| /* | 
 |  * Copyright (c) 2018, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <stdbool.h> | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "av1/encoder/block.h" | 
 | #include "av1/encoder/hash.h" | 
 | #include "av1/encoder/hash_motion.h" | 
 |  | 
 | #define kSrcBits 16 | 
 | #define kBlockSizeBits 3 | 
 | #define kMaxAddr (1 << (kSrcBits + kBlockSizeBits)) | 
 |  | 
 | // TODO(youzhou@microsoft.com): is higher than 8 bits screen content supported? | 
 | // If yes, fix this function | 
 | static void get_pixels_in_1D_char_array_by_block_2x2(const uint8_t *y_src, | 
 |                                                      int stride, | 
 |                                                      uint8_t *p_pixels_in1D) { | 
 |   const uint8_t *p_pel = y_src; | 
 |   int index = 0; | 
 |   for (int i = 0; i < 2; i++) { | 
 |     for (int j = 0; j < 2; j++) { | 
 |       p_pixels_in1D[index++] = p_pel[j]; | 
 |     } | 
 |     p_pel += stride; | 
 |   } | 
 | } | 
 |  | 
 | static void get_pixels_in_1D_short_array_by_block_2x2(const uint16_t *y_src, | 
 |                                                       int stride, | 
 |                                                       uint16_t *p_pixels_in1D) { | 
 |   const uint16_t *p_pel = y_src; | 
 |   int index = 0; | 
 |   for (int i = 0; i < 2; i++) { | 
 |     for (int j = 0; j < 2; j++) { | 
 |       p_pixels_in1D[index++] = p_pel[j]; | 
 |     } | 
 |     p_pel += stride; | 
 |   } | 
 | } | 
 |  | 
 | static int is_block_2x2_row_same_value(const uint8_t *p) { | 
 |   if (p[0] != p[1] || p[2] != p[3]) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static int is_block16_2x2_row_same_value(const uint16_t *p) { | 
 |   if (p[0] != p[1] || p[2] != p[3]) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static int is_block_2x2_col_same_value(const uint8_t *p) { | 
 |   if ((p[0] != p[2]) || (p[1] != p[3])) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static int is_block16_2x2_col_same_value(const uint16_t *p) { | 
 |   if ((p[0] != p[2]) || (p[1] != p[3])) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | // the hash value (hash_value1 consists two parts, the first 3 bits relate to | 
 | // the block size and the remaining 16 bits are the crc values. This fuction | 
 | // is used to get the first 3 bits. | 
 | static int hash_block_size_to_index(int block_size) { | 
 |   switch (block_size) { | 
 |     case 4: return 0; | 
 |     case 8: return 1; | 
 |     case 16: return 2; | 
 |     case 32: return 3; | 
 |     case 64: return 4; | 
 |     case 128: return 5; | 
 |     default: return -1; | 
 |   } | 
 | } | 
 |  | 
 | static uint32_t get_identity_hash_value(const uint8_t a, const uint8_t b, | 
 |                                         const uint8_t c, const uint8_t d) { | 
 |   // The four input values add up to 32 bits, which is the size of the output. | 
 |   // Just pack those values as is. | 
 |   return ((uint32_t)a << 24) + ((uint32_t)b << 16) + ((uint32_t)c << 8) + | 
 |          ((uint32_t)d); | 
 | } | 
 |  | 
 | static uint32_t get_xor_hash_value_hbd(const uint16_t a, const uint16_t b, | 
 |                                        const uint16_t c, const uint16_t d) { | 
 |   uint32_t result; | 
 |   // Pack the lower 8 bits of each input value to the 32 bit output, then xor | 
 |   // with the upper 8 bits of each input value. | 
 |   result = ((uint32_t)(a & 0x00ff) << 24) + ((uint32_t)(b & 0x00ff) << 16) + | 
 |            ((uint32_t)(c & 0x00ff) << 8) + ((uint32_t)(d & 0x00ff)); | 
 |   result ^= ((uint32_t)(a & 0xff00) << 16) + ((uint32_t)(b & 0xff00) << 8) + | 
 |             ((uint32_t)(c & 0xff00)) + ((uint32_t)(d & 0xff00) >> 8); | 
 |   return result; | 
 | } | 
 |  | 
 | void av1_hash_table_init(IntraBCHashInfo *intrabc_hash_info) { | 
 |   if (!intrabc_hash_info->crc_initialized) { | 
 |     av1_crc32c_calculator_init(&intrabc_hash_info->crc_calculator); | 
 |     intrabc_hash_info->crc_initialized = 1; | 
 |   } | 
 |   intrabc_hash_info->intrabc_hash_table.p_lookup_table = NULL; | 
 | } | 
 |  | 
 | static void clear_all(hash_table *p_hash_table) { | 
 |   if (p_hash_table->p_lookup_table == NULL) { | 
 |     return; | 
 |   } | 
 |   for (int i = 0; i < kMaxAddr; i++) { | 
 |     if (p_hash_table->p_lookup_table[i] != NULL) { | 
 |       aom_vector_destroy(p_hash_table->p_lookup_table[i]); | 
 |       aom_free(p_hash_table->p_lookup_table[i]); | 
 |       p_hash_table->p_lookup_table[i] = NULL; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_hash_table_destroy(hash_table *p_hash_table) { | 
 |   clear_all(p_hash_table); | 
 |   aom_free(p_hash_table->p_lookup_table); | 
 |   p_hash_table->p_lookup_table = NULL; | 
 | } | 
 |  | 
 | bool av1_hash_table_create(hash_table *p_hash_table) { | 
 |   if (p_hash_table->p_lookup_table != NULL) { | 
 |     clear_all(p_hash_table); | 
 |     return true; | 
 |   } | 
 |   p_hash_table->p_lookup_table = | 
 |       (Vector **)aom_calloc(kMaxAddr, sizeof(p_hash_table->p_lookup_table[0])); | 
 |   if (!p_hash_table->p_lookup_table) return false; | 
 |   return true; | 
 | } | 
 |  | 
 | static bool hash_table_add_to_table(hash_table *p_hash_table, | 
 |                                     uint32_t hash_value, | 
 |                                     block_hash *curr_block_hash) { | 
 |   if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
 |     p_hash_table->p_lookup_table[hash_value] = | 
 |         aom_malloc(sizeof(p_hash_table->p_lookup_table[0][0])); | 
 |     if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
 |       return false; | 
 |     } | 
 |     if (aom_vector_setup(p_hash_table->p_lookup_table[hash_value], 10, | 
 |                          sizeof(curr_block_hash[0])) == VECTOR_ERROR) | 
 |       return false; | 
 |     if (aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], | 
 |                              curr_block_hash) == VECTOR_ERROR) | 
 |       return false; | 
 |   } else { | 
 |     if (aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], | 
 |                              curr_block_hash) == VECTOR_ERROR) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | int32_t av1_hash_table_count(const hash_table *p_hash_table, | 
 |                              uint32_t hash_value) { | 
 |   if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
 |     return 0; | 
 |   } else { | 
 |     return (int32_t)(p_hash_table->p_lookup_table[hash_value]->size); | 
 |   } | 
 | } | 
 |  | 
 | Iterator av1_hash_get_first_iterator(hash_table *p_hash_table, | 
 |                                      uint32_t hash_value) { | 
 |   assert(av1_hash_table_count(p_hash_table, hash_value) > 0); | 
 |   return aom_vector_begin(p_hash_table->p_lookup_table[hash_value]); | 
 | } | 
 |  | 
 | void av1_generate_block_2x2_hash_value(IntraBCHashInfo *intrabc_hash_info, | 
 |                                        const YV12_BUFFER_CONFIG *picture, | 
 |                                        uint32_t *pic_block_hash[2], | 
 |                                        int8_t *pic_block_same_info[3]) { | 
 |   const int width = 2; | 
 |   const int height = 2; | 
 |   const int x_end = picture->y_crop_width - width + 1; | 
 |   const int y_end = picture->y_crop_height - height + 1; | 
 |   CRC32C *calc = &intrabc_hash_info->crc_calculator; | 
 |  | 
 |   const int length = width * 2; | 
 |   if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     uint16_t p[4]; | 
 |     int pos = 0; | 
 |     for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
 |       for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
 |         get_pixels_in_1D_short_array_by_block_2x2( | 
 |             CONVERT_TO_SHORTPTR(picture->y_buffer) + y_pos * picture->y_stride + | 
 |                 x_pos, | 
 |             picture->y_stride, p); | 
 |         pic_block_same_info[0][pos] = is_block16_2x2_row_same_value(p); | 
 |         pic_block_same_info[1][pos] = is_block16_2x2_col_same_value(p); | 
 |         pic_block_hash[0][pos] = | 
 |             av1_get_crc32c_value(calc, (uint8_t *)p, length * sizeof(p[0])); | 
 |         // For HBD, we either have 40 or 48 bits of input data that the xor hash | 
 |         // reduce to 32 bits. We intentionally don't want to "discard" bits to | 
 |         // avoid any kind of biasing. | 
 |         pic_block_hash[1][pos] = get_xor_hash_value_hbd(p[0], p[1], p[2], p[3]); | 
 |         pos++; | 
 |       } | 
 |       pos += width - 1; | 
 |     } | 
 |   } else { | 
 |     uint8_t p[4]; | 
 |     int pos = 0; | 
 |     for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
 |       for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
 |         get_pixels_in_1D_char_array_by_block_2x2( | 
 |             picture->y_buffer + y_pos * picture->y_stride + x_pos, | 
 |             picture->y_stride, p); | 
 |         pic_block_same_info[0][pos] = is_block_2x2_row_same_value(p); | 
 |         pic_block_same_info[1][pos] = is_block_2x2_col_same_value(p); | 
 |         pic_block_hash[0][pos] = | 
 |             av1_get_crc32c_value(calc, p, length * sizeof(p[0])); | 
 |         // This 2x2 hash isn't used directly as a "key" for the hash table, so | 
 |         // we can afford to just copy the 4 8-bit pixel values as a single | 
 |         // 32-bit value directly. (i.e. there are no concerns of a lack of | 
 |         // uniform distribution) | 
 |         pic_block_hash[1][pos] = | 
 |             get_identity_hash_value(p[0], p[1], p[2], p[3]); | 
 |         pos++; | 
 |       } | 
 |       pos += width - 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_generate_block_hash_value(IntraBCHashInfo *intrabc_hash_info, | 
 |                                    const YV12_BUFFER_CONFIG *picture, | 
 |                                    int block_size, | 
 |                                    uint32_t *src_pic_block_hash[2], | 
 |                                    uint32_t *dst_pic_block_hash[2], | 
 |                                    int8_t *src_pic_block_same_info[3], | 
 |                                    int8_t *dst_pic_block_same_info[3]) { | 
 |   CRC32C *calc = &intrabc_hash_info->crc_calculator; | 
 |  | 
 |   const int pic_width = picture->y_crop_width; | 
 |   const int x_end = picture->y_crop_width - block_size + 1; | 
 |   const int y_end = picture->y_crop_height - block_size + 1; | 
 |  | 
 |   const int src_size = block_size >> 1; | 
 |   const int quad_size = block_size >> 2; | 
 |  | 
 |   uint32_t p[4]; | 
 |   const int length = sizeof(p); | 
 |  | 
 |   int pos = 0; | 
 |   for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
 |     for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
 |       p[0] = src_pic_block_hash[0][pos]; | 
 |       p[1] = src_pic_block_hash[0][pos + src_size]; | 
 |       p[2] = src_pic_block_hash[0][pos + src_size * pic_width]; | 
 |       p[3] = src_pic_block_hash[0][pos + src_size * pic_width + src_size]; | 
 |       dst_pic_block_hash[0][pos] = | 
 |           av1_get_crc32c_value(calc, (uint8_t *)p, length); | 
 |  | 
 |       p[0] = src_pic_block_hash[1][pos]; | 
 |       p[1] = src_pic_block_hash[1][pos + src_size]; | 
 |       p[2] = src_pic_block_hash[1][pos + src_size * pic_width]; | 
 |       p[3] = src_pic_block_hash[1][pos + src_size * pic_width + src_size]; | 
 |       dst_pic_block_hash[1][pos] = | 
 |           av1_get_crc32c_value(calc, (uint8_t *)p, length); | 
 |  | 
 |       dst_pic_block_same_info[0][pos] = | 
 |           src_pic_block_same_info[0][pos] && | 
 |           src_pic_block_same_info[0][pos + quad_size] && | 
 |           src_pic_block_same_info[0][pos + src_size] && | 
 |           src_pic_block_same_info[0][pos + src_size * pic_width] && | 
 |           src_pic_block_same_info[0][pos + src_size * pic_width + quad_size] && | 
 |           src_pic_block_same_info[0][pos + src_size * pic_width + src_size]; | 
 |  | 
 |       dst_pic_block_same_info[1][pos] = | 
 |           src_pic_block_same_info[1][pos] && | 
 |           src_pic_block_same_info[1][pos + src_size] && | 
 |           src_pic_block_same_info[1][pos + quad_size * pic_width] && | 
 |           src_pic_block_same_info[1][pos + quad_size * pic_width + src_size] && | 
 |           src_pic_block_same_info[1][pos + src_size * pic_width] && | 
 |           src_pic_block_same_info[1][pos + src_size * pic_width + src_size]; | 
 |       pos++; | 
 |     } | 
 |     pos += block_size - 1; | 
 |   } | 
 |  | 
 |   if (block_size >= 4) { | 
 |     const int size_minus_1 = block_size - 1; | 
 |     pos = 0; | 
 |     for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
 |       for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
 |         dst_pic_block_same_info[2][pos] = | 
 |             (!dst_pic_block_same_info[0][pos] && | 
 |              !dst_pic_block_same_info[1][pos]) || | 
 |             (((x_pos & size_minus_1) == 0) && ((y_pos & size_minus_1) == 0)); | 
 |         pos++; | 
 |       } | 
 |       pos += block_size - 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table, | 
 |                                                  uint32_t *pic_hash[2], | 
 |                                                  int8_t *pic_is_same, | 
 |                                                  int pic_width, int pic_height, | 
 |                                                  int block_size) { | 
 |   const int x_end = pic_width - block_size + 1; | 
 |   const int y_end = pic_height - block_size + 1; | 
 |  | 
 |   const int8_t *src_is_added = pic_is_same; | 
 |   const uint32_t *src_hash[2] = { pic_hash[0], pic_hash[1] }; | 
 |  | 
 |   int add_value = hash_block_size_to_index(block_size); | 
 |   assert(add_value >= 0); | 
 |   add_value <<= kSrcBits; | 
 |   const int crc_mask = (1 << kSrcBits) - 1; | 
 |  | 
 |   for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
 |     for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
 |       const int pos = y_pos * pic_width + x_pos; | 
 |       // valid data | 
 |       if (src_is_added[pos]) { | 
 |         block_hash curr_block_hash; | 
 |         curr_block_hash.x = x_pos; | 
 |         curr_block_hash.y = y_pos; | 
 |  | 
 |         const uint32_t hash_value1 = (src_hash[0][pos] & crc_mask) + add_value; | 
 |         curr_block_hash.hash_value2 = src_hash[1][pos]; | 
 |  | 
 |         if (!hash_table_add_to_table(p_hash_table, hash_value1, | 
 |                                      &curr_block_hash)) { | 
 |           return false; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture, | 
 |                                    int block_size, int x_start, int y_start) { | 
 |   const int stride = picture->y_stride; | 
 |   const uint8_t *p = picture->y_buffer + y_start * stride + x_start; | 
 |  | 
 |   if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); | 
 |     for (int i = 0; i < block_size; i++) { | 
 |       for (int j = 1; j < block_size; j++) { | 
 |         if (p16[j] != p16[0]) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       p16 += stride; | 
 |     } | 
 |   } else { | 
 |     for (int i = 0; i < block_size; i++) { | 
 |       for (int j = 1; j < block_size; j++) { | 
 |         if (p[j] != p[0]) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       p += stride; | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture, | 
 |                                  int block_size, int x_start, int y_start) { | 
 |   const int stride = picture->y_stride; | 
 |   const uint8_t *p = picture->y_buffer + y_start * stride + x_start; | 
 |  | 
 |   if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); | 
 |     for (int i = 0; i < block_size; i++) { | 
 |       for (int j = 1; j < block_size; j++) { | 
 |         if (p16[j * stride + i] != p16[i]) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     for (int i = 0; i < block_size; i++) { | 
 |       for (int j = 1; j < block_size; j++) { | 
 |         if (p[j * stride + i] != p[i]) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | void av1_get_block_hash_value(IntraBCHashInfo *intrabc_hash_info, | 
 |                               const uint8_t *y_src, int stride, int block_size, | 
 |                               uint32_t *hash_value1, uint32_t *hash_value2, | 
 |                               int use_highbitdepth) { | 
 |   int add_value = hash_block_size_to_index(block_size); | 
 |   assert(add_value >= 0); | 
 |   add_value <<= kSrcBits; | 
 |   const int crc_mask = (1 << kSrcBits) - 1; | 
 |  | 
 |   CRC32C *calc = &intrabc_hash_info->crc_calculator; | 
 |   uint32_t **buf_1 = intrabc_hash_info->hash_value_buffer[0]; | 
 |   uint32_t **buf_2 = intrabc_hash_info->hash_value_buffer[1]; | 
 |  | 
 |   // 2x2 subblock hash values in current CU | 
 |   int sub_block_in_width = (block_size >> 1); | 
 |   if (use_highbitdepth) { | 
 |     uint16_t pixel_to_hash[4]; | 
 |     uint16_t *y16_src = CONVERT_TO_SHORTPTR(y_src); | 
 |     for (int y_pos = 0; y_pos < block_size; y_pos += 2) { | 
 |       for (int x_pos = 0; x_pos < block_size; x_pos += 2) { | 
 |         int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); | 
 |         get_pixels_in_1D_short_array_by_block_2x2( | 
 |             y16_src + y_pos * stride + x_pos, stride, pixel_to_hash); | 
 |         assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
 |         buf_1[0][pos] = av1_get_crc32c_value(calc, (uint8_t *)pixel_to_hash, | 
 |                                              sizeof(pixel_to_hash)); | 
 |         // For HBD, we either have 40 or 48 bits of input data that the xor hash | 
 |         // reduce to 32 bits. We intentionally don't want to "discard" bits to | 
 |         // avoid any kind of biasing. | 
 |         buf_2[0][pos] = | 
 |             get_xor_hash_value_hbd(pixel_to_hash[0], pixel_to_hash[1], | 
 |                                    pixel_to_hash[2], pixel_to_hash[3]); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     uint8_t pixel_to_hash[4]; | 
 |     for (int y_pos = 0; y_pos < block_size; y_pos += 2) { | 
 |       for (int x_pos = 0; x_pos < block_size; x_pos += 2) { | 
 |         int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); | 
 |         get_pixels_in_1D_char_array_by_block_2x2(y_src + y_pos * stride + x_pos, | 
 |                                                  stride, pixel_to_hash); | 
 |         assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
 |         buf_1[0][pos] = | 
 |             av1_get_crc32c_value(calc, pixel_to_hash, sizeof(pixel_to_hash)); | 
 |         // This 2x2 hash isn't used directly as a "key" for the hash table, so | 
 |         // we can afford to just copy the 4 8-bit pixel values as a single | 
 |         // 32-bit value directly. (i.e. there are no concerns of a lack of | 
 |         // uniform distribution) | 
 |         buf_2[0][pos] = | 
 |             get_identity_hash_value(pixel_to_hash[0], pixel_to_hash[1], | 
 |                                     pixel_to_hash[2], pixel_to_hash[3]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   int src_sub_block_in_width = sub_block_in_width; | 
 |   sub_block_in_width >>= 1; | 
 |  | 
 |   int src_idx = 1; | 
 |   int dst_idx = 0; | 
 |  | 
 |   // 4x4 subblock hash values to current block hash values | 
 |   uint32_t to_hash[4]; | 
 |   for (int sub_width = 4; sub_width <= block_size; sub_width *= 2) { | 
 |     src_idx = 1 - src_idx; | 
 |     dst_idx = 1 - dst_idx; | 
 |  | 
 |     int dst_pos = 0; | 
 |     for (int y_pos = 0; y_pos < sub_block_in_width; y_pos++) { | 
 |       for (int x_pos = 0; x_pos < sub_block_in_width; x_pos++) { | 
 |         int srcPos = (y_pos << 1) * src_sub_block_in_width + (x_pos << 1); | 
 |  | 
 |         assert(srcPos + 1 < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
 |         assert(srcPos + src_sub_block_in_width + 1 < | 
 |                AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
 |         assert(dst_pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
 |         to_hash[0] = buf_1[src_idx][srcPos]; | 
 |         to_hash[1] = buf_1[src_idx][srcPos + 1]; | 
 |         to_hash[2] = buf_1[src_idx][srcPos + src_sub_block_in_width]; | 
 |         to_hash[3] = buf_1[src_idx][srcPos + src_sub_block_in_width + 1]; | 
 |  | 
 |         buf_1[dst_idx][dst_pos] = | 
 |             av1_get_crc32c_value(calc, (uint8_t *)to_hash, sizeof(to_hash)); | 
 |  | 
 |         to_hash[0] = buf_2[src_idx][srcPos]; | 
 |         to_hash[1] = buf_2[src_idx][srcPos + 1]; | 
 |         to_hash[2] = buf_2[src_idx][srcPos + src_sub_block_in_width]; | 
 |         to_hash[3] = buf_2[src_idx][srcPos + src_sub_block_in_width + 1]; | 
 |         buf_2[dst_idx][dst_pos] = | 
 |             av1_get_crc32c_value(calc, (uint8_t *)to_hash, sizeof(to_hash)); | 
 |         dst_pos++; | 
 |       } | 
 |     } | 
 |  | 
 |     src_sub_block_in_width = sub_block_in_width; | 
 |     sub_block_in_width >>= 1; | 
 |   } | 
 |  | 
 |   *hash_value1 = (buf_1[dst_idx][0] & crc_mask) + add_value; | 
 |   *hash_value2 = buf_2[dst_idx][0]; | 
 | } |