blob: 9c8958ed423bd6f34b4ef0d197771e08f723700f [file] [log] [blame]
/*
* Copyright (c) 2024, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include <string.h>
#include "config/av1_rtcd.h"
#include "av1/common/resize.h"
#include "aom_dsp/x86/synonyms.h"
#define ROW_OFFSET 5
#define CAST_HI(x) _mm256_castsi128_si256(x)
#define CAST_LOW(x) _mm256_castsi256_si128(x)
#define PROCESS_RESIZE_Y_WD16 \
const int idx1 = AOMMIN(height - 1, i + 5); \
const int idx2 = AOMMIN(height - 1, i + 6); \
l6 = l10; \
l7 = l11; \
l8 = _mm_loadu_si128((__m128i *)(data + idx1 * stride)); \
l9 = _mm_loadu_si128((__m128i *)(data + idx2 * stride)); \
\
/* g0... g15 | i0... i15 */ \
const __m256i s68 = \
_mm256_permute2x128_si256(CAST_HI(l6), CAST_HI(l8), 0x20); \
/* h0... h15 | j0... j15 */ \
const __m256i s79 = \
_mm256_permute2x128_si256(CAST_HI(l7), CAST_HI(l9), 0x20); \
\
/* g0h0... g7g7 | i0j0... i7j */ \
s[3] = _mm256_unpacklo_epi8(s68, s79); \
/* g8h8... g15g15 | i8j8... i15j15 */ \
s[8] = _mm256_unpackhi_epi8(s68, s79); \
\
__m256i res_out[2] = { 0 }; \
resize_convolve(s, coeffs_y, res_out); \
\
/* r00... r07 */ \
__m256i res_a_round_1 = _mm256_add_epi32(res_out[0], round_const_bits); \
/* r20... r27 */ \
__m256i res_a_round_2 = _mm256_add_epi32(res_out[1], round_const_bits); \
\
res_a_round_1 = _mm256_sra_epi32(res_a_round_1, round_shift_bits); \
res_a_round_2 = _mm256_sra_epi32(res_a_round_2, round_shift_bits); \
\
__m256i res_out_b[2] = { 0 }; \
resize_convolve(s + 5, coeffs_y, res_out_b); \
\
/* r08... r015 */ \
__m256i res_b_round_1 = _mm256_add_epi32(res_out_b[0], round_const_bits); \
/* r28... r215 */ \
__m256i res_b_round_2 = _mm256_add_epi32(res_out_b[1], round_const_bits); \
res_b_round_1 = _mm256_sra_epi32(res_b_round_1, round_shift_bits); \
res_b_round_2 = _mm256_sra_epi32(res_b_round_2, round_shift_bits); \
\
/* r00... r03 r20... r23 | r04... r07 r24... r27 */ \
__m256i res_8bit0 = _mm256_packus_epi32(res_a_round_1, res_a_round_2); \
/* r08... r012 r28... r212 | r013... r015 r213... r215 */ \
__m256i res_8bit1 = _mm256_packus_epi32(res_b_round_1, res_b_round_2); \
/* r00... r07 | r20... r27 */ \
res_8bit0 = _mm256_permute4x64_epi64(res_8bit0, 0xd8); \
/* r08... r015 | r28... r215 */ \
res_8bit1 = _mm256_permute4x64_epi64(res_8bit1, 0xd8); \
/* r00... r015 | r20... r215 */ \
res_8bit1 = _mm256_packus_epi16(res_8bit0, res_8bit1); \
res_8bit0 = _mm256_min_epu8(res_8bit1, clip_pixel); \
res_8bit0 = _mm256_max_epu8(res_8bit0, zero);
#define PROCESS_RESIZE_Y_WD8 \
const int idx1 = AOMMIN(height - 1, i + 5); \
const int idx2 = AOMMIN(height - 1, i + 6); \
l6 = l10; \
l7 = l11; \
l8 = _mm_loadl_epi64((__m128i *)(data + idx1 * stride)); \
l9 = _mm_loadl_epi64((__m128i *)(data + idx2 * stride)); \
\
/* g0h0... g7h7 */ \
s67 = _mm_unpacklo_epi8(l6, l7); \
/* i0j0...i7j7 */ \
__m128i s89 = _mm_unpacklo_epi8(l8, l9); \
\
/* g0h0...g7g7 | i0j0...i7j7 */ \
s[3] = _mm256_permute2x128_si256(CAST_HI(s67), CAST_HI(s89), 0x20); \
\
__m256i res_out[2] = { 0 }; \
resize_convolve(s, coeffs_y, res_out); \
\
/* r00... r07 */ \
__m256i res_a_round_1 = _mm256_add_epi32(res_out[0], round_const_bits); \
/* r20...r27 */ \
__m256i res_a_round_2 = _mm256_add_epi32(res_out[1], round_const_bits); \
res_a_round_1 = _mm256_sra_epi32(res_a_round_1, round_shift_bits); \
res_a_round_2 = _mm256_sra_epi32(res_a_round_2, round_shift_bits); \
\
/* r00...r03 r20...r23 | r04...r07 r24...r27 */ \
res_a_round_1 = _mm256_packus_epi32(res_a_round_1, res_a_round_2); \
/* r00...r07 | r20...r27 */ \
res_a_round_1 = _mm256_permute4x64_epi64(res_a_round_1, 0xd8); \
res_a_round_1 = _mm256_packus_epi16(res_a_round_1, res_a_round_1); \
res_a_round_1 = _mm256_min_epu8(res_a_round_1, clip_pixel); \
res_a_round_1 = _mm256_max_epu8(res_a_round_1, zero);
#define PROCESS_RESIZE_X_WD32 \
/* a0 a1 ..... a30 a31 */ \
__m256i row0 = _mm256_loadu_si256( \
(__m256i *)&input[i * in_stride + j - filter_offset]); \
/* b0 b1 ..... b30 b31 */ \
__m256i row1 = _mm256_loadu_si256( \
(__m256i *)&input[(i + 1) * in_stride + j - filter_offset]); \
/* a0 .... a15 || b0.... b15 */ \
__m256i r0 = _mm256_permute2x128_si256(row0, row1, 0x20); \
/* a16 .... a31 || b16 .... b31 */ \
__m256i r1 = _mm256_permute2x128_si256(row0, row1, 0x31); \
filter_offset = 3; \
\
/* Pad start pixels to the left, while processing the first pixels in the \
* row. */ \
if (j == 0) { \
/* a0 a0 a0 a0 .... a12 || b0 b0 b0 b0 .... b12 */ \
row0 = _mm256_shuffle_epi8(r0, wd32_start_pad_mask); \
/* a13 a14 a15 a16.....a28 || b13 b14 b15 b16.....b28 */ \
row1 = _mm256_alignr_epi8(r1, r0, 13); \
r0 = row0; \
r1 = row1; \
} \
const int is_last_cols32 = (j + 32 == filtered_length); \
/* Avoid loading extra pixels at frame boundary.*/ \
if (is_last_cols32) row_offset = ROW_OFFSET; \
/* a29 a30 a31 a32 a33 a34 a35 a36 0 0 ....*/ \
__m128i row0_0 = _mm_loadl_epi64( \
(__m128i *)&input[i * in_stride + 32 + j - filter_offset - row_offset]); \
/* b29 b30 b31 b32 b33 b34 b35 b36 0 0 .... */ \
__m128i row1_0 = \
_mm_loadl_epi64((__m128i *)&input[(i + 1) * in_stride + 32 + j - \
filter_offset - row_offset]); \
__m256i r2 = _mm256_permute2x128_si256( \
_mm256_castsi128_si256(row0_0), _mm256_castsi128_si256(row1_0), 0x20); \
\
/* Pad end pixels to the right, while processing the last pixels in the \
* row. */ \
if (is_last_cols32) { \
r2 = _mm256_shuffle_epi8(_mm256_srli_si256(r2, ROW_OFFSET), \
wd32_end_pad_mask); \
} \
\
/* Process even pixels of the first row */ \
/* a0 a0 a0 a0 a1 a2 .... a12 | b0 b0 b0 b0 b1 b2 .... b12 */ \
s0[0] = _mm256_alignr_epi8(r1, r0, 0); \
/* a0 a0 a1 a2 a3 a4 .... a14 | b0 b0 b1 b2 b3 b4 .... b14 */ \
s0[1] = _mm256_alignr_epi8(r1, r0, 2); \
/* a1 a2 a3 a4 a5 a6 .... a16 | b1 b2 b3 b4 b5 b6 .... b16 */ \
s0[2] = _mm256_alignr_epi8(r1, r0, 4); \
/* a3 a4 a5 a6 a7 a8 .... a18 | b3 b4 b5 b6 b7 b8 .... b18 */ \
s0[3] = _mm256_alignr_epi8(r1, r0, 6); \
\
/* Process even pixels of the second row */ \
/* a13 a14 a15 a16 ..... a28 | b13 b14 b15 b16 ..... b28 */ \
s1[0] = _mm256_alignr_epi8(r2, r1, 0); \
/* a15 a16 a17 a18 ..... a30 | b15 b16 b17 b18 ..... b30 */ \
s1[1] = _mm256_alignr_epi8(r2, r1, 2); \
/* a17 a18 a19 a20 ..... a32 | b17 b18 b19 b20 ..... b32 */ \
s1[2] = _mm256_alignr_epi8(r2, r1, 4); \
/* a19 a20 a21 a22 ..... a34 | b19 b20 b21 b22 ..... b34 */ \
s1[3] = _mm256_alignr_epi8(r2, r1, 6); \
\
/* The register res_out_0 stores the result of start-16 pixels corresponding \
* to the first and second rows whereas res_out_1 stores the end-16 \
* pixels. */ \
__m256i res_out_0[2], res_out_1[2]; \
res_out_1[0] = res_out_1[1] = zero; \
res_out_0[0] = res_out_0[1] = zero; \
resize_convolve(s0, coeffs_x, res_out_0); \
resize_convolve(s1, coeffs_x, res_out_1); \
\
/* Result of 32 pixels of row0 (a0 to a32) */ \
res_out_0[0] = _mm256_sra_epi32( \
_mm256_add_epi32(res_out_0[0], round_const_bits), round_shift_bits); \
res_out_1[0] = _mm256_sra_epi32( \
_mm256_add_epi32(res_out_1[0], round_const_bits), round_shift_bits); \
/* r00-r03 r08-r011 | r04-r07 r012-r015 */ \
__m256i res_out_r0 = _mm256_packus_epi32(res_out_0[0], res_out_1[0]); \
\
/* Result of 32 pixels of row1 (b0 to b32) */ \
res_out_0[1] = _mm256_sra_epi32( \
_mm256_add_epi32(res_out_0[1], round_const_bits), round_shift_bits); \
res_out_1[1] = _mm256_sra_epi32( \
_mm256_add_epi32(res_out_1[1], round_const_bits), round_shift_bits); \
/* r10-r13 r18-r111 | r14-r17 r112-r115 */ \
__m256i res_out_r1 = _mm256_packus_epi32(res_out_0[1], res_out_1[1]); \
\
/* Convert the result from 16bit to 8bit */ \
/* r00-r03 r08-r011 r10-r13 r18-r111 | r04-r07 r012-r015 r14-r17 r112-r115 \
*/ \
__m256i res_out_r01 = _mm256_packus_epi16(res_out_r0, res_out_r1); \
__m256i res_out_row01 = _mm256_min_epu8(res_out_r01, clip_pixel); \
res_out_row01 = _mm256_max_epu8(res_out_r01, zero); \
__m128i low_128 = CAST_LOW(res_out_row01); \
__m128i high_128 = _mm256_extracti128_si256(res_out_row01, 1); \
\
_mm_storeu_si128((__m128i *)&intbuf[i * dst_stride + j / 2], \
_mm_unpacklo_epi32(low_128, high_128)); \
_mm_storeu_si128((__m128i *)&intbuf[(i + 1) * dst_stride + j / 2], \
_mm_unpackhi_epi32(low_128, high_128));
static INLINE void resize_convolve(const __m256i *const s,
const __m256i *const coeffs,
__m256i *res_out) {
const __m256i res_0 = _mm256_maddubs_epi16(s[0], coeffs[0]);
const __m256i res_1 = _mm256_maddubs_epi16(s[1], coeffs[1]);
const __m256i res_2 = _mm256_maddubs_epi16(s[2], coeffs[2]);
const __m256i res_3 = _mm256_maddubs_epi16(s[3], coeffs[3]);
const __m256i dst_0 = _mm256_add_epi16(res_0, res_1);
const __m256i dst_1 = _mm256_add_epi16(res_2, res_3);
// The sum of convolve operation crosses signed 16bit. Hence, the addition
// should happen in 32bit.
const __m256i dst_00 = _mm256_cvtepi16_epi32(CAST_LOW(dst_0));
const __m256i dst_01 =
_mm256_cvtepi16_epi32(_mm256_extracti128_si256(dst_0, 1));
const __m256i dst_10 = _mm256_cvtepi16_epi32(CAST_LOW(dst_1));
const __m256i dst_11 =
_mm256_cvtepi16_epi32(_mm256_extracti128_si256(dst_1, 1));
res_out[0] = _mm256_add_epi32(dst_00, dst_10);
res_out[1] = _mm256_add_epi32(dst_01, dst_11);
}
static INLINE void prepare_filter_coeffs(const int16_t *filter,
__m256i *const coeffs /* [4] */) {
// f0 f1 f2 f3 x x x x
const __m128i sym_even_filter = _mm_loadl_epi64((__m128i *)filter);
// f0 f1 f2 f3 f0 f1 f2 f3
const __m128i tmp0 = _mm_shuffle_epi32(sym_even_filter, 0x44);
// f0 f1 f2 f3 f1 f0 f3 f2
const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, 0xb1);
const __m128i filter_8bit = _mm_packs_epi16(tmp1, tmp1);
// f0 f1 f0 f1 ..
coeffs[2] = _mm256_broadcastw_epi16(filter_8bit);
// f2 f3 f2 f3 ..
coeffs[3] = _mm256_broadcastw_epi16(_mm_bsrli_si128(filter_8bit, 2));
// f3 f2 f3 f2 ..
coeffs[0] = _mm256_broadcastw_epi16(_mm_bsrli_si128(filter_8bit, 6));
// f1 f0 f1 f0 ..
coeffs[1] = _mm256_broadcastw_epi16(_mm_bsrli_si128(filter_8bit, 4));
}
bool av1_resize_vert_dir_avx2(uint8_t *intbuf, uint8_t *output, int out_stride,
int height, int height2, int stride,
int start_col) {
assert(start_col <= stride);
// For the GM tool, the input layer height or width is assured to be an even
// number. Hence the function 'down2_symodd()' is not invoked and SIMD
// optimization of the same is not implemented.
// When the input height is less than 8 and even, the potential input
// heights are limited to 2, 4, or 6. These scenarios require seperate
// handling due to padding requirements. Invoking the C function here will
// eliminate the need for conditional statements within the subsequent SIMD
// code to manage these cases.
if (height & 1 || height < 8) {
return av1_resize_vert_dir_c(intbuf, output, out_stride, height, height2,
stride, start_col);
}
__m256i s[10], coeffs_y[4];
const int bits = FILTER_BITS;
const __m128i round_shift_bits = _mm_cvtsi32_si128(bits);
const __m256i round_const_bits = _mm256_set1_epi32((1 << bits) >> 1);
const uint8_t max_pixel = 255;
const __m256i clip_pixel = _mm256_set1_epi8((char)max_pixel);
const __m256i zero = _mm256_setzero_si256();
prepare_filter_coeffs(av1_down2_symeven_half_filter, coeffs_y);
const int num_col16 = stride / 16;
int remain_col = stride % 16;
// The core vertical SIMD processes 4 input rows simultaneously to generate
// output corresponding to 2 rows. To streamline the core loop and eliminate
// the need for conditional checks, the remaining rows (4 or 6) are processed
// separately.
const int remain_row = (height % 4 == 0) ? 4 : 6;
for (int j = start_col; j < stride - remain_col; j += 16) {
const uint8_t *data = &intbuf[j];
const __m128i l3 = _mm_loadu_si128((__m128i *)(data + 0 * stride));
// Padding top 3 rows with the last available row at the top.
const __m128i l0 = l3;
const __m128i l1 = l3;
const __m128i l2 = l3;
const __m128i l4 = _mm_loadu_si128((__m128i *)(data + 1 * stride));
__m128i l6, l7, l8, l9;
__m128i l5 = _mm_loadu_si128((__m128i *)(data + 2 * stride));
__m128i l10 = _mm_loadu_si128((__m128i *)(data + 3 * stride));
__m128i l11 = _mm_loadu_si128((__m128i *)(data + 4 * stride));
// a0...a15 | c0...c15
const __m256i s02 =
_mm256_permute2x128_si256(CAST_HI(l0), CAST_HI(l2), 0x20);
// b0...b15 | d0...d15
const __m256i s13 =
_mm256_permute2x128_si256(CAST_HI(l1), CAST_HI(l3), 0x20);
// c0...c15 | e0...e15
const __m256i s24 =
_mm256_permute2x128_si256(CAST_HI(l2), CAST_HI(l4), 0x20);
// d0...d15 | f0...f15
const __m256i s35 =
_mm256_permute2x128_si256(CAST_HI(l3), CAST_HI(l5), 0x20);
// e0...e15 | g0...g15
const __m256i s46 =
_mm256_permute2x128_si256(CAST_HI(l4), CAST_HI(l10), 0x20);
// f0...f15 | h0...h15
const __m256i s57 =
_mm256_permute2x128_si256(CAST_HI(l5), CAST_HI(l11), 0x20);
// a0b0...a7b7 | c0d0...c7d7
s[0] = _mm256_unpacklo_epi8(s02, s13);
// c0d0...c7d7 | e0f0...e7f7
s[1] = _mm256_unpacklo_epi8(s24, s35);
// e0f0...e7f7 | g0h0...g7h7
s[2] = _mm256_unpacklo_epi8(s46, s57);
// a8b8...a15b15 | c8d8...c15d15
s[5] = _mm256_unpackhi_epi8(s02, s13);
// c8d8...c15d15 | e8f8...e15f15
s[6] = _mm256_unpackhi_epi8(s24, s35);
// e8f8...e15f15 | g8h8...g15h15
s[7] = _mm256_unpackhi_epi8(s46, s57);
// height to be processed here
const int process_ht = height - remain_row;
for (int i = 0; i < process_ht; i += 4) {
PROCESS_RESIZE_Y_WD16
_mm_storeu_si128((__m128i *)&output[(i / 2) * out_stride + j],
CAST_LOW(res_8bit0));
_mm_storeu_si128(
(__m128i *)&output[(i / 2) * out_stride + j + out_stride],
_mm256_extracti128_si256(res_8bit0, 1));
// Load the required data for processing of next 4 input rows.
const int idx7 = AOMMIN(height - 1, i + 7);
const int idx8 = AOMMIN(height - 1, i + 8);
l10 = _mm_loadu_si128((__m128i *)(data + idx7 * stride));
l11 = _mm_loadu_si128((__m128i *)(data + idx8 * stride));
const __m256i s810 =
_mm256_permute2x128_si256(CAST_HI(l8), CAST_HI(l10), 0x20);
const __m256i s911 =
_mm256_permute2x128_si256(CAST_HI(l9), CAST_HI(l11), 0x20);
// i0j0... i7j7 | k0l0... k7l7
s[4] = _mm256_unpacklo_epi8(s810, s911);
// i8j8... i15j15 | k8l8... k15l15
s[9] = _mm256_unpackhi_epi8(s810, s911);
s[0] = s[2];
s[1] = s[3];
s[2] = s[4];
s[5] = s[7];
s[6] = s[8];
s[7] = s[9];
}
// Process the remaining last 4 or 6 rows here.
int i = process_ht;
while (i < height - 1) {
PROCESS_RESIZE_Y_WD16
_mm_storeu_si128((__m128i *)&output[(i / 2) * out_stride + j],
CAST_LOW(res_8bit0));
i += 2;
const int is_store_valid = (i < height - 1);
if (is_store_valid)
_mm_storeu_si128((__m128i *)&output[(i / 2) * out_stride + j],
_mm256_extracti128_si256(res_8bit0, 1));
i += 2;
// Check if there is any remaining height to process. If so, perform the
// necessary data loading for processing the next row.
if (i < height - 1) {
l10 = l11 = l9;
const __m256i s810 =
_mm256_permute2x128_si256(CAST_HI(l8), CAST_HI(l10), 0x20);
const __m256i s911 =
_mm256_permute2x128_si256(CAST_HI(l9), CAST_HI(l11), 0x20);
// i0j0... i7j7 | k0l0... k7l7
s[4] = _mm256_unpacklo_epi8(s810, s911);
// i8j8... i15j15 | k8l8... k15l15
s[9] = _mm256_unpackhi_epi8(s810, s911);
s[0] = s[2];
s[1] = s[3];
s[2] = s[4];
s[5] = s[7];
s[6] = s[8];
s[7] = s[9];
}
}
}
if (remain_col > 7) {
const int processed_wd = num_col16 * 16;
remain_col = stride % 8;
const uint8_t *data = &intbuf[processed_wd];
const __m128i l3 = _mm_loadl_epi64((__m128i *)(data + 0 * stride));
// Padding top 3 rows with available top-most row.
const __m128i l0 = l3;
const __m128i l1 = l3;
const __m128i l2 = l3;
const __m128i l4 = _mm_loadl_epi64((__m128i *)(data + 1 * stride));
__m128i l6, l7, l8, l9;
__m128i l5 = _mm_loadl_epi64((__m128i *)(data + 2 * stride));
__m128i l10 = _mm_loadl_epi64((__m128i *)(data + 3 * stride));
__m128i l11 = _mm_loadl_epi64((__m128i *)(data + 4 * stride));
// a0b0...a7b7
const __m128i s01 = _mm_unpacklo_epi8(l0, l1);
// c0d0...c7d7
const __m128i s23 = _mm_unpacklo_epi8(l2, l3);
// e0f0...e7f7
const __m128i s45 = _mm_unpacklo_epi8(l4, l5);
// g0h0...g7h7
__m128i s67 = _mm_unpacklo_epi8(l10, l11);
// a0b0...a7b7 | c0d0...c7d7
s[0] = _mm256_permute2x128_si256(CAST_HI(s01), CAST_HI(s23), 0x20);
// c0d0...c7d7 | e0f0...e7f7
s[1] = _mm256_permute2x128_si256(CAST_HI(s23), CAST_HI(s45), 0x20);
// e0f0...e7f7 | g0h0...g7h7
s[2] = _mm256_permute2x128_si256(CAST_HI(s45), CAST_HI(s67), 0x20);
// height to be processed here
const int process_ht = height - remain_row;
for (int i = 0; i < process_ht; i += 4) {
PROCESS_RESIZE_Y_WD8
_mm_storel_epi64((__m128i *)&output[(i / 2) * out_stride + processed_wd],
CAST_LOW(res_a_round_1));
_mm_storel_epi64(
(__m128i *)&output[(i / 2) * out_stride + processed_wd + out_stride],
_mm256_extracti128_si256(res_a_round_1, 1));
const int idx7 = AOMMIN(height - 1, i + 7);
const int idx8 = AOMMIN(height - 1, i + 8);
l10 = _mm_loadl_epi64((__m128i *)(data + idx7 * stride));
l11 = _mm_loadl_epi64((__m128i *)(data + idx8 * stride));
// k0l0... k7l7
const __m128i s10s11 = _mm_unpacklo_epi8(l10, l11);
// i0j0... i7j7 | k0l0... k7l7
s[4] = _mm256_permute2x128_si256(CAST_HI(s89), CAST_HI(s10s11), 0x20);
s[0] = s[2];
s[1] = s[3];
s[2] = s[4];
}
// Process the remaining last 4 or 6 rows here.
int i = process_ht;
while (i < height - 1) {
PROCESS_RESIZE_Y_WD8
_mm_storel_epi64((__m128i *)&output[(i / 2) * out_stride + processed_wd],
CAST_LOW(res_a_round_1));
i += 2;
const int is_store_valid = (i < height - 1);
if (is_store_valid)
_mm_storel_epi64(
(__m128i *)&output[(i / 2) * out_stride + processed_wd],
_mm256_extracti128_si256(res_a_round_1, 1));
i += 2;
// Check rows are still remaining for processing. If yes do the required
// load of data for the next iteration.
if (i < height - 1) {
l10 = l11 = l9;
// k0l0... k7l7
const __m128i s10s11 = _mm_unpacklo_epi8(l10, l11);
// i0j0... i7j7 | k0l0... k7l7
s[4] = _mm256_permute2x128_si256(CAST_HI(s89), CAST_HI(s10s11), 0x20);
s[0] = s[2];
s[1] = s[3];
s[2] = s[4];
}
}
}
if (remain_col)
return av1_resize_vert_dir_c(intbuf, output, out_stride, height, height2,
stride, stride - remain_col);
return true;
}
// Masks used for width 32 and 8 pixels, with left and right padding
// requirements
static const uint8_t wd32_left_padding_mask[32] = { 0, 0, 0, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12,
0, 0, 0, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12 };
static const uint8_t wd32_right_padding_mask[32] = { 0, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
0, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2 };
static const uint8_t wd8_right_padding_mask[32] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10
};
void av1_resize_horz_dir_avx2(const uint8_t *const input, int in_stride,
uint8_t *intbuf, int height, int filtered_length,
int width2) {
assert(height % 2 == 0);
// Invoke SSE2 for width less than 32.
if (filtered_length < 32) {
av1_resize_horz_dir_sse2(input, in_stride, intbuf, height, filtered_length,
width2);
return;
}
const int filt_length = sizeof(av1_down2_symeven_half_filter);
assert(filt_length % 2 == 0);
(void)filt_length;
__m256i s0[4], s1[4], coeffs_x[4];
const int bits = FILTER_BITS;
const int dst_stride = width2;
const __m128i round_shift_bits = _mm_cvtsi32_si128(bits);
const __m256i round_const_bits = _mm256_set1_epi32((1 << bits) >> 1);
const uint8_t max_pixel = 255;
const __m256i clip_pixel = _mm256_set1_epi8((char)max_pixel);
const __m256i zero = _mm256_setzero_si256();
const __m256i wd32_start_pad_mask =
_mm256_loadu_si256((__m256i *)wd32_left_padding_mask);
const __m256i wd32_end_pad_mask =
_mm256_loadu_si256((__m256i *)wd32_right_padding_mask);
const __m256i wd8_end_pad_mask =
_mm256_loadu_si256((__m256i *)wd8_right_padding_mask);
prepare_filter_coeffs(av1_down2_symeven_half_filter, coeffs_x);
// The core horizontal SIMD processes 32 input pixels of 2 rows simultaneously
// to generate output corresponding to 2 rows. To streamline the core loop and
// eliminate the need for conditional checks, the remaining columns (16 or 8)
// are processed separately.
if (filtered_length % 32 == 0) {
for (int i = 0; i < height; i += 2) {
int filter_offset = 0;
int row_offset = 0;
for (int j = 0; j < filtered_length; j += 32) {
PROCESS_RESIZE_X_WD32
}
}
} else {
for (int i = 0; i < height; i += 2) {
int filter_offset = 0;
int remain_col = filtered_length;
int row_offset = 0;
// To avoid pixel over-read at frame boundary, processing of 32 pixels
// is done using the core loop only if sufficient number of pixels
// required for the load are present. The remaining pixels are processed
// separately.
for (int j = 0; j <= filtered_length - 32; j += 32) {
if (remain_col == 34 || remain_col == 36) {
break;
}
PROCESS_RESIZE_X_WD32
remain_col -= 32;
}
int wd_processed = filtered_length - remain_col;
// To avoid pixel over-read at frame boundary, processing of 16 pixels
// is done only if sufficient number of pixels required for the
// load are present. The remaining pixels are processed separately.
if (remain_col > 15 && remain_col != 18 && remain_col != 20) {
remain_col = filtered_length - wd_processed - 16;
const int in_idx = i * in_stride + wd_processed;
const int out_idx = (i * dst_stride) + wd_processed / 2;
// a0 a1 --- a15
__m128i row0 =
_mm_loadu_si128((__m128i *)&input[in_idx - filter_offset]);
// b0 b1 --- b15
__m128i row1 = _mm_loadu_si128(
(__m128i *)&input[in_idx + in_stride - filter_offset]);
// a0 a1 --- a15 || b0 b1 --- b15
__m256i r0 =
_mm256_permute2x128_si256(CAST_HI(row0), CAST_HI(row1), 0x20);
if (filter_offset == 0) {
r0 = _mm256_shuffle_epi8(r0, wd32_start_pad_mask);
}
filter_offset = 3;
const int is_last_cols16 = wd_processed + 16 == filtered_length;
if (is_last_cols16) row_offset = ROW_OFFSET;
// a16 a17 --- a23
row0 = _mm_loadl_epi64(
(__m128i *)&input[in_idx + 16 - row_offset - filter_offset]);
// b16 b17 --- b23
row1 = _mm_loadl_epi64((__m128i *)&input[in_idx + 16 + in_stride -
row_offset - filter_offset]);
// a16-a23 x x x x| b16-b23 x x x x
__m256i r1 =
_mm256_permute2x128_si256(CAST_HI(row0), CAST_HI(row1), 0x20);
// Pad end pixels to the right, while processing the last pixels in the
// row.
if (is_last_cols16) {
r1 = _mm256_shuffle_epi8(_mm256_srli_si256(r1, ROW_OFFSET),
wd32_end_pad_mask);
}
// a0 a1 --- a15 || b0 b1 --- b15
s0[0] = r0;
// a2 a3 --- a17 || b2 b3 --- b17
s0[1] = _mm256_alignr_epi8(r1, r0, 2);
// a4 a5 --- a19 || b4 b5 --- b19
s0[2] = _mm256_alignr_epi8(r1, r0, 4);
// a6 a7 --- a21 || b6 b7 --- b21
s0[3] = _mm256_alignr_epi8(r1, r0, 6);
// result for 16 pixels (a0 to a15) of row0 and row1
__m256i res_out_0[2];
res_out_0[0] = res_out_0[1] = zero;
resize_convolve(s0, coeffs_x, res_out_0);
// r00-r07
res_out_0[0] = _mm256_sra_epi32(
_mm256_add_epi32(res_out_0[0], round_const_bits), round_shift_bits);
// r10-r17
res_out_0[1] = _mm256_sra_epi32(
_mm256_add_epi32(res_out_0[1], round_const_bits), round_shift_bits);
// r00-r03 r10-r13 r04-r07 r14-r17
__m256i res_out_row01 = _mm256_packus_epi32(res_out_0[0], res_out_0[1]);
// r00-r03 r10-r13 r00-r03 r10-r13 | r04-r07 r14-r17 r04-r07 r14-r17
res_out_row01 = _mm256_packus_epi16(res_out_row01, res_out_row01);
res_out_row01 = _mm256_min_epu8(res_out_row01, clip_pixel);
res_out_row01 = _mm256_max_epu8(res_out_row01, zero);
// r00-r03 r10-r13 r04-r07 r14-r17
__m128i low_result =
CAST_LOW(_mm256_permute4x64_epi64(res_out_row01, 0xd8));
// r00-r03 r04-r07 r10-r13 r14-r17
low_result = _mm_shuffle_epi32(low_result, 0xd8);
_mm_storel_epi64((__m128i *)&intbuf[out_idx], low_result);
_mm_storel_epi64((__m128i *)&intbuf[out_idx + dst_stride],
_mm_unpackhi_epi64(low_result, low_result));
}
// To avoid pixel over-read at frame boundary, processing of 8 pixels
// is done only if sufficient number of pixels required for the
// load are present. The remaining pixels are processed by C function.
wd_processed = filtered_length - remain_col;
if (remain_col > 7 && remain_col != 10 && remain_col != 12) {
remain_col = filtered_length - wd_processed - 8;
const int in_idx = i * in_stride + wd_processed - filter_offset;
const int out_idx = (i * dst_stride) + wd_processed / 2;
const int is_last_cols_8 = wd_processed + 8 == filtered_length;
if (is_last_cols_8) row_offset = ROW_OFFSET;
// a0 a1 --- a15
__m128i row0 = _mm_loadu_si128((__m128i *)&input[in_idx - row_offset]);
// b0 b1 --- b15
__m128i row1 =
_mm_loadu_si128((__m128i *)&input[in_idx + in_stride - row_offset]);
// a0 a1 --- a15 || b0 b1 --- b15
__m256i r0 =
_mm256_permute2x128_si256(CAST_HI(row0), CAST_HI(row1), 0x20);
// Pad end pixels to the right, while processing the last pixels in the
// row.
if (is_last_cols_8)
r0 = _mm256_shuffle_epi8(_mm256_srli_si256(r0, ROW_OFFSET),
wd8_end_pad_mask);
// a0 a1 a2 a3 a4 a5 a6 a7 | b0 b1 b2 b3 b4 b5 b6 b7
s0[0] = r0;
// a2 a3 a4 a5 a6 a7 a8 a9 | b2 b3 b4 b5 b6 b7 b8 b9
s0[1] = _mm256_bsrli_epi128(r0, 2);
// a4 a5 a6 a7 a8 a9 a10 a10 | b4 b5 b6 b7 b8 b9 b10 b10
s0[2] = _mm256_bsrli_epi128(r0, 4);
// a6 a7 a8 a9 a10 a10 a10 a10 | b6 b7 b8 b9 b10 b10 b10 b10
s0[3] = _mm256_bsrli_epi128(r0, 6);
__m256i res_out_0[2];
res_out_0[0] = res_out_0[1] = zero;
resize_convolve(s0, coeffs_x, res_out_0);
// r00 - r03 | r10 - r13
__m256i res_out =
_mm256_permute2x128_si256(res_out_0[0], res_out_0[1], 0x20);
// r00 - r03 | r10 - r13
res_out = _mm256_sra_epi32(_mm256_add_epi32(res_out, round_const_bits),
round_shift_bits);
// r00-r03 r00-r03 r10-r13 r10-r13
__m256i res_out_row01 = _mm256_packus_epi32(res_out, res_out);
// r00-r03 r00-r03 r00-r03 r00-r03 r10-r13 r10-r13 r10-r13 r10-r13
res_out_row01 = _mm256_packus_epi16(res_out_row01, res_out_row01);
res_out_row01 = _mm256_min_epu8(res_out_row01, clip_pixel);
res_out_row01 = _mm256_max_epu8(res_out_row01, zero);
xx_storel_32(intbuf + out_idx, CAST_LOW(res_out_row01));
xx_storel_32(intbuf + out_idx + dst_stride,
_mm256_extracti128_si256(res_out_row01, 1));
}
wd_processed = filtered_length - remain_col;
if (remain_col) {
const int in_idx = (in_stride * i);
const int out_idx = (wd_processed / 2) + width2 * i;
down2_symeven(input + in_idx, filtered_length, intbuf + out_idx,
wd_processed);
down2_symeven(input + in_idx + in_stride, filtered_length,
intbuf + out_idx + width2, wd_processed);
}
}
}
}