|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  | #ifdef HAVE_CONFIG_H | 
|  | #include "config.h" | 
|  | #endif | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <math.h> | 
|  | #include "dering.h" | 
|  | #include "./av1_rtcd.h" | 
|  |  | 
|  | /* Generated from gen_filter_tables.c. */ | 
|  | const int OD_DIRECTION_OFFSETS_TABLE[8][3] = { | 
|  | { -1 * OD_FILT_BSTRIDE + 1, -2 * OD_FILT_BSTRIDE + 2, | 
|  | -3 * OD_FILT_BSTRIDE + 3 }, | 
|  | { 0 * OD_FILT_BSTRIDE + 1, -1 * OD_FILT_BSTRIDE + 2, | 
|  | -1 * OD_FILT_BSTRIDE + 3 }, | 
|  | { 0 * OD_FILT_BSTRIDE + 1, 0 * OD_FILT_BSTRIDE + 2, 0 * OD_FILT_BSTRIDE + 3 }, | 
|  | { 0 * OD_FILT_BSTRIDE + 1, 1 * OD_FILT_BSTRIDE + 2, 1 * OD_FILT_BSTRIDE + 3 }, | 
|  | { 1 * OD_FILT_BSTRIDE + 1, 2 * OD_FILT_BSTRIDE + 2, 3 * OD_FILT_BSTRIDE + 3 }, | 
|  | { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE + 1, 3 * OD_FILT_BSTRIDE + 1 }, | 
|  | { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE + 0, 3 * OD_FILT_BSTRIDE + 0 }, | 
|  | { 1 * OD_FILT_BSTRIDE + 0, 2 * OD_FILT_BSTRIDE - 1, 3 * OD_FILT_BSTRIDE - 1 }, | 
|  | }; | 
|  |  | 
|  | /* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on. | 
|  | The search minimizes the weighted variance along all the lines in a | 
|  | particular direction, i.e. the squared error between the input and a | 
|  | "predicted" block where each pixel is replaced by the average along a line | 
|  | in a particular direction. Since each direction have the same sum(x^2) term, | 
|  | that term is never computed. See Section 2, step 2, of: | 
|  | http://jmvalin.ca/notes/intra_paint.pdf */ | 
|  | int od_dir_find8_c(const int16_t *img, int stride, int32_t *var, | 
|  | int coeff_shift) { | 
|  | int i; | 
|  | int32_t cost[8] = { 0 }; | 
|  | int partial[8][15] = { { 0 } }; | 
|  | int32_t best_cost = 0; | 
|  | int best_dir = 0; | 
|  | /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n. | 
|  | The output is then 840 times larger, but we don't care for finding | 
|  | the max. */ | 
|  | static const int div_table[] = { 0, 840, 420, 280, 210, 168, 140, 120, 105 }; | 
|  | for (i = 0; i < 8; i++) { | 
|  | int j; | 
|  | for (j = 0; j < 8; j++) { | 
|  | int x; | 
|  | /* We subtract 128 here to reduce the maximum range of the squared | 
|  | partial sums. */ | 
|  | x = (img[i * stride + j] >> coeff_shift) - 128; | 
|  | partial[0][i + j] += x; | 
|  | partial[1][i + j / 2] += x; | 
|  | partial[2][i] += x; | 
|  | partial[3][3 + i - j / 2] += x; | 
|  | partial[4][7 + i - j] += x; | 
|  | partial[5][3 - i / 2 + j] += x; | 
|  | partial[6][j] += x; | 
|  | partial[7][i / 2 + j] += x; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | cost[2] += partial[2][i] * partial[2][i]; | 
|  | cost[6] += partial[6][i] * partial[6][i]; | 
|  | } | 
|  | cost[2] *= div_table[8]; | 
|  | cost[6] *= div_table[8]; | 
|  | for (i = 0; i < 7; i++) { | 
|  | cost[0] += (partial[0][i] * partial[0][i] + | 
|  | partial[0][14 - i] * partial[0][14 - i]) * | 
|  | div_table[i + 1]; | 
|  | cost[4] += (partial[4][i] * partial[4][i] + | 
|  | partial[4][14 - i] * partial[4][14 - i]) * | 
|  | div_table[i + 1]; | 
|  | } | 
|  | cost[0] += partial[0][7] * partial[0][7] * div_table[8]; | 
|  | cost[4] += partial[4][7] * partial[4][7] * div_table[8]; | 
|  | for (i = 1; i < 8; i += 2) { | 
|  | int j; | 
|  | for (j = 0; j < 4 + 1; j++) { | 
|  | cost[i] += partial[i][3 + j] * partial[i][3 + j]; | 
|  | } | 
|  | cost[i] *= div_table[8]; | 
|  | for (j = 0; j < 4 - 1; j++) { | 
|  | cost[i] += (partial[i][j] * partial[i][j] + | 
|  | partial[i][10 - j] * partial[i][10 - j]) * | 
|  | div_table[2 * j + 2]; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (cost[i] > best_cost) { | 
|  | best_cost = cost[i]; | 
|  | best_dir = i; | 
|  | } | 
|  | } | 
|  | /* Difference between the optimal variance and the variance along the | 
|  | orthogonal direction. Again, the sum(x^2) terms cancel out. */ | 
|  | *var = best_cost - cost[(best_dir + 4) & 7]; | 
|  | /* We'd normally divide by 840, but dividing by 1024 is close enough | 
|  | for what we're going to do with this. */ | 
|  | *var >>= 10; | 
|  | return best_dir; | 
|  | } | 
|  |  | 
|  | /* Smooth in the direction detected. */ | 
|  | int od_filter_dering_direction_8x8_c(int16_t *y, int ystride, const int16_t *in, | 
|  | int threshold, int dir) { | 
|  | int i; | 
|  | int j; | 
|  | int k; | 
|  | static const int taps[3] = { 3, 2, 1 }; | 
|  | int total_abs = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | for (j = 0; j < 8; j++) { | 
|  | int16_t sum; | 
|  | int16_t xx; | 
|  | int16_t yy; | 
|  | xx = in[i * OD_FILT_BSTRIDE + j]; | 
|  | sum = 0; | 
|  | for (k = 0; k < 3; k++) { | 
|  | int16_t p0; | 
|  | int16_t p1; | 
|  | p0 = in[i * OD_FILT_BSTRIDE + j + OD_DIRECTION_OFFSETS_TABLE[dir][k]] - | 
|  | xx; | 
|  | p1 = in[i * OD_FILT_BSTRIDE + j - OD_DIRECTION_OFFSETS_TABLE[dir][k]] - | 
|  | xx; | 
|  | if (abs(p0) < threshold) sum += taps[k] * p0; | 
|  | if (abs(p1) < threshold) sum += taps[k] * p1; | 
|  | } | 
|  | sum = (sum + 8) >> 4; | 
|  | total_abs += abs(sum); | 
|  | yy = xx + sum; | 
|  | y[i * ystride + j] = yy; | 
|  | } | 
|  | } | 
|  | return (total_abs + 8) >> 4; | 
|  | } | 
|  |  | 
|  | /* Smooth in the direction detected. */ | 
|  | int od_filter_dering_direction_4x4_c(int16_t *y, int ystride, const int16_t *in, | 
|  | int threshold, int dir) { | 
|  | int i; | 
|  | int j; | 
|  | int k; | 
|  | static const int taps[2] = { 4, 1 }; | 
|  | int total_abs = 0; | 
|  | for (i = 0; i < 4; i++) { | 
|  | for (j = 0; j < 4; j++) { | 
|  | int16_t sum; | 
|  | int16_t xx; | 
|  | int16_t yy; | 
|  | xx = in[i * OD_FILT_BSTRIDE + j]; | 
|  | sum = 0; | 
|  | for (k = 0; k < 2; k++) { | 
|  | int16_t p0; | 
|  | int16_t p1; | 
|  | p0 = in[i * OD_FILT_BSTRIDE + j + OD_DIRECTION_OFFSETS_TABLE[dir][k]] - | 
|  | xx; | 
|  | p1 = in[i * OD_FILT_BSTRIDE + j - OD_DIRECTION_OFFSETS_TABLE[dir][k]] - | 
|  | xx; | 
|  | if (abs(p0) < threshold) sum += taps[k] * p0; | 
|  | if (abs(p1) < threshold) sum += taps[k] * p1; | 
|  | } | 
|  | sum = (sum + 8) >> 4; | 
|  | total_abs += abs(sum); | 
|  | yy = xx + sum; | 
|  | y[i * ystride + j] = yy; | 
|  | } | 
|  | } | 
|  | return (total_abs + 2) >> 2; | 
|  | } | 
|  |  | 
|  | /* Smooth in the direction orthogonal to what was detected. */ | 
|  | void od_filter_dering_orthogonal_8x8_c(int16_t *y, int ystride, | 
|  | const int16_t *in, int threshold, | 
|  | int dir) { | 
|  | int i; | 
|  | int j; | 
|  | int offset; | 
|  | if (dir > 0 && dir < 4) | 
|  | offset = OD_FILT_BSTRIDE; | 
|  | else | 
|  | offset = 1; | 
|  | for (i = 0; i < 8; i++) { | 
|  | for (j = 0; j < 8; j++) { | 
|  | int16_t yy; | 
|  | int16_t sum; | 
|  | int16_t p; | 
|  | yy = in[i * OD_FILT_BSTRIDE + j]; | 
|  | sum = 0; | 
|  | p = in[i * OD_FILT_BSTRIDE + j + offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | p = in[i * OD_FILT_BSTRIDE + j - offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | p = in[i * OD_FILT_BSTRIDE + j + 2 * offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | p = in[i * OD_FILT_BSTRIDE + j - 2 * offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | y[i * ystride + j] = yy + ((3 * sum + 8) >> 4); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Smooth in the direction orthogonal to what was detected. */ | 
|  | void od_filter_dering_orthogonal_4x4_c(int16_t *y, int ystride, | 
|  | const int16_t *in, int threshold, | 
|  | int dir) { | 
|  | int i; | 
|  | int j; | 
|  | int offset; | 
|  | if (dir > 0 && dir < 4) | 
|  | offset = OD_FILT_BSTRIDE; | 
|  | else | 
|  | offset = 1; | 
|  | for (i = 0; i < 4; i++) { | 
|  | for (j = 0; j < 4; j++) { | 
|  | int16_t yy; | 
|  | int16_t sum; | 
|  | int16_t p; | 
|  | yy = in[i * OD_FILT_BSTRIDE + j]; | 
|  | sum = 0; | 
|  | p = in[i * OD_FILT_BSTRIDE + j + offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | p = in[i * OD_FILT_BSTRIDE + j - offset] - yy; | 
|  | if (abs(p) < threshold) sum += p; | 
|  | y[i * ystride + j] = yy + ((5 * sum + 8) >> 4); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This table approximates x^0.16 with the index being log2(x). It is clamped | 
|  | to [-.5, 3]. The table is computed as: | 
|  | round(256*min(3, max(.5, 1.08*(sqrt(2)*2.^([0:17]+8)/256/256).^.16))) */ | 
|  | static const int16_t OD_THRESH_TABLE_Q8[18] = { | 
|  | 128, 134, 150, 168, 188, 210, 234, 262, 292, | 
|  | 327, 365, 408, 455, 509, 569, 635, 710, 768, | 
|  | }; | 
|  |  | 
|  | /* Compute deringing filter threshold for an 8x8 block based on the | 
|  | directional variance difference. A high variance difference means that we | 
|  | have a highly directional pattern (e.g. a high contrast edge), so we can | 
|  | apply more deringing. A low variance means that we either have a low | 
|  | contrast edge, or a non-directional texture, so we want to be careful not | 
|  | to blur. */ | 
|  | static INLINE int od_adjust_thresh(int threshold, int32_t var) { | 
|  | int v1; | 
|  | /* We use the variance of 8x8 blocks to adjust the threshold. */ | 
|  | v1 = OD_MINI(32767, var >> 6); | 
|  | return (threshold * OD_THRESH_TABLE_Q8[OD_ILOG(v1)] + 128) >> 8; | 
|  | } | 
|  |  | 
|  | static INLINE void copy_8x8_16bit_to_16bit(int16_t *dst, int dstride, | 
|  | int16_t *src, int sstride) { | 
|  | int i, j; | 
|  | for (i = 0; i < 8; i++) | 
|  | for (j = 0; j < 8; j++) dst[i * dstride + j] = src[i * sstride + j]; | 
|  | } | 
|  |  | 
|  | static INLINE void copy_4x4_16bit_to_16bit(int16_t *dst, int dstride, | 
|  | int16_t *src, int sstride) { | 
|  | int i, j; | 
|  | for (i = 0; i < 4; i++) | 
|  | for (j = 0; j < 4; j++) dst[i * dstride + j] = src[i * sstride + j]; | 
|  | } | 
|  |  | 
|  | /* TODO: Optimize this function for SSE. */ | 
|  | void copy_dering_16bit_to_16bit(int16_t *dst, int dstride, int16_t *src, | 
|  | dering_list *dlist, int dering_count, | 
|  | int bsize) { | 
|  | int bi, bx, by; | 
|  | if (bsize == 3) { | 
|  | for (bi = 0; bi < dering_count; bi++) { | 
|  | by = dlist[bi].by; | 
|  | bx = dlist[bi].bx; | 
|  | copy_8x8_16bit_to_16bit(&dst[(by << 3) * dstride + (bx << 3)], dstride, | 
|  | &src[bi << 2 * bsize], 1 << bsize); | 
|  | } | 
|  | } else { | 
|  | for (bi = 0; bi < dering_count; bi++) { | 
|  | by = dlist[bi].by; | 
|  | bx = dlist[bi].bx; | 
|  | copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 2)], dstride, | 
|  | &src[bi << 2 * bsize], 1 << bsize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void od_dering(int16_t *y, int16_t *in, int xdec, | 
|  | int dir[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS], int pli, | 
|  | dering_list *dlist, int dering_count, int threshold, | 
|  | int coeff_shift) { | 
|  | int bi; | 
|  | int bx; | 
|  | int by; | 
|  | int bsize; | 
|  | int filter2_thresh[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS]; | 
|  | od_filter_dering_direction_func filter_dering_direction[OD_DERINGSIZES] = { | 
|  | od_filter_dering_direction_4x4, od_filter_dering_direction_8x8 | 
|  | }; | 
|  | od_filter_dering_orthogonal_func filter_dering_orthogonal[OD_DERINGSIZES] = { | 
|  | od_filter_dering_orthogonal_4x4, od_filter_dering_orthogonal_8x8 | 
|  | }; | 
|  | bsize = OD_DERING_SIZE_LOG2 - xdec; | 
|  | if (pli == 0) { | 
|  | for (bi = 0; bi < dering_count; bi++) { | 
|  | int32_t var; | 
|  | by = dlist[bi].by; | 
|  | bx = dlist[bi].bx; | 
|  | dir[by][bx] = od_dir_find8(&in[8 * by * OD_FILT_BSTRIDE + 8 * bx], | 
|  | OD_FILT_BSTRIDE, &var, coeff_shift); | 
|  | /* Deringing orthogonal to the direction uses a tighter threshold | 
|  | because we want to be conservative. We've presumably already | 
|  | achieved some deringing, so the amount of change is expected | 
|  | to be low. Also, since we might be filtering across an edge, we | 
|  | want to make sure not to blur it. That being said, we might want | 
|  | to be a little bit more aggressive on pure horizontal/vertical | 
|  | since the ringing there tends to be directional, so it doesn't | 
|  | get removed by the directional filtering. */ | 
|  | filter2_thresh[by][bx] = (filter_dering_direction[bsize - OD_LOG_BSIZE0])( | 
|  | &y[bi << 2 * bsize], 1 << bsize, | 
|  | &in[(by * OD_FILT_BSTRIDE << bsize) + (bx << bsize)], | 
|  | od_adjust_thresh(threshold, var), dir[by][bx]); | 
|  | } | 
|  | } else { | 
|  | for (bi = 0; bi < dering_count; bi++) { | 
|  | by = dlist[bi].by; | 
|  | bx = dlist[bi].bx; | 
|  | filter2_thresh[by][bx] = (filter_dering_direction[bsize - OD_LOG_BSIZE0])( | 
|  | &y[bi << 2 * bsize], 1 << bsize, | 
|  | &in[(by * OD_FILT_BSTRIDE << bsize) + (bx << bsize)], threshold, | 
|  | dir[by][bx]); | 
|  | } | 
|  | } | 
|  | copy_dering_16bit_to_16bit(in, OD_FILT_BSTRIDE, y, dlist, dering_count, | 
|  | bsize); | 
|  | for (bi = 0; bi < dering_count; bi++) { | 
|  | by = dlist[bi].by; | 
|  | bx = dlist[bi].bx; | 
|  | if (filter2_thresh[by][bx] == 0) continue; | 
|  | (filter_dering_orthogonal[bsize - OD_LOG_BSIZE0])( | 
|  | &y[bi << 2 * bsize], 1 << bsize, | 
|  | &in[(by * OD_FILT_BSTRIDE << bsize) + (bx << bsize)], | 
|  | filter2_thresh[by][bx], dir[by][bx]); | 
|  | } | 
|  | } |