| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "aom_dsp/txfm_common.h" |
| #include "av1/common/blockd.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/blend.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| |
| #include "av1/encoder/model_rd.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/nonrd_opt.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/var_based_part.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/intra_mode_search.h" |
| |
| extern int g_pick_inter_mode_cnt; |
| /*!\cond */ |
| typedef struct { |
| uint8_t *data; |
| int stride; |
| int in_use; |
| } PRED_BUFFER; |
| |
| typedef struct { |
| PRED_BUFFER *best_pred; |
| PREDICTION_MODE best_mode; |
| TX_SIZE best_tx_size; |
| TX_TYPE tx_type; |
| MV_REFERENCE_FRAME best_ref_frame; |
| MV_REFERENCE_FRAME best_second_ref_frame; |
| uint8_t best_mode_skip_txfm; |
| uint8_t best_mode_initial_skip_flag; |
| int_interpfilters best_pred_filter; |
| MOTION_MODE best_motion_mode; |
| WarpedMotionParams wm_params; |
| int num_proj_ref; |
| uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE / 4]; |
| PALETTE_MODE_INFO pmi; |
| int64_t best_sse; |
| } BEST_PICKMODE; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame; |
| PREDICTION_MODE pred_mode; |
| } REF_MODE; |
| |
| typedef struct { |
| InterpFilter filter_x; |
| InterpFilter filter_y; |
| } INTER_FILTER; |
| /*!\endcond */ |
| |
| #define NUM_INTER_MODES_RT 9 |
| #define NUM_INTER_MODES_REDUCED 8 |
| |
| static const REF_MODE ref_mode_set_rt[NUM_INTER_MODES_RT] = { |
| { LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV }, |
| { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }, |
| { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV }, |
| { ALTREF_FRAME, NEWMV } |
| }; |
| |
| // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT |
| // mode |
| static const REF_MODE ref_mode_set_reduced[NUM_INTER_MODES_REDUCED] = { |
| { LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, GLOBALMV }, { LAST_FRAME, NEARMV }, |
| { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV } |
| }; |
| |
| static const THR_MODES mode_idx[REF_FRAMES][4] = { |
| { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH }, |
| { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV }, |
| { THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 }, |
| { THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 }, |
| { THR_NEARESTG, THR_NEARG, THR_GLOBALG, THR_NEWG }, |
| { THR_NEARESTB, THR_NEARB, THR_GLOBALB, THR_NEWB }, |
| { THR_NEARESTA2, THR_NEARA2, THR_GLOBALA2, THR_NEWA2 }, |
| { THR_NEARESTA, THR_NEARA, THR_GLOBALA, THR_NEWA }, |
| }; |
| |
| static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, |
| SMOOTH_PRED }; |
| |
| static const INTER_FILTER filters_ref_set[9] = { |
| { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, |
| { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH }, { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR }, |
| { MULTITAP_SHARP, MULTITAP_SHARP }, { EIGHTTAP_REGULAR, MULTITAP_SHARP }, |
| { MULTITAP_SHARP, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, MULTITAP_SHARP }, |
| { MULTITAP_SHARP, EIGHTTAP_SMOOTH } |
| }; |
| |
| static INLINE int mode_offset(const PREDICTION_MODE mode) { |
| if (mode >= NEARESTMV) { |
| return INTER_OFFSET(mode); |
| } else { |
| switch (mode) { |
| case DC_PRED: return 0; |
| case V_PRED: return 1; |
| case H_PRED: return 2; |
| case SMOOTH_PRED: return 3; |
| default: assert(0); return -1; |
| } |
| } |
| } |
| |
| enum { |
| // INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV), |
| INTER_NEAREST = (1 << NEARESTMV), |
| INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), |
| INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV), |
| INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), |
| }; |
| |
| static INLINE int early_term_inter_search_with_sse(int early_term_idx, |
| BLOCK_SIZE bsize, |
| int64_t this_sse, |
| int64_t best_sse, |
| PREDICTION_MODE this_mode) { |
| // Aggressiveness to terminate inter mode search early is adjusted based on |
| // speed and block size. |
| static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 }, |
| { 0.6, 0.65, 0.85, 0.9 }, |
| { 0.5, 0.5, 0.55, 0.6 }, |
| { 0.6, 0.75, 0.85, 0.85 } }; |
| static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3, |
| 0.3 }; |
| |
| const int size_group = size_group_lookup[bsize]; |
| assert(size_group < 4); |
| assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES)); |
| const double threshold = |
| ((early_term_idx == EARLY_TERM_IDX_4) && |
| (this_mode == NEWMV || this_mode == NEARESTMV)) |
| ? early_term_thresh_newmv_nearestmv[size_group] |
| : early_term_thresh[early_term_idx - 1][size_group]; |
| |
| // Terminate inter mode search early based on best sse so far. |
| if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { |
| bp->best_sse = INT64_MAX; |
| bp->best_mode = NEARESTMV; |
| bp->best_ref_frame = LAST_FRAME; |
| bp->best_second_ref_frame = NONE_FRAME; |
| bp->best_tx_size = TX_8X8; |
| bp->tx_type = DCT_DCT; |
| bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| bp->best_mode_skip_txfm = 0; |
| bp->best_mode_initial_skip_flag = 0; |
| bp->best_pred = NULL; |
| bp->best_motion_mode = SIMPLE_TRANSLATION; |
| bp->num_proj_ref = 0; |
| memset(&bp->wm_params, 0, sizeof(bp->wm_params)); |
| memset(&bp->blk_skip, 0, sizeof(bp->blk_skip)); |
| memset(&bp->pmi, 0, sizeof(bp->pmi)); |
| } |
| |
| static INLINE int subpel_select(AV1_COMP *cpi, BLOCK_SIZE bsize, int_mv *mv) { |
| int mv_thresh = 4; |
| const int is_low_resoln = |
| (cpi->common.width * cpi->common.height <= 320 * 240); |
| mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6; |
| if (cpi->rc.avg_frame_low_motion > 0 && cpi->rc.avg_frame_low_motion < 40) |
| mv_thresh = 12; |
| mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh; |
| if (abs(mv->as_fullmv.row) >= mv_thresh || |
| abs(mv->as_fullmv.col) >= mv_thresh) |
| return HALF_PEL; |
| else |
| return cpi->sf.mv_sf.subpel_force_stop; |
| } |
| |
| /*!\brief Runs Motion Estimation for a specific block and specific ref frame. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Finds the best Motion Vector by running Motion Estimation for a specific |
| * block and a specific reference frame. Exits early if RDCost of Full Pel part |
| * exceeds best RD Cost fund so far |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] bsize Current block size |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] tmp_mv Pointer to best found New MV |
| * \param[in] rate_mv Pointer to Rate of the best new MV |
| * \param[in] best_rd_sofar RD Cost of the best mode found so far |
| * \param[in] use_base_mv Flag, indicating that tmp_mv holds |
| * specific MV to start the search with |
| * |
| * \return Returns 0 if ME was terminated after Full Pel Search because too |
| * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv. |
| * Rate estimation for this vector is placed to \c rate_mv |
| */ |
| static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv, |
| int64_t best_rd_sofar, int use_base_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; |
| int step_param = (cpi->sf.rt_sf.fullpel_search_step_param) |
| ? cpi->sf.rt_sf.fullpel_search_step_param |
| : cpi->mv_search_params.mv_step_param; |
| FULLPEL_MV start_mv; |
| const int ref = mi->ref_frame[0]; |
| const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv; |
| MV center_mv; |
| int dis; |
| int rv = 0; |
| int cost_list[5]; |
| int search_subpel = 1; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; |
| av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| start_mv = get_fullmv_from_mv(&ref_mv); |
| |
| if (!use_base_mv) |
| center_mv = ref_mv; |
| else |
| center_mv = tmp_mv->as_mv; |
| |
| const SEARCH_METHODS search_method = cpi->sf.mv_sf.search_method; |
| const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params; |
| const int ref_stride = xd->plane[0].pre[0].stride; |
| const search_site_config *src_search_sites = av1_get_search_site_config( |
| x->search_site_cfg_buf, mv_search_params, search_method, ref_stride); |
| FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; |
| av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv, |
| src_search_sites, |
| /*fine_search_interval=*/0); |
| |
| const unsigned int full_var_rd = av1_full_pixel_search( |
| start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), |
| &tmp_mv->as_fullmv, NULL); |
| |
| // calculate the bit cost on motion vector |
| MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv); |
| |
| *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| |
| // TODO(kyslov) Account for Rate Mode! |
| rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar); |
| |
| if (rv && search_subpel) { |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, |
| cost_list); |
| if (cpi->sf.rt_sf.force_half_pel_block && |
| cpi->sf.mv_sf.subpel_force_stop < HALF_PEL) |
| ms_params.forced_stop = subpel_select(cpi, bsize, tmp_mv); |
| if (cpi->sf.rt_sf.reduce_zeromv_mvres && ref_mv.row == 0 && |
| ref_mv.col == 0 && start_mv.row == 0 && start_mv.col == 0) { |
| // If both the refmv and the fullpel results show zero mv, then there is |
| // high likelihood that the current block is static. So we can try to |
| // reduce the mv resolution here. |
| // These thresholds are the mean var rd collected from multiple encoding |
| // runs. |
| if ((bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) || |
| (bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) || |
| (bsize == BLOCK_16X16 && full_var_rd * 8 < 10127)) { |
| ms_params.forced_stop = HALF_PEL; |
| } |
| } |
| |
| MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv); |
| cpi->mv_search_params.find_fractional_mv_step( |
| xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis, |
| &x->pred_sse[ref], NULL); |
| |
| *rate_mv = |
| av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| // Final MV can not be equal to referance MV as this will trigger assert |
| // later. This can happen if both NEAREST and NEAR modes were skipped |
| rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row); |
| return rv; |
| } |
| |
| /*!\brief Searches for the best New Motion Vector. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Finds the best Motion Vector by doing Motion Estimation. Uses reduced |
| * complexity ME for non-LAST frames or calls \c combined_motion_search |
| * for LAST reference frame |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] frame_mv Array that holds MVs for all modes |
| * and ref frames |
| * \param[in] ref_frame Reference frame for which to find |
| * the best New MVs |
| * \param[in] gf_temporal_ref Flag, indicating temporal reference |
| * for GOLDEN frame |
| * \param[in] bsize Current block size |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] rate_mv Pointer to Rate of the best new MV |
| * \param[in] best_rdc Pointer to the RD Cost for the best |
| * mode found so far |
| * |
| * \return Returns -1 if the search was not done, otherwise returns 0. |
| * Best New MV is placed into \c frame_mv array, Rate estimation for this |
| * vector is placed to \c rate_mv |
| */ |
| static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x, |
| int_mv frame_mv[][REF_FRAMES], |
| MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv, |
| RD_STATS *best_rdc) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| AV1_COMMON *cm = &cpi->common; |
| if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR && |
| gf_temporal_ref) { |
| int tmp_sad; |
| int dis; |
| |
| if (bsize < BLOCK_16X16) return -1; |
| |
| tmp_sad = av1_int_pro_motion_estimation( |
| cpi, x, bsize, mi_row, mi_col, |
| &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv); |
| |
| if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; |
| |
| frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; |
| int_mv best_mv = mi->mv[0]; |
| best_mv.as_mv.row >>= 3; |
| best_mv.as_mv.col >>= 3; |
| MV ref_mv = av1_get_ref_mv(x, 0).as_mv; |
| frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; |
| frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; |
| |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL); |
| if (cpi->sf.rt_sf.force_half_pel_block && |
| cpi->sf.mv_sf.subpel_force_stop < HALF_PEL) |
| ms_params.forced_stop = subpel_select(cpi, bsize, &best_mv); |
| MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); |
| cpi->mv_search_params.find_fractional_mv_step( |
| xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, |
| &x->pred_sse[ref_frame], NULL); |
| frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int; |
| |
| *rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv, |
| x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void estimate_single_ref_frame_costs(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const ModeCosts *mode_costs, |
| int segment_id, |
| unsigned int *ref_costs_single) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = |
| mode_costs->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; |
| ref_costs_single[LAST_FRAME] = base_cost; |
| ref_costs_single[GOLDEN_FRAME] = base_cost; |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| // add cost for last, golden, altref |
| ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0]; |
| } |
| } |
| |
| static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *const x, unsigned int var, |
| unsigned int sse, int *force_skip) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TX_SIZE tx_size; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) { |
| int multiplier = 8; |
| unsigned int var_thresh = 0; |
| unsigned int is_high_var = 1; |
| // Use quantizer based thresholds to determine transform size. |
| if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) { |
| const int qband = x->qindex >> (QINDEX_BITS - 2); |
| const int mult[4] = { 8, 7, 6, 5 }; |
| assert(qband < 4); |
| multiplier = mult[qband]; |
| const int qstep = x->plane[0].dequant_QTX[1] >> (xd->bd - 5); |
| const unsigned int qstep_sq = qstep * qstep; |
| var_thresh = qstep_sq * 2; |
| if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { |
| // If the sse is low for low source variance blocks, mark those as |
| // transform skip. |
| // Note: Though qstep_sq is based on ac qstep, the threshold is kept |
| // low so that reliable early estimate of tx skip can be obtained |
| // through its comparison with sse. |
| if (sse < qstep_sq && x->source_variance < qstep_sq && |
| x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) |
| *force_skip = 1; |
| // Further lower transform size based on aq mode only if residual |
| // variance is high. |
| is_high_var = (var >= var_thresh); |
| } |
| } |
| // Choose larger transform size for blocks where dc component is dominant or |
| // the ac component is low. |
| if (sse > ((var * multiplier) >> 2) || (var < var_thresh)) |
| tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| else |
| tx_size = TX_8X8; |
| |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var) |
| tx_size = TX_8X8; |
| else if (tx_size > TX_16X16) |
| tx_size = TX_16X16; |
| } else { |
| tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| } |
| |
| if (txfm_params->tx_mode_search_type != ONLY_4X4 && bsize > BLOCK_32X32) |
| tx_size = TX_16X16; |
| |
| return AOMMIN(tx_size, TX_16X16); |
| } |
| |
| static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, |
| 2, 2, 3, 3, 3, 4, |
| 4, 4, 5, 5 }; |
| static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, |
| 2, 3, 2, 3, 4, 3, |
| 4, 5, 4, 5 }; |
| |
| static void block_variance(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int w, int h, |
| unsigned int *sse, int *sum, int block_size, |
| uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { |
| int k = 0; |
| *sse = 0; |
| *sum = 0; |
| |
| // This function is called for block sizes >= BLOCK_32x32. As per the design |
| // the aom_get_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32) per |
| // call. Hence the width and height of the block need to be at least 8 and 32 |
| // samples respectively. |
| assert(w >= 32); |
| assert(h >= 8); |
| for (int i = 0; i < h; i += block_size) { |
| for (int j = 0; j < w; j += 32) { |
| aom_get_sse_sum_8x8_quad(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, &sse8x8[k], |
| &sum8x8[k]); |
| |
| *sse += sse8x8[k] + sse8x8[k + 1] + sse8x8[k + 2] + sse8x8[k + 3]; |
| *sum += sum8x8[k] + sum8x8[k + 1] + sum8x8[k + 2] + sum8x8[k + 3]; |
| var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6); |
| var8x8[k + 1] = sse8x8[k + 1] - |
| (uint32_t)(((int64_t)sum8x8[k + 1] * sum8x8[k + 1]) >> 6); |
| var8x8[k + 2] = sse8x8[k + 2] - |
| (uint32_t)(((int64_t)sum8x8[k + 2] * sum8x8[k + 2]) >> 6); |
| var8x8[k + 3] = sse8x8[k + 3] - |
| (uint32_t)(((int64_t)sum8x8[k + 3] * sum8x8[k + 3]) >> 6); |
| k += 4; |
| } |
| } |
| } |
| |
| static void calculate_variance(int bw, int bh, TX_SIZE tx_size, |
| unsigned int *sse_i, int *sum_i, |
| unsigned int *var_o, unsigned int *sse_o, |
| int *sum_o) { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; |
| const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); |
| const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); |
| int i, j, k = 0; |
| |
| for (i = 0; i < nh; i += 2) { |
| for (j = 0; j < nw; j += 2) { |
| sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + |
| sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; |
| sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + |
| sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; |
| var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> |
| (b_width_log2_lookup[unit_size] + |
| b_height_log2_lookup[unit_size] + 6)); |
| k++; |
| } |
| } |
| } |
| |
| // Adjust the ac_thr according to speed, width, height and normalized sum |
| static int ac_thr_factor(const int speed, const int width, const int height, |
| const int norm_sum) { |
| if (speed >= 8 && norm_sum < 5) { |
| if (width <= 640 && height <= 480) |
| return 4; |
| else |
| return 2; |
| } |
| return 1; |
| } |
| |
| static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, MACROBLOCK *x, |
| MACROBLOCKD *xd, RD_STATS *rd_stats, |
| int *early_term, int calculate_rd, |
| int64_t best_sse, |
| unsigned int *var_output, |
| unsigned int var_prune_threshold) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const uint32_t dc_quant = p->dequant_QTX[0]; |
| const uint32_t ac_quant = p->dequant_QTX[1]; |
| const int64_t dc_thr = dc_quant * dc_quant >> 6; |
| int64_t ac_thr = ac_quant * ac_quant >> 6; |
| int test_skip = 1; |
| unsigned int var; |
| int sum; |
| |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| const int num8x8 = 1 << (bw + bh - 2); |
| unsigned int sse8x8[256] = { 0 }; |
| int sum8x8[256] = { 0 }; |
| unsigned int var8x8[256] = { 0 }; |
| TX_SIZE tx_size; |
| int k; |
| |
| if (x->force_zeromv_skip) { |
| *early_term = 1; |
| rd_stats->rate = 0; |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| return; |
| } |
| |
| // Calculate variance for whole partition, and also save 8x8 blocks' variance |
| // to be used in following transform skipping test. |
| block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); |
| var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); |
| if (var_output) { |
| *var_output = var; |
| if (*var_output > var_prune_threshold) { |
| return; |
| } |
| } |
| |
| rd_stats->sse = sse; |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5) |
| ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, |
| (abs(sum) >> (bw + bh)), |
| cpi->svc.temporal_layer_id); |
| else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, |
| cpi->common.height, abs(sum) >> (bw + bh)); |
| #else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, |
| cpi->common.height, abs(sum) >> (bw + bh)); |
| |
| #endif |
| // Skipping test |
| *early_term = 0; |
| tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term); |
| // The code below for setting skip flag assumes tranform size of at least 8x8, |
| // so force this lower limit on transform. |
| if (tx_size < TX_8X8) tx_size = TX_8X8; |
| xd->mi[0]->tx_size = tx_size; |
| |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && |
| early_term_inter_search_with_sse( |
| cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, |
| mi->mode)) |
| test_skip = 0; |
| |
| if (*early_term) test_skip = 0; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| if (test_skip) { |
| unsigned int sse16x16[64] = { 0 }; |
| int sum16x16[64] = { 0 }; |
| unsigned int var16x16[64] = { 0 }; |
| const int num16x16 = num8x8 >> 2; |
| |
| unsigned int sse32x32[16] = { 0 }; |
| int sum32x32[16] = { 0 }; |
| unsigned int var32x32[16] = { 0 }; |
| const int num32x32 = num8x8 >> 4; |
| |
| int ac_test = 1; |
| int dc_test = 1; |
| const int num = (tx_size == TX_8X8) |
| ? num8x8 |
| : ((tx_size == TX_16X16) ? num16x16 : num32x32); |
| const unsigned int *sse_tx = |
| (tx_size == TX_8X8) ? sse8x8 |
| : ((tx_size == TX_16X16) ? sse16x16 : sse32x32); |
| const unsigned int *var_tx = |
| (tx_size == TX_8X8) ? var8x8 |
| : ((tx_size == TX_16X16) ? var16x16 : var32x32); |
| |
| // Calculate variance if tx_size > TX_8X8 |
| if (tx_size >= TX_16X16) |
| calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, |
| sum16x16); |
| if (tx_size == TX_32X32) |
| calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, |
| sse32x32, sum32x32); |
| |
| for (k = 0; k < num; k++) |
| // Check if all ac coefficients can be quantized to zero. |
| if (!(var_tx[k] < ac_thr || var == 0)) { |
| ac_test = 0; |
| break; |
| } |
| |
| for (k = 0; k < num; k++) |
| // Check if dc coefficient can be quantized to zero. |
| if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { |
| dc_test = 0; |
| break; |
| } |
| |
| if (ac_test && dc_test) { |
| int skip_uv[2] = { 0 }; |
| unsigned int var_uv[2]; |
| unsigned int sse_uv[2]; |
| AV1_COMMON *const cm = &cpi->common; |
| // Transform skipping test in UV planes. |
| for (int i = 1; i <= 2; i++) { |
| int j = i - 1; |
| skip_uv[j] = 1; |
| if (x->color_sensitivity[j]) { |
| skip_uv[j] = 0; |
| struct macroblock_plane *const puv = &x->plane[i]; |
| struct macroblockd_plane *const puvd = &xd->plane[i]; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size( |
| bsize, puvd->subsampling_x, puvd->subsampling_y); |
| // Adjust these thresholds for UV. |
| const int64_t uv_dc_thr = |
| (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3; |
| const int64_t uv_ac_thr = |
| (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i, |
| i); |
| var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf( |
| puv->src.buf, puv->src.stride, puvd->dst.buf, puvd->dst.stride, |
| &sse_uv[j]); |
| if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && |
| (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) |
| skip_uv[j] = 1; |
| else |
| break; |
| } |
| } |
| if (skip_uv[0] & skip_uv[1]) { |
| *early_term = 1; |
| } |
| } |
| } |
| if (calculate_rd) { |
| if (!*early_term) { |
| const int bwide = block_size_wide[bsize]; |
| const int bhigh = block_size_high[bsize]; |
| |
| model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, |
| &rd_stats->rate, &rd_stats->dist); |
| } |
| |
| if (*early_term) { |
| rd_stats->rate = 0; |
| rd_stats->dist = sse << 4; |
| } |
| } |
| } |
| |
| static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_STATS *rd_stats, int calculate_rd) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| |
| unsigned int var = cpi->ppi->fn_ptr[bsize].vf( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); |
| int force_skip = 0; |
| xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip); |
| |
| if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) { |
| const int bwide = block_size_wide[bsize]; |
| const int bhigh = block_size_high[bsize]; |
| model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate, |
| &dist); |
| } else { |
| rate = INT_MAX; // this will be overwritten later with block_yrd |
| dist = INT_MAX; |
| } |
| rd_stats->sse = sse; |
| x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| if (force_skip && ref > INTRA_FRAME) { |
| rate = 0; |
| dist = (int64_t)sse << 4; |
| } |
| |
| assert(rate >= 0); |
| |
| rd_stats->skip_txfm = (rate == 0); |
| rate = AOMMIN(rate, INT_MAX); |
| rd_stats->rate = rate; |
| rd_stats->dist = dist; |
| } |
| |
| static INLINE void aom_process_hadamard_8x16(MACROBLOCK *x, int max_blocks_high, |
| int max_blocks_wide, int num_4x4_w, |
| int step, int block_step) { |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int bw = 4 * num_4x4_w; |
| const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide); |
| int block = 0; |
| |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0; c < num_4x4; c += 2 * block_step) { |
| const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2]; |
| int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block); |
| aom_hadamard_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff); |
| block += 2 * step; |
| } |
| } |
| } |
| |
| #define DECLARE_LOOP_VARS_BLOCK_YRD() \ |
| const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; \ |
| const int block_offset = BLOCK_OFFSET(block + s); \ |
| int16_t *const low_coeff = (int16_t *)p->coeff + block_offset; \ |
| int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset; \ |
| int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset; \ |
| uint16_t *const eob = &p->eobs[block + s]; \ |
| const int diff_stride = bw; \ |
| const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2]; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| #define DECLARE_HBD_LOOP_VARS_BLOCK_YRD() \ |
| tran_low_t *const coeff = p->coeff + block_offset; \ |
| tran_low_t *const qcoeff = p->qcoeff + block_offset; \ |
| tran_low_t *const dqcoeff = p->dqcoeff + block_offset; |
| |
| static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd( |
| MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, |
| tran_low_t *const coeff, tran_low_t *const qcoeff, |
| tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost, |
| const int tx_blk_id) { |
| const int is_txfm_skip = (ncoeffs == 0); |
| *skippable &= is_txfm_skip; |
| x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; |
| *eob_cost += get_msb(ncoeffs + 1); |
| |
| int64_t dummy; |
| if (ncoeffs == 1) |
| this_rdc->rate += (int)abs(qcoeff[0]); |
| else if (ncoeffs > 1) |
| this_rdc->rate += aom_satd(qcoeff, step << 4); |
| |
| this_rdc->dist += av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2; |
| } |
| #endif |
| static AOM_FORCE_INLINE void update_yrd_loop_vars( |
| MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, |
| int16_t *const low_coeff, int16_t *const low_qcoeff, |
| int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost, |
| const int tx_blk_id) { |
| const int is_txfm_skip = (ncoeffs == 0); |
| *skippable &= is_txfm_skip; |
| x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; |
| *eob_cost += get_msb(ncoeffs + 1); |
| if (ncoeffs == 1) |
| this_rdc->rate += (int)abs(low_qcoeff[0]); |
| else if (ncoeffs > 1) |
| this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4); |
| |
| this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2; |
| } |
| |
| /*!\brief Calculates RD Cost using Hadamard transform. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Calculates RD Cost using Hadamard transform. For low bit depth this function |
| * uses low-precision set of functions (16-bit) and 32 bit for high bit depth |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the data for |
| the current macroblock |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] this_rdc Pointer to calculated RD Cost |
| * \param[in] skippable Pointer to a flag indicating possible tx skip |
| * \param[in] bsize Current block size |
| * \param[in] tx_size Transform size |
| * \param[in] tx_type Transform kernel type |
| * \param[in] is_inter_mode Flag to indicate inter mode |
| * |
| * \return Nothing is returned. Instead, calculated RD cost is placed to |
| * \c this_rdc. \c skippable flag is set if there is no non-zero quantized |
| * coefficients for Hadamard transform |
| */ |
| void av1_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, int mi_row, |
| int mi_col, RD_STATS *this_rdc, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE tx_size, TX_TYPE tx_type, |
| int is_inter_mode) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblockd_plane *pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| const int row_step = step * num_4x4_w / block_step; |
| int block = 0; |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| const int use_hbd = is_cur_buf_hbd(xd); |
| int num_blk_skip_w = num_4x4_w; |
| int sh_blk_skip = 0; |
| if (is_inter_mode) { |
| num_blk_skip_w = num_4x4_w >> 1; |
| sh_blk_skip = 1; |
| } |
| |
| (void)mi_row; |
| (void)mi_col; |
| (void)cpi; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) { |
| aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, |
| p->src.stride, pd->dst.buf, pd->dst.stride); |
| } else { |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| #else |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| #endif |
| |
| *skippable = 1; |
| int tx_wd = 0; |
| switch (tx_size) { |
| case TX_64X64: |
| assert(0); // Not implemented |
| break; |
| case TX_32X32: |
| assert(0); // Not used |
| break; |
| case TX_16X16: tx_wd = 16; break; |
| case TX_8X8: tx_wd = 8; break; |
| default: |
| assert(tx_size == TX_4X4); |
| tx_wd = 4; |
| break; |
| } |
| |
| this_rdc->dist = 0; |
| this_rdc->rate = 0; |
| #if !CONFIG_AV1_HIGHBITDEPTH |
| if (tx_type == IDTX) { |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { |
| DECLARE_LOOP_VARS_BLOCK_YRD() |
| |
| for (int idy = 0; idy < tx_wd; ++idy) |
| for (int idx = 0; idx < tx_wd; ++idx) |
| low_coeff[idy * tx_wd + idx] = |
| src_diff[idy * diff_stride + idx] * 8; |
| |
| av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| assert(*eob <= 1024); |
| update_yrd_loop_vars(x, skippable, step, *eob, low_coeff, low_qcoeff, |
| low_dqcoeff, this_rdc, &eob_cost, |
| (r * num_blk_skip_w + c) >> sh_blk_skip); |
| } |
| block += row_step; |
| } |
| } else { |
| #else |
| { |
| (void)tx_wd; |
| #endif |
| // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks |
| // can be done per function call. Hence the call of Hadamard txfm is |
| // abstracted here for the specified cases. |
| const int is_tx_8x8_dual_applicable = |
| (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 && |
| block_size_high[bsize] >= 8); |
| if (is_tx_8x8_dual_applicable) { |
| aom_process_hadamard_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w, |
| step, block_step); |
| } |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { |
| DECLARE_LOOP_VARS_BLOCK_YRD() |
| #if CONFIG_AV1_HIGHBITDEPTH |
| DECLARE_HBD_LOOP_VARS_BLOCK_YRD() |
| #else |
| (void)use_hbd; |
| #endif |
| |
| switch (tx_size) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| case TX_16X16: |
| if (use_hbd) { |
| aom_hadamard_16x16(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } else { |
| if (tx_type == IDTX) { |
| aom_pixel_scale(src_diff, diff_stride, low_coeff, 3, 2, 2); |
| } else { |
| aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); |
| } |
| av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } |
| break; |
| case TX_8X8: |
| if (use_hbd) { |
| aom_hadamard_8x8(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } else { |
| if (tx_type == IDTX) { |
| aom_pixel_scale(src_diff, diff_stride, low_coeff, 3, 1, 1); |
| } else { |
| aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); |
| } |
| av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } |
| break; |
| default: |
| assert(tx_size == TX_4X4); |
| if (use_hbd) { |
| aom_fdct4x4(src_diff, coeff, diff_stride); |
| av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } else { |
| if (tx_type == IDTX) { |
| for (int idy = 0; idy < 4; ++idy) |
| for (int idx = 0; idx < 4; ++idx) |
| low_coeff[idy * 4 + idx] = src_diff[idy * diff_stride + idx] |
| << 3; |
| } else { |
| aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); |
| } |
| av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } |
| break; |
| #else |
| case TX_16X16: |
| aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); |
| av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| case TX_8X8: |
| if (!is_tx_8x8_dual_applicable) { |
| aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); |
| } else { |
| assert(is_tx_8x8_dual_applicable); |
| } |
| av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| default: |
| aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); |
| av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| #endif |
| } |
| assert(*eob <= 1024); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) |
| update_yrd_loop_vars_hbd(x, skippable, step, *eob, coeff, qcoeff, |
| dqcoeff, this_rdc, &eob_cost, |
| (r * num_blk_skip_w + c) >> sh_blk_skip); |
| else |
| #endif |
| update_yrd_loop_vars(x, skippable, step, *eob, low_coeff, low_qcoeff, |
| low_dqcoeff, this_rdc, &eob_cost, |
| (r * num_blk_skip_w + c) >> sh_blk_skip); |
| } |
| block += row_step; |
| } |
| } |
| this_rdc->skip_txfm = *skippable; |
| if (this_rdc->sse < INT64_MAX) { |
| this_rdc->sse = (this_rdc->sse << 6) >> 2; |
| if (*skippable) { |
| this_rdc->dist = 0; |
| this_rdc->dist = this_rdc->sse; |
| return; |
| } |
| } |
| |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode, |
| MV_REFERENCE_FRAME ref_frame0, |
| MV_REFERENCE_FRAME ref_frame1, |
| const AV1_COMMON *cm) { |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| mbmi->ref_mv_idx = 0; |
| mbmi->mode = pred_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame0; |
| mbmi->ref_frame[1] = ref_frame1; |
| pmi->palette_size[0] = 0; |
| pmi->palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->num_proj_ref = 1; |
| mbmi->interintra_mode = 0; |
| set_default_interp_filters(mbmi, cm->features.interp_filter); |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index) { |
| #else |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| #endif // CONFIG_INTERNAL_STATS |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->rd_stats.skip_txfm = txfm_info->skip_txfm; |
| |
| ctx->skippable = txfm_info->skip_txfm; |
| #if CONFIG_INTERNAL_STATS |
| ctx->best_mode_index = mode_index; |
| #endif // CONFIG_INTERNAL_STATS |
| ctx->mic = *xd->mi[0]; |
| ctx->skippable = txfm_info->skip_txfm; |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| } |
| |
| static int get_pred_buffer(PRED_BUFFER *p, int len) { |
| for (int i = 0; i < len; i++) { |
| if (!p[i].in_use) { |
| p[i].in_use = 1; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static void free_pred_buffer(PRED_BUFFER *p) { |
| if (p != NULL) p->in_use = 0; |
| } |
| |
| static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return mode_costs |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| return mode_cost; |
| } |
| } |
| } |
| |
| static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode, |
| RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row, |
| int mv_col, int speed, uint32_t spatial_variance, |
| CONTENT_STATE_SB content_state_sb) { |
| // Bias against MVs associated with NEWMV mode that are very different from |
| // top/left neighbors. |
| if (this_mode == NEWMV) { |
| int al_mv_average_row; |
| int al_mv_average_col; |
| int row_diff, col_diff; |
| int above_mv_valid = 0; |
| int left_mv_valid = 0; |
| int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL; |
| int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL; |
| if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad && |
| spatial_variance < 300 && |
| (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) { |
| this_rdc->rdcost = this_rdc->rdcost << 2; |
| return; |
| } |
| if (xd->above_mbmi) { |
| above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV; |
| above_row = xd->above_mbmi->mv[0].as_mv.row; |
| above_col = xd->above_mbmi->mv[0].as_mv.col; |
| } |
| if (xd->left_mbmi) { |
| left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV; |
| left_row = xd->left_mbmi->mv[0].as_mv.row; |
| left_col = xd->left_mbmi->mv[0].as_mv.col; |
| } |
| if (above_mv_valid && left_mv_valid) { |
| al_mv_average_row = (above_row + left_row + 1) >> 1; |
| al_mv_average_col = (above_col + left_col + 1) >> 1; |
| } else if (above_mv_valid) { |
| al_mv_average_row = above_row; |
| al_mv_average_col = above_col; |
| } else if (left_mv_valid) { |
| al_mv_average_row = left_row; |
| al_mv_average_col = left_col; |
| } else { |
| al_mv_average_row = al_mv_average_col = 0; |
| } |
| row_diff = al_mv_average_row - mv_row; |
| col_diff = al_mv_average_col - mv_col; |
| if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) { |
| if (bsize >= BLOCK_32X32) |
| this_rdc->rdcost = this_rdc->rdcost << 1; |
| else |
| this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; |
| } |
| } else { |
| // Bias for speed >= 8 for low spatial variance. |
| if (speed >= 8 && spatial_variance < 150 && |
| (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64)) |
| this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; |
| } |
| } |
| |
| static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_STATS *this_rdc, int64_t *sse_y, |
| int start_plane, int stop_plane) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| int i; |
| int64_t tot_sse = *sse_y; |
| |
| this_rdc->rate = 0; |
| this_rdc->dist = 0; |
| this_rdc->skip_txfm = 0; |
| |
| for (i = start_plane; i <= stop_plane; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const uint32_t dc_quant = p->dequant_QTX[0]; |
| const uint32_t ac_quant = p->dequant_QTX[1]; |
| const BLOCK_SIZE bs = plane_bsize; |
| unsigned int var; |
| if (!x->color_sensitivity[i - 1]) continue; |
| |
| var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, &sse); |
| assert(sse >= var); |
| tot_sse += sse; |
| |
| av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> 3, &rate, &dist); |
| |
| this_rdc->rate += rate >> 1; |
| this_rdc->dist += dist << 3; |
| |
| av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, |
| &rate, &dist); |
| |
| this_rdc->rate += rate; |
| this_rdc->dist += dist << 4; |
| } |
| |
| if (this_rdc->rate == 0) { |
| this_rdc->skip_txfm = 1; |
| } |
| |
| if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >= |
| RDCOST(x->rdmult, 0, tot_sse << 4)) { |
| this_rdc->rate = 0; |
| this_rdc->dist = tot_sse << 4; |
| this_rdc->skip_txfm = 1; |
| } |
| |
| *sse_y = tot_sse; |
| } |
| |
| /*!\cond */ |
| struct estimate_block_intra_args { |
| AV1_COMP *cpi; |
| MACROBLOCK *x; |
| PREDICTION_MODE mode; |
| int skippable; |
| RD_STATS *rdc; |
| }; |
| /*!\endcond */ |
| |
| /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Calculates RD Cost for an intra mode for a single TX block using Hadamard |
| * transform. |
| * \param[in] plane Color plane |
| * \param[in] block Index of a TX block in a prediction block |
| * \param[in] row Row of a current TX block |
| * \param[in] col Column of a current TX block |
| * \param[in] plane_bsize Block size of a current prediction block |
| * \param[in] tx_size Transform size |
| * \param[in] arg Pointer to a structure that holds paramaters |
| * for intra mode search |
| * |
| * \return Nothing is returned. Instead, best mode and RD Cost of the best mode |
| * are set in \c args->rdc and \c args->mode |
| */ |
| static void estimate_block_intra(int plane, int block, int row, int col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct estimate_block_intra_args *const args = arg; |
| AV1_COMP *const cpi = args->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int64_t src_stride = p->src.stride; |
| const int64_t dst_stride = pd->dst.stride; |
| RD_STATS this_rdc; |
| |
| (void)block; |
| |
| av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); |
| av1_invalid_rd_stats(&this_rdc); |
| |
| p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; |
| |
| if (plane == 0) { |
| av1_block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, bsize_tx, |
| AOMMIN(tx_size, TX_16X16), DCT_DCT, 0); |
| } else { |
| int64_t sse = 0; |
| model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &sse, plane, plane); |
| } |
| |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| args->rdc->rate += this_rdc.rate; |
| args->rdc->dist += this_rdc.dist; |
| } |
| |
| static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| MV_REFERENCE_FRAME ref_frame, |
| THR_MODES best_mode_idx, |
| PREDICTION_MODE mode) { |
| const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; |
| const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4); |
| const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128); |
| for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) { |
| int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx]; |
| if (thr_mode_idx == best_mode_idx) { |
| *freq_fact -= (*freq_fact >> 4); |
| } else { |
| *freq_fact = |
| AOMMIN(*freq_fact + RD_THRESH_INC, |
| cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| static void av1_pickmode_ctx_den_update( |
| AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, |
| unsigned int ref_frame_cost[REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred, |
| BEST_PICKMODE *bp) { |
| ctx_den->zero_last_cost_orig = zero_last_cost_orig; |
| ctx_den->ref_frame_cost = ref_frame_cost; |
| ctx_den->frame_mv = frame_mv; |
| ctx_den->reuse_inter_pred = reuse_inter_pred; |
| ctx_den->best_tx_size = bp->best_tx_size; |
| ctx_den->best_mode = bp->best_mode; |
| ctx_den->best_ref_frame = bp->best_ref_frame; |
| ctx_den->best_pred_filter = bp->best_pred_filter; |
| ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm; |
| } |
| |
| static void recheck_zeromv_after_denoising( |
| AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, |
| AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc, |
| BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on |
| // denoised result. Only do this under noise conditions, and if rdcost of |
| // ZEROMV onoriginal source is not significantly higher than rdcost of best |
| // mode. |
| if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && |
| ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && |
| ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || |
| (ctx_den->best_ref_frame == GOLDEN_FRAME && |
| cpi->svc.number_spatial_layers == 1 && |
| decision == FILTER_ZEROMV_BLOCK))) { |
| // Check if we should pick ZEROMV on denoised signal. |
| AV1_COMMON *const cm = &cpi->common; |
| RD_STATS this_rdc; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| |
| mi->mode = GLOBALMV; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); |
| mi->mv[0].as_int = 0; |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1); |
| |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); |
| this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx); |
| |
| this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME]; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| txfm_info->skip_txfm = this_rdc.skip_txfm; |
| // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source |
| // is higher than best_ref mode (on original source). |
| if (this_rdc.rdcost > best_rdc->rdcost) { |
| this_rdc = *best_rdc; |
| mi->mode = best_pickmode->best_mode; |
| mi->ref_frame[0] = best_pickmode->best_ref_frame; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); |
| mi->interp_filters = best_pickmode->best_pred_filter; |
| if (best_pickmode->best_ref_frame == INTRA_FRAME) { |
| mi->mv[0].as_int = INVALID_MV; |
| } else { |
| mi->mv[0].as_int = ctx_den |
| ->frame_mv[best_pickmode->best_mode] |
| [best_pickmode->best_ref_frame] |
| .as_int; |
| if (ctx_den->reuse_inter_pred) { |
| xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| } |
| } |
| mi->tx_size = best_pickmode->best_tx_size; |
| txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm; |
| } else { |
| ctx_den->best_ref_frame = LAST_FRAME; |
| *best_rdc = this_rdc; |
| } |
| } |
| } |
| #endif // CONFIG_AV1_TEMPORAL_DENOISING |
| |
| #define FILTER_SEARCH_SIZE 2 |
| |
| /*!\brief Searches for the best intrpolation filter |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR, |
| * EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects |
| * the one that gives lowest RD cost. RD cost is calculated using curvfit model. |
| * Support for dual filters (different filters in the x & y directions) is |
| * allowed if sf.interp_sf.disable_dual_filter = 0. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] this_rdc Pointer to calculated RD Cost |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] tmp Pointer to a temporary buffer for |
| * prediction re-use |
| * \param[in] bsize Current block size |
| * \param[in] reuse_inter_pred Flag, indicating prediction re-use |
| * \param[out] this_mode_pred Pointer to store prediction buffer |
| * for prediction re-use |
| * \param[out] this_early_term Flag, indicating that transform can be |
| * skipped |
| * \param[in] use_model_yrd_large Flag, indicating special logic to handle |
| * large blocks |
| * \param[in] best_sse Best sse so far. |
| * |
| * \return Nothing is returned. Instead, calculated RD cost is placed to |
| * \c this_rdc and best filter is placed to \c mi->interp_filters. In case |
| * \c reuse_inter_pred flag is set, this function also ouputs |
| * \c this_mode_pred. Also \c this_early_temp is set if transform can be |
| * skipped |
| */ |
| static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, |
| int mi_row, int mi_col, PRED_BUFFER *tmp, |
| BLOCK_SIZE bsize, int reuse_inter_pred, |
| PRED_BUFFER **this_mode_pred, |
| int *this_early_term, int use_model_yrd_large, |
| int64_t best_sse) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const int bw = block_size_wide[bsize]; |
| int dim_factor = |
| (cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1; |
| RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; |
| TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; |
| PRED_BUFFER *current_pred = *this_mode_pred; |
| int best_skip = 0; |
| int best_early_term = 0; |
| int64_t best_cost = INT64_MAX; |
| int best_filter_index = -1; |
| for (int i = 0; i < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; ++i) { |
| int64_t cost; |
| if (cpi->sf.interp_sf.disable_dual_filter && |
| filters_ref_set[i].filter_x != filters_ref_set[i].filter_y) |
| continue; |
| mi->interp_filters.as_filters.x_filter = filters_ref_set[i].filter_x; |
| mi->interp_filters.as_filters.y_filter = filters_ref_set[i].filter_y; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[i], this_early_term, 1, best_sse, |
| NULL, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1); |
| pf_rd_stats[i].rate += av1_get_switchable_rate( |
| x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); |
| cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); |
| pf_tx_size[i] = mi->tx_size; |
| if (cost < best_cost) { |
| best_filter_index = i; |
| best_cost = cost; |
| best_skip = pf_rd_stats[i].skip_txfm; |
| best_early_term = *this_early_term; |
| if (reuse_inter_pred) { |
| if (*this_mode_pred != current_pred) { |
| free_pred_buffer(*this_mode_pred); |
| *this_mode_pred = current_pred; |
| } |
| current_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = current_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| } |
| assert(best_filter_index >= 0 && |
| best_filter_index < dim_factor * FILTER_SEARCH_SIZE); |
| if (reuse_inter_pred && *this_mode_pred != current_pred) |
| free_pred_buffer(current_pred); |
| |
| mi->interp_filters.as_filters.x_filter = |
| filters_ref_set[best_filter_index].filter_x; |
| mi->interp_filters.as_filters.y_filter = |
| filters_ref_set[best_filter_index].filter_y; |
| mi->tx_size = pf_tx_size[best_filter_index]; |
| this_rdc->rate = pf_rd_stats[best_filter_index].rate; |
| this_rdc->dist = pf_rd_stats[best_filter_index].dist; |
| this_rdc->sse = pf_rd_stats[best_filter_index].sse; |
| this_rdc->skip_txfm = (best_skip || best_early_term); |
| *this_early_term = best_early_term; |
| if (reuse_inter_pred) { |
| pd->dst.buf = (*this_mode_pred)->data; |
| pd->dst.stride = (*this_mode_pred)->stride; |
| } else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) { |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| } |
| } |
| #if !CONFIG_REALTIME_ONLY |
| #define MOTION_MODE_SEARCH_SIZE 2 |
| |
| static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi, |
| MACROBLOCK *const x, |
| const MB_MODE_INFO *mbmi) { |
| const FeatureFlags *const features = &cpi->common.features; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (cpi->sf.inter_sf.extra_prune_warped) return 0; |
| if (has_second_ref(mbmi)) return 0; |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| |
| if (features->switchable_motion_mode) { |
| // Determine which motion modes to search if more than SIMPLE_TRANSLATION |
| // is allowed. |
| last_motion_mode_allowed = motion_mode_allowed( |
| xd->global_motion, xd, mbmi, features->allow_warped_motion); |
| } |
| |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const FeatureFlags *const features = &cm->features; |
| |
| mi->num_proj_ref = 1; |
| WARP_SAMPLE_INFO *const warp_sample_info = |
| &x->warp_sample_info[mi->ref_frame[0]]; |
| int *pts0 = warp_sample_info->pts; |
| int *pts_inref0 = warp_sample_info->pts_inref; |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| |
| if (features->switchable_motion_mode) { |
| // Determine which motion modes to search if more than SIMPLE_TRANSLATION |
| // is allowed. |
| last_motion_mode_allowed = motion_mode_allowed( |
| xd->global_motion, xd, mi, features->allow_warped_motion); |
| } |
| |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| if (warp_sample_info->num < 0) { |
| warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); |
| } |
| mi->num_proj_ref = warp_sample_info->num; |
| } |
| } |
| |
| static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *this_early_term, int use_model_yrd_large, |
| int *rate_mv, int64_t best_sse) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const FeatureFlags *const features = &cm->features; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 }; |
| int best_skip = 0; |
| int best_early_term = 0; |
| int64_t best_cost = INT64_MAX; |
| int best_mode_index = -1; |
| const int interp_filter = features->interp_filter; |
| |
| const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = { |
| SIMPLE_TRANSLATION, WARPED_CAUSAL |
| }; |
| int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1; |
| |
| WARP_SAMPLE_INFO *const warp_sample_info = |
| &x->warp_sample_info[mi->ref_frame[0]]; |
| int *pts0 = warp_sample_info->pts; |
| int *pts_inref0 = warp_sample_info->pts_inref; |
| |
| const int total_samples = mi->num_proj_ref; |
| if (total_samples == 0) { |
| // Do not search WARPED_CAUSAL if there are no samples to use to determine |
| // warped parameters. |
| mode_search_size = 1; |
| } |
| |
| const MB_MODE_INFO base_mbmi = *mi; |
| MB_MODE_INFO best_mbmi; |
| |
| for (int i = 0; i < mode_search_size; ++i) { |
| int64_t cost = INT64_MAX; |
| MOTION_MODE motion_mode = motion_modes[i]; |
| *mi = base_mbmi; |
| mi->motion_mode = motion_mode; |
| if (motion_mode == SIMPLE_TRANSLATION) { |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[i], this_early_term, 1, best_sse, |
| NULL, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1); |
| pf_rd_stats[i].rate += |
| av1_get_switchable_rate(x, xd, cm->features.interp_filter, |
| cm->seq_params->enable_dual_filter); |
| cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); |
| } else if (motion_mode == WARPED_CAUSAL) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| mi->wm_params.wmtype = DEFAULT_WMTYPE; |
| mi->interp_filters = |
| av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); |
| |
| memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); |
| memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); |
| // Select the samples according to motion vector difference |
| if (mi->num_proj_ref > 1) { |
| mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref, |
| mi->num_proj_ref, bsize); |
| } |
| |
| // Compute the warped motion parameters with a least squares fit |
| // using the collected samples |
| if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize, |
| mi->mv[0].as_mv.row, mi->mv[0].as_mv.col, |
| &mi->wm_params, mi_row, mi_col)) { |
| if (mi->mode == NEWMV) { |
| const int_mv mv0 = mi->mv[0]; |
| const WarpedMotionParams wm_params0 = mi->wm_params; |
| const int num_proj_ref0 = mi->num_proj_ref; |
| |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, |
| &ref_mv.as_mv, NULL); |
| |
| // Refine MV in a small range. |
| av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, |
| total_samples); |
| if (mi->mv[0].as_int == ref_mv.as_int) { |
| continue; |
| } |
| |
| if (mv0.as_int != mi->mv[0].as_int) { |
| // Keep the refined MV and WM parameters. |
| int tmp_rate_mv = av1_mv_bit_cost( |
| &mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| *rate_mv = tmp_rate_mv; |
| } else { |
| // Restore the old MV and WM parameters. |
| mi->mv[0] = mv0; |
| mi->wm_params = wm_params0; |
| mi->num_proj_ref = num_proj_ref0; |
| } |
| } |
| // Build the warped predictor |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[i], this_early_term, 1, |
| best_sse, NULL, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1); |
| |
| pf_rd_stats[i].rate += |
| mode_costs->motion_mode_cost[bsize][mi->motion_mode]; |
| cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); |
| } else { |
| cost = INT64_MAX; |
| } |
| } |
| if (cost < best_cost) { |
| best_mode_index = i; |
| best_cost = cost; |
| best_skip = pf_rd_stats[i].skip_txfm; |
| best_early_term = *this_early_term; |
| best_mbmi = *mi; |
| } |
| } |
| assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE); |
| |
| *mi = best_mbmi; |
| this_rdc->rate = pf_rd_stats[best_mode_index].rate; |
| this_rdc->dist = pf_rd_stats[best_mode_index].dist; |
| this_rdc->sse = pf_rd_stats[best_mode_index].sse; |
| this_rdc->skip_txfm = (best_skip || best_early_term); |
| *this_early_term = best_early_term; |
| if (best_mode_index < FILTER_SEARCH_SIZE - 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define COLLECT_PICK_MODE_STAT 0 |
| |
| #if COLLECT_PICK_MODE_STAT |
| typedef struct _mode_search_stat { |
| int32_t num_blocks[BLOCK_SIZES]; |
| int64_t avg_block_times[BLOCK_SIZES]; |
| int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT]; |
| int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t ms_time[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t ifs_time[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t model_rd_time[BLOCK_SIZES][MB_MODE_COUNT]; |
| int64_t txfm_time[BLOCK_SIZES][MB_MODE_COUNT]; |
| struct aom_usec_timer timer1; |
| struct aom_usec_timer timer2; |
| struct aom_usec_timer timer3; |
| } mode_search_stat; |
| #endif // COLLECT_PICK_MODE_STAT |
| |
| static void compute_intra_yprediction(const AV1_COMMON *cm, |
| PREDICTION_MODE mode, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd) { |
| const SequenceHeader *seq_params = cm->seq_params; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| int plane = 0; |
| int row, col; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { |
| p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; |
| av1_predict_intra_block( |
| xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, |
| block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, |
| FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride, |
| 0, 0, plane); |
| } |
| } |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| } |
| |
| void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| RD_STATS this_rdc, best_rdc; |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const TX_SIZE intra_tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| int *bmode_costs; |
| PREDICTION_MODE best_mode = DC_PRED; |
| const MB_MODE_INFO *above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *left_mi = xd->left_mbmi; |
| const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[A]; |
| const int left_ctx = intra_mode_context[L]; |
| bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; |
| |
| av1_invalid_rd_stats(&best_rdc); |
| av1_invalid_rd_stats(&this_rdc); |
| |
| init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm); |
| mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV; |
| |
| // Change the limit of this loop to add other intra prediction |
| // mode tests. |
| for (int i = 0; i < 4; ++i) { |
| PREDICTION_MODE this_mode = intra_mode_list[i]; |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| mi->mode = this_mode; |
| av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, |
| &args); |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| if (args.skippable) { |
| this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; |
| } else { |
| this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0]; |
| } |
| this_rdc.rate += bmode_costs[this_mode]; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_mode = this_mode; |
| if (!this_rdc.skip_txfm) { |
| memset(ctx->blk_skip, 0, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| } |
| |
| mi->mode = best_mode; |
| // Keep DC for UV since mode test is based on Y channel only. |
| mi->uv_mode = UV_DC_PRED; |
| *rd_cost = best_rdc; |
| |
| #if CONFIG_INTERNAL_STATS |
| store_coding_context(x, ctx, mi->mode); |
| #else |
| store_coding_context(x, ctx); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) { |
| struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME); |
| struct scale_factors *const sf_golden = |
| get_ref_scale_factors(cm, GOLDEN_FRAME); |
| return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) && |
| (sf_last->y_scale_fp == sf_golden->y_scale_fp)); |
| } |
| |
| static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x, |
| MB_MODE_INFO *mi, int mi_row, |
| int mi_col, int bsize, |
| int gf_temporal_ref, |
| int use_ref_frame[], |
| int *force_skip_low_temp_var) { |
| AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| |
| // For SVC the usage of alt_ref is determined by the ref_frame_flags. |
| int use_alt_ref_frame = |
| cpi->ppi->use_svc || cpi->sf.rt_sf.use_nonrd_altref_frame; |
| int use_golden_ref_frame = 1; |
| int use_last_ref_frame = 1; |
| |
| if (cpi->ppi->use_svc) |
| use_last_ref_frame = |
| cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0; |
| |
| // Only remove golden and altref reference below if last is a reference, |
| // which may not be the case for svc. |
| if (use_last_ref_frame && cpi->rc.frames_since_golden == 0 && |
| gf_temporal_ref) { |
| use_golden_ref_frame = 0; |
| } |
| if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var && |
| x->nonrd_prune_ref_frame_search) { |
| if (is_small_sb) |
| *force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb( |
| &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); |
| else |
| *force_skip_low_temp_var = av1_get_force_skip_low_temp_var( |
| &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); |
| // If force_skip_low_temp_var is set, skip golden reference. |
| if (*force_skip_low_temp_var) { |
| use_golden_ref_frame = 0; |
| use_alt_ref_frame = 0; |
| } |
| } |
| |
| if (use_last_ref_frame && |
| (x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip || |
| (x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) { |
| use_golden_ref_frame = 0; |
| use_alt_ref_frame = 0; |
| // Keep golden (longer-term) reference if sb has high source sad, for |
| // frames whose average souce_sad is below threshold. This is to try to |
| // capture case where only part of frame has high motion. |
| // Exclude screen content mode. |
| if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && |
| x->content_state_sb.source_sad_nonrd >= kHighSad && |
| bsize <= BLOCK_32X32 && cpi->rc.frame_source_sad < 50000) |
| use_golden_ref_frame = 1; |
| } |
| |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { |
| use_golden_ref_frame = 1; |
| use_alt_ref_frame = 0; |
| } |
| |
| use_alt_ref_frame = |
| cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0; |
| use_golden_ref_frame = |
| cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0; |
| |
| use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame; |
| use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame; |
| use_ref_frame[LAST_FRAME] = use_last_ref_frame; |
| // For now keep this assert on, but we should remove it for svc mode, |
| // as the user may want to generate an intra-only frame (no inter-modes). |
| // Remove this assert in subsequent CL when nonrd_pickmode is tested for the |
| // case of intra-only frame (no references enabled). |
| assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame); |
| } |
| |
| /*!\brief Estimates best intra mode for inter mode search |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * |
| * Using heuristics based on best inter mode, block size, and other decides |
| * whether to check intra modes. If so, estimates and selects best intra mode |
| * from the reduced set of intra modes (max 4 intra modes checked) |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] bsize Current block size |
| * \param[in] use_modeled_non_rd_cost Flag, indicating usage of curvfit |
| * model for RD cost |
| * \param[in] best_early_term Flag, indicating that TX for the |
| * best inter mode was skipped |
| * \param[in] ref_cost_intra Cost of signalling intra mode |
| * \param[in] reuse_prediction Flag, indicating prediction re-use |
| * \param[in] orig_dst Original destination buffer |
| * \param[in] tmp_buffers Pointer to a temporary buffers for |
| * prediction re-use |
| * \param[out] this_mode_pred Pointer to store prediction buffer |
| * for prediction re-use |
| * \param[in] best_rdc Pointer to RD cost for the best |
| * selected intra mode |
| * \param[in] best_pickmode Pointer to a structure containing |
| * best mode picked so far |
| * \param[in] ctx Pointer to structure holding coding |
| * contexts and modes for the block |
| * |
| * \return Nothing is returned. Instead, calculated RD cost is placed to |
| * \c best_rdc and best selected mode is placed to \c best_pickmode |
| */ |
| static void estimate_intra_mode( |
| AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int use_modeled_non_rd_cost, |
| int best_early_term, unsigned int ref_cost_intra, int reuse_prediction, |
| struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers, |
| PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, |
| BEST_PICKMODE *best_pickmode, PICK_MODE_CONTEXT *ctx) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const unsigned char segment_id = mi->segment_id; |
| const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| |
| RD_STATS this_rdc; |
| |
| int intra_cost_penalty = av1_get_intra_cost_penalty( |
| quant_params->base_qindex, quant_params->y_dc_delta_q, |
| cm->seq_params->bit_depth); |
| int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0); |
| int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd; |
| int force_intra_check = 0; |
| // For spatial enhancemanent layer: turn off intra prediction if the |
| // previous spatial layer as golden ref is not chosen as best reference. |
| // only do this for temporal enhancement layer and on non-key frames. |
| if (cpi->svc.spatial_layer_id > 0 && |
| best_pickmode->best_ref_frame != GOLDEN_FRAME && |
| cpi->svc.temporal_layer_id > 0 && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) |
| perform_intra_pred = 0; |
| |
| int do_early_exit_rdthresh = 1; |
| |
| uint32_t spatial_var_thresh = 50; |
| int motion_thresh = 32; |
| // Adjust thresholds to make intra mode likely tested if the other |
| // references (golden, alt) are skipped/not checked. For now always |
| // adjust for svc mode. |
| if (cpi->ppi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 && |
| cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) { |
| spatial_var_thresh = 150; |
| motion_thresh = 0; |
| } |
| |
| // Some adjustments to checking intra mode based on source variance. |
| if (x->source_variance < spatial_var_thresh) { |
| // If the best inter mode is large motion or non-LAST ref reduce intra cost |
| // penalty, so intra mode is more likely tested. |
| if (best_rdc->rdcost != INT64_MAX && |
| (best_pickmode->best_ref_frame != LAST_FRAME || |
| abs(mi->mv[0].as_mv.row) >= motion_thresh || |
| abs(mi->mv[0].as_mv.col) >= motion_thresh)) { |
| intra_cost_penalty = intra_cost_penalty >> 2; |
| inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0); |
| do_early_exit_rdthresh = 0; |
| } |
| if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) && |
| x->content_state_sb.source_sad_nonrd >= kHighSad) || |
| (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| x->source_variance == 0 && |
| (x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1))) |
| force_intra_check = 1; |
| // For big blocks worth checking intra (since only DC will be checked), |
| // even if best_early_term is set. |
| if (bsize >= BLOCK_32X32) best_early_term = 0; |
| } else if (cpi->sf.rt_sf.source_metrics_sb_nonrd && |
| x->content_state_sb.source_sad_nonrd == kLowSad) { |
| perform_intra_pred = 0; |
| } |
| |
| if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) { |
| if (cpi->sf.rt_sf.skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV) |
| perform_intra_pred = 0; |
| else if (cpi->sf.rt_sf.skip_intra_pred == 2) |
| perform_intra_pred = 0; |
| } |
| |
| if (!(best_rdc->rdcost == INT64_MAX || force_intra_check || |
| (perform_intra_pred && !best_early_term && |
| best_rdc->rdcost > inter_mode_thresh && |
| bsize <= cpi->sf.part_sf.max_intra_bsize))) { |
| return; |
| } |
| |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| TX_SIZE intra_tx_size = AOMMIN( |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), |
| TX_16X16); |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->rc.high_source_sad && x->source_variance > spatial_var_thresh && |
| bsize <= BLOCK_16X16) |
| intra_tx_size = TX_4X4; |
| |
| PRED_BUFFER *const best_pred = best_pickmode->best_pred; |
| if (reuse_prediction && best_pred != NULL) { |
| const int bh = block_size_high[bsize]; |
| const int bw = block_size_wide[bsize]; |
| if (best_pred->data == orig_dst->buf) { |
| *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)]; |
| aom_convolve_copy(best_pred->data, best_pred->stride, |
| (*this_mode_pred)->data, (*this_mode_pred)->stride, bw, |
| bh); |
| best_pickmode->best_pred = *this_mode_pred; |
| } |
| } |
| pd->dst = *orig_dst; |
| |
| for (int i = 0; i < 4; ++i) { |
| const PREDICTION_MODE this_mode = intra_mode_list[i]; |
| const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; |
| const int64_t mode_rd_thresh = rd_threshes[mode_index]; |
| |
| if (i > 2 || !(force_intra_check == 1 && |
| best_pickmode->best_ref_frame != INTRA_FRAME)) { |
| if (!((1 << this_mode) & |
| cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize])) |
| continue; |
| } |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->sf.rt_sf.source_metrics_sb_nonrd) { |
| // For spatially flat blocks with zero motion only check |
| // DC mode. |
| if (x->content_state_sb.source_sad_nonrd == kZeroSad && |
| x->source_variance == 0 && this_mode != DC_PRED) |
| continue; |
| // Only test Intra for big blocks if spatial_variance is 0. |
| else if (bsize > BLOCK_32X32 && x->source_variance > 0) |
| continue; |
| } |
| |
| if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index]) && |
| (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) { |
| continue; |
| } |
| const BLOCK_SIZE uv_bsize = get_plane_block_size( |
| bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); |
| |
| mi->mode = this_mode; |
| mi->ref_frame[0] = INTRA_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| av1_invalid_rd_stats(&this_rdc); |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| compute_intra_yprediction(cm, this_mode, bsize, x, xd); |
| // Look into selecting tx_size here, based on prediction residual. |
| if (use_modeled_non_rd_cost) |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1); |
| else |
| av1_block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, bsize, |
| mi->tx_size, DCT_DCT, 0); |
| // TODO(kyslov@) Need to account for skippable |
| if (x->color_sensitivity[0]) { |
| av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1, |
| estimate_block_intra, &args); |
| } |
| if (x->color_sensitivity[1]) { |
| av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2, |
| estimate_block_intra, &args); |
| } |
| |
| int mode_cost = 0; |
| if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { |
| mode_cost += |
| x->mode_costs.angle_delta_cost[this_mode - V_PRED] |
| [MAX_ANGLE_DELTA + |
| mi->angle_delta[PLANE_TYPE_Y]]; |
| } |
| if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
| mode_cost += x->mode_costs.filter_intra_cost[bsize][0]; |
| } |
| this_rdc.rate += ref_cost_intra; |
| this_rdc.rate += intra_cost_penalty; |
| this_rdc.rate += mode_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->sf.rt_sf.source_metrics_sb_nonrd) { |
| // For blocks with low spatial variance and color sad, |
| // favor the intra-modes, only on scene/slide change. |
| if (cpi->rc.high_source_sad && x->source_variance < 800 && |
| (x->color_sensitivity[0] || x->color_sensitivity[1])) |
| this_rdc.rdcost = (7 * this_rdc.rdcost) >> 3; |
| // Otherwise bias against intra for blocks with zero |
| // motion and no color, on non-scene/slide changes. |
| else if (!cpi->rc.high_source_sad && x->source_variance > 0 && |
| x->content_state_sb.source_sad_nonrd == kZeroSad && |
| x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) |
| this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1; |
| } |
| |
| if (this_rdc.rdcost < best_rdc->rdcost) { |
| *best_rdc = this_rdc; |
| best_pickmode->best_mode = this_mode; |
| best_pickmode->best_tx_size = mi->tx_size; |
| best_pickmode->best_ref_frame = INTRA_FRAME; |
| best_pickmode->best_second_ref_frame = NONE; |
| best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm; |
| if (!this_rdc.skip_txfm) { |
| memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| mi->uv_mode = this_mode; |
| mi->mv[0].as_int = INVALID_MV; |
| mi->mv[1].as_int = INVALID_MV; |
| } |
| } |
| mi->tx_size = best_pickmode->best_tx_size; |
| } |
| |
| static AOM_INLINE int is_filter_search_enabled(const AV1_COMP *cpi, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| int segment_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| int enable_filter_search = 0; |
| |
| if (cpi->sf.rt_sf.use_nonrd_filter_search) { |
| enable_filter_search = 1; |
| if (cpi->sf.interp_sf.cb_pred_filter_search) { |
| const int bsl = mi_size_wide_log2[bsize]; |
| enable_filter_search = |
| (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_frame.frame_number)) & |
| 0x1; |
| if (cyclic_refresh_segment_id_boosted(segment_id)) |
| enable_filter_search = 1; |
| } |
| } |
| return enable_filter_search; |
| } |
| |
| static AOM_INLINE int skip_mode_by_threshold( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv, |
| int frames_since_golden, const int *const rd_threshes, |
| const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip, |
| int extra_shift) { |
| int skip_this_mode = 0; |
| const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)]; |
| int64_t mode_rd_thresh = |
| best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1) |
| : ((int64_t)rd_threshes[mode_index]) << extra_shift; |
| |
| // Increase mode_rd_thresh value for non-LAST for improved encoding |
| // speed |
| if (ref_frame != LAST_FRAME) { |
| mode_rd_thresh = mode_rd_thresh << 1; |
| if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4) |
| mode_rd_thresh = mode_rd_thresh << (extra_shift + 1); |
| } |
| |
| if (rd_less_than_thresh(best_cost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) |
| if (mv.as_int != 0) skip_this_mode = 1; |
| |
| return skip_this_mode; |
| } |
| |
| static AOM_INLINE int skip_mode_by_low_temp( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, |
| CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) { |
| // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var |
| // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped |
| // later. |
| if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) { |
| return 1; |
| } |
| |
| if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 && |
| force_skip_low_temp_var && mode == NEWMV) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE int skip_mode_by_bsize_and_ref_frame( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, |
| int extra_prune, unsigned int sse_zeromv_norm, int more_prune) { |
| const unsigned int thresh_skip_golden = 500; |
| |
| if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden && |
| mode == NEWMV) |
| return 1; |
| |
| if (bsize == BLOCK_128X128 && mode == NEWMV) return 1; |
| |
| // Skip testing non-LAST if this flag is set. |
| if (extra_prune) { |
| if (extra_prune > 1 && ref_frame != LAST_FRAME && |
| (bsize > BLOCK_16X16 && mode == NEWMV)) |
| return 1; |
| |
| if (ref_frame != LAST_FRAME && mode == NEARMV) return 1; |
| |
| if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1; |
| } |
| return 0; |
| } |
| |
| void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int y_sad, |
| unsigned int source_variance) { |
| int factor = (bsize >= BLOCK_32X32) ? 2 : 3; |
| int shift = 3; |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->rc.high_source_sad) { |
| factor = 1; |
| shift = 6; |
| } |
| NOISE_LEVEL noise_level = kLow; |
| int norm_sad = |
| y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000; |
| // If the spatial source variance is high and the normalized y_sad |
| // is low, then y-channel is likely good for mode estimation, so keep |
| // color_sensitivity off. For low noise content for now, since there is |
| // some bdrate regression for noisy color clip. |
| if (cpi->noise_estimate.enabled) |
| noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| if (noise_level == kLow && source_variance > thresh_spatial && |
| norm_sad < 50) { |
| x->color_sensitivity[0] = 0; |
| x->color_sensitivity[1] = 0; |
| return; |
| } |
| for (int i = 1; i <= 2; ++i) { |
| if (x->color_sensitivity[i - 1] == 2 || source_variance < 50) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const int uv_sad = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| const int norm_uv_sad = |
| uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]); |
| x->color_sensitivity[i - 1] = |
| uv_sad > (factor * (y_sad >> shift)) && norm_uv_sad > 40; |
| if (source_variance < 50 && norm_uv_sad > 100) |
| x->color_sensitivity[i - 1] = 1; |
| } |
| } |
| } |
| |
| void setup_compound_prediction(AV1_COMP *cpi, MACROBLOCK *x, |
| struct buf_2d yv12_mb[8][MAX_MB_PLANE], |
| int *use_ref_frame_mask, int flag_comp, |
| int *ref_mv_idx) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| MV_REFERENCE_FRAME rf[2] = { LAST_FRAME, GOLDEN_FRAME }; |
| MV_REFERENCE_FRAME ref_frame_comp; |
| if (flag_comp == 1) { |
| rf[1] = LAST2_FRAME; |
| } else if (flag_comp == 2) { |
| rf[1] = ALTREF_FRAME; |
| } |
| if (!use_ref_frame_mask[rf[1]]) { |
| // Need to setup pred_block, if it hasn't been done in find_predictors. |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]); |
| const int num_planes = av1_num_planes(cm); |
| if (yv12 != NULL) { |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, rf[1]); |
| av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes); |
| } |
| } |
| ref_frame_comp = av1_ref_frame_type(rf); |
| mbmi_ext->mode_context[ref_frame_comp] = 0; |
| mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX; |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count, |
| xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, |
| mbmi_ext->mode_context); |
| av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp); |
| *ref_mv_idx = mbmi->ref_mv_idx + 1; |
| } |
| |
| static void set_compound_mode(MACROBLOCK *x, int comp_index, int ref_frame, |
| int ref_frame2, int ref_mv_idx, |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], |
| PREDICTION_MODE *this_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| *this_mode = GLOBAL_GLOBALMV; |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = ref_frame2; |
| mi->compound_idx = 1; |
| mi->comp_group_idx = 0; |
| mi->interinter_comp.type = COMPOUND_AVERAGE; |
| MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame); |
| if (comp_index % 3 == 0) { |
| frame_mv[*this_mode][ref_frame].as_int = 0; |
| frame_mv[*this_mode][ref_frame2].as_int = 0; |
| } else if (comp_index % 3 == 1) { |
| *this_mode = NEAREST_NEARESTMV; |
| frame_mv[*this_mode][ref_frame].as_int = |
| xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int; |
| frame_mv[*this_mode][ref_frame2].as_int = |
| xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int; |
| } else if (comp_index % 3 == 2) { |
| *this_mode = NEAR_NEARMV; |
| frame_mv[*this_mode][ref_frame].as_int = |
| xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int; |
| frame_mv[*this_mode][ref_frame2].as_int = |
| xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int; |
| } |
| } |
| |
| static int skip_comp_based_on_sad(AV1_COMP *cpi, MACROBLOCK *x, |
| const int mi_row, const int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(!(mi_row % 16) && !(mi_col % 16)); |
| const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
| ? (cm->seq_params->mib_size >> 1) |
| : cm->seq_params->mib_size; |
| const int sb_cols = |
| (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
| const uint64_t sad_skp_comp_th[2][3] = { { 2700, 3100 }, // CPU 9 |
| { 2700, 3200 } }; // CPU 10 |
| const uint64_t sad_blkwise_var_th = 5000; |
| const float qindex_th_scale[5] = { 0.75f, 0.9f, 1.0f, 1.1f, 1.25f }; |
| const int qindex_band = (5 * x->qindex) >> QINDEX_BITS; |
| assert(qindex_band < 5); |
| const int sp_idx = (cpi->sf.rt_sf.sad_based_comp_prune >= 2); |
| const int bsize_idx = (bsize == BLOCK_128X128); |
| const uint64_t sad_skp_comp_th_val = (uint64_t)( |
| sad_skp_comp_th[sp_idx][bsize_idx] * qindex_th_scale[qindex_band]); |
| uint64_t blk_sad = 0, sad00, sad01, sad10, sad11, min_sad, max_sad; |
| const int sbi_col = mi_col / 16; |
| const int sbi_row = mi_row / 16; |
| const uint64_t *cur_blk_sad = |
| &cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; |
| |
| if (bsize == BLOCK_128X128) { |
| sad00 = cur_blk_sad[0]; |
| sad01 = cur_blk_sad[1]; |
| sad10 = cur_blk_sad[sb_cols]; |
| sad11 = cur_blk_sad[1 + sb_cols]; |
| min_sad = AOMMIN(AOMMIN(AOMMIN(sad00, sad01), sad10), sad11); |
| max_sad = AOMMAX(AOMMAX(AOMMAX(sad00, sad01), sad10), sad11); |
| if (max_sad - min_sad > sad_blkwise_var_th) return 0; |
| blk_sad = (sad00 + sad01 + sad10 + sad11 + 2) >> 2; |
| } else if (bsize == BLOCK_128X64) { |
| sad00 = cur_blk_sad[0]; |
| sad01 = cur_blk_sad[1]; |
| min_sad = AOMMIN(sad00, sad01); |
| max_sad = AOMMAX(sad00, sad01); |
| if (max_sad - min_sad > sad_blkwise_var_th) return 0; |
| blk_sad = (sad00 + sad01 + 1) >> 1; |
| } else if (bsize == BLOCK_64X128) { |
| sad00 = cur_blk_sad[0]; |
| sad10 = cur_blk_sad[sb_cols]; |
| min_sad = AOMMIN(sad00, sad10); |
| max_sad = AOMMAX(sad00, sad10); |
| if (max_sad - min_sad > sad_blkwise_var_th) return 0; |
| blk_sad = (sad00 + sad10 + 1) >> 1; |
| } else if (bsize <= BLOCK_64X64) { |
| blk_sad = cur_blk_sad[0]; |
| } else { |
| assert(0); |
| } |
| |
| if (blk_sad < sad_skp_comp_th_val) return 1; |
| |
| return 0; |
| } |
| |
| void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, RD_STATS *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| AV1_COMMON *const cm = &cpi->common; |
| SVC *const svc = &cpi->svc; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const InterpFilter filter_ref = cm->features.interp_filter; |
| const InterpFilter default_interp_filter = EIGHTTAP_REGULAR; |
| BEST_PICKMODE best_pickmode; |
| #if COLLECT_PICK_MODE_STAT |
| static mode_search_stat ms_stat; |
| #endif |
| MV_REFERENCE_FRAME ref_frame, ref_frame2; |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; |
| int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES]; |
| uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES]; |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; |
| RD_STATS this_rdc, best_rdc; |
| const unsigned char segment_id = mi->segment_id; |
| const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; |
| int best_early_term = 0; |
| unsigned int ref_costs_single[REF_FRAMES]; |
| int force_skip_low_temp_var = 0; |
| int use_ref_frame_mask[REF_FRAMES] = { 0 }; |
| unsigned int sse_zeromv_norm = UINT_MAX; |
| // Use mode set that includes zeromv (via globalmv) for speed >= 9 for |
| // content with low motion, and always for force_zeromv_skip. |
| int use_zeromv = |
| cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN || |
| ((cpi->oxcf.speed >= 9 && cpi->rc.avg_frame_low_motion > 70) || |
| cpi->sf.rt_sf.nonrd_agressive_skip || x->force_zeromv_skip); |
| int skip_pred_mv = 0; |
| const int num_inter_modes = |
| use_zeromv ? NUM_INTER_MODES_REDUCED : NUM_INTER_MODES_RT; |
| const REF_MODE *const ref_mode_set = |
| use_zeromv ? ref_mode_set_reduced : ref_mode_set_rt; |
| PRED_BUFFER tmp[4]; |
| DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]); |
| PRED_BUFFER *this_mode_pred = NULL; |
| const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd && |
| cm->seq_params->bit_depth == AOM_BITS_8; |
| |
| const int bh = block_size_high[bsize]; |
| const int bw = block_size_wide[bsize]; |
| const int pixels_in_block = bh * bw; |
| const int num_8x8_blocks = ctx->num_4x4_blk / 4; |
| struct buf_2d orig_dst = pd->dst; |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer2); |
| #endif |
| int64_t thresh_sad_pred = INT64_MAX; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| int svc_mv_col = 0; |
| int svc_mv_row = 0; |
| int force_mv_inter_layer = 0; |
| int use_modeled_non_rd_cost = 0; |
| int comp_pred = 0; |
| int num_comp_modes_ref = 0; |
| int tot_num_comp_modes = 9; |
| int ref_mv_idx = 0; |
| int skip_comp_mode = 0; |
| unsigned int global_mv_var[REF_FRAMES] = { UINT_MAX }; |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| const int denoise_recheck_zeromv = 1; |
| AV1_PICKMODE_CTX_DEN ctx_den; |
| int64_t zero_last_cost_orig = INT64_MAX; |
| int denoise_svc_pickmode = 1; |
| const int resize_pending = is_frame_resize_pending(cpi); |
| #endif |
| x->color_sensitivity[0] = x->color_sensitivity_sb[0]; |
| x->color_sensitivity[1] = x->color_sensitivity_sb[1]; |
| init_best_pickmode(&best_pickmode); |
| |
| const ModeCosts *mode_costs = &x->mode_costs; |
| |
| estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, |
| ref_costs_single); |
| |
| memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES); |
| if (reuse_inter_pred) { |
| for (int i = 0; i < 3; i++) { |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| tmp[i].stride = bw; |
| tmp[i].in_use = 0; |
| } |
| tmp[3].data = pd->dst.buf; |
| tmp[3].stride = pd->dst.stride; |
| tmp[3].in_use = 0; |
| } |
| |
| txfm_info->skip_txfm = 0; |
| |
| // initialize mode decisions |
| av1_invalid_rd_stats(&best_rdc); |
| av1_invalid_rd_stats(&this_rdc); |
| av1_invalid_rd_stats(rd_cost); |
| for (int i = 0; i < REF_FRAMES; ++i) { |
| x->warp_sample_info[i].num = -1; |
| } |
| |
| mi->bsize = bsize; |
| mi->ref_frame[0] = NONE_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| // if (cpi->ppi->use_svc) denoise_svc_pickmode = |
| // av1_denoise_svc_non_key(cpi); |
| if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) |
| av1_denoiser_reset_frame_stats(ctx); |
| } |
| #endif |
| |
| const int gf_temporal_ref = is_same_gf_and_last_scale(cm); |
| |
| // If the lower spatial layer uses an averaging filter for downsampling |
| // (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative |
| // to source, so use subpel motion vector to compensate. The nonzero motion |
| // is half pixel shifted to left and top, so (-4, -4). This has more effect |
| // on higher resolutins, so condition it on that for now. |
| if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && |
| svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 && |
| cm->width * cm->height > 640 * 480) { |
| svc_mv_col = -4; |
| svc_mv_row = -4; |
| } |
| |
| get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref, |
| use_ref_frame_mask, &force_skip_low_temp_var); |
| |
| skip_pred_mv = x->force_zeromv_skip || |
| (x->nonrd_prune_ref_frame_search > 2 && |
| x->color_sensitivity[0] != 2 && x->color_sensitivity[1] != 2); |
| |
| // Compound modes per reference pair (GOLDEN_LAST/LAST2_LAST/ALTREF_LAST): |
| // (0_0)/(NEAREST_NEAREST)/(NEAR_NEAR). |
| // For now to reduce slowdowm, use only (0,0) for blocks above 16x16 |
| // for non-svc case or on enhancement layers for svc. |
| if (cpi->sf.rt_sf.use_comp_ref_nonrd && is_comp_ref_allowed(bsize)) { |
| if (cpi->ppi->use_svc && cpi->svc.temporal_layer_id == 0) |
| num_comp_modes_ref = 2; |
| else if (bsize > BLOCK_16X16) |
| num_comp_modes_ref = 1; |
| else |
| tot_num_comp_modes = 0; |
| } else { |
| tot_num_comp_modes = 0; |
| } |
| |
| for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME; |
| ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) { |
| if (use_ref_frame_mask[ref_frame_iter]) { |
| find_predictors(cpi, x, ref_frame_iter, frame_mv, tile_data, yv12_mb, |
| bsize, force_skip_low_temp_var, skip_pred_mv); |
| } |
| } |
| |
| thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1; |
| // Increase threshold for less agressive pruning. |
| if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1) |
| thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2); |
| |
| const int large_block = bsize >= BLOCK_32X32; |
| const int use_model_yrd_large = |
| cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block && |
| !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && |
| quant_params->base_qindex && cm->seq_params->bit_depth == 8; |
| |
| const int enable_filter_search = |
| is_filter_search_enabled(cpi, mi_row, mi_col, bsize, segment_id); |
| |
| // TODO(marpan): Look into reducing these conditions. For now constrain |
| // it to avoid significant bdrate loss. |
| if (cpi->sf.rt_sf.use_modeled_non_rd_cost) { |
| if (cpi->svc.non_reference_frame) |
| use_modeled_non_rd_cost = 1; |
| else if (cpi->svc.number_temporal_layers > 1 && |
| cpi->svc.temporal_layer_id == 0) |
| use_modeled_non_rd_cost = 0; |
| else |
| use_modeled_non_rd_cost = |
| (quant_params->base_qindex > 120 && x->source_variance > 100 && |
| bsize <= BLOCK_16X16 && !x->content_state_sb.lighting_change && |
| x->content_state_sb.source_sad_nonrd != kHighSad); |
| } |
| |
| #if COLLECT_PICK_MODE_STAT |
| ms_stat.num_blocks[bsize]++; |
| #endif |
| init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm); |
| mi->tx_size = AOMMIN( |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), |
| TX_16X16); |
| |
| // Skip compound mode based on sad |
| if ((cpi->sf.rt_sf.sad_based_comp_prune) && (bsize >= BLOCK_64X64) && |
| (cpi->src_sad_blk_64x64 != NULL)) |
| skip_comp_mode = skip_comp_based_on_sad(cpi, x, mi_row, mi_col, bsize); |
| |
| for (int idx = 0; idx < num_inter_modes + tot_num_comp_modes; ++idx) { |
| const struct segmentation *const seg = &cm->seg; |
| |
| int rate_mv = 0; |
| int is_skippable; |
| int this_early_term = 0; |
| int skip_this_mv = 0; |
| comp_pred = 0; |
| PREDICTION_MODE this_mode; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| RD_STATS nonskip_rdc; |
| av1_invalid_rd_stats(&nonskip_rdc); |
| memset(txfm_info->blk_skip, 0, |
| sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); |
| |
| if (idx >= num_inter_modes) { |
| if (skip_comp_mode) continue; |
| int comp_index = idx - num_inter_modes; |
| if (comp_index % 3 == 0) { |
| int i = 0; |
| ref_mv_idx = 0; |
| // Only needs to be done once per reference pair. |
| if (comp_index == 3) i = 1; |
| if (comp_index == 6) i = 2; |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[i]) |
| setup_compound_prediction(cpi, x, yv12_mb, use_ref_frame_mask, i, |
| &ref_mv_idx); |
| } |
| // num_comp_modes_ref == 1 only do (0,0) |
| if (num_comp_modes_ref == 1 && comp_index % 3 != 0) continue; |
| // num_comp_modes_ref == 2 only do (0,0) and (NEAREST_NEAREST) |
| if (num_comp_modes_ref == 2 && comp_index % 3 == 2) continue; |
| ref_frame = LAST_FRAME; |
| ref_frame2 = GOLDEN_FRAME; |
| if (comp_index >= 0 && comp_index < 3) { |
| // comp_index = 0,1,2 for (0/NEAREST/NEAR) for GOLDEN_LAST. |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 || |
| !(cpi->ref_frame_flags & AOM_GOLD_FLAG)) |
| continue; |
| } else if (comp_index >= 3 && comp_index < 6) { |
| // comp_index = 3,4,5 for (0/NEAREST/NEAR) for LAST2_LAST. |
| ref_frame2 = LAST2_FRAME; |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 || |
| !(cpi->ref_frame_flags & AOM_LAST2_FLAG)) |
| continue; |
| } else if (comp_index >= 6 && comp_index < 9) { |
| // comp_index = 6,7,8 for (0/NEAREST/NEAR) for ALTREF_LAST. |
| ref_frame2 = ALTREF_FRAME; |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 || |
| !(cpi->ref_frame_flags & AOM_ALT_FLAG)) |
| continue; |
| } |
| set_compound_mode(x, comp_index, ref_frame, ref_frame2, ref_mv_idx, |
| frame_mv, &this_mode); |
| if (this_mode != GLOBAL_GLOBALMV && |
| frame_mv[this_mode][ref_frame].as_int == 0 && |
| frame_mv[this_mode][ref_frame2].as_int == 0) |
| continue; |
| comp_pred = 1; |
| } else { |
| this_mode = ref_mode_set[idx].pred_mode; |
| ref_frame = ref_mode_set[idx].ref_frame; |
| ref_frame2 = NONE_FRAME; |
| } |
| |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer1); |
| ms_stat.num_searches[bsize][this_mode]++; |
| #endif |
| mi->mode = this_mode; |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = ref_frame2; |
| |
| if (!use_ref_frame_mask[ref_frame]) continue; |
| |
| if (x->force_zeromv_skip && |
| (this_mode != GLOBALMV || ref_frame != LAST_FRAME)) |
| continue; |
| |
| force_mv_inter_layer = 0; |
| if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && |
| ((ref_frame == LAST_FRAME && svc->skip_mvsearch_last) || |
| (ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) || |
| (ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) { |
| // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row), |
| // otherwise set NEWMV to (svc_mv_col, svc_mv_row). |
| // Skip newmv and filter search. |
| force_mv_inter_layer = 1; |
| if (this_mode == NEWMV) { |
| frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col; |
| frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row; |
| } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col || |
| frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) { |
| continue; |
| } |
| } |
| |
| // If the segment reference frame feature is enabled then do nothing if the |
| // current ref frame is not allowed. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) |
| continue; |
| |
| // For screen content: |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
| // If source_sad is computed: skip non-zero motion |
| // check for stationary (super)blocks. Otherwise if superblock |
| // has motion skip the modes with zero motion for flat blocks, |
| // and color is not set. |
| // For the latter condition: the same condition should apply |
| // to newmv if (0, 0), so this latter condition is repeated |
| // below after search_new_mv. |
| if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { |
| if ((frame_mv[this_mode][ref_frame].as_int != 0 && |
| x->content_state_sb.source_sad_nonrd == kZeroSad) || |
| (frame_mv[this_mode][ref_frame].as_int == 0 && |
| x->content_state_sb.source_sad_nonrd != kZeroSad && |
| ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || |
| cpi->rc.high_source_sad) && |
| x->source_variance == 0)) |
| continue; |
| } |
| // Skip NEWMV search for flat blocks. |
| if (this_mode == NEWMV && x->source_variance < 100) continue; |
| // Skip non-LAST for color on flat blocks. |
| if (ref_frame > LAST_FRAME && x->source_variance == 0 && |
| (x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1)) |
| continue; |
| } |
| |
| if (skip_mode_by_bsize_and_ref_frame( |
| this_mode, ref_frame, bsize, x->nonrd_prune_ref_frame_search, |
| sse_zeromv_norm, cpi->sf.rt_sf.nonrd_agressive_skip)) |
| continue; |
| |
| if (skip_mode_by_low_temp(this_mode, ref_frame, bsize, x->content_state_sb, |
| frame_mv[this_mode][ref_frame], |
| force_skip_low_temp_var)) |
| continue; |
| |
| // Disable this drop out case if the ref frame segment level feature is |
| // enabled for this segment. This is to prevent the possibility that we |
| // end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Check for skipping GOLDEN and ALTREF based pred_mv_sad. |
| if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 && |
| x->pred_mv_sad[ref_frame] != INT_MAX && ref_frame != LAST_FRAME) { |
| if ((int64_t)(x->pred_mv_sad[ref_frame]) > thresh_sad_pred) continue; |
| } |
| } |
| // Check for skipping NEARMV based on pred_mv_sad. |
| if (this_mode == NEARMV && x->pred_mv1_sad[ref_frame] != INT_MAX && |
| x->pred_mv1_sad[ref_frame] > (x->pred_mv0_sad[ref_frame] << 1)) |
| continue; |
| |
| if (!comp_pred) { |
| if (skip_mode_by_threshold( |
| this_mode, ref_frame, frame_mv[this_mode][ref_frame], |
| cpi->rc.frames_since_golden, rd_threshes, rd_thresh_freq_fact, |
| best_rdc.rdcost, best_pickmode.best_mode_skip_txfm, |
| (cpi->sf.rt_sf.nonrd_agressive_skip ? 1 : 0))) |
| continue; |
| } |
| |
| // Select prediction reference frames. |
| for (int i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[ref_frame2][i]; |
| } |
| |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = ref_frame2; |
| set_ref_ptrs(cm, xd, ref_frame, ref_frame2); |
| |
| if (this_mode == NEWMV && !force_mv_inter_layer) { |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer2); |
| #endif |
| const bool skip_newmv = |
| search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize, |
| mi_row, mi_col, &rate_mv, &best_rdc); |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer2); |
| ms_stat.ms_time[bsize][this_mode] += |
| aom_usec_timer_elapsed(&ms_stat.timer2); |
| #endif |
| if (skip_newmv) { |
| continue; |
| } |
| } |
| |
| for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; |
| inter_mv_mode++) { |
| if (inter_mv_mode == this_mode) continue; |
| if (mode_checked[inter_mv_mode][ref_frame] && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[inter_mv_mode][ref_frame].as_int) { |
| skip_this_mv = 1; |
| break; |
| } |
| } |
| |
| if (skip_this_mv && !comp_pred) continue; |
| |
| // For screen: for spatially flat blocks with non-zero motion, |
| // skip newmv if the motion vector is (0, 0), and color is not set. |
| if (this_mode == NEWMV && |
| cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->sf.rt_sf.source_metrics_sb_nonrd) { |
| if (frame_mv[this_mode][ref_frame].as_int == 0 && |
| x->content_state_sb.source_sad_nonrd != kZeroSad && |
| ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || |
| cpi->rc.high_source_sad) && |
| x->source_variance == 0) |
| continue; |
| } |
| |
| mi->mode = this_mode; |
| mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; |
| mi->mv[1].as_int = 0; |
| if (comp_pred) mi->mv[1].as_int = frame_mv[this_mode][ref_frame2].as_int; |
| |
| if (reuse_inter_pred) { |
| if (!this_mode_pred) { |
| this_mode_pred = &tmp[3]; |
| } else { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| #if COLLECT_PICK_MODE_STAT |
| ms_stat.num_nonskipped_searches[bsize][this_mode]++; |
| #endif |
| |
| if (idx == 0 && !skip_pred_mv) { |
| // Set color sensitivity on first tested mode only. |
| // Use y-sad already computed in find_predictors: take the sad with motion |
| // vector closest to 0; the uv-sad computed below in set_color_sensitivity |
| // is for zeromv. |
| int y_sad = x->pred_mv0_sad[LAST_FRAME]; |
| if (x->pred_mv1_sad[LAST_FRAME] != INT_MAX && |
| (abs(frame_mv[NEARMV][LAST_FRAME].as_mv.col) + |
| abs(frame_mv[NEARMV][LAST_FRAME].as_mv.row)) < |
| (abs(frame_mv[NEARESTMV][LAST_FRAME].as_mv.col) + |
| abs(frame_mv[NEARESTMV][LAST_FRAME].as_mv.row))) |
| y_sad = x->pred_mv1_sad[LAST_FRAME]; |
| set_color_sensitivity(cpi, x, xd, bsize, y_sad, x->source_variance); |
| } |
| mi->motion_mode = SIMPLE_TRANSLATION; |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->oxcf.motion_mode_cfg.allow_warped_motion) { |
| calc_num_proj_ref(cpi, x, mi); |
| } |
| #endif |
| |
| if (enable_filter_search && !force_mv_inter_layer && !comp_pred && |
| ((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) && |
| (ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)) { |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer2); |
| #endif |
| search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize, |
| reuse_inter_pred, &this_mode_pred, &this_early_term, |
| use_model_yrd_large, best_pickmode.best_sse); |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer2); |
| ms_stat.ifs_time[bsize][this_mode] += |
| aom_usec_timer_elapsed(&ms_stat.timer2); |
| #endif |
| #if !CONFIG_REALTIME_ONLY |
| } else if (cpi->oxcf.motion_mode_cfg.allow_warped_motion && |
| this_mode == NEWMV) { |
| search_motion_mode(cpi, x, &this_rdc, mi_row, mi_col, bsize, |
| &this_early_term, use_model_yrd_large, &rate_mv, |
| best_pickmode.best_sse); |
| if (this_mode == NEWMV) { |
| frame_mv[this_mode][ref_frame] = mi->mv[0]; |
| } |
| #endif |
| } else { |
| mi->interp_filters = |
| (filter_ref == SWITCHABLE) |
| ? av1_broadcast_interp_filter(default_interp_filter) |
| : av1_broadcast_interp_filter(filter_ref); |
| if (force_mv_inter_layer) |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| |
| // If it is sub-pel motion and best filter was not selected in |
| // search_filter_ref() for all blocks, then check top and left values and |
| // force smooth if both were selected to be smooth. |
| if (cpi->sf.interp_sf.cb_pred_filter_search && |
| (mi->mv[0].as_mv.row & 0x07 || mi->mv[0].as_mv.col & 0x07)) { |
| if (xd->left_mbmi && xd->above_mbmi) { |
| if ((xd->left_mbmi->interp_filters.as_filters.x_filter == |
| EIGHTTAP_SMOOTH && |
| xd->above_mbmi->interp_filters.as_filters.x_filter == |
| EIGHTTAP_SMOOTH)) |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_SMOOTH); |
| } |
| } |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer2); |
| #endif |
| if (!comp_pred) |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| else |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| 0); |
| |
| if (use_model_yrd_large) { |
| unsigned int var = UINT_MAX; |
| unsigned int var_threshold = UINT_MAX; |
| if (cpi->sf.rt_sf.prune_global_globalmv_with_globalmv && |
| this_mode == GLOBAL_GLOBALMV) { |
| if (mode_checked[GLOBALMV][ref_frame]) { |
| var_threshold = AOMMIN(var_threshold, global_mv_var[ref_frame]); |
| } |
| if (mode_checked[GLOBALMV][ref_frame2]) { |
| var_threshold = AOMMIN(var_threshold, global_mv_var[ref_frame2]); |
| } |
| } |
| |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &this_rdc, |
| &this_early_term, use_modeled_non_rd_cost, |
| best_pickmode.best_sse, &var, var_threshold); |
| if (this_mode == GLOBALMV) { |
| global_mv_var[ref_frame] = var; |
| } else if (this_mode == GLOBAL_GLOBALMV) { |
| if (var > var_threshold) { |
| if (reuse_inter_pred) free_pred_buffer(this_mode_pred); |
| continue; |
| } |
| } |
| } else { |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, |
| use_modeled_non_rd_cost); |
| } |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer2); |
| ms_stat.model_rd_time[bsize][this_mode] += |
| aom_usec_timer_elapsed(&ms_stat.timer2); |
| #endif |
| } |
| |
| if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) { |
| sse_zeromv_norm = |
| (unsigned int)(this_rdc.sse >> (b_width_log2_lookup[bsize] + |
| b_height_log2_lookup[bsize])); |
| } |
| |
| if (cpi->sf.rt_sf.sse_early_term_inter_search && |
| early_term_inter_search_with_sse( |
| cpi->sf.rt_sf.sse_early_term_inter_search, bsize, this_rdc.sse, |
| best_pickmode.best_sse, this_mode)) { |
| if (reuse_inter_pred) free_pred_buffer(this_mode_pred); |
| continue; |
| } |
| |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1]; |
| const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0]; |
| const int64_t sse_y = this_rdc.sse; |
| if (this_early_term) { |
| this_rdc.skip_txfm = 1; |
| this_rdc.rate = skip_txfm_cost; |
| this_rdc.dist = this_rdc.sse << 4; |
| } else { |
| if (use_modeled_non_rd_cost) { |
| if (this_rdc.skip_txfm) { |
| this_rdc.rate = skip_txfm_cost; |
| } else { |
| this_rdc.rate += no_skip_txfm_cost; |
| } |
| } else { |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer2); |
| #endif |
| av1_block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, bsize, |
| mi->tx_size, DCT_DCT, 1); |
| if (this_rdc.skip_txfm || |
| RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >= |
| RDCOST(x->rdmult, 0, this_rdc.sse)) { |
| if (!this_rdc.skip_txfm) { |
| // Need to store "real" rdc for possible furure use if UV rdc |
| // disallows tx skip |
| nonskip_rdc = this_rdc; |
| nonskip_rdc.rate += no_skip_txfm_cost; |
| } |
| this_rdc.rate = skip_txfm_cost; |
| this_rdc.skip_txfm = 1; |
| this_rdc.dist = this_rdc.sse; |
| } else { |
| this_rdc.rate += no_skip_txfm_cost; |
| } |
| } |
| if ((x->color_sensitivity[0] || x->color_sensitivity[1])) { |
| RD_STATS rdc_uv; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size( |
| bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); |
| if (x->color_sensitivity[0]) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_U, AOM_PLANE_U); |
| } |
| if (x->color_sensitivity[1]) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_V, AOM_PLANE_V); |
| } |
| model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &this_rdc.sse, 1, 2); |
| // Restore Y rdc if UV rdc disallows txfm skip |
| if (this_rdc.skip_txfm && !rdc_uv.skip_txfm && |
| nonskip_rdc.rate != INT_MAX) |
| this_rdc = nonskip_rdc; |
| this_rdc.rate += rdc_uv.rate; |
| this_rdc.dist += rdc_uv.dist; |
| this_rdc.skip_txfm = this_rdc.skip_txfm && rdc_uv.skip_txfm; |
| } |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer2); |
| ms_stat.txfm_time[bsize][this_mode] += |
| aom_usec_timer_elapsed(&ms_stat.timer2); |
| #endif |
| } |
| |
| // TODO(kyslov) account for UV prediction cost |
| this_rdc.rate += rate_mv; |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); |
| this_rdc.rate += cost_mv_ref(mode_costs, this_mode, mode_ctx); |
| |
| this_rdc.rate += ref_costs_single[ref_frame]; |
| |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| if (cpi->oxcf.rc_cfg.mode == AOM_CBR && !comp_pred) { |
| newmv_diff_bias(xd, this_mode, &this_rdc, bsize, |
| frame_mv[this_mode][ref_frame].as_mv.row, |
| frame_mv[this_mode][ref_frame].as_mv.col, cpi->speed, |
| x->source_variance, x->content_state_sb); |
| } |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode && |
| cpi->denoiser.denoising_level > kDenLowLow) { |
| av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx); |
| // Keep track of zero_last cost. |
| if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) |
| zero_last_cost_orig = this_rdc.rdcost; |
| } |
| #else |
| (void)sse_y; |
| #endif |
| |
| mode_checked[this_mode][ref_frame] = 1; |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer1); |
| ms_stat.nonskipped_search_times[bsize][this_mode] += |
| aom_usec_timer_elapsed(&ms_stat.timer1); |
| #endif |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_early_term = this_early_term; |
| best_pickmode.best_sse = sse_y; |
| best_pickmode.best_mode = this_mode; |
| best_pickmode.best_motion_mode = mi->motion_mode; |
| best_pickmode.wm_params = mi->wm_params; |
| best_pickmode.num_proj_ref = mi->num_proj_ref; |
| best_pickmode.best_pred_filter = mi->interp_filters; |
| best_pickmode.best_tx_size = mi->tx_size; |
| best_pickmode.best_ref_frame = ref_frame; |
| best_pickmode.best_second_ref_frame = ref_frame2; |
| best_pickmode.best_mode_skip_txfm = this_rdc.skip_txfm; |
| best_pickmode.best_mode_initial_skip_flag = |
| (nonskip_rdc.rate == INT_MAX && this_rdc.skip_txfm); |
| if (!best_pickmode.best_mode_skip_txfm && !use_modeled_non_rd_cost) { |
| memcpy(best_pickmode.blk_skip, txfm_info->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); |
| } |
| |
| // This is needed for the compound modes. |
| frame_mv_best[this_mode][ref_frame].as_int = |
| frame_mv[this_mode][ref_frame].as_int; |
| if (ref_frame2 > NONE_FRAME) |
| frame_mv_best[this_mode][ref_frame2].as_int = |
| frame_mv[this_mode][ref_frame2].as_int; |
| |
| if (reuse_inter_pred) { |
| free_pred_buffer(best_pickmode.best_pred); |
| best_pickmode.best_pred = this_mode_pred; |
| } |
| } else { |
| if (reuse_inter_pred) free_pred_buffer(this_mode_pred); |
| } |
| if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_agressive_skip)) { |
| txfm_info->skip_txfm = 1; |
| break; |
| } |
| } |
| |
| mi->mode = best_pickmode.best_mode; |
| mi->motion_mode = best_pickmode.best_motion_mode; |
| mi->wm_params = best_pickmode.wm_params; |
| mi->num_proj_ref = best_pickmode.num_proj_ref; |
| mi->interp_filters = best_pickmode.best_pred_filter; |
| mi->tx_size = best_pickmode.best_tx_size; |
| memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size)); |
| mi->ref_frame[0] = best_pickmode.best_ref_frame; |
| mi->mv[0].as_int = |
| frame_mv_best[best_pickmode.best_mode][best_pickmode.best_ref_frame] |
| .as_int; |
| mi->mv[1].as_int = 0; |
| if (best_pickmode.best_second_ref_frame > INTRA_FRAME) { |
| mi->ref_frame[1] = best_pickmode.best_second_ref_frame; |
| mi->mv[1].as_int = frame_mv_best[best_pickmode.best_mode] |
| [best_pickmode.best_second_ref_frame] |
| .as_int; |
| } |
| // Perform intra prediction search, if the best SAD is above a certain |
| // threshold. |
| mi->angle_delta[PLANE_TYPE_Y] = 0; |
| mi->angle_delta[PLANE_TYPE_UV] = 0; |
| mi->filter_intra_mode_info.use_filter_intra = 0; |
| |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_start(&ms_stat.timer1); |
| ms_stat.num_searches[bsize][DC_PRED]++; |
| #endif |
| |
| if (!x->force_zeromv_skip) |
| estimate_intra_mode(cpi, x, bsize, use_modeled_non_rd_cost, best_early_term, |
| ref_costs_single[INTRA_FRAME], reuse_inter_pred, |
| &orig_dst, tmp, &this_mode_pred, &best_rdc, |
| &best_pickmode, ctx); |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| !cpi->oxcf.txfm_cfg.use_inter_dct_only && !x->force_zeromv_skip && |
| is_inter_mode(best_pickmode.best_mode) && |
| (!cpi->sf.rt_sf.prune_idtx_nonrd || |
| (cpi->sf.rt_sf.prune_idtx_nonrd && bsize <= BLOCK_32X32 && |
| best_pickmode.best_mode_skip_txfm != 1 && x->source_variance > 200))) { |
| RD_STATS idtx_rdc; |
| av1_init_rd_stats(&idtx_rdc); |
| int is_skippable; |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = bw; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); |
| av1_block_yrd(cpi, x, mi_row, mi_col, &idtx_rdc, &is_skippable, bsize, |
| mi->tx_size, IDTX, 1); |
| int64_t idx_rdcost = RDCOST(x->rdmult, idtx_rdc.rate, idtx_rdc.dist); |
| if (idx_rdcost < best_rdc.rdcost) { |
| // Keep the skip_txfm off if the color_sensitivity is set, |
| // for scene/slide change. |
| if (cpi->rc.high_source_sad && |
| (x->color_sensitivity[0] || x->color_sensitivity[1])) |
| idtx_rdc.skip_txfm = 0; |
| best_pickmode.tx_type = IDTX; |
| best_rdc.rdcost = idx_rdcost; |
| best_pickmode.best_mode_skip_txfm = idtx_rdc.skip_txfm; |
| if (!idtx_rdc.skip_txfm) { |
| memcpy(best_pickmode.blk_skip, txfm_info->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); |
| } |
| xd->tx_type_map[0] = best_pickmode.tx_type; |
| memset(ctx->tx_type_map, best_pickmode.tx_type, ctx->num_4x4_blk); |
| memset(xd->tx_type_map, best_pickmode.tx_type, ctx->num_4x4_blk); |
| } |
| pd->dst = orig_dst; |
| } |
| |
| int try_palette = |
| cpi->oxcf.tool_cfg.enable_palette && |
| av1_allow_palette(cpi->common.features.allow_screen_content_tools, |
| mi->bsize); |
| try_palette = try_palette && is_mode_intra(best_pickmode.best_mode) && |
| x->source_variance > 0 && !x->force_zeromv_skip && |
| (cpi->rc.high_source_sad || x->source_variance > 500); |
| |
| if (try_palette) { |
| const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME]; |
| |
| av1_search_palette_mode_luma(cpi, x, bsize, intra_ref_frame_cost, ctx, |
| &this_rdc, best_rdc.rdcost); |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_pickmode.pmi = mi->palette_mode_info; |
| best_pickmode.best_mode = DC_PRED; |
| mi->mv[0].as_int = 0; |
| best_rdc.rate = this_rdc.rate; |
| best_rdc.dist = this_rdc.dist; |
| best_rdc.rdcost = this_rdc.rdcost; |
| best_pickmode.best_mode_skip_txfm = this_rdc.skip_txfm; |
| if (!this_rdc.skip_txfm) { |
| memcpy(ctx->blk_skip, txfm_info->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| if (xd->tx_type_map[0] != DCT_DCT) |
| av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| } |
| } |
| |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer1); |
| ms_stat.nonskipped_search_times[bsize][DC_PRED] += |
| aom_usec_timer_elapsed(&ms_stat.timer1); |
| #endif |
| |
| pd->dst = orig_dst; |
| if (try_palette) mi->palette_mode_info = best_pickmode.pmi; |
| mi->mode = best_pickmode.best_mode; |
| mi->ref_frame[0] = best_pickmode.best_ref_frame; |
| mi->ref_frame[1] = best_pickmode.best_second_ref_frame; |
| txfm_info->skip_txfm = best_pickmode.best_mode_skip_txfm; |
| if (!txfm_info->skip_txfm) { |
| // For inter modes: copy blk_skip from best_pickmode, which is |
| // defined for 8x8 blocks. If palette or intra mode was selected |
| // as best then blk_skip is already copied into the ctx. |
| if (best_pickmode.best_mode >= INTRA_MODE_END) |
| memcpy(ctx->blk_skip, best_pickmode.blk_skip, |
| sizeof(best_pickmode.blk_skip[0]) * num_8x8_blocks); |
| } |
| if (has_second_ref(mi)) { |
| mi->comp_group_idx = 0; |
| mi->compound_idx = 1; |
| mi->interinter_comp.type = COMPOUND_AVERAGE; |
| } |
| |
| if (!is_inter_block(mi)) { |
| mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS); |
| } |
| |
| if (reuse_inter_pred && best_pickmode.best_pred != NULL) { |
| PRED_BUFFER *const best_pred = best_pickmode.best_pred; |
| if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { |
| aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 && |
| denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow && |
| cpi->denoiser.reset == 0) { |
| AV1_DENOISER_DECISION decision = COPY_BLOCK; |
| ctx->sb_skip_denoising = 0; |
| av1_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_costs_single, |
| frame_mv, reuse_inter_pred, &best_pickmode); |
| av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision, |
| gf_temporal_ref); |
| if (denoise_recheck_zeromv) |
| recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den, |
| yv12_mb, &best_rdc, &best_pickmode, bsize, |
| mi_row, mi_col); |
| best_pickmode.best_ref_frame = ctx_den.best_ref_frame; |
| } |
| #endif |
| |
| if (cpi->sf.inter_sf.adaptive_rd_thresh && !has_second_ref(mi)) { |
| THR_MODES best_mode_idx = |
| mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)]; |
| if (best_pickmode.best_ref_frame == INTRA_FRAME) { |
| // Only consider the modes that are included in the intra_mode_list. |
| int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE); |
| for (int i = 0; i < intra_modes; i++) { |
| update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx, |
| intra_mode_list[i]); |
| } |
| } else { |
| PREDICTION_MODE this_mode; |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| update_thresh_freq_fact(cpi, x, bsize, best_pickmode.best_ref_frame, |
| best_mode_idx, this_mode); |
| } |
| } |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| store_coding_context(x, ctx, mi->mode); |
| #else |
| store_coding_context(x, ctx); |
| #endif // CONFIG_INTERNAL_STATS |
| #if COLLECT_PICK_MODE_STAT |
| aom_usec_timer_mark(&ms_stat.timer2); |
| ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2); |
| // |
| if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_params.mi_rows)) && |
| (mi_col + mi_size_wide[bsize] >= (cpi->common.mi_params.mi_cols))) { |
| int i, j; |
| BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, |
| BLOCK_128X128 }; |
| int64_t total_time = 0l; |
| int32_t total_blocks = 0; |
| |
| printf("\n"); |
| for (i = 0; i < 5; i++) { |
| printf("BS(%d) Num %d, Avg_time %f:\n", bss[i], |
| ms_stat.num_blocks[bss[i]], |
| ms_stat.num_blocks[bss[i]] > 0 |
| ? (float)ms_stat.avg_block_times[bss[i]] / |
| ms_stat.num_blocks[bss[i]] |
| : 0); |
| total_time += ms_stat.avg_block_times[bss[i]]; |
| total_blocks += ms_stat.num_blocks[bss[i]]; |
| for (j = 0; j < MB_MODE_COUNT; j++) { |
| if (ms_stat.nonskipped_search_times[bss[i]][j] == 0) { |
| continue; |
| } |
| |
| printf(" Mode %d, %d/%d tps %f\n", j, |
| ms_stat.num_nonskipped_searches[bss[i]][j], |
| ms_stat.num_searches[bss[i]][j], |
| ms_stat.num_nonskipped_searches[bss[i]][j] > 0 |
| ? (float)ms_stat.nonskipped_search_times[bss[i]][j] / |
| ms_stat.num_nonskipped_searches[bss[i]][j] |
| : 0l); |
| if (j >= INTER_MODE_START) { |
| printf(" Motion Search Time: %ld\n", ms_stat.ms_time[bss[i]][j]); |
| printf(" Filter Search Time: %ld\n", ms_stat.ifs_time[bss[i]][j]); |
| printf(" Model RD Time: %ld\n", |
| ms_stat.model_rd_time[bss[i]][j]); |
| printf(" Tranfm Search Time: %ld\n", ms_stat.txfm_time[bss[i]][j]); |
| } |
| } |
| printf("\n"); |
| } |
| printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks); |
| } |
| // |
| #endif // COLLECT_PICK_MODE_STAT |
| *rd_cost = best_rdc; |
| } |