreGridDimensionsValid(firstCell->yuvFormat, gridWidth, gridHeight, tileWidth, tileHeight, &encoder->diag)) {
return AVIF_RESULT_INVALID_IMAGE_GRID;
}
for (uint32_t cellIndex = 0; cellIndex < cellCount; ++cellIndex) {
const avifImage * cellImage = cellImages[cellIndex];
// MIAF (ISO 23000-22:2019), Section 7.3.11.4.1:
// All input images of a grid image item shall use the same coding format, chroma sampling format, and the
// same decoder configuration (see 7.3.6.2).
if ((cellImage->depth != firstCell->depth) || (cellImage->yuvFormat != firstCell->yuvFormat) ||
(cellImage->yuvRange != firstCell->yuvRange) || (cellImage->colorPrimaries != firstCell->colorPrimaries) ||
(cellImage->transferCharacteristics != firstCell->transferCharacteristics) ||
(cellImage->matrixCoefficients != firstCell->matrixCoefficients) || (!!cellImage->alphaPlane != !!firstCell->alphaPlane) ||
(cellImage->alphaPremultiplied != firstCell->alphaPremultiplied)) {
return AVIF_RESULT_INVALID_IMAGE_GRID;
}
if (!cellImage->yuvPlanes[AVIF_CHAN_Y]) {
return AVIF_RESULT_NO_CONTENT;
}
if (cellImage->yuvFormat == AVIF_PIXEL_FORMAT_NONE) {
return AVIF_RESULT_NO_YUV_FORMAT_SELECTED;
}
}
// -----------------------------------------------------------------------
// Validate flags
if (encoder->data->singleImage) {
// The previous call to avifEncoderAddImage() set AVIF_ADD_IMAGE_FLAG_SINGLE.
// avifEncoderAddImage() cannot be called again for this encode.
return AVIF_RESULT_ENCODE_COLOR_FAILED;
}
if (addImageFlags & AVIF_ADD_IMAGE_FLAG_SINGLE) {
encoder->data->singleImage = AVIF_TRUE;
if (encoder->extraLayerCount > 0) {
// AVIF_ADD_IMAGE_FLAG_SINGLE may not be set for layered image.
return AVIF_RESULT_INVALID_ARGUMENT;
}
if (encoder->data->items.count > 0) {
// AVIF_ADD_IMAGE_FLAG_SINGLE may only be set on the first and only image.
return AVIF_RESULT_INVALID_ARGUMENT;
}
}
// -----------------------------------------------------------------------
// Choose AV1 or AV2
const avifCodecType codecType = avifEncoderGetCodecType(encoder);
switch (codecType) {
case AVIF_CODEC_TYPE_AV1:
encoder->data->imageItemType = "av01";
encoder->data->configPropName = "av1C";
break;
#if defined(AVIF_CODEC_AVM)
case AVIF_CODEC_TYPE_AV2:
encoder->data->imageItemType = "av02";
encoder->data->configPropName = "av2C";
break;
#endif
default:
return AVIF_RESULT_NO_CODEC_AVAILABLE;
}
// -----------------------------------------------------------------------
// Map quality and qualityAlpha to quantizer and quantizerAlpha
encoder->data->quantizer = avifQualityToQuantizer(encoder->quality, encoder->minQuantizer, encoder->maxQuantizer);
encoder->data->quantizerAlpha = avifQualityToQuantizer(encoder->qualityAlpha, encoder->minQuantizerAlpha, encoder->maxQuantizerAlpha);
// -----------------------------------------------------------------------
// Handle automatic tiling
encoder->data->tileRowsLog2 = AVIF_CLAMP(encoder->tileRowsLog2, 0, 6);
encoder->data->tileColsLog2 = AVIF_CLAMP(encoder->tileColsLog2, 0, 6);
if (encoder->autoTiling) {
// Use as many tiles as allowed by the minimum tile area requirement and impose a maximum
// of 8 tiles.
const int threads = 8;
avifSetTileConfiguration(threads, tileWidth, tileHeight, &encoder->data->tileRowsLog2, &encoder->data->tileColsLog2);
}
// -----------------------------------------------------------------------
// All encoder settings are known now. Detect changes.
avifEncoderChanges encoderChanges;
if (!avifEncoderDetectChanges(encoder, &encoderChanges)) {
return AVIF_RESULT_CANNOT_CHANGE_SETTING;
}
avifEncoderBackupSettings(encoder);
// -----------------------------------------------------------------------
if (durationInTimescales == 0) {
durationInTimescales = 1;
}
if (encoder->data->items.count == 0) {
// Make a copy of the first image's metadata (sans pixels) for future writing/validation
const avifResult copyResult = avifImageCopy(encoder->data->imageMetadata, firstCell, 0);
if (copyResult != AVIF_RESULT_OK) {
return copyResult;
}
// Prepare all AV1 items
uint16_t colorItemID;
AVIF_CHECKRES(avifEncoderAddImageItems(encoder, gridCols, gridRows, gridWidth, gridHeight, /*alpha=*/AVIF_FALSE, &colorItemID));
encoder->data->primaryItemID = colorItemID;
encoder->data->alphaPresent = (firstCell->alphaPlane != NULL);
if (encoder->data->alphaPresent && (addImageFlags & AVIF_ADD_IMAGE_FLAG_SINGLE)) {
// If encoding a single image in which the alpha plane exists but is entirely opaque,
// simply skip writing an alpha AV1 payload entirely, as it'll be interpreted as opaque
// and is less bytes.
//
// However, if encoding an image sequence, the first frame's alpha plane being entirely
// opaque could be a false positive for removing the alpha AV1 payload, as it might simply
// be a fade out later in the sequence. This is why avifImageIsOpaque() is only called
// when encoding a single image.
encoder->data->alphaPresent = AVIF_FALSE;
for (uint32_t cellIndex = 0; cellIndex < cellCount; ++cellIndex) {
const avifImage * cellImage = cellImages[cellIndex];
if (!avifImageIsOpaque(cellImage)) {
encoder->data->alphaPresent = AVIF_TRUE;
break;
}
}
}
if (encoder->data->alphaPresent) {
uint16_t alphaItemID;
AVIF_CHECKRES(avifEncoderAddImageItems(encoder, gridCols, gridRows, gridWidth, gridHeight, /*alpha=*/AVIF_TRUE, &alphaItemID));
avifEncoderItem * alphaItem = avifEncoderDataFindItemByID(encoder->data, alphaItemID);
assert(alphaItem);
alphaItem->irefType = "auxl";
alphaItem->irefToID = colorItemID;
if (encoder->data->imageMetadata->alphaPremultiplied) {
avifEncoderItem * colorItem = avifEncoderDataFindItemByID(encoder->data, colorItemID);
assert(colorItem);
colorItem->irefType = "prem";
colorItem->irefToID = alphaItemID;
}
}
// -----------------------------------------------------------------------
// Create metadata items (Exif, XMP)
if (firstCell->exif.size > 0) {
const avifResult result = avifEncoderDataCreateExifItem(encoder->data, &firstCell->exif);
if (result != AVIF_RESULT_OK) {
return result;
}
}
if (firstCell->xmp.size > 0) {
const avifResult result = avifEncoderDataCreateXMPItem(encoder->data, &firstCell->xmp);
if (result != AVIF_RESULT_OK) {
return result;
}
}
} else {
// Another frame in an image sequence, or layer in a layered image
const avifImage * imageMetadata = encoder->data->imageMetadata;
// Image metadata that are copied to the configuration property and nclx boxes are not allowed to change.
// If the first image in the sequence had an alpha plane (even if fully opaque), all
// subsequent images must have alpha as well.
if ((imageMetadata->depth != firstCell->depth) || (imageMetadata->yuvFormat != firstCell->yuvFormat) ||
(imageMetadata->yuvRange != firstCell->yuvRange) ||
(imageMetadata->yuvChromaSamplePosition != firstCell->yuvChromaSamplePosition) ||
(imageMetadata->colorPrimaries != firstCell->colorPrimaries) ||
(imageMetadata->transferCharacteristics != firstCell->transferCharacteristics) ||
(imageMetadata->matrixCoefficients != firstCell->matrixCoefficients) ||
(imageMetadata->alphaPremultiplied != firstCell->alphaPremultiplied) ||
(encoder->data->alphaPresent && !firstCell->alphaPlane)) {
return AVIF_RESULT_INCOMPATIBLE_IMAGE;
}
}
if (encoder->data->frames.count == 1) {
// We will be writing an image sequence. When writing the AV1SampleEntry (derived from
// VisualSampleEntry) in the stsd box, we need to cast imageMetadata->width and
// imageMetadata->height to uint16_t:
// class VisualSampleEntry(codingname) extends SampleEntry (codingname){
// ...
// unsigned int(16) width;
// unsigned int(16) height;
// ...
// }
// Check whether it is safe to cast width and height to uint16_t. The maximum width and
// height of an AV1 frame are 65536, which just exceeds uint16_t.
assert(encoder->data->items.count > 0);
const avifImage * imageMetadata = encoder->data->imageMetadata;
if ((imageMetadata->width > 65535) || (imageMetadata->height > 65535)) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
}
// -----------------------------------------------------------------------
// Encode AV1 OBUs
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->codec) {
const avifImage * cellImage = cellImages[item->cellIndex];
avifImage * paddedCellImage = NULL;
if ((cellImage->width != tileWidth) || (cellImage->height != tileHeight)) {
paddedCellImage = avifImageCopyAndPad(cellImage, tileWidth, tileHeight);
if (!paddedCellImage) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
cellImage = paddedCellImage;
}
const int quantizer = item->alpha ? encoder->data->quantizerAlpha : encoder->data->quantizer;
// If alpha channel is present, set disableLaggedOutput to AVIF_TRUE. If the encoder supports it, this enables
// avifEncoderDataShouldForceKeyframeForAlpha to force a keyframe in the alpha channel whenever a keyframe has been
// encoded in the color channel for animated images.
avifResult encodeResult = item->codec->encodeImage(item->codec,
encoder,
cellImage,
item->alpha,
encoder->data->tileRowsLog2,
encoder->data->tileColsLog2,
quantizer,
encoderChanges,
/*disableLaggedOutput=*/encoder->data->alphaPresent,
addImageFlags,
item->encodeOutput);
if (paddedCellImage) {
avifImageDestroy(paddedCellImage);
}
if (encodeResult == AVIF_RESULT_UNKNOWN_ERROR) {
encodeResult = item->alpha ? AVIF_RESULT_ENCODE_ALPHA_FAILED : AVIF_RESULT_ENCODE_COLOR_FAILED;
}
if (encodeResult != AVIF_RESULT_OK) {
return encodeResult;
}
if (itemIndex == 0 && avifEncoderDataShouldForceKeyframeForAlpha(encoder->data, item, addImageFlags)) {
addImageFlags |= AVIF_ADD_IMAGE_FLAG_FORCE_KEYFRAME;
}
}
}
avifCodecSpecificOptionsClear(encoder->csOptions);
avifEncoderFrame * frame = (avifEncoderFrame *)avifArrayPushPtr(&encoder->data->frames);
frame->durationInTimescales = durationInTimescales;
return AVIF_RESULT_OK;
}
avifResult avifEncoderAddImage(avifEncoder * encoder, const avifImage * image, uint64_t durationInTimescales, avifAddImageFlags addImageFlags)
{
avifDiagnosticsClearError(&encoder->diag);
return avifEncoderAddImageInternal(encoder, 1, 1, &image, durationInTimescales, addImageFlags);
}
avifResult avifEncoderAddImageGrid(avifEncoder * encoder,
uint32_t gridCols,
uint32_t gridRows,
const avifImage * const * cellImages,
avifAddImageFlags addImageFlags)
{
avifDiagnosticsClearError(&encoder->diag);
if ((gridCols == 0) || (gridCols > 256) || (gridRows == 0) || (gridRows > 256)) {
return AVIF_RESULT_INVALID_IMAGE_GRID;
}
if (encoder->extraLayerCount == 0) {
addImageFlags |= AVIF_ADD_IMAGE_FLAG_SINGLE; // image grids cannot be image sequences
}
return avifEncoderAddImageInternal(encoder, gridCols, gridRows, cellImages, 1, addImageFlags);
}
static size_t avifEncoderFindExistingChunk(avifRWStream * s, size_t mdatStartOffset, const uint8_t * data, size_t size)
{
const size_t mdatCurrentOffset = avifRWStreamOffset(s);
const size_t mdatSearchSize = mdatCurrentOffset - mdatStartOffset;
if (mdatSearchSize < size) {
return 0;
}
const size_t mdatEndSearchOffset = mdatCurrentOffset - size;
for (size_t searchOffset = mdatStartOffset; searchOffset <= mdatEndSearchOffset; ++searchOffset) {
if (!memcmp(data, &s->raw->data[searchOffset], size)) {
return searchOffset;
}
}
return 0;
}
avifResult avifEncoderFinish(avifEncoder * encoder, avifRWData * output)
{
avifDiagnosticsClearError(&encoder->diag);
if (encoder->data->items.count == 0) {
return AVIF_RESULT_NO_CONTENT;
}
const avifCodecType codecType = avifEncoderGetCodecType(encoder);
if (codecType == AVIF_CODEC_TYPE_UNKNOWN) {
return AVIF_RESULT_NO_CODEC_AVAILABLE;
}
// -----------------------------------------------------------------------
// Finish up encoding
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->codec) {
if (!item->codec->encodeFinish(item->codec, item->encodeOutput)) {
return item->alpha ? AVIF_RESULT_ENCODE_ALPHA_FAILED : AVIF_RESULT_ENCODE_COLOR_FAILED;
}
if (item->encodeOutput->samples.count != encoder->data->frames.count) {
return item->alpha ? AVIF_RESULT_ENCODE_ALPHA_FAILED : AVIF_RESULT_ENCODE_COLOR_FAILED;
}
if ((item->extraLayerCount > 0) && (item->encodeOutput->samples.count != item->extraLayerCount + 1)) {
// Check whether user has sent enough frames to encoder.
avifDiagnosticsPrintf(&encoder->diag,
"Expected %u frames given to avifEncoderAddImage() to encode this layered image according to extraLayerCount, but got %u frames.",
item->extraLayerCount + 1,
item->encodeOutput->samples.count);
return AVIF_RESULT_INVALID_ARGUMENT;
}
}
}
// -----------------------------------------------------------------------
// Harvest configuration properties from sequence headers
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->encodeOutput->samples.count > 0) {
const avifEncodeSample * firstSample = &item->encodeOutput->samples.sample[0];
avifSequenceHeader sequenceHeader;
AVIF_CHECKERR(avifSequenceHeaderParse(&sequenceHeader, (const avifROData *)&firstSample->data, codecType),
item->alpha ? AVIF_RESULT_ENCODE_ALPHA_FAILED : AVIF_RESULT_ENCODE_COLOR_FAILED);
item->av1C = sequenceHeader.av1C;
}
}
// -----------------------------------------------------------------------
// Begin write stream
const avifImage * imageMetadata = encoder->data->imageMetadata;
// The epoch for creation_time and modification_time is midnight, Jan. 1,
// 1904, in UTC time. Add the number of seconds between that epoch and the
// Unix epoch.
uint64_t now = (uint64_t)time(NULL) + 2082844800;
avifRWStream s;
avifRWStreamStart(&s, output);
// -----------------------------------------------------------------------
// Write ftyp
// Layered sequence is not supported for now.
const avifBool isSequence = (encoder->extraLayerCount == 0) && (encoder->data->frames.count > 1);
const char * majorBrand = "avif";
if (isSequence) {
majorBrand = "avis";
}
uint32_t minorVersion = 0;
#if defined(AVIF_CODEC_AVM)
if (codecType == AVIF_CODEC_TYPE_AV2) {
// TODO(yguyon): Experimental AV2-AVIF is AVIF version 2 for now (change once it is ratified).
minorVersion = 2;
}
#endif
avifBoxMarker ftyp = avifRWStreamWriteBox(&s, "ftyp", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteChars(&s, majorBrand, 4); // unsigned int(32) major_brand;
avifRWStreamWriteU32(&s, minorVersion); // unsigned int(32) minor_version;
avifRWStreamWriteChars(&s, "avif", 4); // unsigned int(32) compatible_brands[];
if (isSequence) { //
avifRWStreamWriteChars(&s, "avis", 4); // ... compatible_brands[]
avifRWStreamWriteChars(&s, "msf1", 4); // ... compatible_brands[]
avifRWStreamWriteChars(&s, "iso8", 4); // ... compatible_brands[]
} //
avifRWStreamWriteChars(&s, "mif1", 4); // ... compatible_brands[]
avifRWStreamWriteChars(&s, "miaf", 4); // ... compatible_brands[]
if ((imageMetadata->depth == 8) || (imageMetadata->depth == 10)) { //
if (imageMetadata->yuvFormat == AVIF_PIXEL_FORMAT_YUV420) { //
avifRWStreamWriteChars(&s, "MA1B", 4); // ... compatible_brands[]
} else if (imageMetadata->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) { //
avifRWStreamWriteChars(&s, "MA1A", 4); // ... compatible_brands[]
}
}
avifRWStreamFinishBox(&s, ftyp);
// -----------------------------------------------------------------------
// Start meta
avifBoxMarker meta = avifRWStreamWriteFullBox(&s, "meta", AVIF_BOX_SIZE_TBD, 0, 0);
// -----------------------------------------------------------------------
// Write hdlr
avifBoxMarker hdlr = avifRWStreamWriteFullBox(&s, "hdlr", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 0); // unsigned int(32) pre_defined = 0;
avifRWStreamWriteChars(&s, "pict", 4); // unsigned int(32) handler_type;
avifRWStreamWriteZeros(&s, 12); // const unsigned int(32)[3] reserved = 0;
avifRWStreamWriteChars(&s, "libavif", 8); // string name; (writing null terminator)
avifRWStreamFinishBox(&s, hdlr);
// -----------------------------------------------------------------------
// Write pitm
if (encoder->data->primaryItemID != 0) {
avifRWStreamWriteFullBox(&s, "pitm", sizeof(uint16_t), 0, 0);
avifRWStreamWriteU16(&s, encoder->data->primaryItemID); // unsigned int(16) item_ID;
}
// -----------------------------------------------------------------------
// Write iloc
avifBoxMarker iloc = avifRWStreamWriteFullBox(&s, "iloc", AVIF_BOX_SIZE_TBD, 0, 0);
uint8_t offsetSizeAndLengthSize = (4 << 4) + (4 << 0); // unsigned int(4) offset_size;
// unsigned int(4) length_size;
avifRWStreamWrite(&s, &offsetSizeAndLengthSize, 1); //
avifRWStreamWriteZeros(&s, 1); // unsigned int(4) base_offset_size;
// unsigned int(4) reserved;
avifRWStreamWriteU16(&s, (uint16_t)encoder->data->items.count); // unsigned int(16) item_count;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
avifRWStreamWriteU16(&s, item->id); // unsigned int(16) item_ID;
avifRWStreamWriteU16(&s, 0); // unsigned int(16) data_reference_index;
// Layered Image, write location for all samples
if (item->extraLayerCount > 0) {
uint32_t layerCount = item->extraLayerCount + 1;
avifRWStreamWriteU16(&s, (uint16_t)layerCount); // unsigned int(16) extent_count;
for (uint32_t i = 0; i < layerCount; ++i) {
avifEncoderItemAddMdatFixup(item, &s);
avifRWStreamWriteU32(&s, 0 /* set later */); // unsigned int(offset_size*8) extent_offset;
avifRWStreamWriteU32(&s, (uint32_t)item->encodeOutput->samples.sample[i].data.size); // unsigned int(length_size*8) extent_length;
}
continue;
}
uint32_t contentSize = (uint32_t)item->metadataPayload.size;
if (item->encodeOutput->samples.count > 0) {
// This is choosing sample 0's size as there are two cases here:
// * This is a single image, in which case this is correct
// * This is an image sequence, but this file should still be a valid single-image avif,
// so there must still be a primary item pointing at a sync sample. Since the first
// frame of the image sequence is guaranteed to be a sync sample, it is chosen here.
//
// TODO: Offer the ability for a user to specify which frame in the sequence should
// become the primary item's image, and force that frame to be a keyframe.
contentSize = (uint32_t)item->encodeOutput->samples.sample[0].data.size;
}
avifRWStreamWriteU16(&s, 1); // unsigned int(16) extent_count;
avifEncoderItemAddMdatFixup(item, &s); //
avifRWStreamWriteU32(&s, 0 /* set later */); // unsigned int(offset_size*8) extent_offset;
avifRWStreamWriteU32(&s, (uint32_t)contentSize); // unsigned int(length_size*8) extent_length;
}
avifRWStreamFinishBox(&s, iloc);
// -----------------------------------------------------------------------
// Write iinf
avifBoxMarker iinf = avifRWStreamWriteFullBox(&s, "iinf", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU16(&s, (uint16_t)encoder->data->items.count); // unsigned int(16) entry_count;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
uint32_t flags = item->hiddenImage ? 1 : 0;
avifBoxMarker infe = avifRWStreamWriteFullBox(&s, "infe", AVIF_BOX_SIZE_TBD, 2, flags);
avifRWStreamWriteU16(&s, item->id); // unsigned int(16) item_ID;
avifRWStreamWriteU16(&s, 0); // unsigned int(16) item_protection_index;
avifRWStreamWrite(&s, item->type, 4); // unsigned int(32) item_type;
avifRWStreamWriteChars(&s, item->infeName, item->infeNameSize); // string item_name; (writing null terminator)
if (item->infeContentType && item->infeContentTypeSize) { // string content_type; (writing null terminator)
avifRWStreamWriteChars(&s, item->infeContentType, item->infeContentTypeSize);
}
avifRWStreamFinishBox(&s, infe);
}
avifRWStreamFinishBox(&s, iinf);
// -----------------------------------------------------------------------
// Write iref boxes
avifBoxMarker iref = 0;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
// Count how many other items refer to this item with dimgFromID
uint16_t dimgCount = 0;
for (uint32_t dimgIndex = 0; dimgIndex < encoder->data->items.count; ++dimgIndex) {
avifEncoderItem * dimgItem = &encoder->data->items.item[dimgIndex];
if (dimgItem->dimgFromID == item->id) {
++dimgCount;
}
}
if (dimgCount > 0) {
if (!iref) {
iref = avifRWStreamWriteFullBox(&s, "iref", AVIF_BOX_SIZE_TBD, 0, 0);
}
avifBoxMarker refType = avifRWStreamWriteBox(&s, "dimg", AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU16(&s, item->id); // unsigned int(16) from_item_ID;
avifRWStreamWriteU16(&s, dimgCount); // unsigned int(16) reference_count;
for (uint32_t dimgIndex = 0; dimgIndex < encoder->data->items.count; ++dimgIndex) {
avifEncoderItem * dimgItem = &encoder->data->items.item[dimgIndex];
if (dimgItem->dimgFromID == item->id) {
avifRWStreamWriteU16(&s, dimgItem->id); // unsigned int(16) to_item_ID;
}
}
avifRWStreamFinishBox(&s, refType);
}
if (item->irefToID != 0) {
if (!iref) {
iref = avifRWStreamWriteFullBox(&s, "iref", AVIF_BOX_SIZE_TBD, 0, 0);
}
avifBoxMarker refType = avifRWStreamWriteBox(&s, item->irefType, AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU16(&s, item->id); // unsigned int(16) from_item_ID;
avifRWStreamWriteU16(&s, 1); // unsigned int(16) reference_count;
avifRWStreamWriteU16(&s, item->irefToID); // unsigned int(16) to_item_ID;
avifRWStreamFinishBox(&s, refType);
}
}
if (iref) {
avifRWStreamFinishBox(&s, iref);
}
// -----------------------------------------------------------------------
// Write iprp -> ipco/ipma
avifBoxMarker iprp = avifRWStreamWriteBox(&s, "iprp", AVIF_BOX_SIZE_TBD);
avifItemPropertyDedup * dedup = avifItemPropertyDedupCreate();
avifBoxMarker ipco = avifRWStreamWriteBox(&s, "ipco", AVIF_BOX_SIZE_TBD);
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
const avifBool isGrid = (item->gridCols > 0);
memset(&item->ipma, 0, sizeof(item->ipma));
if (!item->codec && !isGrid) {
// No ipma to write for this item
continue;
}
if (item->dimgFromID && (item->extraLayerCount == 0)) {
// All image cells from a grid should share the exact same properties unless they are
// layered image which have different al1x, so see if we've already written properties
// out for another cell in this grid, and if so, just steal their ipma and move on.
// This is a sneaky way to provide iprp deduplication.
avifBool foundPreviousCell = AVIF_FALSE;
for (uint32_t dedupIndex = 0; dedupIndex < itemIndex; ++dedupIndex) {
avifEncoderItem * dedupItem = &encoder->data->items.item[dedupIndex];
if ((item->dimgFromID == dedupItem->dimgFromID) && (dedupItem->extraLayerCount == 0)) {
// We've already written dedup's items out. Steal their ipma indices and move on!
item->ipma = dedupItem->ipma;
foundPreviousCell = AVIF_TRUE;
break;
}
}
if (foundPreviousCell) {
continue;
}
}
uint32_t imageWidth = imageMetadata->width;
uint32_t imageHeight = imageMetadata->height;
if (isGrid) {
imageWidth = item->gridWidth;
imageHeight = item->gridHeight;
}
// Properties all image items need
avifItemPropertyDedupStart(dedup);
avifBoxMarker ispe = avifRWStreamWriteFullBox(&dedup->s, "ispe", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&dedup->s, imageWidth); // unsigned int(32) image_width;
avifRWStreamWriteU32(&dedup->s, imageHeight); // unsigned int(32) image_height;
avifRWStreamFinishBox(&dedup->s, ispe);
ipmaPush(&item->ipma, avifItemPropertyDedupFinish(dedup, &s), AVIF_FALSE);
avifItemPropertyDedupStart(dedup);
uint8_t channelCount = (item->alpha || (imageMetadata->yuvFormat == AVIF_PIXEL_FORMAT_YUV400)) ? 1 : 3;
avifBoxMarker pixi = avifRWStreamWriteFullBox(&dedup->s, "pixi", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU8(&dedup->s, channelCount); // unsigned int (8) num_channels;
for (uint8_t chan = 0; chan < channelCount; ++chan) {
avifRWStreamWriteU8(&dedup->s, (uint8_t)imageMetadata->depth); // unsigned int (8) bits_per_channel;
}
avifRWStreamFinishBox(&dedup->s, pixi);
ipmaPush(&item->ipma, avifItemPropertyDedupFinish(dedup, &s), AVIF_FALSE);
if (item->codec) {
avifItemPropertyDedupStart(dedup);
writeConfigBox(&dedup->s, &item->av1C, encoder->data->configPropName);
ipmaPush(&item->ipma, avifItemPropertyDedupFinish(dedup, &s), AVIF_TRUE);
}
if (item->alpha) {
// Alpha specific properties
avifItemPropertyDedupStart(dedup);
avifBoxMarker auxC = avifRWStreamWriteFullBox(&dedup->s, "auxC", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteChars(&dedup->s, alphaURN, alphaURNSize); // string aux_type;
avifRWStreamFinishBox(&dedup->s, auxC);
ipmaPush(&item->ipma, avifItemPropertyDedupFinish(dedup, &s), AVIF_FALSE);
} else {
// Color specific properties
avifEncoderWriteColorProperties(&s, imageMetadata, &item->ipma, dedup);
}
if (item->extraLayerCount > 0) {
// Layered Image Indexing Property
avifItemPropertyDedupStart(dedup);
avifBoxMarker a1lx = avifRWStreamWriteBox(&dedup->s, "a1lx", AVIF_BOX_SIZE_TBD);
uint32_t layerSize[AVIF_MAX_AV1_LAYER_COUNT - 1] = { 0 };
avifBool largeSize = AVIF_FALSE;
for (uint32_t validLayer = 0; validLayer < item->extraLayerCount; ++validLayer) {
uint32_t size = (uint32_t)item->encodeOutput->samples.sample[validLayer].data.size;
layerSize[validLayer] = size;
if (size > 0xffff) {
largeSize = AVIF_TRUE;
}
}
avifRWStreamWriteU8(&dedup->s, (uint8_t)largeSize); // unsigned int(7) reserved = 0;
// unsigned int(1) large_size;
// FieldLength = (large_size + 1) * 16;
// unsigned int(FieldLength) layer_size[3];
for (uint32_t layer = 0; layer < AVIF_MAX_AV1_LAYER_COUNT - 1; ++layer) {
if (largeSize) {
avifRWStreamWriteU32(&dedup->s, layerSize[layer]);
} else {
avifRWStreamWriteU16(&dedup->s, (uint16_t)layerSize[layer]);
}
}
avifRWStreamFinishBox(&dedup->s, a1lx);
ipmaPush(&item->ipma, avifItemPropertyDedupFinish(dedup, &s), AVIF_FALSE);
}
}
avifRWStreamFinishBox(&s, ipco);
avifItemPropertyDedupDestroy(dedup);
dedup = NULL;
avifBoxMarker ipma = avifRWStreamWriteFullBox(&s, "ipma", AVIF_BOX_SIZE_TBD, 0, 0);
{
int ipmaCount = 0;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->ipma.count > 0) {
++ipmaCount;
}
}
avifRWStreamWriteU32(&s, ipmaCount); // unsigned int(32) entry_count;
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->ipma.count == 0) {
continue;
}
avifRWStreamWriteU16(&s, item->id); // unsigned int(16) item_ID;
avifRWStreamWriteU8(&s, item->ipma.count); // unsigned int(8) association_count;
for (int i = 0; i < item->ipma.count; ++i) { //
uint8_t essentialAndIndex = item->ipma.associations[i];
if (item->ipma.essential[i]) {
essentialAndIndex |= 0x80;
}
avifRWStreamWriteU8(&s, essentialAndIndex); // bit(1) essential; unsigned int(7) property_index;
}
}
}
avifRWStreamFinishBox(&s, ipma);
avifRWStreamFinishBox(&s, iprp);
// -----------------------------------------------------------------------
// Finish meta box
avifRWStreamFinishBox(&s, meta);
// -----------------------------------------------------------------------
// Write tracks (if an image sequence)
if (isSequence) {
static const uint8_t unityMatrix[9][4] = {
/* clang-format off */
{ 0x00, 0x01, 0x00, 0x00 },
{ 0 },
{ 0 },
{ 0 },
{ 0x00, 0x01, 0x00, 0x00 },
{ 0 },
{ 0 },
{ 0 },
{ 0x40, 0x00, 0x00, 0x00 }
/* clang-format on */
};
if (encoder->repetitionCount < 0 && encoder->repetitionCount != AVIF_REPETITION_COUNT_INFINITE) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
uint64_t framesDurationInTimescales = 0;
for (uint32_t frameIndex = 0; frameIndex < encoder->data->frames.count; ++frameIndex) {
const avifEncoderFrame * frame = &encoder->data->frames.frame[frameIndex];
framesDurationInTimescales += frame->durationInTimescales;
}
uint64_t durationInTimescales;
if (encoder->repetitionCount == AVIF_REPETITION_COUNT_INFINITE) {
durationInTimescales = AVIF_INDEFINITE_DURATION64;
} else {
uint64_t loopCount = encoder->repetitionCount + 1;
assert(framesDurationInTimescales != 0);
if (loopCount > UINT64_MAX / framesDurationInTimescales) {
// The multiplication will overflow uint64_t.
return AVIF_RESULT_INVALID_ARGUMENT;
}
durationInTimescales = framesDurationInTimescales * loopCount;
}
// -------------------------------------------------------------------
// Start moov
avifBoxMarker moov = avifRWStreamWriteBox(&s, "moov", AVIF_BOX_SIZE_TBD);
avifBoxMarker mvhd = avifRWStreamWriteFullBox(&s, "mvhd", AVIF_BOX_SIZE_TBD, 1, 0);
avifRWStreamWriteU64(&s, now); // unsigned int(64) creation_time;
avifRWStreamWriteU64(&s, now); // unsigned int(64) modification_time;
avifRWStreamWriteU32(&s, (uint32_t)encoder->timescale); // unsigned int(32) timescale;
avifRWStreamWriteU64(&s, durationInTimescales); // unsigned int(64) duration;
avifRWStreamWriteU32(&s, 0x00010000); // template int(32) rate = 0x00010000; // typically 1.0
avifRWStreamWriteU16(&s, 0x0100); // template int(16) volume = 0x0100; // typically, full volume
avifRWStreamWriteU16(&s, 0); // const bit(16) reserved = 0;
avifRWStreamWriteZeros(&s, 8); // const unsigned int(32)[2] reserved = 0;
avifRWStreamWrite(&s, unityMatrix, sizeof(unityMatrix));
avifRWStreamWriteZeros(&s, 24); // bit(32)[6] pre_defined = 0;
avifRWStreamWriteU32(&s, encoder->data->items.count); // unsigned int(32) next_track_ID;
avifRWStreamFinishBox(&s, mvhd);
// -------------------------------------------------------------------
// Write tracks
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
if (item->encodeOutput->samples.count == 0) {
continue;
}
uint32_t syncSamplesCount = 0;
for (uint32_t sampleIndex = 0; sampleIndex < item->encodeOutput->samples.count; ++sampleIndex) {
avifEncodeSample * sample = &item->encodeOutput->samples.sample[sampleIndex];
if (sample->sync) {
++syncSamplesCount;
}
}
avifBoxMarker trak = avifRWStreamWriteBox(&s, "trak", AVIF_BOX_SIZE_TBD);
avifBoxMarker tkhd = avifRWStreamWriteFullBox(&s, "tkhd", AVIF_BOX_SIZE_TBD, 1, 1);
avifRWStreamWriteU64(&s, now); // unsigned int(64) creation_time;
avifRWStreamWriteU64(&s, now); // unsigned int(64) modification_time;
avifRWStreamWriteU32(&s, itemIndex + 1); // unsigned int(32) track_ID;
avifRWStreamWriteU32(&s, 0); // const unsigned int(32) reserved = 0;
avifRWStreamWriteU64(&s, durationInTimescales); // unsigned int(64) duration;
avifRWStreamWriteZeros(&s, sizeof(uint32_t) * 2); // const unsigned int(32)[2] reserved = 0;
avifRWStreamWriteU16(&s, 0); // template int(16) layer = 0;
avifRWStreamWriteU16(&s, 0); // template int(16) alternate_group = 0;
avifRWStreamWriteU16(&s, 0); // template int(16) volume = {if track_is_audio 0x0100 else 0};
avifRWStreamWriteU16(&s, 0); // const unsigned int(16) reserved = 0;
avifRWStreamWrite(&s, unityMatrix, sizeof(unityMatrix)); // template int(32)[9] matrix= // { 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
avifRWStreamWriteU32(&s, imageMetadata->width << 16); // unsigned int(32) width;
avifRWStreamWriteU32(&s, imageMetadata->height << 16); // unsigned int(32) height;
avifRWStreamFinishBox(&s, tkhd);
if (item->irefToID != 0) {
avifBoxMarker tref = avifRWStreamWriteBox(&s, "tref", AVIF_BOX_SIZE_TBD);
avifBoxMarker refType = avifRWStreamWriteBox(&s, item->irefType, AVIF_BOX_SIZE_TBD);
avifRWStreamWriteU32(&s, (uint32_t)item->irefToID);
avifRWStreamFinishBox(&s, refType);
avifRWStreamFinishBox(&s, tref);
}
avifBoxMarker edts = avifRWStreamWriteBox(&s, "edts", AVIF_BOX_SIZE_TBD);
uint32_t elstFlags = (encoder->repetitionCount != 0);
avifBoxMarker elst = avifRWStreamWriteFullBox(&s, "elst", AVIF_BOX_SIZE_TBD, 1, elstFlags);
avifRWStreamWriteU32(&s, 1); // unsigned int(32) entry_count;
avifRWStreamWriteU64(&s, framesDurationInTimescales); // unsigned int(64) segment_duration;
avifRWStreamWriteU64(&s, 0); // int(64) media_time;
avifRWStreamWriteU16(&s, 1); // int(16) media_rate_integer;
avifRWStreamWriteU16(&s, 0); // int(16) media_rate_fraction = 0;
avifRWStreamFinishBox(&s, elst);
avifRWStreamFinishBox(&s, edts);
if (!item->alpha) {
avifEncoderWriteTrackMetaBox(encoder, &s);
}
avifBoxMarker mdia = avifRWStreamWriteBox(&s, "mdia", AVIF_BOX_SIZE_TBD);
avifBoxMarker mdhd = avifRWStreamWriteFullBox(&s, "mdhd", AVIF_BOX_SIZE_TBD, 1, 0);
avifRWStreamWriteU64(&s, now); // unsigned int(64) creation_time;
avifRWStreamWriteU64(&s, now); // unsigned int(64) modification_time;
avifRWStreamWriteU32(&s, (uint32_t)encoder->timescale); // unsigned int(32) timescale;
avifRWStreamWriteU64(&s, framesDurationInTimescales); // unsigned int(64) duration;
avifRWStreamWriteU16(&s, 21956); // bit(1) pad = 0; unsigned int(5)[3] language; ("und")
avifRWStreamWriteU16(&s, 0); // unsigned int(16) pre_defined = 0;
avifRWStreamFinishBox(&s, mdhd);
avifBoxMarker hdlrTrak = avifRWStreamWriteFullBox(&s, "hdlr", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 0); // unsigned int(32) pre_defined = 0;
avifRWStreamWriteChars(&s, item->alpha ? "auxv" : "pict", 4); // unsigned int(32) handler_type;
avifRWStreamWriteZeros(&s, 12); // const unsigned int(32)[3] reserved = 0;
avifRWStreamWriteChars(&s, "libavif", 8); // string name; (writing null terminator)
avifRWStreamFinishBox(&s, hdlrTrak);
avifBoxMarker minf = avifRWStreamWriteBox(&s, "minf", AVIF_BOX_SIZE_TBD);
avifBoxMarker vmhd = avifRWStreamWriteFullBox(&s, "vmhd", AVIF_BOX_SIZE_TBD, 0, 1);
avifRWStreamWriteU16(&s, 0); // template unsigned int(16) graphicsmode = 0; (copy over the existing image)
avifRWStreamWriteZeros(&s, 6); // template unsigned int(16)[3] opcolor = {0, 0, 0};
avifRWStreamFinishBox(&s, vmhd);
avifBoxMarker dinf = avifRWStreamWriteBox(&s, "dinf", AVIF_BOX_SIZE_TBD);
avifBoxMarker dref = avifRWStreamWriteFullBox(&s, "dref", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 1); // unsigned int(32) entry_count;
avifRWStreamWriteFullBox(&s, "url ", 0, 0, 1); // flags:1 means data is in this file
avifRWStreamFinishBox(&s, dref);
avifRWStreamFinishBox(&s, dinf);
// The boxes within the "stbl" box are ordered using the following recommendation in ISO/IEC 14496-12, Section 6.2.3:
// 4) It is recommended that the boxes within the Sample Table Box be in the following order: Sample Description
// (stsd), Time to Sample (stts), Sample to Chunk (stsc), Sample Size (stsz), Chunk Offset (stco).
//
// Any boxes not listed in the above line are placed in the end (after the "stco" box).
avifBoxMarker stbl = avifRWStreamWriteBox(&s, "stbl", AVIF_BOX_SIZE_TBD);
avifBoxMarker stsd = avifRWStreamWriteFullBox(&s, "stsd", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 1); // unsigned int(32) entry_count;
avifBoxMarker imageItem = avifRWStreamWriteBox(&s, encoder->data->imageItemType, AVIF_BOX_SIZE_TBD);
avifRWStreamWriteZeros(&s, 6); // const unsigned int(8)[6] reserved = 0;
avifRWStreamWriteU16(&s, 1); // unsigned int(16) data_reference_index;
avifRWStreamWriteU16(&s, 0); // unsigned int(16) pre_defined = 0;
avifRWStreamWriteU16(&s, 0); // const unsigned int(16) reserved = 0;
avifRWStreamWriteZeros(&s, sizeof(uint32_t) * 3); // unsigned int(32)[3] pre_defined = 0;
avifRWStreamWriteU16(&s, (uint16_t)imageMetadata->width); // unsigned int(16) width;
avifRWStreamWriteU16(&s, (uint16_t)imageMetadata->height); // unsigned int(16) height;
avifRWStreamWriteU32(&s, 0x00480000); // template unsigned int(32) horizresolution
avifRWStreamWriteU32(&s, 0x00480000); // template unsigned int(32) vertresolution
avifRWStreamWriteU32(&s, 0); // const unsigned int(32) reserved = 0;
avifRWStreamWriteU16(&s, 1); // template unsigned int(16) frame_count = 1;
avifRWStreamWriteChars(&s, "\012AOM Coding", 11); // string[32] compressorname;
avifRWStreamWriteZeros(&s, 32 - 11); //
avifRWStreamWriteU16(&s, 0x0018); // template unsigned int(16) depth = 0x0018;
avifRWStreamWriteU16(&s, (uint16_t)0xffff); // int(16) pre_defined = -1;
writeConfigBox(&s, &item->av1C, encoder->data->configPropName);
if (!item->alpha) {
avifEncoderWriteColorProperties(&s, imageMetadata, NULL, NULL);
}
avifBoxMarker ccst = avifRWStreamWriteFullBox(&s, "ccst", AVIF_BOX_SIZE_TBD, 0, 0);
const uint8_t ccstValue = (0 << 7) | // unsigned int(1) all_ref_pics_intra;
(1 << 6) | // unsigned int(1) intra_pred_used;
(15 << 2); // unsigned int(4) max_ref_per_pic;
avifRWStreamWriteU8(&s, ccstValue);
avifRWStreamWriteZeros(&s, 3); // unsigned int(26) reserved; (two zero bits are written along with ccstValue).
avifRWStreamFinishBox(&s, ccst);
if (item->alpha) {
avifBoxMarker auxi = avifRWStreamWriteFullBox(&s, "auxi", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteChars(&s, alphaURN, alphaURNSize); // string aux_track_type;
avifRWStreamFinishBox(&s, auxi);
}
avifRWStreamFinishBox(&s, imageItem);
avifRWStreamFinishBox(&s, stsd);
avifBoxMarker stts = avifRWStreamWriteFullBox(&s, "stts", AVIF_BOX_SIZE_TBD, 0, 0);
size_t sttsEntryCountOffset = avifRWStreamOffset(&s);
uint32_t sttsEntryCount = 0;
avifRWStreamWriteU32(&s, 0); // unsigned int(32) entry_count;
for (uint32_t sampleCount = 0, frameIndex = 0; frameIndex < encoder->data->frames.count; ++frameIndex) {
avifEncoderFrame * frame = &encoder->data->frames.frame[frameIndex];
++sampleCount;
if (frameIndex < (encoder->data->frames.count - 1)) {
avifEncoderFrame * nextFrame = &encoder->data->frames.frame[frameIndex + 1];
if (frame->durationInTimescales == nextFrame->durationInTimescales) {
continue;
}
}
avifRWStreamWriteU32(&s, sampleCount); // unsigned int(32) sample_count;
avifRWStreamWriteU32(&s, (uint32_t)frame->durationInTimescales); // unsigned int(32) sample_delta;
sampleCount = 0;
++sttsEntryCount;
}
size_t prevOffset = avifRWStreamOffset(&s);
avifRWStreamSetOffset(&s, sttsEntryCountOffset);
avifRWStreamWriteU32(&s, sttsEntryCount);
avifRWStreamSetOffset(&s, prevOffset);
avifRWStreamFinishBox(&s, stts);
avifBoxMarker stsc = avifRWStreamWriteFullBox(&s, "stsc", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 1); // unsigned int(32) entry_count;
avifRWStreamWriteU32(&s, 1); // unsigned int(32) first_chunk;
avifRWStreamWriteU32(&s, item->encodeOutput->samples.count); // unsigned int(32) samples_per_chunk;
avifRWStreamWriteU32(&s, 1); // unsigned int(32) sample_description_index;
avifRWStreamFinishBox(&s, stsc);
avifBoxMarker stsz = avifRWStreamWriteFullBox(&s, "stsz", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 0); // unsigned int(32) sample_size;
avifRWStreamWriteU32(&s, item->encodeOutput->samples.count); // unsigned int(32) sample_count;
for (uint32_t sampleIndex = 0; sampleIndex < item->encodeOutput->samples.count; ++sampleIndex) {
avifEncodeSample * sample = &item->encodeOutput->samples.sample[sampleIndex];
avifRWStreamWriteU32(&s, (uint32_t)sample->data.size); // unsigned int(32) entry_size;
}
avifRWStreamFinishBox(&s, stsz);
avifBoxMarker stco = avifRWStreamWriteFullBox(&s, "stco", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, 1); // unsigned int(32) entry_count;
avifEncoderItemAddMdatFixup(item, &s); //
avifRWStreamWriteU32(&s, 1); // unsigned int(32) chunk_offset; (set later)
avifRWStreamFinishBox(&s, stco);
avifBoxMarker stss = avifRWStreamWriteFullBox(&s, "stss", AVIF_BOX_SIZE_TBD, 0, 0);
avifRWStreamWriteU32(&s, syncSamplesCount); // unsigned int(32) entry_count;
for (uint32_t sampleIndex = 0; sampleIndex < item->encodeOutput->samples.count; ++sampleIndex) {
avifEncodeSample * sample = &item->encodeOutput->samples.sample[sampleIndex];
if (sample->sync) {
avifRWStreamWriteU32(&s, sampleIndex + 1); // unsigned int(32) sample_number;
}
}
avifRWStreamFinishBox(&s, stss);
avifRWStreamFinishBox(&s, stbl);
avifRWStreamFinishBox(&s, minf);
avifRWStreamFinishBox(&s, mdia);
avifRWStreamFinishBox(&s, trak);
}
// -------------------------------------------------------------------
// Finish moov box
avifRWStreamFinishBox(&s, moov);
}
// -----------------------------------------------------------------------
// Write mdat
encoder->ioStats.colorOBUSize = 0;
encoder->ioStats.alphaOBUSize = 0;
avifEncoderItemReferenceArray layeredColorItems;
avifEncoderItemReferenceArray layeredAlphaItems;
if (!avifArrayCreate(&layeredColorItems, sizeof(avifEncoderItemReference), 1) ||
!avifArrayCreate(&layeredAlphaItems, sizeof(avifEncoderItemReference), 1)) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
avifBoxMarker mdat = avifRWStreamWriteBox(&s, "mdat", AVIF_BOX_SIZE_TBD);
const size_t mdatStartOffset = avifRWStreamOffset(&s);
for (uint32_t itemPasses = 0; itemPasses < 3; ++itemPasses) {
// Use multiple passes to pack in the following order:
// * Pass 0: metadata (Exif/XMP)
// * Pass 1: alpha (AV1)
// * Pass 2: all other item data (AV1 color)
//
// See here for the discussion on alpha coming before color:
// https://github.com/AOMediaCodec/libavif/issues/287
//
// Exif and XMP are packed first as they're required to be fully available
// by avifDecoderParse() before it returns AVIF_RESULT_OK, unless ignoreXMP
// and ignoreExif are enabled.
//
const avifBool metadataPass = (itemPasses == 0);
const avifBool alphaPass = (itemPasses == 1);
for (uint32_t itemIndex = 0; itemIndex < encoder->data->items.count; ++itemIndex) {
avifEncoderItem * item = &encoder->data->items.item[itemIndex];
const avifBool isGrid = (item->gridCols > 0); // Grids store their payload in metadataPayload, so use this to distinguish grid payloads from XMP/Exif
if ((item->metadataPayload.size == 0) && (item->encodeOutput->samples.count == 0)) {
// this item has nothing for the mdat box
continue;
}
if (!isGrid && (metadataPass != (item->metadataPayload.size > 0))) {
// only process metadata (XMP/Exif) payloads when metadataPass is true
continue;
}
if (alphaPass != item->alpha) {
// only process alpha payloads when alphaPass is true
continue;
}
if ((encoder->extraLayerCount > 0) && (item->encodeOutput->samples.count > 0)) {
// Interleave - Pick out AV1 items and interleave them later.
// We always interleave all AV1 items for layered images.
assert(item->encodeOutput->samples.count == item->mdatFixups.count);
avifEncoderItemReference * ref = item->alpha ? avifArrayPushPtr(&layeredAlphaItems)
: avifArrayPushPtr(&layeredColorItems);
*ref = item;
continue;
}
size_t chunkOffset = 0;
// Deduplication - See if an identical chunk to this has already been written
if (item->encodeOutput->samples.count > 0) {
avifEncodeSample * sample = &item->encodeOutput->samples.sample[0];
chunkOffset = avifEncoderFindExistingChunk(&s, mdatStartOffset, sample->data.data, sample->data.size);
} else {
chunkOffset = avifEncoderFindExistingChunk(&s, mdatStartOffset, item->metadataPayload.data, item->metadataPayload.size);
}
if (!chunkOffset) {
// We've never seen this chunk before; write it out
chunkOffset = avifRWStreamOffset(&s);
if (item->encodeOutput->samples.count > 0) {
for (uint32_t sampleIndex = 0; sampleIndex < item->encodeOutput->samples.count; ++sampleIndex) {
avifEncodeSample * sample = &item->encodeOutput->samples.sample[sampleIndex];
avifRWStreamWrite(&s, sample->data.data, sample->data.size);
if (item->alpha) {
encoder->ioStats.alphaOBUSize += sample->data.size;
} else {
encoder->ioStats.colorOBUSize += sample->data.size;
}
}
} else {
avifRWStreamWrite(&s, item->metadataPayload.data, item->metadataPayload.size);
}
}
for (uint32_t fixupIndex = 0; fixupIndex < item->mdatFixups.count; ++fixupIndex) {
avifOffsetFixup * fixup = &item->mdatFixups.fixup[fixupIndex];
size_t prevOffset = avifRWStreamOffset(&s);
avifRWStreamSetOffset(&s, fixup->offset);
avifRWStreamWriteU32(&s, (uint32_t)chunkOffset);
avifRWStreamSetOffset(&s, prevOffset);
}
}
}
uint32_t layeredItemCount = AVIF_MAX(layeredColorItems.count, layeredAlphaItems.count);
if (layeredItemCount > 0) {
// Interleave samples of all AV1 items.
// We first write the first layer of all items,
// in which we write first layer of each cell,
// in which we write alpha first and then color.
avifBool hasMoreSample;
uint32_t layerIndex = 0;
do {
hasMoreSample = AVIF_FALSE;
for (uint32_t itemIndex = 0; itemIndex < layeredItemCount; ++itemIndex) {
for (int samplePass = 0; samplePass < 2; ++samplePass) {
// Alpha coming before color
avifEncoderItemReferenceArray * currentItems = (samplePass == 0) ? &layeredAlphaItems : &layeredColorItems;
if (itemIndex >= currentItems->count) {
continue;
}
// TODO: Offer the ability for a user to specify which grid cell should be written first.
avifEncoderItem * item = currentItems->ref[itemIndex];
if (item->encodeOutput->samples.count <= layerIndex) {
// We've already written all samples of this item
continue;
} else if (item->encodeOutput->samples.count > layerIndex + 1) {
hasMoreSample = AVIF_TRUE;
}
avifRWData * data = &item->encodeOutput->samples.sample[layerIndex].data;
size_t chunkOffset = avifEncoderFindExistingChunk(&s, mdatStartOffset, data->data, data->size);
if (!chunkOffset) {
// We've never seen this chunk before; write it out
chunkOffset = avifRWStreamOffset(&s);
avifRWStreamWrite(&s, data->data, data->size);
if (samplePass == 0) {
encoder->ioStats.alphaOBUSize += data->size;
} else {
encoder->ioStats.colorOBUSize += data->size;
}
}
size_t prevOffset = avifRWStreamOffset(&s);
avifRWStreamSetOffset(&s, item->mdatFixups.fixup[layerIndex].offset);
avifRWStreamWriteU32(&s, (uint32_t)chunkOffset);
avifRWStreamSetOffset(&s, prevOffset);
}
}
++layerIndex;
} while (hasMoreSample);
assert(layerIndex <= AVIF_MAX_AV1_LAYER_COUNT);
}
avifArrayDestroy(&layeredColorItems);
avifArrayDestroy(&layeredAlphaItems);
avifRWStreamFinishBox(&s, mdat);
// -----------------------------------------------------------------------
// Finish up stream
avifRWStreamFinishWrite(&s);
return AVIF_RESULT_OK;
}
avifResult avifEncoderWrite(avifEncoder * encoder, const avifImage * image, avifRWData * output)
{
avifResult addImageResult = avifEncoderAddImage(encoder, image, 1, AVIF_ADD_IMAGE_FLAG_SINGLE);
if (addImageResult != AVIF_RESULT_OK) {
return addImageResult;
}
return avifEncoderFinish(encoder, output);
}
static void writeConfigBox(avifRWStream * s, avifCodecConfigurationBox * cfg, const char * configPropName)
{
avifBoxMarker configBox = avifRWStreamWriteBox(s, configPropName, AVIF_BOX_SIZE_TBD);
// unsigned int (1) marker = 1;
// unsigned int (7) version = 1;
avifRWStreamWriteU8(s, 0x80 | 0x1);
// unsigned int (3) seq_profile;
// unsigned int (5) seq_level_idx_0;
avifRWStreamWriteU8(s, (uint8_t)((cfg->seqProfile & 0x7) << 5) | (uint8_t)(cfg->seqLevelIdx0 & 0x1f));
uint8_t bits = 0;
bits |= (cfg->seqTier0 & 0x1) << 7; // unsigned int (1) seq_tier_0;
bits |= (cfg->highBitdepth & 0x1) << 6; // unsigned int (1) high_bitdepth;
bits |= (cfg->twelveBit & 0x1) << 5; // unsigned int (1) twelve_bit;
bits |= (cfg->monochrome & 0x1) << 4; // unsigned int (1) monochrome;
bits |= (cfg->chromaSubsamplingX & 0x1) << 3; // unsigned int (1) chroma_subsampling_x;
bits |= (cfg->chromaSubsamplingY & 0x1) << 2; // unsigned int (1) chroma_subsampling_y;
bits |= (cfg->chromaSamplePosition & 0x3); // unsigned int (2) chroma_sample_position;
avifRWStreamWriteU8(s, bits);
// unsigned int (3) reserved = 0;
// unsigned int (1) initial_presentation_delay_present;
// if (initial_presentation_delay_present) {
// unsigned int (4) initial_presentation_delay_minus_one;
// } else {
// unsigned int (4) reserved = 0;
// }
avifRWStreamWriteU8(s, 0);
avifRWStreamFinishBox(s, configBox);
}