blob: 3d07a0f16387228ec55372ceed6340038e2719cf [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include <string.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
#if AOM_ARCH_AARCH64 && \
(defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8))
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_tran_concat_tbl[32]) = {
0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27,
4, 12, 20, 28, 5, 13, 21, 29, 6, 14, 22, 30, 7, 15, 23, 31
};
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_merge_block_tbl[48]) = {
/* Shift left and insert new last column in transposed 4x4 block. */
1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28,
/* Shift left and insert two new columns in transposed 4x4 block. */
2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29,
/* Shift left and insert three new columns in transposed 4x4 block. */
3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30
};
#if defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE int16x4_t convolve8_4_usdot(uint8x16_t samples,
const int8x8_t filter,
const uint8x16x2_t permute_tbl) {
uint8x16_t permuted_samples[2];
int32x4_t sum;
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* Accumulate dot product into 'correction' to account for range clamp. */
sum = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filter, 0);
sum = vusdotq_lane_s32(sum, permuted_samples[1], filter, 1);
/* Further narrowing and packing is performed by the caller. */
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_usdot(uint8x16_t samples,
const int8x8_t filter,
const uint8x16x3_t permute_tbl) {
uint8x16_t permuted_samples[3];
int32x4_t sum0, sum1;
int16x8_t sum;
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
/* First 4 output values. */
sum0 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filter, 0);
sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filter, 1);
/* Second 4 output values. */
sum1 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filter, 0);
sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filter, 1);
/* Narrow and re-pack. */
sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x));
uint8x16_t s0, s1, s2, s3;
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)x_step_q4;
(void)filter_y;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1);
if (w == 4) {
const uint8x16x2_t perm_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
do {
int16x4_t t0, t1, t2, t3;
uint8x8_t d01, d23;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_usdot(s0, filter, perm_tbl);
t1 = convolve8_4_usdot(s1, filter, perm_tbl);
t2 = convolve8_4_usdot(s2, filter, perm_tbl);
t3 = convolve8_4_usdot(s3, filter, perm_tbl);
d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
const uint8x16x3_t perm_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
const uint8_t *s;
uint8_t *d;
int width;
uint8x8_t d0, d1, d2, d3;
do {
width = w;
s = src;
d = dst;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve8_8_usdot(s0, filter, perm_tbl);
d1 = convolve8_8_usdot(s1, filter, perm_tbl);
d2 = convolve8_8_usdot(s2, filter, perm_tbl);
d3 = convolve8_8_usdot(s3, filter, perm_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b,
const uint8x16_t permute_tbl) {
/* Transpose 8-bit elements and concatenate result rows as follows:
* a0: 00, 01, 02, 03, XX, XX, XX, XX
* a1: 10, 11, 12, 13, XX, XX, XX, XX
* a2: 20, 21, 22, 23, XX, XX, XX, XX
* a3: 30, 31, 32, 33, XX, XX, XX, XX
*
* b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
*
* The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it
* as an argument is preferable to loading it directly from memory as this
* inline helper is called many times from the same parent function.
*/
uint8x16x2_t samples = { { vcombine_u8(a0, a1), vcombine_u8(a2, a3) } };
*b = vqtbl2q_u8(samples, permute_tbl);
}
static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b0, uint8x16_t *b1,
const uint8x16x2_t permute_tbl) {
/* Transpose 8-bit elements and concatenate result rows as follows:
* a0: 00, 01, 02, 03, 04, 05, 06, 07
* a1: 10, 11, 12, 13, 14, 15, 16, 17
* a2: 20, 21, 22, 23, 24, 25, 26, 27
* a3: 30, 31, 32, 33, 34, 35, 36, 37
*
* b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
* b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
*
* The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it
* as an argument is preferable to loading it directly from memory as this
* inline helper is called many times from the same parent function.
*/
uint8x16x2_t samples = { { vcombine_u8(a0, a1), vcombine_u8(a2, a3) } };
*b0 = vqtbl2q_u8(samples, permute_tbl.val[0]);
*b1 = vqtbl2q_u8(samples, permute_tbl.val[1]);
}
static INLINE int16x4_t convolve8_4_usdot_partial(const uint8x16_t samples_lo,
const uint8x16_t samples_hi,
const int8x8_t filter) {
/* Sample permutation is performed by the caller. */
int32x4_t sum;
sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filter, 0);
sum = vusdotq_lane_s32(sum, samples_hi, filter, 1);
/* Further narrowing and packing is performed by the caller. */
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_usdot_partial(const uint8x16_t samples0_lo,
const uint8x16_t samples0_hi,
const uint8x16_t samples1_lo,
const uint8x16_t samples1_hi,
const int8x8_t filter) {
/* Sample permutation is performed by the caller. */
int32x4_t sum0, sum1;
int16x8_t sum;
/* First 4 output values. */
sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filter, 0);
sum0 = vusdotq_lane_s32(sum0, samples0_hi, filter, 1);
/* Second 4 output values. */
sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filter, 0);
sum1 = vusdotq_lane_s32(sum1, samples1_hi, filter, 1);
/* Narrow and re-pack. */
sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y));
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl);
uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint8x16x2_t samples_LUT;
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)filter_x;
(void)x_step_q4;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1) * src_stride;
if (w == 4) {
const uint8x16_t tran_concat_tbl = vld1q_u8(dot_prod_tran_concat_tbl);
uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s78910;
int16x4_t d0, d1, d2, d3;
uint8x8_t d01, d23;
load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src += 7 * src_stride;
s7 = vdup_n_u8(0);
s8 = vdup_n_u8(0);
s9 = vdup_n_u8(0);
/* This operation combines a conventional transpose and the sample permute
* (see horizontal case) required before computing the dot product.
*/
transpose_concat_4x4(s0, s1, s2, s3, &s0123, tran_concat_tbl);
transpose_concat_4x4(s1, s2, s3, s4, &s1234, tran_concat_tbl);
transpose_concat_4x4(s2, s3, s4, s5, &s2345, tran_concat_tbl);
transpose_concat_4x4(s3, s4, s5, s6, &s3456, tran_concat_tbl);
transpose_concat_4x4(s4, s5, s6, s7, &s4567, tran_concat_tbl);
transpose_concat_4x4(s5, s6, s7, s8, &s5678, tran_concat_tbl);
transpose_concat_4x4(s6, s7, s8, s9, &s6789, tran_concat_tbl);
do {
load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10);
transpose_concat_4x4(s7, s8, s9, s10, &s78910, tran_concat_tbl);
/* Merge new data into block from previous iteration. */
samples_LUT.val[0] = s3456;
samples_LUT.val[1] = s78910;
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
d0 = convolve8_4_usdot_partial(s0123, s4567, filter);
d1 = convolve8_4_usdot_partial(s1234, s5678, filter);
d2 = convolve8_4_usdot_partial(s2345, s6789, filter);
d3 = convolve8_4_usdot_partial(s3456, s78910, filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
/* Prepare block for next iteration - re-using as much as possible. */
/* Shuffle everything up four rows. */
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s78910;
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t tran_concat_tbl = vld1q_u8_x2(dot_prod_tran_concat_tbl);
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo,
s6789_hi, s78910_lo, s78910_hi;
uint8x8_t d0, d1, d2, d3;
const uint8_t *s;
uint8_t *d;
int height;
do {
height = h;
s = src;
d = dst;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
s7 = vdup_n_u8(0);
s8 = vdup_n_u8(0);
s9 = vdup_n_u8(0);
/* This operation combines a conventional transpose and the sample permute
* (see horizontal case) required before computing the dot product.
*/
transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi,
tran_concat_tbl);
transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi,
tran_concat_tbl);
transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi,
tran_concat_tbl);
transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi,
tran_concat_tbl);
transpose_concat_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi,
tran_concat_tbl);
transpose_concat_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi,
tran_concat_tbl);
transpose_concat_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi,
tran_concat_tbl);
do {
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi,
tran_concat_tbl);
/* Merge new data into block from previous iteration. */
samples_LUT.val[0] = s3456_lo;
samples_LUT.val[1] = s78910_lo;
s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s3456_hi;
samples_LUT.val[1] = s78910_hi;
s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
d0 = convolve8_8_usdot_partial(s0123_lo, s4567_lo, s0123_hi, s4567_hi,
filter);
d1 = convolve8_8_usdot_partial(s1234_lo, s5678_lo, s1234_hi, s5678_hi,
filter);
d2 = convolve8_8_usdot_partial(s2345_lo, s6789_lo, s2345_hi, s6789_hi,
filter);
d3 = convolve8_8_usdot_partial(s3456_lo, s78910_lo, s3456_hi, s78910_hi,
filter);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
/* Prepare block for next iteration - re-using as much as possible. */
/* Shuffle everything up four rows. */
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s78910_lo;
s3456_hi = s78910_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
}
#else // !defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE int16x4_t convolve8_4_sdot(uint8x16_t samples,
const int8x8_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x2_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[2];
int32x4_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* Accumulate dot product into 'correction' to account for range clamp. */
sum = vdotq_lane_s32(correction, permuted_samples[0], filter, 0);
sum = vdotq_lane_s32(sum, permuted_samples[1], filter, 1);
/* Further narrowing and packing is performed by the caller. */
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_sdot(uint8x16_t samples,
const int8x8_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum0, sum1;
int16x8_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum0 = vdotq_lane_s32(correction, permuted_samples[0], filter, 0);
sum0 = vdotq_lane_s32(sum0, permuted_samples[1], filter, 1);
/* Second 4 output values. */
sum1 = vdotq_lane_s32(correction, permuted_samples[1], filter, 0);
sum1 = vdotq_lane_s32(sum1, permuted_samples[2], filter, 1);
/* Narrow and re-pack. */
sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x));
const int16x8_t correct_tmp = vmulq_n_s16(vld1q_s16(filter_x), 128);
const int32x4_t correction = vdupq_n_s32((int32_t)vaddvq_s16(correct_tmp));
const uint8x16_t range_limit = vdupq_n_u8(128);
uint8x16_t s0, s1, s2, s3;
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)x_step_q4;
(void)filter_y;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1);
if (w == 4) {
const uint8x16x2_t perm_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
do {
int16x4_t t0, t1, t2, t3;
uint8x8_t d01, d23;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_sdot(s0, filter, correction, range_limit, perm_tbl);
t1 = convolve8_4_sdot(s1, filter, correction, range_limit, perm_tbl);
t2 = convolve8_4_sdot(s2, filter, correction, range_limit, perm_tbl);
t3 = convolve8_4_sdot(s3, filter, correction, range_limit, perm_tbl);
d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
const uint8x16x3_t perm_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
const uint8_t *s;
uint8_t *d;
int width;
uint8x8_t d0, d1, d2, d3;
do {
width = w;
s = src;
d = dst;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve8_8_sdot(s0, filter, correction, range_limit, perm_tbl);
d1 = convolve8_8_sdot(s1, filter, correction, range_limit, perm_tbl);
d2 = convolve8_8_sdot(s2, filter, correction, range_limit, perm_tbl);
d3 = convolve8_8_sdot(s3, filter, correction, range_limit, perm_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
static INLINE void transpose_concat_4x4(int8x8_t a0, int8x8_t a1, int8x8_t a2,
int8x8_t a3, int8x16_t *b,
const uint8x16_t permute_tbl) {
/* Transpose 8-bit elements and concatenate result rows as follows:
* a0: 00, 01, 02, 03, XX, XX, XX, XX
* a1: 10, 11, 12, 13, XX, XX, XX, XX
* a2: 20, 21, 22, 23, XX, XX, XX, XX
* a3: 30, 31, 32, 33, XX, XX, XX, XX
*
* b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
*
* The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it
* as an argument is preferable to loading it directly from memory as this
* inline helper is called many times from the same parent function.
*/
int8x16x2_t samples = { { vcombine_s8(a0, a1), vcombine_s8(a2, a3) } };
*b = vqtbl2q_s8(samples, permute_tbl);
}
static INLINE void transpose_concat_8x4(int8x8_t a0, int8x8_t a1, int8x8_t a2,
int8x8_t a3, int8x16_t *b0,
int8x16_t *b1,
const uint8x16x2_t permute_tbl) {
/* Transpose 8-bit elements and concatenate result rows as follows:
* a0: 00, 01, 02, 03, 04, 05, 06, 07
* a1: 10, 11, 12, 13, 14, 15, 16, 17
* a2: 20, 21, 22, 23, 24, 25, 26, 27
* a3: 30, 31, 32, 33, 34, 35, 36, 37
*
* b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
* b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
*
* The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it
* as an argument is preferable to loading it directly from memory as this
* inline helper is called many times from the same parent function.
*/
int8x16x2_t samples = { { vcombine_s8(a0, a1), vcombine_s8(a2, a3) } };
*b0 = vqtbl2q_s8(samples, permute_tbl.val[0]);
*b1 = vqtbl2q_s8(samples, permute_tbl.val[1]);
}
static INLINE int16x4_t convolve8_4_sdot_partial(const int8x16_t samples_lo,
const int8x16_t samples_hi,
const int32x4_t correction,
const int8x8_t filter) {
/* Sample range-clamping and permutation are performed by the caller. */
int32x4_t sum;
/* Accumulate dot product into 'correction' to account for range clamp. */
sum = vdotq_lane_s32(correction, samples_lo, filter, 0);
sum = vdotq_lane_s32(sum, samples_hi, filter, 1);
/* Further narrowing and packing is performed by the caller. */
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_sdot_partial(const int8x16_t samples0_lo,
const int8x16_t samples0_hi,
const int8x16_t samples1_lo,
const int8x16_t samples1_hi,
const int32x4_t correction,
const int8x8_t filter) {
/* Sample range-clamping and permutation are performed by the caller. */
int32x4_t sum0, sum1;
int16x8_t sum;
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum0 = vdotq_lane_s32(correction, samples0_lo, filter, 0);
sum0 = vdotq_lane_s32(sum0, samples0_hi, filter, 1);
/* Second 4 output values. */
sum1 = vdotq_lane_s32(correction, samples1_lo, filter, 0);
sum1 = vdotq_lane_s32(sum1, samples1_hi, filter, 1);
/* Narrow and re-pack. */
sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y));
const int16x8_t correct_tmp = vmulq_n_s16(vld1q_s16(filter_y), 128);
const int32x4_t correction = vdupq_n_s32((int32_t)vaddvq_s16(correct_tmp));
const uint8x8_t range_limit = vdup_n_u8(128);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl);
uint8x8_t t0, t1, t2, t3, t4, t5, t6;
int8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
int8x16x2_t samples_LUT;
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)filter_x;
(void)x_step_q4;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1) * src_stride;
if (w == 4) {
const uint8x16_t tran_concat_tbl = vld1q_u8(dot_prod_tran_concat_tbl);
int8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s78910;
int16x4_t d0, d1, d2, d3;
uint8x8_t d01, d23;
load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6);
src += 7 * src_stride;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
s0 = vreinterpret_s8_u8(vsub_u8(t0, range_limit));
s1 = vreinterpret_s8_u8(vsub_u8(t1, range_limit));
s2 = vreinterpret_s8_u8(vsub_u8(t2, range_limit));
s3 = vreinterpret_s8_u8(vsub_u8(t3, range_limit));
s4 = vreinterpret_s8_u8(vsub_u8(t4, range_limit));
s5 = vreinterpret_s8_u8(vsub_u8(t5, range_limit));
s6 = vreinterpret_s8_u8(vsub_u8(t6, range_limit));
s7 = vdup_n_s8(0);
s8 = vdup_n_s8(0);
s9 = vdup_n_s8(0);
/* This operation combines a conventional transpose and the sample permute
* (see horizontal case) required before computing the dot product.
*/
transpose_concat_4x4(s0, s1, s2, s3, &s0123, tran_concat_tbl);
transpose_concat_4x4(s1, s2, s3, s4, &s1234, tran_concat_tbl);
transpose_concat_4x4(s2, s3, s4, s5, &s2345, tran_concat_tbl);
transpose_concat_4x4(s3, s4, s5, s6, &s3456, tran_concat_tbl);
transpose_concat_4x4(s4, s5, s6, s7, &s4567, tran_concat_tbl);
transpose_concat_4x4(s5, s6, s7, s8, &s5678, tran_concat_tbl);
transpose_concat_4x4(s6, s7, s8, s9, &s6789, tran_concat_tbl);
do {
uint8x8_t t7, t8, t9, t10;
load_u8_8x4(src, src_stride, &t7, &t8, &t9, &t10);
s7 = vreinterpret_s8_u8(vsub_u8(t7, range_limit));
s8 = vreinterpret_s8_u8(vsub_u8(t8, range_limit));
s9 = vreinterpret_s8_u8(vsub_u8(t9, range_limit));
s10 = vreinterpret_s8_u8(vsub_u8(t10, range_limit));
transpose_concat_4x4(s7, s8, s9, s10, &s78910, tran_concat_tbl);
/* Merge new data into block from previous iteration. */
samples_LUT.val[0] = s3456;
samples_LUT.val[1] = s78910;
s4567 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]);
d0 = convolve8_4_sdot_partial(s0123, s4567, correction, filter);
d1 = convolve8_4_sdot_partial(s1234, s5678, correction, filter);
d2 = convolve8_4_sdot_partial(s2345, s6789, correction, filter);
d3 = convolve8_4_sdot_partial(s3456, s78910, correction, filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
/* Prepare block for next iteration - re-using as much as possible. */
/* Shuffle everything up four rows. */
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s78910;
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t tran_concat_tbl = vld1q_u8_x2(dot_prod_tran_concat_tbl);
int8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo,
s6789_hi, s78910_lo, s78910_hi;
uint8x8_t d0, d1, d2, d3;
const uint8_t *s;
uint8_t *d;
int height;
do {
height = h;
s = src;
d = dst;
load_u8_8x7(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6);
s += 7 * src_stride;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
s0 = vreinterpret_s8_u8(vsub_u8(t0, range_limit));
s1 = vreinterpret_s8_u8(vsub_u8(t1, range_limit));
s2 = vreinterpret_s8_u8(vsub_u8(t2, range_limit));
s3 = vreinterpret_s8_u8(vsub_u8(t3, range_limit));
s4 = vreinterpret_s8_u8(vsub_u8(t4, range_limit));
s5 = vreinterpret_s8_u8(vsub_u8(t5, range_limit));
s6 = vreinterpret_s8_u8(vsub_u8(t6, range_limit));
s7 = vdup_n_s8(0);
s8 = vdup_n_s8(0);
s9 = vdup_n_s8(0);
/* This operation combines a conventional transpose and the sample permute
* (see horizontal case) required before computing the dot product.
*/
transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi,
tran_concat_tbl);
transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi,
tran_concat_tbl);
transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi,
tran_concat_tbl);
transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi,
tran_concat_tbl);
transpose_concat_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi,
tran_concat_tbl);
transpose_concat_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi,
tran_concat_tbl);
transpose_concat_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi,
tran_concat_tbl);
do {
uint8x8_t t7, t8, t9, t10;
load_u8_8x4(s, src_stride, &t7, &t8, &t9, &t10);
s7 = vreinterpret_s8_u8(vsub_u8(t7, range_limit));
s8 = vreinterpret_s8_u8(vsub_u8(t8, range_limit));
s9 = vreinterpret_s8_u8(vsub_u8(t9, range_limit));
s10 = vreinterpret_s8_u8(vsub_u8(t10, range_limit));
transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi,
tran_concat_tbl);
/* Merge new data into block from previous iteration. */
samples_LUT.val[0] = s3456_lo;
samples_LUT.val[1] = s78910_lo;
s4567_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s3456_hi;
samples_LUT.val[1] = s78910_hi;
s4567_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]);
d0 = convolve8_8_sdot_partial(s0123_lo, s4567_lo, s0123_hi, s4567_hi,
correction, filter);
d1 = convolve8_8_sdot_partial(s1234_lo, s5678_lo, s1234_hi, s5678_hi,
correction, filter);
d2 = convolve8_8_sdot_partial(s2345_lo, s6789_lo, s2345_hi, s6789_hi,
correction, filter);
d3 = convolve8_8_sdot_partial(s3456_lo, s78910_lo, s3456_hi, s78910_hi,
correction, filter);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
/* Prepare block for next iteration - re-using as much as possible. */
/* Shuffle everything up four rows. */
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s78910_lo;
s3456_hi = s78910_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
}
#endif // defined(__ARM_FEATURE_MATMUL_INT8)
#else // !(AOM_ARCH_AARCH64 &&
// (defined(__ARM_FEATURE_DOTPROD) ||
// defined(__ARM_FEATURE_MATMUL_INT8)))
static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum;
sum = vmul_lane_s16(s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
sum = vqadd_s16(sum, vmul_lane_s16(s3, filter_lo, 3));
sum = vqadd_s16(sum, vmul_lane_s16(s4, filter_hi, 0));
return sum;
}
static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1,
const int16x8_t s2, const int16x8_t s3,
const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum;
sum = vmulq_lane_s16(s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
sum = vqaddq_s16(sum, vmulq_lane_s16(s3, filter_lo, 3));
sum = vqaddq_s16(sum, vmulq_lane_s16(s4, filter_hi, 0));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int16x8_t filter = vld1q_s16(filter_x);
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)x_step_q4;
(void)filter_y;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1);
if (h == 4) {
uint8x8_t t0, t1, t2, t3, d01, d23;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3;
load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
src += 7;
do {
load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter);
d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter);
d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter);
d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
transpose_u8_4x4(&d01, &d23);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d23, 0);
store_u8_4x1(dst + 2 * dst_stride, d01, 1);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
src += 4;
dst += 4;
w -= 4;
} while (w != 0);
} else {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7, d0, d1, d2, d3;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
if (w == 4) {
do {
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
load_u8_8x8(src + 7, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6,
&t7);
transpose_u8_4x8(&t0, &t1, &t2, &t3, t4, t5, t6, t7);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter);
d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter);
d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter);
d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter);
transpose_u8_8x4(&d0, &d1, &d2, &d3);
store_u8_4x1(dst + 0 * dst_stride, d0, 0);
store_u8_4x1(dst + 1 * dst_stride, d1, 0);
store_u8_4x1(dst + 2 * dst_stride, d2, 0);
store_u8_4x1(dst + 3 * dst_stride, d3, 0);
store_u8_4x1(dst + 4 * dst_stride, d0, 1);
store_u8_4x1(dst + 5 * dst_stride, d1, 1);
store_u8_4x1(dst + 6 * dst_stride, d2, 1);
store_u8_4x1(dst + 7 * dst_stride, d3, 1);
src += 8 * src_stride;
dst += 8 * dst_stride;
h -= 8;
} while (h > 0);
} else {
uint8x8_t d4, d5, d6, d7;
int16x8_t s11, s12, s13, s14;
int width;
const uint8_t *s;
uint8_t *d;
do {
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
width = w;
s = src + 7;
d = dst;
do {
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
s11 = vreinterpretq_s16_u16(vmovl_u8(t4));
s12 = vreinterpretq_s16_u16(vmovl_u8(t5));
s13 = vreinterpretq_s16_u16(vmovl_u8(t6));
s14 = vreinterpretq_s16_u16(vmovl_u8(t7));
d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter);
d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter);
d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter);
d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter);
d4 = convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filter);
d5 = convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filter);
d6 = convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filter);
d7 = convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, filter);
transpose_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
store_u8_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
s4 = s12;
s5 = s13;
s6 = s14;
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 8 * src_stride;
dst += 8 * dst_stride;
h -= 8;
} while (h > 0);
}
}
}
void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const int16x8_t filter = vld1q_s16(filter_y);
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)filter_x;
(void)x_step_q4;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1) * src_stride;
if (w == 4) {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, d01, d23;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3;
load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4)));
s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5)));
s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6)));
src += 7 * src_stride;
do {
load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3);
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter);
d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter);
d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter);
d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, d0, d1, d2, d3;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
int height;
const uint8_t *s;
uint8_t *d;
do {
load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
height = h;
s = src + 7 * src_stride;
d = dst;
do {
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter);
d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter);
d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter);
d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
}
#endif // AOM_ARCH_AARCH64 && defined(__ARM_FEATURE_DOTPROD)