blob: b49890ef01a88fd4aa3bb8ab64b4ec4b0b9a84d1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"
#include "aom/internal/aom_codec_internal.h"
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x,
int subsampling_y) {
if (!((subsampling_x == 0 && subsampling_y == 0) ||
(subsampling_x == 1 && subsampling_y == 1))) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Only 4:4:4 and 4:2:0 are currently supported by CfL");
}
memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
cfl->subsampling_x = subsampling_x;
cfl->subsampling_y = subsampling_y;
}
// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
const struct macroblockd_plane *const pd_cb = &xd->plane[AOM_PLANE_U];
const struct macroblockd_plane *const pd_cr = &xd->plane[AOM_PLANE_V];
const uint8_t *const dst_cb = pd_cb->dst.buf;
const uint8_t *const dst_cr = pd_cr->dst.buf;
const int dst_cb_stride = pd_cb->dst.stride;
const int dst_cr_stride = pd_cr->dst.stride;
const int block_width = (plane_bsize != BLOCK_INVALID)
? block_size_wide[plane_bsize]
: tx_size_wide[tx_size];
const int block_height = (plane_bsize != BLOCK_INVALID)
? block_size_high[plane_bsize]
: tx_size_high[tx_size];
const int num_pel = block_width + block_height;
int sum_cb = 0;
int sum_cr = 0;
// Match behavior of build_intra_predictors (reconintra.c) at superblock
// boundaries:
//
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
// TODO(ltrudeau) replace this with DC_PRED assembly
if (xd->up_available && xd->mb_to_right_edge >= 0) {
for (int i = 0; i < block_width; i++) {
sum_cb += dst_cb[-dst_cb_stride + i];
sum_cr += dst_cr[-dst_cr_stride + i];
}
} else {
sum_cb = block_width * 127;
sum_cr = block_width * 127;
}
if (xd->left_available && xd->mb_to_bottom_edge >= 0) {
for (int i = 0; i < block_height; i++) {
sum_cb += dst_cb[i * dst_cb_stride - 1];
sum_cr += dst_cr[i * dst_cr_stride - 1];
}
} else {
sum_cb += block_height * 129;
sum_cr += block_height * 129;
}
xd->cfl->dc_pred[CFL_PRED_U] = (sum_cb + (num_pel >> 1)) / num_pel;
xd->cfl->dc_pred[CFL_PRED_V] = (sum_cr + (num_pel >> 1)) / num_pel;
}
// Predict the current transform block using CfL.
// it is assumed that dst points at the start of the transform block
void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, int dc_pred) {
const int tx_block_width = tx_size_wide[tx_size];
const int tx_block_height = tx_size_high[tx_size];
// TODO(ltrudeau) implement alpha
// Place holder for alpha
const double alpha = 0;
const double y_avg = cfl_load(cfl, dst, dst_stride, row, col, tx_size);
for (int j = 0; j < tx_block_height; j++) {
for (int i = 0; i < tx_block_width; i++) {
dst[i] = (uint8_t)(alpha * y_avg + dc_pred + 0.5);
}
dst += dst_stride;
}
}
void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
int col, TX_SIZE tx_size) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
const int tx_off_log2 = tx_size_wide_log2[0];
// Store the input into the CfL pixel buffer
uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];
// Check that we remain inside the pixel buffer.
assert(MAX_SB_SIZE * (row + tx_height - 1) + col + tx_width - 1 <
MAX_SB_SQUARE);
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
y_pix[i] = input[i];
}
y_pix += MAX_SB_SIZE;
input += input_stride;
}
// Store the surface of the pixel buffer that was written to, this way we
// can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
// frame boundary)
if (col == 0 && row == 0) {
cfl->y_width = tx_width;
cfl->y_height = tx_height;
} else {
cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width);
cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height);
}
}
// Load from the CfL pixel buffer into output
double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row,
int col, TX_SIZE tx_size) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int tx_off_log2 = tx_size_wide_log2[0];
const uint8_t *y_pix;
int diff_width = 0;
int diff_height = 0;
int pred_row_offset = 0;
int output_row_offset = 0;
int top_left, bot_left;
// TODO(ltrudeau) add support for 4:2:2
if (sub_y == 0 && sub_x == 0) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];
int uv_width = (col << tx_off_log2) + tx_width;
diff_width = uv_width - cfl->y_width;
int uv_height = (row << tx_off_log2) + tx_width;
diff_height = uv_height - cfl->y_height;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
// In 4:4:4, pixels match 1 to 1
output[output_row_offset + i] = y_pix[pred_row_offset + i];
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += output_stride;
}
} else if (sub_y == 1 && sub_x == 1) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (tx_off_log2 + sub_y)];
int uv_width = ((col << tx_off_log2) + tx_width) << sub_x;
diff_width = (uv_width - cfl->y_width) >> sub_x;
int uv_height = ((row << tx_off_log2) + tx_width) << sub_y;
diff_height = (uv_height - cfl->y_height) >> sub_y;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
top_left = (pred_row_offset + i) << sub_y;
bot_left = top_left + MAX_SB_SIZE;
// In 4:2:0, average pixels in 2x2 grid
output[output_row_offset + i] = OD_SHR_ROUND(
y_pix[top_left] + y_pix[top_left + 1] // Top row
+ y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row
,
2);
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += output_stride;
}
} else {
assert(0); // Unsupported chroma subsampling
}
// Due to frame boundary issues, it is possible that the total area of
// covered by Chroma exceeds that of Luma. When this happens, we write over
// the broken data by repeating the last columns and/or rows.
//
// Note that in order to manage the case where both rows and columns
// overrun,
// we apply rows first. This way, when the rows overrun the bottom of the
// frame, the columns will be copied over them.
if (diff_width > 0) {
int last_pixel;
output_row_offset = tx_width - diff_width;
for (int j = 0; j < tx_height; j++) {
last_pixel = output_row_offset - 1;
for (int i = 0; i < diff_width; i++) {
output[output_row_offset + i] = output[last_pixel];
}
output_row_offset += output_stride;
}
}
if (diff_height > 0) {
output_row_offset = diff_height * output_stride;
const int last_row_offset = output_row_offset - output_stride;
for (int j = 0; j < diff_height; j++) {
for (int i = 0; i < tx_width; i++) {
output[output_row_offset + i] = output[last_row_offset + i];
}
output_row_offset += output_stride;
}
}
int avg = 0;
output_row_offset = 0;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
avg += output[output_row_offset + i];
}
output_row_offset += output_stride;
}
return avg / (double)(tx_width * tx_height);
}