| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include "aom_ports/system_state.h" | 
 |  | 
 | #include "av1/common/blockd.h" | 
 | #include "av1/common/onyxc_int.h" | 
 |  | 
 | PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi, | 
 |                                     const MODE_INFO *left_mi, int b) { | 
 |   if (b == 0 || b == 2) { | 
 |     if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED; | 
 |  | 
 |     return get_y_mode(left_mi, b + 1); | 
 |   } else { | 
 |     assert(b == 1 || b == 3); | 
 |     return cur_mi->bmi[b - 1].as_mode; | 
 |   } | 
 | } | 
 |  | 
 | PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi, | 
 |                                      const MODE_INFO *above_mi, int b) { | 
 |   if (b == 0 || b == 1) { | 
 |     if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED; | 
 |  | 
 |     return get_y_mode(above_mi, b + 2); | 
 |   } else { | 
 |     assert(b == 2 || b == 3); | 
 |     return cur_mi->bmi[b - 2].as_mode; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_COEF_INTERLEAVE | 
 | void av1_foreach_transformed_block_interleave( | 
 |     const MACROBLOCKD *const xd, BLOCK_SIZE bsize, | 
 |     foreach_transformed_block_visitor visit, void *arg) { | 
 |   const struct macroblockd_plane *const pd_y = &xd->plane[0]; | 
 |   const struct macroblockd_plane *const pd_c = &xd->plane[1]; | 
 |   const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |  | 
 |   const TX_SIZE tx_log2_y = mbmi->tx_size; | 
 |   const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); | 
 |   const int tx_sz_y = (1 << tx_log2_y); | 
 |   const int tx_sz_c = (1 << tx_log2_c); | 
 |  | 
 |   const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y); | 
 |   const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c); | 
 |  | 
 |   const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y]; | 
 |   const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c]; | 
 |   const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y]; | 
 |   const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c]; | 
 |  | 
 |   const int step_y = 1 << (tx_log2_y << 1); | 
 |   const int step_c = 1 << (tx_log2_c << 1); | 
 |  | 
 |   const int max_4x4_w_y = | 
 |       get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x); | 
 |   const int max_4x4_h_y = | 
 |       get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y); | 
 |  | 
 |   const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y; | 
 |  | 
 |   const int max_4x4_w_c = | 
 |       get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x); | 
 |   const int max_4x4_h_c = | 
 |       get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y); | 
 |  | 
 |   const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c; | 
 |  | 
 |   // The max_4x4_w/h may be smaller than tx_sz under some corner cases, | 
 |   // i.e. when the SB is splitted by tile boundaries. | 
 |   const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; | 
 |   const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; | 
 |   const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; | 
 |   const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; | 
 |   const int tu_num_y = tu_num_w_y * tu_num_h_y; | 
 |   const int tu_num_c = tu_num_w_c * tu_num_h_c; | 
 |  | 
 |   int tu_idx_c = 0; | 
 |   int offset_y, row_y, col_y; | 
 |   int offset_c, row_c, col_c; | 
 |  | 
 |   for (row_y = 0; row_y < tu_num_h_y; row_y++) { | 
 |     for (col_y = 0; col_y < tu_num_w_y; col_y++) { | 
 |       // luma | 
 |       offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y; | 
 |       visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y, | 
 |             tx_log2_y, arg); | 
 |       // chroma | 
 |       if (tu_idx_c < tu_num_c) { | 
 |         row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
 |         col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
 |         offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c; | 
 |         visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); | 
 |         visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); | 
 |         tu_idx_c++; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // In 422 case, it's possible that Chroma has more TUs than Luma | 
 |   while (tu_idx_c < tu_num_c) { | 
 |     row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
 |     col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
 |     offset_c = tu_idx_c * step_c + row_c * extra_step_c; | 
 |     visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); | 
 |     visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); | 
 |     tu_idx_c++; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | void av1_foreach_transformed_block_in_plane( | 
 |     const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, | 
 |     foreach_transformed_block_visitor visit, void *arg) { | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") | 
 |   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 | 
 |   // transform size varies per plane, look it up in a common way. | 
 |   const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |   const uint8_t txw_unit = tx_size_wide_unit[tx_size]; | 
 |   const uint8_t txh_unit = tx_size_high_unit[tx_size]; | 
 |   const int step = txw_unit * txh_unit; | 
 |   int i = 0, r, c; | 
 |  | 
 |   // If mb_to_right_edge is < 0 we are in a situation in which | 
 |   // the current block size extends into the UMV and we won't | 
 |   // visit the sub blocks that are wholly within the UMV. | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |  | 
 |   // Keep track of the row and column of the blocks we use so that we know | 
 |   // if we are in the unrestricted motion border. | 
 |   for (r = 0; r < max_blocks_high; r += txh_unit) { | 
 |     // Skip visiting the sub blocks that are wholly within the UMV. | 
 |     for (c = 0; c < max_blocks_wide; c += txw_unit) { | 
 |       visit(plane, i, r, c, plane_bsize, tx_size, arg); | 
 |       i += step; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 | void av1_foreach_8x8_transformed_block_in_plane( | 
 |     const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, | 
 |     foreach_transformed_block_visitor visit, | 
 |     foreach_transformed_block_visitor mi_visit, void *arg) { | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") | 
 |   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 | 
 |   // transform size varies per plane, look it up in a common way. | 
 |   const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |   const uint8_t txw_unit = tx_size_wide_unit[tx_size]; | 
 |   const uint8_t txh_unit = tx_size_high_unit[tx_size]; | 
 |   const int step = txw_unit * txh_unit; | 
 |   int i = 0, r, c; | 
 |  | 
 |   // If mb_to_right_edge is < 0 we are in a situation in which | 
 |   // the current block size extends into the UMV and we won't | 
 |   // visit the sub blocks that are wholly within the UMV. | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |  | 
 |   // Keep track of the row and column of the blocks we use so that we know | 
 |   // if we are in the unrestricted motion border. | 
 |   for (r = 0; r < max_blocks_high; r += txh_unit) { | 
 |     // Skip visiting the sub blocks that are wholly within the UMV. | 
 |     for (c = 0; c < max_blocks_wide; c += txw_unit) { | 
 |       visit(plane, i, r, c, plane_bsize, tx_size, arg); | 
 |       // Call whenever each 8x8 block is done | 
 |       if ((r & 1) && (c & 1)) | 
 |         mi_visit(plane, i, r - 1, c - 1, plane_bsize, TX_8X8, arg); | 
 |       i += step; | 
 |     } | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | void av1_foreach_transformed_block(const MACROBLOCKD *const xd, | 
 |                                    BLOCK_SIZE bsize, | 
 |                                    foreach_transformed_block_visitor visit, | 
 |                                    void *arg) { | 
 |   int plane; | 
 |   for (plane = 0; plane < MAX_MB_PLANE; ++plane) | 
 |     av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); | 
 | } | 
 |  | 
 | #if !CONFIG_PVQ | 
 | void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, | 
 |                       int plane, TX_SIZE tx_size, int has_eob, int aoff, | 
 |                       int loff) { | 
 |   ENTROPY_CONTEXT *const a = pd->above_context + aoff; | 
 |   ENTROPY_CONTEXT *const l = pd->left_context + loff; | 
 |   const int txs_wide = tx_size_wide_unit[tx_size]; | 
 |   const int txs_high = tx_size_high_unit[tx_size]; | 
 | #if CONFIG_CB4X4 | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; | 
 | #else | 
 |   const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8); | 
 | #endif | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |  | 
 |   // above | 
 |   if (has_eob && xd->mb_to_right_edge < 0) { | 
 |     int i; | 
 |     const int blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |     int above_contexts = txs_wide; | 
 |     if (above_contexts + aoff > blocks_wide) | 
 |       above_contexts = blocks_wide - aoff; | 
 |  | 
 |     for (i = 0; i < above_contexts; ++i) a[i] = has_eob; | 
 |     for (i = above_contexts; i < txs_wide; ++i) a[i] = 0; | 
 |   } else { | 
 |     memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide); | 
 |   } | 
 |  | 
 |   // left | 
 |   if (has_eob && xd->mb_to_bottom_edge < 0) { | 
 |     int i; | 
 |     const int blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |     int left_contexts = txs_high; | 
 |     if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff; | 
 |  | 
 |     for (i = 0; i < left_contexts; ++i) l[i] = has_eob; | 
 |     for (i = left_contexts; i < txs_high; ++i) l[i] = 0; | 
 |   } else { | 
 |     memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) { | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |     xd->plane[i].plane_type = i ? PLANE_TYPE_UV : PLANE_TYPE_Y; | 
 |     xd->plane[i].subsampling_x = i ? ss_x : 0; | 
 |     xd->plane[i].subsampling_y = i ? ss_y : 0; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 | const int16_t dr_intra_derivative[90] = { | 
 |   1,    14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204, | 
 |   1108, 1026,  955,  892,  837,  787,  743,  703,  666,  633,  603,  574,  548, | 
 |   524,  502,   481,  461,  443,  426,  409,  394,  379,  365,  352,  339,  327, | 
 |   316,  305,   294,  284,  274,  265,  256,  247,  238,  230,  222,  214,  207, | 
 |   200,  192,   185,  179,  172,  166,  159,  153,  147,  141,  136,  130,  124, | 
 |   119,  113,   108,  103,  98,   93,   88,   83,   78,   73,   68,   63,   59, | 
 |   54,   49,    45,   40,   35,   31,   26,   22,   17,   13,   8,    4, | 
 | }; | 
 |  | 
 | #if CONFIG_INTRA_INTERP | 
 | int av1_is_intra_filter_switchable(int angle) { | 
 |   assert(angle > 0 && angle < 270); | 
 |   if (angle % 45 == 0) return 0; | 
 |   if (angle > 90 && angle < 180) { | 
 |     return 1; | 
 |   } else { | 
 |     return ((angle < 90 ? dr_intra_derivative[angle] | 
 |                         : dr_intra_derivative[270 - angle]) & | 
 |             0xFF) > 0; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_INTRA_INTERP | 
 | #endif  // CONFIG_EXT_INTRA |