| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <emmintrin.h> |
| #include <tmmintrin.h> |
| |
| #include "./aom_config.h" |
| #include "aom/aom_integer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_dsp/aom_filter.h" |
| |
| // Half pixel shift |
| #define HALF_PIXEL_OFFSET (BIL_SUBPEL_SHIFTS / 2) |
| |
| /***************************************************************************** |
| * Horizontal additions |
| *****************************************************************************/ |
| |
| static INLINE int32_t hsum_epi32_si32(__m128i v_d) { |
| v_d = _mm_hadd_epi32(v_d, v_d); |
| v_d = _mm_hadd_epi32(v_d, v_d); |
| return _mm_cvtsi128_si32(v_d); |
| } |
| |
| static INLINE int64_t hsum_epi64_si64(__m128i v_q) { |
| v_q = _mm_add_epi64(v_q, _mm_srli_si128(v_q, 8)); |
| #if ARCH_X86_64 |
| return _mm_cvtsi128_si64(v_q); |
| #else |
| { |
| int64_t tmp; |
| _mm_storel_epi64((__m128i *)&tmp, v_q); |
| return tmp; |
| } |
| #endif |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static INLINE int64_t hsum_epi32_si64(__m128i v_d) { |
| const __m128i v_sign_d = _mm_cmplt_epi32(v_d, _mm_setzero_si128()); |
| const __m128i v_0_q = _mm_unpacklo_epi32(v_d, v_sign_d); |
| const __m128i v_1_q = _mm_unpackhi_epi32(v_d, v_sign_d); |
| return hsum_epi64_si64(_mm_add_epi64(v_0_q, v_1_q)); |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| static INLINE uint32_t calc_masked_variance(__m128i v_sum_d, __m128i v_sse_q, |
| uint32_t *sse, int w, int h) { |
| int64_t sum64; |
| uint64_t sse64; |
| |
| // Horizontal sum |
| sum64 = hsum_epi32_si32(v_sum_d); |
| sse64 = hsum_epi64_si64(v_sse_q); |
| |
| sum64 = (sum64 >= 0) ? sum64 : -sum64; |
| |
| // Round |
| sum64 = ROUND_POWER_OF_TWO(sum64, 6); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 12); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute the variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| |
| /***************************************************************************** |
| * n*16 Wide versions |
| *****************************************************************************/ |
| |
| static INLINE unsigned int masked_variancewxh_ssse3( |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { |
| int ii, jj; |
| |
| const __m128i v_zero = _mm_setzero_si128(); |
| |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| |
| assert((w % 16) == 0); |
| |
| for (ii = 0; ii < h; ii++) { |
| for (jj = 0; jj < w; jj += 16) { |
| // Load inputs - 8 bits |
| const __m128i v_a_b = _mm_loadu_si128((const __m128i *)(a + jj)); |
| const __m128i v_b_b = _mm_loadu_si128((const __m128i *)(b + jj)); |
| const __m128i v_m_b = _mm_loadu_si128((const __m128i *)(m + jj)); |
| |
| // Unpack to 16 bits - still containing max 8 bits |
| const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero); |
| const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero); |
| const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero); |
| const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero); |
| const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero); |
| |
| // Difference: [-255, 255] |
| const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w); |
| const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w); |
| |
| // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits |
| const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w); |
| const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w); |
| const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w); |
| const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w); |
| |
| // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits |
| const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w); |
| const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w); |
| |
| // Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits |
| const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d); |
| |
| // Unpack Squared error to 64 bits |
| const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); |
| const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); |
| |
| // Accumulate |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e0_d); |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e1_d); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); |
| } |
| |
| // Move on to next row |
| a += a_stride; |
| b += b_stride; |
| m += m_stride; |
| } |
| |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); |
| } |
| |
| #define MASKED_VARWXH(W, H) \ |
| unsigned int aom_masked_variance##W##x##H##_ssse3( \ |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| return masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, m_stride, W, \ |
| H, sse); \ |
| } |
| |
| MASKED_VARWXH(16, 8) |
| MASKED_VARWXH(16, 16) |
| MASKED_VARWXH(16, 32) |
| MASKED_VARWXH(32, 16) |
| MASKED_VARWXH(32, 32) |
| MASKED_VARWXH(32, 64) |
| MASKED_VARWXH(64, 32) |
| MASKED_VARWXH(64, 64) |
| #if CONFIG_EXT_PARTITION |
| MASKED_VARWXH(64, 128) |
| MASKED_VARWXH(128, 64) |
| MASKED_VARWXH(128, 128) |
| #endif // CONFIG_EXT_PARTITION |
| |
| /***************************************************************************** |
| * 8 Wide versions |
| *****************************************************************************/ |
| |
| static INLINE unsigned int masked_variance8xh_ssse3( |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int h, unsigned int *sse) { |
| int ii; |
| |
| const __m128i v_zero = _mm_setzero_si128(); |
| |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| |
| for (ii = 0; ii < h; ii++) { |
| // Load inputs - 8 bits |
| const __m128i v_a_b = _mm_loadl_epi64((const __m128i *)a); |
| const __m128i v_b_b = _mm_loadl_epi64((const __m128i *)b); |
| const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)m); |
| |
| // Unpack to 16 bits - still containing max 8 bits |
| const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero); |
| const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero); |
| const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| |
| // Difference: [-255, 255] |
| const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); |
| |
| // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits |
| const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w); |
| const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); |
| |
| // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits |
| const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w); |
| |
| // Unpack Squared error to 64 bits |
| const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); |
| const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); |
| |
| // Accumulate |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); |
| |
| // Move on to next row |
| a += a_stride; |
| b += b_stride; |
| m += m_stride; |
| } |
| |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); |
| } |
| |
| #define MASKED_VAR8XH(H) \ |
| unsigned int aom_masked_variance8x##H##_ssse3( \ |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| return masked_variance8xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \ |
| sse); \ |
| } |
| |
| MASKED_VAR8XH(4) |
| MASKED_VAR8XH(8) |
| MASKED_VAR8XH(16) |
| |
| /***************************************************************************** |
| * 4 Wide versions |
| *****************************************************************************/ |
| |
| static INLINE unsigned int masked_variance4xh_ssse3( |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int h, unsigned int *sse) { |
| int ii; |
| |
| const __m128i v_zero = _mm_setzero_si128(); |
| |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| |
| assert((h % 2) == 0); |
| |
| for (ii = 0; ii < h / 2; ii++) { |
| // Load 2 input rows - 8 bits |
| const __m128i v_a0_b = _mm_cvtsi32_si128(*(const uint32_t *)a); |
| const __m128i v_b0_b = _mm_cvtsi32_si128(*(const uint32_t *)b); |
| const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m); |
| const __m128i v_a1_b = _mm_cvtsi32_si128(*(const uint32_t *)(a + a_stride)); |
| const __m128i v_b1_b = _mm_cvtsi32_si128(*(const uint32_t *)(b + b_stride)); |
| const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride)); |
| |
| // Interleave 2 rows into a single register |
| const __m128i v_a_b = _mm_unpacklo_epi32(v_a0_b, v_a1_b); |
| const __m128i v_b_b = _mm_unpacklo_epi32(v_b0_b, v_b1_b); |
| const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b); |
| |
| // Unpack to 16 bits - still containing max 8 bits |
| const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero); |
| const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero); |
| const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| |
| // Difference: [-255, 255] |
| const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); |
| |
| // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits |
| const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w); |
| const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); |
| |
| // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits |
| const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w); |
| |
| // Unpack Squared error to 64 bits |
| const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); |
| const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); |
| |
| // Accumulate |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); |
| |
| // Move on to next 2 row |
| a += a_stride * 2; |
| b += b_stride * 2; |
| m += m_stride * 2; |
| } |
| |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| #define MASKED_VAR4XH(H) \ |
| unsigned int aom_masked_variance4x##H##_ssse3( \ |
| const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| return masked_variance4xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \ |
| sse); \ |
| } |
| |
| MASKED_VAR4XH(4) |
| MASKED_VAR4XH(8) |
| |
| #if CONFIG_HIGHBITDEPTH |
| |
| // Main calculation for n*8 wide blocks |
| static INLINE void highbd_masked_variance64_ssse3( |
| const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int w, int h, int64_t *sum, uint64_t *sse) { |
| int ii, jj; |
| |
| const __m128i v_zero = _mm_setzero_si128(); |
| |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| |
| assert((w % 8) == 0); |
| |
| for (ii = 0; ii < h; ii++) { |
| for (jj = 0; jj < w; jj += 8) { |
| // Load inputs - 8 bits |
| const __m128i v_a_w = _mm_loadu_si128((const __m128i *)(a + jj)); |
| const __m128i v_b_w = _mm_loadu_si128((const __m128i *)(b + jj)); |
| const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)(m + jj)); |
| |
| // Unpack m to 16 bits - still containing max 8 bits |
| const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| |
| // Difference: [-4095, 4095] |
| const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); |
| |
| // Error - [-4095, 4095] * [0, 64] => sum of 2 of these fits in 19 bits |
| const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); |
| |
| // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) |
| const __m128i v_absd_w = _mm_abs_epi16(v_d_w); |
| const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); |
| const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); |
| const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); |
| const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); |
| const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); |
| const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); |
| // Square and sum the errors -> 36bits * 4 = 38bits |
| __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; |
| v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); |
| v_elo1_d = _mm_srli_si128(v_elo_d, 4); |
| v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); |
| v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); |
| v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); |
| v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); |
| v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); |
| v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| |
| // Accumulate |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_q); |
| } |
| |
| // Move on to next row |
| a += a_stride; |
| b += b_stride; |
| m += m_stride; |
| } |
| |
| // Horizontal sum |
| *sum = hsum_epi32_si64(v_sum_d); |
| *sse = hsum_epi64_si64(v_sse_q); |
| |
| // Round |
| *sum = (*sum >= 0) ? *sum : -*sum; |
| *sum = ROUND_POWER_OF_TWO(*sum, 6); |
| *sse = ROUND_POWER_OF_TWO(*sse, 12); |
| } |
| |
| // Main calculation for 4 wide blocks |
| static INLINE void highbd_masked_variance64_4wide_ssse3( |
| const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int h, int64_t *sum, uint64_t *sse) { |
| int ii; |
| |
| const __m128i v_zero = _mm_setzero_si128(); |
| |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| |
| assert((h % 2) == 0); |
| |
| for (ii = 0; ii < h / 2; ii++) { |
| // Load 2 input rows - 8 bits |
| const __m128i v_a0_w = _mm_loadl_epi64((const __m128i *)a); |
| const __m128i v_b0_w = _mm_loadl_epi64((const __m128i *)b); |
| const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m); |
| const __m128i v_a1_w = _mm_loadl_epi64((const __m128i *)(a + a_stride)); |
| const __m128i v_b1_w = _mm_loadl_epi64((const __m128i *)(b + b_stride)); |
| const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride)); |
| |
| // Interleave 2 rows into a single register |
| const __m128i v_a_w = _mm_unpacklo_epi64(v_a0_w, v_a1_w); |
| const __m128i v_b_w = _mm_unpacklo_epi64(v_b0_w, v_b1_w); |
| const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b); |
| |
| // Unpack to 16 bits - still containing max 8 bits |
| const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| |
| // Difference: [-4095, 4095] |
| const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); |
| |
| // Error - [-4095, 4095] * [0, 64] => fits in 19 bits (incld sign bit) |
| const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); |
| |
| // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) |
| const __m128i v_absd_w = _mm_abs_epi16(v_d_w); |
| const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); |
| const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); |
| const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); |
| const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); |
| const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); |
| const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); |
| // Square and sum the errors -> 36bits * 4 = 38bits |
| __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; |
| v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); |
| v_elo1_d = _mm_srli_si128(v_elo_d, 4); |
| v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); |
| v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); |
| v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); |
| v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); |
| v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); |
| v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| |
| // Accumulate |
| v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); |
| v_sse_q = _mm_add_epi64(v_sse_q, v_se_q); |
| |
| // Move on to next row |
| a += a_stride * 2; |
| b += b_stride * 2; |
| m += m_stride * 2; |
| } |
| |
| // Horizontal sum |
| *sum = hsum_epi32_si32(v_sum_d); |
| *sse = hsum_epi64_si64(v_sse_q); |
| |
| // Round |
| *sum = (*sum >= 0) ? *sum : -*sum; |
| *sum = ROUND_POWER_OF_TWO(*sum, 6); |
| *sse = ROUND_POWER_OF_TWO(*sse, 12); |
| } |
| |
| static INLINE unsigned int highbd_masked_variancewxh_ssse3( |
| const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { |
| uint64_t sse64; |
| int64_t sum64; |
| |
| if (w == 4) |
| highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, |
| h, &sum64, &sse64); |
| else |
| highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, |
| &sum64, &sse64); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute and return variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| |
| static INLINE unsigned int highbd_10_masked_variancewxh_ssse3( |
| const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { |
| uint64_t sse64; |
| int64_t sum64; |
| |
| if (w == 4) |
| highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, |
| h, &sum64, &sse64); |
| else |
| highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, |
| &sum64, &sse64); |
| |
| // Normalise |
| sum64 = ROUND_POWER_OF_TWO(sum64, 2); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 4); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute and return variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| |
| static INLINE unsigned int highbd_12_masked_variancewxh_ssse3( |
| const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, |
| const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { |
| uint64_t sse64; |
| int64_t sum64; |
| |
| if (w == 4) |
| highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, |
| h, &sum64, &sse64); |
| else |
| highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, |
| &sum64, &sse64); |
| |
| sum64 = ROUND_POWER_OF_TWO(sum64, 4); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 8); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute and return variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| |
| #define HIGHBD_MASKED_VARWXH(W, H) \ |
| unsigned int aom_highbd_masked_variance##W##x##H##_ssse3( \ |
| const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ |
| uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ |
| return highbd_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ |
| m_stride, W, H, sse); \ |
| } \ |
| \ |
| unsigned int aom_highbd_10_masked_variance##W##x##H##_ssse3( \ |
| const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ |
| uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ |
| return highbd_10_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ |
| m_stride, W, H, sse); \ |
| } \ |
| \ |
| unsigned int aom_highbd_12_masked_variance##W##x##H##_ssse3( \ |
| const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ |
| const uint8_t *m, int m_stride, unsigned int *sse) { \ |
| uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ |
| uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ |
| return highbd_12_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ |
| m_stride, W, H, sse); \ |
| } |
| |
| HIGHBD_MASKED_VARWXH(4, 4) |
| HIGHBD_MASKED_VARWXH(4, 8) |
| HIGHBD_MASKED_VARWXH(8, 4) |
| HIGHBD_MASKED_VARWXH(8, 8) |
| HIGHBD_MASKED_VARWXH(8, 16) |
| HIGHBD_MASKED_VARWXH(16, 8) |
| HIGHBD_MASKED_VARWXH(16, 16) |
| HIGHBD_MASKED_VARWXH(16, 32) |
| HIGHBD_MASKED_VARWXH(32, 16) |
| HIGHBD_MASKED_VARWXH(32, 32) |
| HIGHBD_MASKED_VARWXH(32, 64) |
| HIGHBD_MASKED_VARWXH(64, 32) |
| HIGHBD_MASKED_VARWXH(64, 64) |
| #if CONFIG_EXT_PARTITION |
| HIGHBD_MASKED_VARWXH(64, 128) |
| HIGHBD_MASKED_VARWXH(128, 64) |
| HIGHBD_MASKED_VARWXH(128, 128) |
| #endif // CONFIG_EXT_PARTITION |
| |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Sub pixel versions |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| typedef __m128i (*filter_fn_t)(__m128i v_a_b, __m128i v_b_b, |
| __m128i v_filter_b); |
| |
| static INLINE __m128i apply_filter_avg(const __m128i v_a_b, const __m128i v_b_b, |
| const __m128i v_filter_b) { |
| (void)v_filter_b; |
| return _mm_avg_epu8(v_a_b, v_b_b); |
| } |
| |
| static INLINE __m128i apply_filter(const __m128i v_a_b, const __m128i v_b_b, |
| const __m128i v_filter_b) { |
| const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1)); |
| __m128i v_input_lo_b = _mm_unpacklo_epi8(v_a_b, v_b_b); |
| __m128i v_input_hi_b = _mm_unpackhi_epi8(v_a_b, v_b_b); |
| __m128i v_temp0_w = _mm_maddubs_epi16(v_input_lo_b, v_filter_b); |
| __m128i v_temp1_w = _mm_maddubs_epi16(v_input_hi_b, v_filter_b); |
| __m128i v_res_lo_w = |
| _mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS); |
| __m128i v_res_hi_w = |
| _mm_srai_epi16(_mm_add_epi16(v_temp1_w, v_rounding_w), FILTER_BITS); |
| return _mm_packus_epi16(v_res_lo_w, v_res_hi_w); |
| } |
| |
| // Apply the filter to the contents of the lower half of a and b |
| static INLINE void apply_filter_lo(const __m128i v_a_lo_b, |
| const __m128i v_b_lo_b, |
| const __m128i v_filter_b, __m128i *v_res_w) { |
| const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1)); |
| __m128i v_input_b = _mm_unpacklo_epi8(v_a_lo_b, v_b_lo_b); |
| __m128i v_temp0_w = _mm_maddubs_epi16(v_input_b, v_filter_b); |
| *v_res_w = |
| _mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS); |
| } |
| |
| static void sum_and_sse(const __m128i v_a_b, const __m128i v_b_b, |
| const __m128i v_m_b, __m128i *v_sum_d, |
| __m128i *v_sse_q) { |
| const __m128i v_zero = _mm_setzero_si128(); |
| // Unpack to 16 bits - still containing max 8 bits |
| const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero); |
| const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero); |
| const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero); |
| const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero); |
| const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero); |
| |
| // Difference: [-255, 255] |
| const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w); |
| const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w); |
| |
| // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits |
| const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w); |
| const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w); |
| const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w); |
| const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w); |
| |
| // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits |
| const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w); |
| const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w); |
| |
| // Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits |
| const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d); |
| |
| // Unpack Squared error to 64 bits |
| const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); |
| const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); |
| |
| // Accumulate |
| *v_sum_d = _mm_add_epi32(*v_sum_d, v_e0_d); |
| *v_sum_d = _mm_add_epi32(*v_sum_d, v_e1_d); |
| *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_lo_q); |
| *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_hi_q); |
| } |
| |
| // Functions for width (W) >= 16 |
| unsigned int aom_masked_subpel_varWxH_xzero(const uint8_t *src, int src_stride, |
| int yoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int w, int h, |
| filter_fn_t filter_fn) { |
| int i, j; |
| __m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filter_b = _mm_set1_epi16( |
| (bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| for (j = 0; j < w; j += 16) { |
| // Load the first row ready |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); |
| // Process 2 rows at a time |
| for (i = 0; i < h; i += 2) { |
| // Load the next row apply the filter |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride)); |
| v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b); |
| // Load the dst and msk for the variance calculation |
| v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next row apply the filter |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2)); |
| v_res_b = filter_fn(v_src1_b, v_src0_b, v_filter_b); |
| // Load the dst and msk for the variance calculation |
| v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride)); |
| v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j + msk_stride)); |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next block of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| // Reset to the top of the block |
| src -= src_stride * h; |
| dst -= dst_stride * h; |
| msk -= msk_stride * h; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); |
| } |
| unsigned int aom_masked_subpel_varWxH_yzero(const uint8_t *src, int src_stride, |
| int xoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int w, int h, |
| filter_fn_t filter_fn) { |
| int i, j; |
| __m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filter_b = _mm_set1_epi16( |
| (bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i++) { |
| for (j = 0; j < w; j += 16) { |
| // Load this row and one below & apply the filter to them |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1)); |
| v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b); |
| |
| // Load the dst and msk for the variance calculation |
| v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| } |
| src += src_stride; |
| dst += dst_stride; |
| msk += msk_stride; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); |
| } |
| unsigned int aom_masked_subpel_varWxH_xnonzero_ynonzero( |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, |
| const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, |
| unsigned int *sse, int w, int h, filter_fn_t xfilter_fn, |
| filter_fn_t yfilter_fn) { |
| int i, j; |
| __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b; |
| __m128i v_filtered0_b, v_filtered1_b, v_res_b, v_dst_b, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filterx_b = _mm_set1_epi16( |
| (bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); |
| const __m128i v_filtery_b = _mm_set1_epi16( |
| (bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (j = 0; j < w; j += 16) { |
| // Load the first row ready |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1)); |
| v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b); |
| // Process 2 rows at a time |
| for (i = 0; i < h; i += 2) { |
| // Load the next row & apply the filter |
| v_src2_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j)); |
| v_src3_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1)); |
| v_filtered1_b = xfilter_fn(v_src2_b, v_src3_b, v_filterx_b); |
| // Load the dst and msk for the variance calculation |
| v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); |
| // Complete the calculation for this row and add it to the running total |
| v_res_b = yfilter_fn(v_filtered0_b, v_filtered1_b, v_filtery_b); |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next row & apply the filter |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j)); |
| v_src1_b = |
| _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1)); |
| v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b); |
| // Load the dst and msk for the variance calculation |
| v_dst_b = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j)); |
| v_msk_b = _mm_loadu_si128((const __m128i *)(msk + msk_stride + j)); |
| // Complete the calculation for this row and add it to the running total |
| v_res_b = yfilter_fn(v_filtered1_b, v_filtered0_b, v_filtery_b); |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next block of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| // Reset to the top of the block |
| src -= src_stride * h; |
| dst -= dst_stride * h; |
| msk -= msk_stride * h; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); |
| } |
| |
| // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, |
| // xmm[63:32] = row 3, xmm[31:0] = row 4 |
| unsigned int aom_masked_subpel_var4xH_xzero(const uint8_t *src, int src_stride, |
| int yoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered1_w, v_filtered2_w; |
| __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b; |
| __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| // Load the first row of src data ready |
| v_src0_b = _mm_loadl_epi64((const __m128i *)src); |
| for (i = 0; i < h; i += 4) { |
| // Load the rest of the source data for these rows |
| v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); |
| v_src1_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); |
| v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); |
| v_src3_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); |
| v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4)); |
| // Load the dst data |
| v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); |
| v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); |
| v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); |
| v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); |
| v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); |
| v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); |
| v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); |
| // Load the mask data |
| v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); |
| v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); |
| v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); |
| v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); |
| v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); |
| v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); |
| v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); |
| // Apply the y filter |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_src1_b = _mm_unpacklo_epi64(v_src3_b, v_src1_b); |
| v_src2_b = |
| _mm_or_si128(_mm_slli_si128(v_src1_b, 4), |
| _mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0))); |
| v_res_b = _mm_avg_epu8(v_src1_b, v_src2_b); |
| } else { |
| v_src2_b = |
| _mm_or_si128(_mm_slli_si128(v_src1_b, 4), |
| _mm_and_si128(v_src2_b, _mm_setr_epi32(-1, 0, 0, 0))); |
| apply_filter_lo(v_src1_b, v_src2_b, v_filter_b, &v_filtered1_w); |
| v_src2_b = |
| _mm_or_si128(_mm_slli_si128(v_src3_b, 4), |
| _mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0))); |
| apply_filter_lo(v_src3_b, v_src2_b, v_filter_b, &v_filtered2_w); |
| v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered1_w); |
| } |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| msk += msk_stride * 4; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| // Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2 |
| unsigned int aom_masked_subpel_var8xH_xzero(const uint8_t *src, int src_stride, |
| int yoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_res_b; |
| __m128i v_dst_b = _mm_setzero_si128(); |
| __m128i v_msk_b = _mm_setzero_si128(); |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| // Load the first row of src data ready |
| v_src0_b = _mm_loadl_epi64((const __m128i *)src); |
| for (i = 0; i < h; i += 2) { |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| // Load the rest of the source data for these rows |
| v_src1_b = _mm_or_si128( |
| _mm_slli_si128(v_src0_b, 8), |
| _mm_loadl_epi64((const __m128i *)(src + src_stride * 1))); |
| v_src0_b = _mm_or_si128( |
| _mm_slli_si128(v_src1_b, 8), |
| _mm_loadl_epi64((const __m128i *)(src + src_stride * 2))); |
| // Apply the y filter |
| v_res_b = _mm_avg_epu8(v_src1_b, v_src0_b); |
| } else { |
| // Load the data and apply the y filter |
| v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); |
| apply_filter_lo(v_src0_b, v_src1_b, v_filter_b, &v_filtered0_w); |
| v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| apply_filter_lo(v_src1_b, v_src0_b, v_filter_b, &v_filtered1_w); |
| v_res_b = _mm_packus_epi16(v_filtered1_w, v_filtered0_w); |
| } |
| // Load the dst data |
| v_dst_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0))); |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); |
| } |
| |
| // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, |
| // xmm[63:32] = row 3, xmm[31:0] = row 4 |
| unsigned int aom_masked_subpel_var4xH_yzero(const uint8_t *src, int src_stride, |
| int xoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w; |
| __m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b; |
| __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b; |
| __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + |
| bilinear_filters_2t[xoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i += 4) { |
| // Load the src data |
| v_src0_b = _mm_loadl_epi64((const __m128i *)src); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); |
| v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b); |
| v_src2_shift_b = _mm_srli_si128(v_src2_b, 1); |
| v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); |
| v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); |
| v_src3_shift_b = _mm_srli_si128(v_src3_b, 1); |
| v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b); |
| // Load the dst data |
| v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); |
| v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); |
| v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); |
| v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); |
| v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); |
| v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); |
| v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); |
| // Load the mask data |
| v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); |
| v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); |
| v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); |
| v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); |
| v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); |
| v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); |
| v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b); |
| v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b); |
| v_res_b = _mm_avg_epu8(v_src0_b, v_src0_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w); |
| apply_filter_lo(v_src2_b, v_src2_shift_b, v_filter_b, &v_filtered2_w); |
| v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered0_w); |
| } |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| msk += msk_stride * 4; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| unsigned int aom_masked_subpel_var8xH_yzero(const uint8_t *src, int src_stride, |
| int xoffset, const uint8_t *dst, |
| int dst_stride, const uint8_t *msk, |
| int msk_stride, unsigned int *sse, |
| int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w; |
| __m128i v_src0_shift_b, v_src1_shift_b, v_res_b, v_dst_b, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + |
| bilinear_filters_2t[xoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i += 2) { |
| // Load the src data |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src)); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride)); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); |
| v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); |
| v_res_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w); |
| apply_filter_lo(v_src1_b, v_src1_shift_b, v_filter_b, &v_filtered1_w); |
| v_res_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); |
| } |
| // Load the dst data |
| v_dst_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); |
| } |
| |
| // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, |
| // xmm[63:32] = row 3, xmm[31:0] = row 4 |
| unsigned int aom_masked_subpel_var4xH_xnonzero_ynonzero( |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, |
| const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, |
| unsigned int *sse, int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w; |
| __m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b; |
| __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b, v_temp_b; |
| __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_extra_row_b, v_res_b; |
| __m128i v_xres_b[2]; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + |
| bilinear_filters_2t[xoffset][0]); |
| __m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i += 4) { |
| // Load the src data |
| v_src0_b = _mm_loadl_epi64((const __m128i *)src); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); |
| v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b); |
| v_src2_shift_b = _mm_srli_si128(v_src2_b, 1); |
| v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); |
| v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); |
| v_src3_shift_b = _mm_srli_si128(v_src3_b, 1); |
| v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b); |
| v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b); |
| v_xres_b[i == 0 ? 0 : 1] = _mm_avg_epu8(v_src0_b, v_src0_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); |
| apply_filter_lo(v_src2_b, v_src2_shift_b, v_filterx_b, &v_filtered2_w); |
| v_xres_b[i == 0 ? 0 : 1] = _mm_packus_epi16(v_filtered2_w, v_filtered0_w); |
| } |
| // Move onto the next set of rows |
| src += src_stride * 4; |
| } |
| // Load one more row to be used in the y filter |
| v_src0_b = _mm_loadl_epi64((const __m128i *)src); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_extra_row_b = _mm_and_si128(_mm_avg_epu8(v_src0_b, v_src0_shift_b), |
| _mm_setr_epi32(-1, 0, 0, 0)); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); |
| v_extra_row_b = |
| _mm_and_si128(_mm_packus_epi16(v_filtered0_w, _mm_setzero_si128()), |
| _mm_setr_epi32(-1, 0, 0, 0)); |
| } |
| |
| for (i = 0; i < h; i += 4) { |
| if (h == 8 && i == 0) { |
| v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[0], 4), |
| _mm_srli_si128(v_xres_b[1], 12)); |
| } else { |
| v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[i == 0 ? 0 : 1], 4), |
| v_extra_row_b); |
| } |
| // Apply the y filter |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_res_b = _mm_avg_epu8(v_xres_b[i == 0 ? 0 : 1], v_temp_b); |
| } else { |
| v_res_b = apply_filter(v_xres_b[i == 0 ? 0 : 1], v_temp_b, v_filtery_b); |
| } |
| |
| // Load the dst data |
| v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); |
| v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); |
| v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); |
| v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); |
| v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); |
| v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); |
| v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); |
| // Load the mask data |
| v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); |
| v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); |
| v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); |
| v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); |
| v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); |
| v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); |
| v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| dst += dst_stride * 4; |
| msk += msk_stride * 4; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| unsigned int aom_masked_subpel_var8xH_xnonzero_ynonzero( |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, |
| const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, |
| unsigned int *sse, int h) { |
| int i; |
| __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_dst_b, v_msk_b; |
| __m128i v_src0_shift_b, v_src1_shift_b; |
| __m128i v_xres0_b, v_xres1_b, v_res_b, v_temp_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + |
| bilinear_filters_2t[xoffset][0]); |
| __m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| // Load the first block of src data |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src)); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride)); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); |
| v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); |
| v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); |
| apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); |
| v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); |
| } |
| for (i = 0; i < h; i += 4) { |
| // Load the next block of src data |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2)); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 3)); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); |
| v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); |
| v_xres1_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); |
| apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); |
| v_xres1_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); |
| } |
| // Apply the y filter to the previous block |
| v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres0_b, 8), |
| _mm_slli_si128(v_xres1_b, 8)); |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_res_b = _mm_avg_epu8(v_xres0_b, v_temp_b); |
| } else { |
| v_res_b = apply_filter(v_xres0_b, v_temp_b, v_filtery_b); |
| } |
| // Load the dst data |
| v_dst_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next block of src data |
| v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 4)); |
| v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); |
| v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 5)); |
| v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); |
| v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); |
| v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); |
| } else { |
| apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); |
| apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); |
| v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); |
| } |
| // Apply the y filter to the previous block |
| v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres1_b, 8), |
| _mm_slli_si128(v_xres0_b, 8)); |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_res_b = _mm_avg_epu8(v_xres1_b, v_temp_b); |
| } else { |
| v_res_b = apply_filter(v_xres1_b, v_temp_b, v_filtery_b); |
| } |
| // Load the dst data |
| v_dst_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3))); |
| // Compute the sum and SSE |
| sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| msk += msk_stride * 4; |
| } |
| return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); |
| } |
| |
| // For W >=16 |
| #define MASK_SUBPIX_VAR_LARGE(W, H) \ |
| unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse) { \ |
| assert(W % 16 == 0); \ |
| if (xoffset == 0) { \ |
| if (yoffset == 0) \ |
| return aom_masked_variance##W##x##H##_ssse3( \ |
| src, src_stride, dst, dst_stride, msk, msk_stride, sse); \ |
| else if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_masked_subpel_varWxH_xzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, apply_filter_avg); \ |
| else \ |
| return aom_masked_subpel_varWxH_xzero(src, src_stride, yoffset, dst, \ |
| dst_stride, msk, msk_stride, \ |
| sse, W, H, apply_filter); \ |
| } else if (yoffset == 0) { \ |
| if (xoffset == HALF_PIXEL_OFFSET) \ |
| return aom_masked_subpel_varWxH_yzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, apply_filter_avg); \ |
| else \ |
| return aom_masked_subpel_varWxH_yzero(src, src_stride, xoffset, dst, \ |
| dst_stride, msk, msk_stride, \ |
| sse, W, H, apply_filter); \ |
| } else if (xoffset == HALF_PIXEL_OFFSET) { \ |
| if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \ |
| dst_stride, msk, msk_stride, sse, W, H, apply_filter_avg, \ |
| apply_filter_avg); \ |
| else \ |
| return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, apply_filter_avg, apply_filter); \ |
| } else { \ |
| if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, apply_filter, apply_filter_avg); \ |
| else \ |
| return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, apply_filter, apply_filter); \ |
| } \ |
| } |
| |
| // For W < 16 |
| #define MASK_SUBPIX_VAR_SMALL(W, H) \ |
| unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse) { \ |
| assert(W == 4 || W == 8); \ |
| if (xoffset == 0 && yoffset == 0) \ |
| return aom_masked_variance##W##x##H##_ssse3( \ |
| src, src_stride, dst, dst_stride, msk, msk_stride, sse); \ |
| else if (xoffset == 0) \ |
| return aom_masked_subpel_var##W##xH_xzero( \ |
| src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H); \ |
| else if (yoffset == 0) \ |
| return aom_masked_subpel_var##W##xH_yzero( \ |
| src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H); \ |
| else \ |
| return aom_masked_subpel_var##W##xH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \ |
| sse, H); \ |
| } |
| |
| MASK_SUBPIX_VAR_SMALL(4, 4) |
| MASK_SUBPIX_VAR_SMALL(4, 8) |
| MASK_SUBPIX_VAR_SMALL(8, 4) |
| MASK_SUBPIX_VAR_SMALL(8, 8) |
| MASK_SUBPIX_VAR_SMALL(8, 16) |
| MASK_SUBPIX_VAR_LARGE(16, 8) |
| MASK_SUBPIX_VAR_LARGE(16, 16) |
| MASK_SUBPIX_VAR_LARGE(16, 32) |
| MASK_SUBPIX_VAR_LARGE(32, 16) |
| MASK_SUBPIX_VAR_LARGE(32, 32) |
| MASK_SUBPIX_VAR_LARGE(32, 64) |
| MASK_SUBPIX_VAR_LARGE(64, 32) |
| MASK_SUBPIX_VAR_LARGE(64, 64) |
| #if CONFIG_EXT_PARTITION |
| MASK_SUBPIX_VAR_LARGE(64, 128) |
| MASK_SUBPIX_VAR_LARGE(128, 64) |
| MASK_SUBPIX_VAR_LARGE(128, 128) |
| #endif // CONFIG_EXT_PARTITION |
| |
| #if CONFIG_HIGHBITDEPTH |
| typedef uint32_t (*highbd_calc_masked_var_t)(__m128i v_sum_d, __m128i v_sse_q, |
| uint32_t *sse, int w, int h); |
| typedef unsigned int (*highbd_variance_fn_t)(const uint8_t *a8, int a_stride, |
| const uint8_t *b8, int b_stride, |
| const uint8_t *m, int m_stride, |
| unsigned int *sse); |
| typedef __m128i (*highbd_filter_fn_t)(__m128i v_a_w, __m128i v_b_w, |
| __m128i v_filter_w); |
| |
| static INLINE __m128i highbd_apply_filter_avg(const __m128i v_a_w, |
| const __m128i v_b_w, |
| const __m128i v_filter_w) { |
| (void)v_filter_w; |
| return _mm_avg_epu16(v_a_w, v_b_w); |
| } |
| |
| static INLINE __m128i highbd_apply_filter(const __m128i v_a_w, |
| const __m128i v_b_w, |
| const __m128i v_filter_w) { |
| const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1)); |
| __m128i v_input_lo_w = _mm_unpacklo_epi16(v_a_w, v_b_w); |
| __m128i v_input_hi_w = _mm_unpackhi_epi16(v_a_w, v_b_w); |
| __m128i v_temp0_d = _mm_madd_epi16(v_input_lo_w, v_filter_w); |
| __m128i v_temp1_d = _mm_madd_epi16(v_input_hi_w, v_filter_w); |
| __m128i v_res_lo_d = |
| _mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS); |
| __m128i v_res_hi_d = |
| _mm_srai_epi32(_mm_add_epi32(v_temp1_d, v_rounding_d), FILTER_BITS); |
| return _mm_packs_epi32(v_res_lo_d, v_res_hi_d); |
| } |
| // Apply the filter to the contents of the lower half of a and b |
| static INLINE void highbd_apply_filter_lo(const __m128i v_a_lo_w, |
| const __m128i v_b_lo_w, |
| const __m128i v_filter_w, |
| __m128i *v_res_d) { |
| const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1)); |
| __m128i v_input_w = _mm_unpacklo_epi16(v_a_lo_w, v_b_lo_w); |
| __m128i v_temp0_d = _mm_madd_epi16(v_input_w, v_filter_w); |
| *v_res_d = |
| _mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS); |
| } |
| |
| static void highbd_sum_and_sse(const __m128i v_a_w, const __m128i v_b_w, |
| const __m128i v_m_b, __m128i *v_sum_d, |
| __m128i *v_sse_q) { |
| const __m128i v_zero = _mm_setzero_si128(); |
| const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); |
| |
| // Difference: [-2^12, 2^12] => 13 bits (incld sign bit) |
| const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); |
| |
| // Error - [-4095, 4095] * [0, 64] & sum pairs => fits in 19 + 1 bits |
| const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); |
| |
| // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) |
| const __m128i v_absd_w = _mm_abs_epi16(v_d_w); |
| const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); |
| const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); |
| const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); |
| const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); |
| const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); |
| const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); |
| // Square and sum the errors -> 36bits * 4 = 38bits |
| __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; |
| v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); |
| v_elo1_d = _mm_srli_si128(v_elo_d, 4); |
| v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); |
| v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); |
| v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); |
| v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); |
| v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); |
| v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); |
| |
| // Accumulate |
| *v_sum_d = _mm_add_epi32(*v_sum_d, v_e_d); |
| *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_q); |
| } |
| |
| static INLINE uint32_t highbd_10_calc_masked_variance(__m128i v_sum_d, |
| __m128i v_sse_q, |
| uint32_t *sse, int w, |
| int h) { |
| int64_t sum64; |
| uint64_t sse64; |
| |
| // Horizontal sum |
| sum64 = hsum_epi32_si32(v_sum_d); |
| sse64 = hsum_epi64_si64(v_sse_q); |
| |
| sum64 = (sum64 >= 0) ? sum64 : -sum64; |
| |
| // Round |
| sum64 = ROUND_POWER_OF_TWO(sum64, 6); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 12); |
| |
| // Normalise |
| sum64 = ROUND_POWER_OF_TWO(sum64, 2); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 4); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute the variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| static INLINE uint32_t highbd_12_calc_masked_variance(__m128i v_sum_d, |
| __m128i v_sse_q, |
| uint32_t *sse, int w, |
| int h) { |
| int64_t sum64; |
| uint64_t sse64; |
| |
| // Horizontal sum |
| sum64 = hsum_epi32_si64(v_sum_d); |
| sse64 = hsum_epi64_si64(v_sse_q); |
| |
| sum64 = (sum64 >= 0) ? sum64 : -sum64; |
| |
| // Round |
| sum64 = ROUND_POWER_OF_TWO(sum64, 6); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 12); |
| |
| // Normalise |
| sum64 = ROUND_POWER_OF_TWO(sum64, 4); |
| sse64 = ROUND_POWER_OF_TWO(sse64, 8); |
| |
| // Store the SSE |
| *sse = (uint32_t)sse64; |
| // Compute the variance |
| return *sse - (uint32_t)((sum64 * sum64) / (w * h)); |
| } |
| |
| // High bit depth functions for width (W) >= 8 |
| unsigned int aom_highbd_masked_subpel_varWxH_xzero( |
| const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst, |
| int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, |
| int w, int h, highbd_filter_fn_t filter_fn, |
| highbd_calc_masked_var_t calc_var) { |
| int i, j; |
| __m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filter_w = |
| _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| for (j = 0; j < w; j += 8) { |
| // Load the first row ready |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); |
| // Process 2 rows at a time |
| for (i = 0; i < h; i += 2) { |
| // Load the next row apply the filter |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride)); |
| v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w); |
| // Load the dst and msk for the variance calculation |
| v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next row apply the filter |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2)); |
| v_res_w = filter_fn(v_src1_w, v_src0_w, v_filter_w); |
| // Load the dst and msk for the variance calculation |
| v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride)); |
| v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j + msk_stride)); |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next block of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| // Reset to the top of the block |
| src -= src_stride * h; |
| dst -= dst_stride * h; |
| msk -= msk_stride * h; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, w, h); |
| } |
| unsigned int aom_highbd_masked_subpel_varWxH_yzero( |
| const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst, |
| int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, |
| int w, int h, highbd_filter_fn_t filter_fn, |
| highbd_calc_masked_var_t calc_var) { |
| int i, j; |
| __m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filter_w = |
| _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + |
| bilinear_filters_2t[xoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i++) { |
| for (j = 0; j < w; j += 8) { |
| // Load this row & apply the filter to them |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1)); |
| v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w); |
| |
| // Load the dst and msk for the variance calculation |
| v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| } |
| src += src_stride; |
| dst += dst_stride; |
| msk += msk_stride; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, w, h); |
| } |
| |
| unsigned int aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( |
| const uint16_t *src, int src_stride, int xoffset, int yoffset, |
| const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, |
| unsigned int *sse, int w, int h, highbd_filter_fn_t xfilter_fn, |
| highbd_filter_fn_t yfilter_fn, highbd_calc_masked_var_t calc_var) { |
| int i, j; |
| __m128i v_src0_w, v_src1_w, v_src2_w, v_src3_w; |
| __m128i v_filtered0_w, v_filtered1_w, v_res_w, v_dst_w, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| const __m128i v_filterx_w = |
| _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + |
| bilinear_filters_2t[xoffset][0]); |
| const __m128i v_filtery_w = |
| _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| for (j = 0; j < w; j += 8) { |
| // Load the first row ready |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1)); |
| v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w); |
| // Process 2 rows at a time |
| for (i = 0; i < h; i += 2) { |
| // Load the next row & apply the filter |
| v_src2_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j)); |
| v_src3_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1)); |
| v_filtered1_w = xfilter_fn(v_src2_w, v_src3_w, v_filterx_w); |
| // Load the dst and msk for the variance calculation |
| v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); |
| v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); |
| // Complete the calculation for this row and add it to the running total |
| v_res_w = yfilter_fn(v_filtered0_w, v_filtered1_w, v_filtery_w); |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next row & apply the filter |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j)); |
| v_src1_w = |
| _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1)); |
| v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w); |
| // Load the dst and msk for the variance calculation |
| v_dst_w = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j)); |
| v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + msk_stride + j)); |
| // Complete the calculation for this row and add it to the running total |
| v_res_w = yfilter_fn(v_filtered1_w, v_filtered0_w, v_filtery_w); |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next block of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| // Reset to the top of the block |
| src -= src_stride * h; |
| dst -= dst_stride * h; |
| msk -= msk_stride * h; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, w, h); |
| } |
| |
| // Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2 |
| unsigned int aom_highbd_masked_subpel_var4xH_xzero( |
| const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst, |
| int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, |
| int h, highbd_calc_masked_var_t calc_var) { |
| int i; |
| __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_res_w; |
| __m128i v_dst_w, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| // Load the first row of src data ready |
| v_src0_w = _mm_loadl_epi64((const __m128i *)src); |
| for (i = 0; i < h; i += 2) { |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| // Load the rest of the source data for these rows |
| v_src1_w = _mm_or_si128( |
| _mm_slli_si128(v_src0_w, 8), |
| _mm_loadl_epi64((const __m128i *)(src + src_stride * 1))); |
| v_src0_w = _mm_or_si128( |
| _mm_slli_si128(v_src1_w, 8), |
| _mm_loadl_epi64((const __m128i *)(src + src_stride * 2))); |
| // Apply the y filter |
| v_res_w = _mm_avg_epu16(v_src1_w, v_src0_w); |
| } else { |
| // Load the data and apply the y filter |
| v_src1_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); |
| highbd_apply_filter_lo(v_src0_w, v_src1_w, v_filter_w, &v_filtered0_d); |
| v_src0_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| highbd_apply_filter_lo(v_src1_w, v_src0_w, v_filter_w, &v_filtered1_d); |
| v_res_w = _mm_packs_epi32(v_filtered1_d, v_filtered0_d); |
| } |
| // Load the dst data |
| v_dst_w = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi32( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0))); |
| // Compute the sum and SSE |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| unsigned int aom_highbd_masked_subpel_var4xH_yzero( |
| const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst, |
| int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, |
| int h, highbd_calc_masked_var_t calc_var) { |
| int i; |
| __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d; |
| __m128i v_src0_shift_w, v_src1_shift_w, v_res_w, v_dst_w, v_msk_b; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + |
| bilinear_filters_2t[xoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| for (i = 0; i < h; i += 2) { |
| // Load the src data |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src)); |
| v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride)); |
| v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); |
| v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); |
| v_res_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); |
| } else { |
| highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filter_w, |
| &v_filtered0_d); |
| highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filter_w, |
| &v_filtered1_d); |
| v_res_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); |
| } |
| // Load the dst data |
| v_dst_w = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi32( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); |
| // Compute the sum and SSE |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 2; |
| dst += dst_stride * 2; |
| msk += msk_stride * 2; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| unsigned int aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero( |
| const uint16_t *src, int src_stride, int xoffset, int yoffset, |
| const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, |
| unsigned int *sse, int h, highbd_calc_masked_var_t calc_var) { |
| int i; |
| __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_dst_w, v_msk_b; |
| __m128i v_src0_shift_w, v_src1_shift_w; |
| __m128i v_xres0_w, v_xres1_w, v_res_w, v_temp_w; |
| __m128i v_sum_d = _mm_setzero_si128(); |
| __m128i v_sse_q = _mm_setzero_si128(); |
| __m128i v_filterx_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + |
| bilinear_filters_2t[xoffset][0]); |
| __m128i v_filtery_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + |
| bilinear_filters_2t[yoffset][0]); |
| assert(xoffset < BIL_SUBPEL_SHIFTS); |
| assert(yoffset < BIL_SUBPEL_SHIFTS); |
| // Load the first block of src data |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src)); |
| v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride)); |
| v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); |
| v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); |
| v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); |
| } else { |
| highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, |
| &v_filtered0_d); |
| highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, |
| &v_filtered1_d); |
| v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); |
| } |
| for (i = 0; i < h; i += 4) { |
| // Load the next block of src data |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2)); |
| v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 3)); |
| v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); |
| v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); |
| v_xres1_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); |
| } else { |
| highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, |
| &v_filtered0_d); |
| highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, |
| &v_filtered1_d); |
| v_xres1_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); |
| } |
| // Apply the y filter to the previous block |
| v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres0_w, 8), |
| _mm_slli_si128(v_xres1_w, 8)); |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_res_w = _mm_avg_epu16(v_xres0_w, v_temp_w); |
| } else { |
| v_res_w = highbd_apply_filter(v_xres0_w, v_temp_w, v_filtery_w); |
| } |
| // Load the dst data |
| v_dst_w = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi32( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); |
| // Compute the sum and SSE |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| |
| // Load the next block of src data |
| v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 4)); |
| v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); |
| v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 5)); |
| v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); |
| // Apply the x filter |
| if (xoffset == HALF_PIXEL_OFFSET) { |
| v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); |
| v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); |
| v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); |
| } else { |
| highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, |
| &v_filtered0_d); |
| highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, |
| &v_filtered1_d); |
| v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); |
| } |
| // Apply the y filter to the previous block |
| v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres1_w, 8), |
| _mm_slli_si128(v_xres0_w, 8)); |
| if (yoffset == HALF_PIXEL_OFFSET) { |
| v_res_w = _mm_avg_epu16(v_xres1_w, v_temp_w); |
| } else { |
| v_res_w = highbd_apply_filter(v_xres1_w, v_temp_w, v_filtery_w); |
| } |
| // Load the dst data |
| v_dst_w = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)), |
| _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3))); |
| // Load the mask data |
| v_msk_b = _mm_unpacklo_epi32( |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)), |
| _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3))); |
| // Compute the sum and SSE |
| highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); |
| // Move onto the next set of rows |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| msk += msk_stride * 4; |
| } |
| return calc_var(v_sum_d, v_sse_q, sse, 4, h); |
| } |
| |
| // For W >=8 |
| #define HIGHBD_MASK_SUBPIX_VAR_LARGE(W, H) \ |
| unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse, highbd_calc_masked_var_t calc_var, \ |
| highbd_variance_fn_t full_variance_function) { \ |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ |
| assert(W % 8 == 0); \ |
| if (xoffset == 0) { \ |
| if (yoffset == 0) \ |
| return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \ |
| msk_stride, sse); \ |
| else if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_highbd_masked_subpel_varWxH_xzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \ |
| else \ |
| return aom_highbd_masked_subpel_varWxH_xzero( \ |
| src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, \ |
| W, H, highbd_apply_filter, calc_var); \ |
| } else if (yoffset == 0) { \ |
| if (xoffset == HALF_PIXEL_OFFSET) \ |
| return aom_highbd_masked_subpel_varWxH_yzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \ |
| else \ |
| return aom_highbd_masked_subpel_varWxH_yzero( \ |
| src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, \ |
| W, H, highbd_apply_filter, calc_var); \ |
| } else if (xoffset == HALF_PIXEL_OFFSET) { \ |
| if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \ |
| dst_stride, msk, msk_stride, sse, W, H, highbd_apply_filter_avg, \ |
| highbd_apply_filter_avg, calc_var); \ |
| else \ |
| return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, highbd_apply_filter_avg, \ |
| highbd_apply_filter, calc_var); \ |
| } else { \ |
| if (yoffset == HALF_PIXEL_OFFSET) \ |
| return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, highbd_apply_filter, \ |
| highbd_apply_filter_avg, calc_var); \ |
| else \ |
| return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \ |
| msk_stride, sse, W, H, highbd_apply_filter, highbd_apply_filter, \ |
| calc_var); \ |
| } \ |
| } |
| |
| // For W < 8 |
| #define HIGHBD_MASK_SUBPIX_VAR_SMALL(W, H) \ |
| unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse, highbd_calc_masked_var_t calc_var, \ |
| highbd_variance_fn_t full_variance_function) { \ |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ |
| assert(W == 4); \ |
| if (xoffset == 0 && yoffset == 0) \ |
| return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \ |
| msk_stride, sse); \ |
| else if (xoffset == 0) \ |
| return aom_highbd_masked_subpel_var4xH_xzero( \ |
| src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H, \ |
| calc_var); \ |
| else if (yoffset == 0) \ |
| return aom_highbd_masked_subpel_var4xH_yzero( \ |
| src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H, \ |
| calc_var); \ |
| else \ |
| return aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero( \ |
| src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \ |
| sse, H, calc_var); \ |
| } |
| |
| #define HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(W, H) \ |
| unsigned int aom_highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse) { \ |
| return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ |
| sse, calc_masked_variance, \ |
| aom_highbd_masked_variance##W##x##H##_ssse3); \ |
| } \ |
| unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse) { \ |
| return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ |
| sse, highbd_10_calc_masked_variance, \ |
| aom_highbd_10_masked_variance##W##x##H##_ssse3); \ |
| } \ |
| unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ |
| unsigned int *sse) { \ |
| return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ |
| sse, highbd_12_calc_masked_variance, \ |
| aom_highbd_12_masked_variance##W##x##H##_ssse3); \ |
| } |
| |
| HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 4) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 4) |
| HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 8) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 8) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 4) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 4) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 8) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 8) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 16) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 16) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 8) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 8) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 16) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 16) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 32) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 32) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 16) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 16) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 32) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 32) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 64) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 64) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 32) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 32) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 64) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 64) |
| #if CONFIG_EXT_PARTITION |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 128) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 128) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 64) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 64) |
| HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 128) |
| HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 128) |
| #endif // CONFIG_EXT_PARTITION |
| #endif |