|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdlib.h>  // qsort() | 
|  |  | 
|  | #include "./aom_config.h" | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "./aom_scale_rtcd.h" | 
|  | #include "./av1_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/bitreader.h" | 
|  | #include "aom_dsp/bitreader_buffer.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/mem_ops.h" | 
|  | #include "aom_scale/aom_scale.h" | 
|  | #include "aom_util/aom_thread.h" | 
|  |  | 
|  | #include "av1/common/alloccommon.h" | 
|  | #if CONFIG_CLPF | 
|  | #include "aom/aom_image.h" | 
|  | #include "av1/common/clpf.h" | 
|  | #endif | 
|  | #include "av1/common/common.h" | 
|  | #if CONFIG_DERING | 
|  | #include "av1/common/dering.h" | 
|  | #endif  // CONFIG_DERING | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/seg_common.h" | 
|  | #include "av1/common/thread_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  |  | 
|  | #include "av1/decoder/decodeframe.h" | 
|  | #include "av1/decoder/decodemv.h" | 
|  | #include "av1/decoder/decoder.h" | 
|  | #include "av1/decoder/detokenize.h" | 
|  | #include "av1/decoder/dsubexp.h" | 
|  |  | 
|  | #if CONFIG_WARPED_MOTION | 
|  | #include "av1/common/warped_motion.h" | 
|  | #endif  // CONFIG_WARPED_MOTION | 
|  |  | 
|  | #define MAX_AV1_HEADER_SIZE 80 | 
|  | #define ACCT_STR __func__ | 
|  |  | 
|  | #if CONFIG_PVQ | 
|  | #include "av1/decoder/pvq_decoder.h" | 
|  | #include "av1/common/pvq.h" | 
|  | #include "av1/encoder/encodemb.h" | 
|  |  | 
|  | #include "av1/common/partition.h" | 
|  | #include "av1/decoder/decint.h" | 
|  | #include "av1/encoder/hybrid_fwd_txfm.h" | 
|  | #endif | 
|  |  | 
|  | static struct aom_read_bit_buffer *init_read_bit_buffer( | 
|  | AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, | 
|  | const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]); | 
|  | static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, | 
|  | size_t partition_size); | 
|  | static size_t read_uncompressed_header(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb); | 
|  |  | 
|  | static int is_compound_reference_allowed(const AV1_COMMON *cm) { | 
|  | int i; | 
|  | if (frame_is_intra_only(cm)) return 0; | 
|  | for (i = 1; i < INTER_REFS_PER_FRAME; ++i) | 
|  | if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void setup_compound_reference_mode(AV1_COMMON *cm) { | 
|  | #if CONFIG_EXT_REFS | 
|  | cm->comp_fwd_ref[0] = LAST_FRAME; | 
|  | cm->comp_fwd_ref[1] = LAST2_FRAME; | 
|  | cm->comp_fwd_ref[2] = LAST3_FRAME; | 
|  | cm->comp_fwd_ref[3] = GOLDEN_FRAME; | 
|  |  | 
|  | cm->comp_bwd_ref[0] = BWDREF_FRAME; | 
|  | cm->comp_bwd_ref[1] = ALTREF_FRAME; | 
|  | #else | 
|  | if (cm->ref_frame_sign_bias[LAST_FRAME] == | 
|  | cm->ref_frame_sign_bias[GOLDEN_FRAME]) { | 
|  | cm->comp_fixed_ref = ALTREF_FRAME; | 
|  | cm->comp_var_ref[0] = LAST_FRAME; | 
|  | cm->comp_var_ref[1] = GOLDEN_FRAME; | 
|  | } else if (cm->ref_frame_sign_bias[LAST_FRAME] == | 
|  | cm->ref_frame_sign_bias[ALTREF_FRAME]) { | 
|  | cm->comp_fixed_ref = GOLDEN_FRAME; | 
|  | cm->comp_var_ref[0] = LAST_FRAME; | 
|  | cm->comp_var_ref[1] = ALTREF_FRAME; | 
|  | } else { | 
|  | cm->comp_fixed_ref = LAST_FRAME; | 
|  | cm->comp_var_ref[0] = GOLDEN_FRAME; | 
|  | cm->comp_var_ref[1] = ALTREF_FRAME; | 
|  | } | 
|  | #endif  // CONFIG_EXT_REFS | 
|  | } | 
|  |  | 
|  | static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { | 
|  | return len != 0 && len <= (size_t)(end - start); | 
|  | } | 
|  |  | 
|  | static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) { | 
|  | const int data = aom_rb_read_literal(rb, get_unsigned_bits(max)); | 
|  | return data > max ? max : data; | 
|  | } | 
|  |  | 
|  | static TX_MODE read_tx_mode(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | int i, all_lossless = 1; | 
|  | #if CONFIG_TX64X64 | 
|  | TX_MODE tx_mode; | 
|  | #endif | 
|  |  | 
|  | if (cm->seg.enabled) { | 
|  | for (i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | if (!xd->lossless[i]) { | 
|  | all_lossless = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | all_lossless = xd->lossless[0]; | 
|  | } | 
|  |  | 
|  | if (all_lossless) return ONLY_4X4; | 
|  | #if CONFIG_TX64X64 | 
|  | tx_mode = aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); | 
|  | if (tx_mode == ALLOW_32X32) tx_mode += aom_rb_read_bit(rb); | 
|  | return tx_mode; | 
|  | #else | 
|  | return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); | 
|  | #endif  // CONFIG_TX64X64 | 
|  | } | 
|  |  | 
|  | static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j, k; | 
|  | for (i = 0; i < MAX_TX_DEPTH; ++i) | 
|  | for (j = 0; j < TX_SIZE_CONTEXTS; ++j) | 
|  | for (k = 0; k < i + 1; ++k) | 
|  | av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_EC_ADAPT | 
|  | static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j; | 
|  | for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { | 
|  | for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) | 
|  | av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | #if CONFIG_REF_MV | 
|  | int i; | 
|  | for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) | 
|  | av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR); | 
|  | for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) | 
|  | av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR); | 
|  | for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) | 
|  | av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR); | 
|  | for (i = 0; i < DRL_MODE_CONTEXTS; ++i) | 
|  | av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR); | 
|  | #if CONFIG_EXT_INTER | 
|  | av1_diff_update_prob(r, &fc->new2mv_prob, ACCT_STR); | 
|  | #endif  // CONFIG_EXT_INTER | 
|  | #else | 
|  | #if !CONFIG_EC_ADAPT | 
|  | int i, j; | 
|  | for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { | 
|  | for (j = 0; j < INTER_MODES - 1; ++j) | 
|  | av1_diff_update_prob(r, &fc->inter_mode_probs[i][j], ACCT_STR); | 
|  | } | 
|  | #else | 
|  | (void)fc; | 
|  | (void)r; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_INTER | 
|  | static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j; | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (j = 0; j < INTER_MODE_CONTEXTS; ++j) { | 
|  | for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) { | 
|  | av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_INTER | 
|  | #if !CONFIG_EC_ADAPT | 
|  | #if !CONFIG_EXT_TX | 
|  | static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j, k; | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
|  | for (j = 0; j < TX_TYPES; ++j) { | 
|  | for (k = 0; k < TX_TYPES - 1; ++k) | 
|  | av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
|  | for (k = 0; k < TX_TYPES - 1; ++k) | 
|  | av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static REFERENCE_MODE read_frame_reference_mode( | 
|  | const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
|  | if (is_compound_reference_allowed(cm)) { | 
|  | #if CONFIG_REF_ADAPT | 
|  | return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; | 
|  | #else | 
|  | return aom_rb_read_bit(rb) | 
|  | ? REFERENCE_MODE_SELECT | 
|  | : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE); | 
|  | #endif  // CONFIG_REF_ADAPT | 
|  | } else { | 
|  | return SINGLE_REFERENCE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) { | 
|  | FRAME_CONTEXT *const fc = cm->fc; | 
|  | int i, j; | 
|  |  | 
|  | if (cm->reference_mode == REFERENCE_MODE_SELECT) | 
|  | for (i = 0; i < COMP_INTER_CONTEXTS; ++i) | 
|  | av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR); | 
|  |  | 
|  | if (cm->reference_mode != COMPOUND_REFERENCE) { | 
|  | for (i = 0; i < REF_CONTEXTS; ++i) { | 
|  | for (j = 0; j < (SINGLE_REFS - 1); ++j) { | 
|  | av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->reference_mode != SINGLE_REFERENCE) { | 
|  | for (i = 0; i < REF_CONTEXTS; ++i) { | 
|  | #if CONFIG_EXT_REFS | 
|  | for (j = 0; j < (FWD_REFS - 1); ++j) | 
|  | av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); | 
|  | for (j = 0; j < (BWD_REFS - 1); ++j) | 
|  | av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR); | 
|  | #else | 
|  | for (j = 0; j < (COMP_REFS - 1); ++j) | 
|  | av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); | 
|  | #endif  // CONFIG_EXT_REFS | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_mv_probs(aom_prob *p, int n, aom_reader *r) { | 
|  | int i; | 
|  | for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR); | 
|  | } | 
|  |  | 
|  | static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) { | 
|  | int i; | 
|  |  | 
|  | #if !CONFIG_EC_ADAPT | 
|  | int j; | 
|  | update_mv_probs(ctx->joints, MV_JOINTS - 1, r); | 
|  |  | 
|  | for (i = 0; i < 2; ++i) { | 
|  | nmv_component *const comp_ctx = &ctx->comps[i]; | 
|  | update_mv_probs(&comp_ctx->sign, 1, r); | 
|  | update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); | 
|  | update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); | 
|  | update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); | 
|  | } | 
|  | for (i = 0; i < 2; ++i) { | 
|  | nmv_component *const comp_ctx = &ctx->comps[i]; | 
|  | for (j = 0; j < CLASS0_SIZE; ++j) { | 
|  | update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); | 
|  | } | 
|  | update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r); | 
|  | } | 
|  | #endif  // !CONFIG_EC_ADAPT | 
|  |  | 
|  | if (allow_hp) { | 
|  | for (i = 0; i < 2; ++i) { | 
|  | nmv_component *const comp_ctx = &ctx->comps[i]; | 
|  | update_mv_probs(&comp_ctx->class0_hp, 1, r); | 
|  | update_mv_probs(&comp_ctx->hp, 1, r); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void inverse_transform_block(MACROBLOCKD *xd, int plane, | 
|  | const TX_TYPE tx_type, | 
|  | const TX_SIZE tx_size, uint8_t *dst, | 
|  | int stride, int16_t scan_line, int eob) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | tran_low_t *const dqcoeff = pd->dqcoeff; | 
|  | INV_TXFM_PARAM inv_txfm_param; | 
|  | inv_txfm_param.tx_type = tx_type; | 
|  | inv_txfm_param.tx_size = tx_size; | 
|  | inv_txfm_param.eob = eob; | 
|  | inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; | 
|  |  | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | inv_txfm_param.bd = xd->bd; | 
|  | highbd_inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); | 
|  | } else { | 
|  | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
|  | inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | } | 
|  | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
|  | memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); | 
|  | } | 
|  |  | 
|  | #if CONFIG_PVQ | 
|  | static int av1_pvq_decode_helper(od_dec_ctx *dec, tran_low_t *ref_coeff, | 
|  | tran_low_t *dqcoeff, int16_t *quant, int pli, | 
|  | int bs, TX_TYPE tx_type, int xdec, | 
|  | PVQ_SKIP_TYPE ac_dc_coded) { | 
|  | unsigned int flags;  // used for daala's stream analyzer. | 
|  | int off; | 
|  | const int is_keyframe = 0; | 
|  | const int has_dc_skip = 1; | 
|  | /*TODO(tterribe): Handle CONFIG_AOM_HIGHBITDEPTH.*/ | 
|  | int coeff_shift = 3 - get_tx_scale(bs); | 
|  | int rounding_mask; | 
|  | // DC quantizer for PVQ | 
|  | int pvq_dc_quant; | 
|  | int lossless = (quant[0] == 0); | 
|  | const int blk_size = tx_size_wide[bs]; | 
|  | int eob = 0; | 
|  | int i; | 
|  | int use_activity_masking = dec->use_activity_masking; | 
|  | DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); | 
|  |  | 
|  | od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; | 
|  | od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; | 
|  |  | 
|  | od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff, | 
|  | blk_size); | 
|  |  | 
|  | assert(OD_COEFF_SHIFT >= 3); | 
|  | if (lossless) | 
|  | pvq_dc_quant = 1; | 
|  | else { | 
|  | if (use_activity_masking) | 
|  | pvq_dc_quant = OD_MAXI( | 
|  | 1, (quant[0] << (OD_COEFF_SHIFT - 3)) * | 
|  | dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >> | 
|  | 4); | 
|  | else | 
|  | pvq_dc_quant = OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3)); | 
|  | } | 
|  |  | 
|  | off = od_qm_offset(bs, xdec); | 
|  |  | 
|  | // copy int16 inputs to int32 | 
|  | for (i = 0; i < blk_size * blk_size; i++) { | 
|  | ref_int32[i] = ref_coeff_pvq[i] << (OD_COEFF_SHIFT - coeff_shift); | 
|  | } | 
|  |  | 
|  | od_pvq_decode(dec, ref_int32, out_int32, quant[1] << (OD_COEFF_SHIFT - 3), | 
|  | pli, bs, OD_PVQ_BETA[use_activity_masking][pli][bs], | 
|  | OD_ROBUST_STREAM, is_keyframe, &flags, ac_dc_coded, | 
|  | dec->state.qm + off, dec->state.qm_inv + off); | 
|  |  | 
|  | if (!has_dc_skip || out_int32[0]) { | 
|  | out_int32[0] = | 
|  | has_dc_skip + generic_decode(dec->r, &dec->state.adapt.model_dc[pli], | 
|  | -1, &dec->state.adapt.ex_dc[pli][bs][0], 2, | 
|  | "dc:mag"); | 
|  | if (out_int32[0]) out_int32[0] *= aom_read_bit(dec->r, "dc:sign") ? -1 : 1; | 
|  | } | 
|  | out_int32[0] = out_int32[0] * pvq_dc_quant + ref_int32[0]; | 
|  |  | 
|  | // copy int32 result back to int16 | 
|  | assert(OD_COEFF_SHIFT > coeff_shift); | 
|  | rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1; | 
|  | for (i = 0; i < blk_size * blk_size; i++) { | 
|  | dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >> | 
|  | (OD_COEFF_SHIFT - coeff_shift); | 
|  | } | 
|  |  | 
|  | od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size); | 
|  |  | 
|  | eob = blk_size * blk_size; | 
|  |  | 
|  | return eob; | 
|  | } | 
|  |  | 
|  | static PVQ_SKIP_TYPE read_pvq_skip(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | int plane, TX_SIZE tx_size) { | 
|  | // decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded | 
|  | // NOTE : we don't use 5 symbols for luma here in aom codebase, | 
|  | // since block partition is taken care of by aom. | 
|  | // So, only AC/DC skip info is coded | 
|  | const int ac_dc_coded = aom_decode_cdf_adapt( | 
|  | xd->daala_dec.r, | 
|  | xd->daala_dec.state.adapt.skip_cdf[2 * tx_size + (plane != 0)], 4, | 
|  | xd->daala_dec.state.adapt.skip_increment, "skip"); | 
|  | if (ac_dc_coded < 0 || ac_dc_coded > 3) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, | 
|  | "Invalid PVQ Skip Type"); | 
|  | } | 
|  | return ac_dc_coded; | 
|  | } | 
|  |  | 
|  | static int av1_pvq_decode_helper2(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | MB_MODE_INFO *const mbmi, int plane, int row, | 
|  | int col, TX_SIZE tx_size, TX_TYPE tx_type) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | // transform block size in pixels | 
|  | int tx_blk_size = tx_size_wide[tx_size]; | 
|  | int i, j; | 
|  | tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff; | 
|  | const int diff_stride = tx_blk_size; | 
|  | int16_t *pred = pd->pred; | 
|  | tran_low_t *const dqcoeff = pd->dqcoeff; | 
|  | uint8_t *dst; | 
|  | int eob; | 
|  | const PVQ_SKIP_TYPE ac_dc_coded = read_pvq_skip(cm, xd, plane, tx_size); | 
|  |  | 
|  | eob = 0; | 
|  | dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; | 
|  |  | 
|  | if (ac_dc_coded) { | 
|  | int xdec = pd->subsampling_x; | 
|  | int seg_id = mbmi->segment_id; | 
|  | int16_t *quant; | 
|  | FWD_TXFM_PARAM fwd_txfm_param; | 
|  | // ToDo(yaowu): correct this with optimal number from decoding process. | 
|  | const int max_scan_line = tx_size_2d[tx_size]; | 
|  |  | 
|  | for (j = 0; j < tx_blk_size; j++) | 
|  | for (i = 0; i < tx_blk_size; i++) { | 
|  | pred[diff_stride * j + i] = dst[pd->dst.stride * j + i]; | 
|  | } | 
|  |  | 
|  | fwd_txfm_param.tx_type = tx_type; | 
|  | fwd_txfm_param.tx_size = tx_size; | 
|  | fwd_txfm_param.lossless = xd->lossless[seg_id]; | 
|  |  | 
|  | fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param); | 
|  |  | 
|  | quant = &pd->seg_dequant[seg_id][0];  // aom's quantizer | 
|  |  | 
|  | eob = av1_pvq_decode_helper(&xd->daala_dec, pvq_ref_coeff, dqcoeff, quant, | 
|  | plane, tx_size, tx_type, xdec, ac_dc_coded); | 
|  |  | 
|  | // Since av1 does not have separate inverse transform | 
|  | // but also contains adding to predicted image, | 
|  | // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros | 
|  | for (j = 0; j < tx_blk_size; j++) | 
|  | for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; | 
|  |  | 
|  | inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, | 
|  | max_scan_line, eob); | 
|  | } | 
|  |  | 
|  | return eob; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void predict_and_reconstruct_intra_block( | 
|  | AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r, | 
|  | MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; | 
|  | PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; | 
|  | uint8_t *dst; | 
|  | const int block_idx = (row << 1) + col; | 
|  | #if CONFIG_PVQ | 
|  | (void)r; | 
|  | #endif | 
|  | dst = &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; | 
|  |  | 
|  | #if !CONFIG_CB4X4 | 
|  | if (mbmi->sb_type < BLOCK_8X8) | 
|  | if (plane == 0) mode = xd->mi[0]->bmi[block_idx].as_mode; | 
|  | #endif | 
|  |  | 
|  | av1_predict_intra_block(xd, pd->width, pd->height, txsize_to_bsize[tx_size], | 
|  | mode, dst, pd->dst.stride, dst, pd->dst.stride, col, | 
|  | row, plane); | 
|  |  | 
|  | if (!mbmi->skip) { | 
|  | TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); | 
|  | #if !CONFIG_PVQ | 
|  | const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); | 
|  | int16_t max_scan_line = 0; | 
|  | const int eob = | 
|  | av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, | 
|  | tx_type, &max_scan_line, r, mbmi->segment_id); | 
|  | #if CONFIG_ADAPT_SCAN | 
|  | if (xd->counts) | 
|  | av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, | 
|  | pd->dqcoeff, eob); | 
|  | #endif | 
|  | if (eob) | 
|  | inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, | 
|  | max_scan_line, eob); | 
|  | #else | 
|  | av1_pvq_decode_helper2(cm, xd, mbmi, plane, row, col, tx_size, tx_type); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_VAR_TX | 
|  | static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | aom_reader *r, MB_MODE_INFO *const mbmi, | 
|  | int plane, BLOCK_SIZE plane_bsize, | 
|  | int blk_row, int blk_col, TX_SIZE tx_size, | 
|  | int *eob_total) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; | 
|  | const int tx_row = blk_row >> (1 - pd->subsampling_y); | 
|  | const int tx_col = blk_col >> (1 - pd->subsampling_x); | 
|  | const TX_SIZE plane_tx_size = | 
|  | plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] | 
|  | : mbmi->inter_tx_size[tx_row][tx_col]; | 
|  | // Scale to match transform block unit. | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | if (tx_size == plane_tx_size) { | 
|  | PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; | 
|  | int block_idx = (blk_row << 1) + blk_col; | 
|  | TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size); | 
|  | const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1); | 
|  | int16_t max_scan_line = 0; | 
|  | const int eob = | 
|  | av1_decode_block_tokens(xd, plane, sc, blk_col, blk_row, plane_tx_size, | 
|  | tx_type, &max_scan_line, r, mbmi->segment_id); | 
|  | #if CONFIG_ADAPT_SCAN | 
|  | if (xd->counts) | 
|  | av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, | 
|  | pd->dqcoeff, eob); | 
|  | #endif | 
|  | inverse_transform_block(xd, plane, tx_type, plane_tx_size, | 
|  | &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) | 
|  | << tx_size_wide_log2[0]], | 
|  | pd->dst.stride, max_scan_line, eob); | 
|  | *eob_total += eob; | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsl = tx_size_wide_unit[sub_txs]; | 
|  | int i; | 
|  |  | 
|  | assert(bsl > 0); | 
|  |  | 
|  | for (i = 0; i < 4; ++i) { | 
|  | const int offsetr = blk_row + (i >> 1) * bsl; | 
|  | const int offsetc = blk_col + (i & 0x01) * bsl; | 
|  |  | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  |  | 
|  | decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr, | 
|  | offsetc, sub_txs, eob_total); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_VAR_TX | 
|  |  | 
|  | #if !CONFIG_VAR_TX || CONFIG_SUPERTX || \ | 
|  | (!CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX) | 
|  | static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | aom_reader *const r, int segment_id, | 
|  | int plane, int row, int col, | 
|  | TX_SIZE tx_size) { | 
|  | PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; | 
|  | int block_idx = (row << 1) + col; | 
|  | TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); | 
|  | #if CONFIG_PVQ | 
|  | int eob; | 
|  | (void)r; | 
|  | (void)segment_id; | 
|  | #else | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | #endif | 
|  |  | 
|  | #if !CONFIG_PVQ | 
|  | const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1); | 
|  | int16_t max_scan_line = 0; | 
|  | const int eob = | 
|  | av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, tx_type, | 
|  | &max_scan_line, r, segment_id); | 
|  | uint8_t *dst = | 
|  | &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; | 
|  | #if CONFIG_ADAPT_SCAN | 
|  | if (xd->counts) | 
|  | av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, pd->dqcoeff, | 
|  | eob); | 
|  | #endif | 
|  | if (eob) | 
|  | inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, | 
|  | max_scan_line, eob); | 
|  | #else | 
|  | eob = av1_pvq_decode_helper2(cm, xd, &xd->mi[0]->mbmi, plane, row, col, | 
|  | tx_size, tx_type); | 
|  | #endif | 
|  | return eob; | 
|  | } | 
|  | #endif  // !CONFIG_VAR_TX || CONFIG_SUPER_TX | 
|  |  | 
|  | static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, | 
|  | int bw, int bh, int x_mis, int y_mis) { | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  | int x, y; | 
|  | const TileInfo *const tile = &xd->tile; | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = &cm->mi[offset]; | 
|  | // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of | 
|  | // passing bsize from decode_partition(). | 
|  | xd->mi[0]->mbmi.sb_type = bsize; | 
|  | #if CONFIG_RD_DEBUG | 
|  | xd->mi[0]->mbmi.mi_row = mi_row; | 
|  | xd->mi[0]->mbmi.mi_col = mi_col; | 
|  | #endif | 
|  | for (y = 0; y < y_mis; ++y) | 
|  | for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; | 
|  |  | 
|  | set_plane_n4(xd, bw, bh); | 
|  | set_skip_context(xd, mi_row, mi_col); | 
|  |  | 
|  | #if CONFIG_VAR_TX | 
|  | xd->max_tx_size = max_txsize_lookup[bsize]; | 
|  | #endif | 
|  |  | 
|  | // Distance of Mb to the various image edges. These are specified to 8th pel | 
|  | // as they are always compared to values that are in 1/8th pel units | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols, | 
|  | cm->dependent_horz_tiles); | 
|  | #else | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
|  | #endif | 
|  |  | 
|  | av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); | 
|  | return &xd->mi[0]->mbmi; | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUPERTX | 
|  | static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm, | 
|  | MACROBLOCKD *const xd, | 
|  | const TileInfo *const tile, | 
|  | BLOCK_SIZE bsize_pred, int mi_row_pred, | 
|  | int mi_col_pred, int mi_row_ori, | 
|  | int mi_col_ori) { | 
|  | // Used in supertx | 
|  | // (mi_row_ori, mi_col_ori): location for mv | 
|  | // (mi_row_pred, mi_col_pred, bsize_pred): region to predict | 
|  | const int bw = mi_size_wide[bsize_pred]; | 
|  | const int bh = mi_size_high[bsize_pred]; | 
|  | const int offset = mi_row_ori * cm->mi_stride + mi_col_ori; | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = cm->mi + offset; | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows, | 
|  | cm->mi_cols, cm->dependent_horz_tiles); | 
|  | #else | 
|  | set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows, | 
|  | cm->mi_cols); | 
|  | #endif | 
|  |  | 
|  | xd->up_available = (mi_row_ori > tile->mi_row_start); | 
|  | xd->left_available = (mi_col_ori > tile->mi_col_start); | 
|  |  | 
|  | set_plane_n4(xd, bw, bh); | 
|  |  | 
|  | return &xd->mi[0]->mbmi; | 
|  | } | 
|  |  | 
|  | static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, | 
|  | int bw, int bh, int x_mis, int y_mis) { | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  | const TileInfo *const tile = &xd->tile; | 
|  | int x, y; | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = cm->mi + offset; | 
|  | xd->mi[0]->mbmi.sb_type = bsize; | 
|  | for (y = 0; y < y_mis; ++y) | 
|  | for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols, | 
|  | cm->dependent_horz_tiles); | 
|  | #else | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
|  | #endif | 
|  | return &xd->mi[0]->mbmi; | 
|  | } | 
|  |  | 
|  | static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | const TileInfo *const tile, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = cm->mi + offset; | 
|  |  | 
|  | set_plane_n4(xd, bw, bh); | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols, | 
|  | cm->dependent_horz_tiles); | 
|  | #else | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
|  | #endif | 
|  |  | 
|  | av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, | 
|  | int txfm, int skip) { | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); | 
|  | const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  | int x, y; | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = cm->mi + offset; | 
|  |  | 
|  | for (y = 0; y < y_mis; ++y) | 
|  | for (x = 0; x < x_mis; ++x) { | 
|  | xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip; | 
|  | xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm; | 
|  | } | 
|  | #if CONFIG_VAR_TX | 
|  | xd->above_txfm_context = cm->above_txfm_context + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, skip, xd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx, | 
|  | int mi_row, int mi_col) { | 
|  | MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
|  | RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; | 
|  | xd->block_refs[idx] = ref_buffer; | 
|  | if (!av1_is_valid_scale(&ref_buffer->sf)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Invalid scale factors"); | 
|  | av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, | 
|  | &ref_buffer->sf); | 
|  | xd->corrupted |= ref_buffer->buf->corrupted; | 
|  | } | 
|  |  | 
|  | static void dec_predict_b_extend( | 
|  | AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, | 
|  | int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, | 
|  | int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], | 
|  | BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) { | 
|  | // Used in supertx | 
|  | // (mi_row_ori, mi_col_ori): location for mv | 
|  | // (mi_row_pred, mi_col_pred, bsize_pred): region to predict | 
|  | // (mi_row_top, mi_col_top, bsize_top): region of the top partition size | 
|  | // block: sub location of sub8x8 blocks | 
|  | // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 | 
|  | // bextend: 1: region to predict is an extension of ori; 0: not | 
|  | int r = (mi_row_pred - mi_row_top) * MI_SIZE; | 
|  | int c = (mi_col_pred - mi_col_top) * MI_SIZE; | 
|  | const int mi_width_top = mi_size_wide[bsize_top]; | 
|  | const int mi_height_top = mi_size_high[bsize_top]; | 
|  | MB_MODE_INFO *mbmi; | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  |  | 
|  | if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || | 
|  | mi_row_pred >= mi_row_top + mi_height_top || | 
|  | mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || | 
|  | mi_col_pred >= cm->mi_cols) | 
|  | return; | 
|  |  | 
|  | mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred, | 
|  | mi_row_ori, mi_col_ori); | 
|  | set_ref(cm, xd, 0, mi_row_pred, mi_col_pred); | 
|  | if (has_second_ref(&xd->mi[0]->mbmi)) | 
|  | set_ref(cm, xd, 1, mi_row_pred, mi_col_pred); | 
|  |  | 
|  | if (!bextend) mbmi->tx_size = max_txsize_lookup[bsize_top]; | 
|  |  | 
|  | xd->plane[0].dst.stride = dst_stride[0]; | 
|  | xd->plane[1].dst.stride = dst_stride[1]; | 
|  | xd->plane[2].dst.stride = dst_stride[2]; | 
|  | xd->plane[0].dst.buf = dst_buf[0] + | 
|  | (r >> xd->plane[0].subsampling_y) * dst_stride[0] + | 
|  | (c >> xd->plane[0].subsampling_x); | 
|  | xd->plane[1].dst.buf = dst_buf[1] + | 
|  | (r >> xd->plane[1].subsampling_y) * dst_stride[1] + | 
|  | (c >> xd->plane[1].subsampling_x); | 
|  | xd->plane[2].dst.buf = dst_buf[2] + | 
|  | (r >> xd->plane[2].subsampling_y) * dst_stride[2] + | 
|  | (c >> xd->plane[2].subsampling_x); | 
|  |  | 
|  | if (!b_sub8x8) | 
|  | av1_build_inter_predictors_sb_extend(xd, | 
|  | #if CONFIG_EXT_INTER | 
|  | mi_row_ori, mi_col_ori, | 
|  | #endif  // CONFIG_EXT_INTER | 
|  | mi_row_pred, mi_col_pred, bsize_pred); | 
|  | else | 
|  | av1_build_inter_predictors_sb_sub8x8_extend(xd, | 
|  | #if CONFIG_EXT_INTER | 
|  | mi_row_ori, mi_col_ori, | 
|  | #endif  // CONFIG_EXT_INTER | 
|  | mi_row_pred, mi_col_pred, | 
|  | bsize_pred, block); | 
|  | } | 
|  |  | 
|  | static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | const TileInfo *const tile, int block, | 
|  | BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, | 
|  | int mi_col, int mi_row_top, int mi_col_top, | 
|  | uint8_t *dst_buf[3], int dst_stride[3], int dir) { | 
|  | // dir: 0-lower, 1-upper, 2-left, 3-right | 
|  | //      4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | int xss = xd->plane[1].subsampling_x; | 
|  | int yss = xd->plane[1].subsampling_y; | 
|  | #if CONFIG_CB4X4 | 
|  | const int unify_bsize = 1; | 
|  | #else | 
|  | const int unify_bsize = 0; | 
|  | #endif | 
|  | int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0; | 
|  | BLOCK_SIZE extend_bsize; | 
|  | int mi_row_pred, mi_col_pred; | 
|  |  | 
|  | int wide_unit, high_unit; | 
|  | int i, j; | 
|  | int ext_offset = 0; | 
|  |  | 
|  | if (dir == 0 || dir == 1) { | 
|  | extend_bsize = | 
|  | (mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss) | 
|  | ? BLOCK_8X8 | 
|  | : BLOCK_16X8; | 
|  | #if CONFIG_CB4X4 | 
|  | if (bsize < BLOCK_8X8) { | 
|  | extend_bsize = BLOCK_4X4; | 
|  | ext_offset = mi_size_wide[BLOCK_8X8]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | wide_unit = mi_size_wide[extend_bsize]; | 
|  | high_unit = mi_size_high[extend_bsize]; | 
|  |  | 
|  | mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset)); | 
|  | mi_col_pred = mi_col; | 
|  |  | 
|  | for (j = 0; j < mi_height + ext_offset; j += high_unit) | 
|  | for (i = 0; i < mi_width + ext_offset; i += wide_unit) | 
|  | dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, | 
|  | mi_row_pred + j, mi_col_pred + i, mi_row_top, | 
|  | mi_col_top, dst_buf, dst_stride, top_bsize, | 
|  | extend_bsize, b_sub8x8, 1); | 
|  | } else if (dir == 2 || dir == 3) { | 
|  | extend_bsize = | 
|  | (mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss) | 
|  | ? BLOCK_8X8 | 
|  | : BLOCK_8X16; | 
|  | #if CONFIG_CB4X4 | 
|  | if (bsize < BLOCK_8X8) { | 
|  | extend_bsize = BLOCK_4X4; | 
|  | ext_offset = mi_size_wide[BLOCK_8X8]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | wide_unit = mi_size_wide[extend_bsize]; | 
|  | high_unit = mi_size_high[extend_bsize]; | 
|  |  | 
|  | mi_row_pred = mi_row; | 
|  | mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset)); | 
|  |  | 
|  | for (j = 0; j < mi_height + ext_offset; j += high_unit) | 
|  | for (i = 0; i < mi_width + ext_offset; i += wide_unit) | 
|  | dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, | 
|  | mi_row_pred + j, mi_col_pred + i, mi_row_top, | 
|  | mi_col_top, dst_buf, dst_stride, top_bsize, | 
|  | extend_bsize, b_sub8x8, 1); | 
|  | } else { | 
|  | extend_bsize = BLOCK_8X8; | 
|  | #if CONFIG_CB4X4 | 
|  | if (bsize < BLOCK_8X8) { | 
|  | extend_bsize = BLOCK_4X4; | 
|  | ext_offset = mi_size_wide[BLOCK_8X8]; | 
|  | } | 
|  | #endif | 
|  | wide_unit = mi_size_wide[extend_bsize]; | 
|  | high_unit = mi_size_high[extend_bsize]; | 
|  |  | 
|  | mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height | 
|  | : -(mi_height + ext_offset)); | 
|  | mi_col_pred = | 
|  | mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset)); | 
|  |  | 
|  | for (j = 0; j < mi_height + ext_offset; j += high_unit) | 
|  | for (i = 0; i < mi_width + ext_offset; i += wide_unit) | 
|  | dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, | 
|  | mi_row_pred + j, mi_col_pred + i, mi_row_top, | 
|  | mi_col_top, dst_buf, dst_stride, top_bsize, | 
|  | extend_bsize, b_sub8x8, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | const TileInfo *const tile, int block, | 
|  | BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, | 
|  | int mi_col, int mi_row_top, int mi_col_top, | 
|  | uint8_t *dst_buf[3], int dst_stride[3]) { | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 0); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 1); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 2); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 3); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 4); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 5); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 6); | 
|  | dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 7); | 
|  | } | 
|  |  | 
|  | static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | const TileInfo *const tile, int mi_row, | 
|  | int mi_col, int mi_row_top, int mi_col_top, | 
|  | BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, | 
|  | uint8_t *dst_buf[3], int dst_stride[3]) { | 
|  | const AV1_COMMON *const cm = &pbi->common; | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); | 
|  | const BLOCK_SIZE subsize = get_subsize(bsize, partition); | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif | 
|  | int i; | 
|  | const int mi_offset = mi_row * cm->mi_stride + mi_col; | 
|  | uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; | 
|  | #if CONFIG_CB4X4 | 
|  | const int unify_bsize = 1; | 
|  | #else | 
|  | const int unify_bsize = 0; | 
|  | #endif | 
|  |  | 
|  | DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); | 
|  | DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); | 
|  | DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); | 
|  | int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; | 
|  | int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; | 
|  | int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; | 
|  |  | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | int len = sizeof(uint16_t); | 
|  | dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); | 
|  | dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); | 
|  | dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); | 
|  | dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); | 
|  | dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); | 
|  | dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); | 
|  | dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); | 
|  | dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); | 
|  | dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); | 
|  | } else { | 
|  | #endif | 
|  | dst_buf1[0] = tmp_buf1; | 
|  | dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; | 
|  | dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; | 
|  | dst_buf2[0] = tmp_buf2; | 
|  | dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; | 
|  | dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; | 
|  | dst_buf3[0] = tmp_buf3; | 
|  | dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; | 
|  | dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + mi_offset; | 
|  | xd->mi[0] = cm->mi + mi_offset; | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | } | 
|  |  | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | assert(bsize < top_bsize); | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, bsize, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | if (bsize == BLOCK_8X8 && !unify_bsize) { | 
|  | // For sub8x8, predict in 8x8 unit | 
|  | // First half | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, BLOCK_8X8, 1, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  |  | 
|  | // Second half | 
|  | dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1, | 
|  | top_bsize, BLOCK_8X8, 1, 1); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | // weighted average to smooth the boundary | 
|  | xd->plane[0].dst.buf = dst_buf[0]; | 
|  | xd->plane[0].dst.stride = dst_stride[0]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, | 
|  | 0); | 
|  | } else { | 
|  | // First half | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 0); | 
|  |  | 
|  | if (mi_row + hbs < cm->mi_rows) { | 
|  | // Second half | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, | 
|  | mi_row + hbs, mi_col, mi_row_top, mi_col_top, | 
|  | dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, 1); | 
|  |  | 
|  | // weighted average to smooth the boundary | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_HORZ, i); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | if (bsize == BLOCK_8X8 && !unify_bsize) { | 
|  | // First half | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, BLOCK_8X8, 1, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  |  | 
|  | // Second half | 
|  | dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1, | 
|  | top_bsize, BLOCK_8X8, 1, 1); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | // Smooth | 
|  | xd->plane[0].dst.buf = dst_buf[0]; | 
|  | xd->plane[0].dst.stride = dst_stride[0]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, | 
|  | 0); | 
|  | } else { | 
|  | // First half | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 3); | 
|  |  | 
|  | // Second half | 
|  | if (mi_col + hbs < cm->mi_cols) { | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, 2); | 
|  |  | 
|  | // Smooth | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_VERT, i); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | if (bsize == BLOCK_8X8 && !unify_bsize) { | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, BLOCK_8X8, 1, 0); | 
|  | dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1, | 
|  | top_bsize, BLOCK_8X8, 1, 1); | 
|  | dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf2, dst_stride2, | 
|  | top_bsize, BLOCK_8X8, 1, 1); | 
|  | dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf3, dst_stride3, | 
|  | top_bsize, BLOCK_8X8, 1, 1); | 
|  | if (bsize < top_bsize) { | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  | dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf2, dst_stride2); | 
|  | dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf3, dst_stride3); | 
|  | } | 
|  | } else { | 
|  | dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top, | 
|  | mi_col_top, subsize, top_bsize, dst_buf, | 
|  | dst_stride); | 
|  | if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) | 
|  | dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs, | 
|  | mi_row_top, mi_col_top, subsize, top_bsize, | 
|  | dst_buf1, dst_stride1); | 
|  | if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) | 
|  | dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col, | 
|  | mi_row_top, mi_col_top, subsize, top_bsize, | 
|  | dst_buf2, dst_stride2); | 
|  | if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) | 
|  | dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs, | 
|  | mi_row_top, mi_col_top, subsize, top_bsize, | 
|  | dst_buf3, dst_stride3); | 
|  | } | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | #if !CONFIG_CB4X4 | 
|  | if (bsize == BLOCK_8X8 && i != 0) | 
|  | continue;  // Skip <4x4 chroma smoothing | 
|  | #endif | 
|  | if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_VERT, i); | 
|  | if (mi_row + hbs < cm->mi_rows) { | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_VERT, i); | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_HORZ, i); | 
|  | } | 
|  | } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_HORZ, i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | case PARTITION_HORZ_A: | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2, top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, | 
|  | 1); | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, | 
|  | i); | 
|  | } | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, | 
|  | i); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2, top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2, 2); | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, | 
|  | i); | 
|  | } | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, | 
|  | i); | 
|  | } | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 0); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, | 
|  | mi_col, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, | 
|  | mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, | 
|  | dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2); | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf1[i]; | 
|  | xd->plane[i].dst.stride = dst_stride1[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_VERT, i); | 
|  | } | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, | 
|  | i); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, | 
|  | top_bsize, subsize, 0, 0); | 
|  | if (bsize < top_bsize) | 
|  | dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride); | 
|  | else | 
|  | dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, | 
|  | mi_row_top, mi_col_top, dst_buf, dst_stride, 3); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, | 
|  | dst_stride1, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, | 
|  | mi_row_top, mi_col_top, dst_buf1, dst_stride1); | 
|  |  | 
|  | dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, | 
|  | mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, | 
|  | dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); | 
|  | dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, | 
|  | mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, | 
|  | dst_stride2); | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf1[i]; | 
|  | xd->plane[i].dst.stride = dst_stride1[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], | 
|  | mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, | 
|  | PARTITION_HORZ, i); | 
|  | } | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].dst.buf = dst_buf[i]; | 
|  | xd->plane[i].dst.stride = dst_stride[i]; | 
|  | av1_build_masked_inter_predictor_complex( | 
|  | xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, | 
|  | mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, | 
|  | i); | 
|  | } | 
|  | break; | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_segment_id_supertx(const AV1_COMMON *const cm, const int mi_row, | 
|  | const int mi_col, const BLOCK_SIZE bsize) { | 
|  | const struct segmentation *seg = &cm->seg; | 
|  | const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col); | 
|  | const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row); | 
|  | const int mi_offset = mi_row * cm->mi_stride + mi_col; | 
|  | MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; | 
|  | int r, c; | 
|  | int seg_id_supertx = MAX_SEGMENTS; | 
|  |  | 
|  | if (!seg->enabled) { | 
|  | seg_id_supertx = 0; | 
|  | } else { | 
|  | // Find the minimum segment_id | 
|  | for (r = 0; r < mih; r++) | 
|  | for (c = 0; c < miw; c++) | 
|  | seg_id_supertx = | 
|  | AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); | 
|  | assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); | 
|  | } | 
|  |  | 
|  | // Assign the the segment_id back to segment_id_supertx | 
|  | for (r = 0; r < mih; r++) | 
|  | for (c = 0; c < miw; c++) | 
|  | mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; | 
|  | } | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | #if CONFIG_SUPERTX | 
|  | int supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | int mi_row, int mi_col, aom_reader *r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | PARTITION_TYPE partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); | 
|  | const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); | 
|  |  | 
|  | #if CONFIG_ACCOUNTING | 
|  | aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); | 
|  | #endif | 
|  | #if CONFIG_SUPERTX | 
|  | if (supertx_enabled) { | 
|  | set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); | 
|  | } else { | 
|  | set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); | 
|  | } | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | xd->mi[0]->mbmi.partition = partition; | 
|  | #endif | 
|  | av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis); | 
|  | #else | 
|  | set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | xd->mi[0]->mbmi.partition = partition; | 
|  | #endif | 
|  | av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { | 
|  | const BLOCK_SIZE uv_subsize = | 
|  | ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; | 
|  | if (uv_subsize == BLOCK_INVALID) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid block size."); | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUPERTX | 
|  | xd->mi[0]->mbmi.segment_id_supertx = MAX_SEGMENTS; | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | xd->corrupted |= aom_reader_has_error(r); | 
|  | } | 
|  |  | 
|  | static void decode_token_and_recon_block(AV1Decoder *const pbi, | 
|  | MACROBLOCKD *const xd, int mi_row, | 
|  | int mi_col, aom_reader *r, | 
|  | BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); | 
|  | const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); | 
|  | MB_MODE_INFO *mbmi; | 
|  |  | 
|  | mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); | 
|  |  | 
|  | #if CONFIG_DELTA_Q | 
|  | if (cm->delta_q_present_flag) { | 
|  | int i; | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | xd->plane[0].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[0].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, 0, cm->bit_depth); | 
|  | xd->plane[1].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[1].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | xd->plane[2].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[2].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_CB4X4 | 
|  | if (mbmi->skip) reset_skip_context(xd, bsize); | 
|  | #else | 
|  | if (mbmi->skip) reset_skip_context(xd, AOMMAX(BLOCK_8X8, bsize)); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_COEF_INTERLEAVE | 
|  | { | 
|  | const struct macroblockd_plane *const pd_y = &xd->plane[0]; | 
|  | const struct macroblockd_plane *const pd_c = &xd->plane[1]; | 
|  | const TX_SIZE tx_log2_y = mbmi->tx_size; | 
|  | const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); | 
|  | const int tx_sz_y = (1 << tx_log2_y); | 
|  | const int tx_sz_c = (1 << tx_log2_c); | 
|  | const int num_4x4_w_y = pd_y->n4_w; | 
|  | const int num_4x4_h_y = pd_y->n4_h; | 
|  | const int num_4x4_w_c = pd_c->n4_w; | 
|  | const int num_4x4_h_c = pd_c->n4_h; | 
|  | const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, | 
|  | pd_y->subsampling_x); | 
|  | const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, | 
|  | pd_y->subsampling_y); | 
|  | const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, | 
|  | pd_c->subsampling_x); | 
|  | const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, | 
|  | pd_c->subsampling_y); | 
|  |  | 
|  | // The max_4x4_w/h may be smaller than tx_sz under some corner cases, | 
|  | // i.e. when the SB is splitted by tile boundaries. | 
|  | const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; | 
|  | const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; | 
|  | const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; | 
|  | const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; | 
|  | const int tu_num_y = tu_num_w_y * tu_num_h_y; | 
|  | const int tu_num_c = tu_num_w_c * tu_num_h_c; | 
|  |  | 
|  | if (!is_inter_block(mbmi)) { | 
|  | int tu_idx_c = 0; | 
|  | int row_y, col_y, row_c, col_c; | 
|  | int plane; | 
|  |  | 
|  | #if CONFIG_PALETTE | 
|  | for (plane = 0; plane <= 1; ++plane) { | 
|  | if (mbmi->palette_mode_info.palette_size[plane]) | 
|  | av1_decode_palette_tokens(xd, plane, r); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (row_y = 0; row_y < tu_num_h_y; row_y++) { | 
|  | for (col_y = 0; col_y < tu_num_w_y; col_y++) { | 
|  | // luma | 
|  | predict_and_reconstruct_intra_block( | 
|  | cm, xd, r, mbmi, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y); | 
|  | // chroma | 
|  | if (tu_idx_c < tu_num_c) { | 
|  | row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
|  | col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
|  | predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, | 
|  | col_c, tx_log2_c); | 
|  | predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, | 
|  | col_c, tx_log2_c); | 
|  | tu_idx_c++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // In 422 case, it's possilbe that Chroma has more TUs than Luma | 
|  | while (tu_idx_c < tu_num_c) { | 
|  | row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
|  | col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
|  | predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c, | 
|  | tx_log2_c); | 
|  | predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c, | 
|  | tx_log2_c); | 
|  | tu_idx_c++; | 
|  | } | 
|  | } else { | 
|  | // Prediction | 
|  | av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, | 
|  | AOMMAX(bsize, BLOCK_8X8)); | 
|  |  | 
|  | // Reconstruction | 
|  | if (!mbmi->skip) { | 
|  | int eobtotal = 0; | 
|  | int tu_idx_c = 0; | 
|  | int row_y, col_y, row_c, col_c; | 
|  |  | 
|  | for (row_y = 0; row_y < tu_num_h_y; row_y++) { | 
|  | for (col_y = 0; col_y < tu_num_w_y; col_y++) { | 
|  | // luma | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 0, | 
|  | row_y * tx_sz_y, | 
|  | col_y * tx_sz_y, tx_log2_y); | 
|  | // chroma | 
|  | if (tu_idx_c < tu_num_c) { | 
|  | row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
|  | col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, | 
|  | 1, row_c, col_c, tx_log2_c); | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, | 
|  | 2, row_c, col_c, tx_log2_c); | 
|  | tu_idx_c++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // In 422 case, it's possilbe that Chroma has more TUs than Luma | 
|  | while (tu_idx_c < tu_num_c) { | 
|  | row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; | 
|  | col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1, | 
|  | row_c, col_c, tx_log2_c); | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2, | 
|  | row_c, col_c, tx_log2_c); | 
|  | tu_idx_c++; | 
|  | } | 
|  |  | 
|  | if (bsize >= BLOCK_8X8 && eobtotal == 0) | 
|  | #if CONFIG_MISC_FIXES | 
|  | mbmi->has_no_coeffs = 1; | 
|  | #else | 
|  | mbmi->skip = 1; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | if (!is_inter_block(mbmi)) { | 
|  | int plane; | 
|  | #if CONFIG_PALETTE | 
|  | for (plane = 0; plane <= 1; ++plane) { | 
|  | if (mbmi->palette_mode_info.palette_size[plane]) | 
|  | av1_decode_palette_tokens(xd, plane, r); | 
|  | } | 
|  | #endif  // CONFIG_PALETTE | 
|  | for (plane = 0; plane < MAX_MB_PLANE; ++plane) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; | 
|  | const int stepr = tx_size_high_unit[tx_size]; | 
|  | const int stepc = tx_size_wide_unit[tx_size]; | 
|  | #if CONFIG_CB4X4 | 
|  | const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
|  | #else | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); | 
|  | #endif | 
|  | int row, col; | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  |  | 
|  | for (row = 0; row < max_blocks_high; row += stepr) | 
|  | for (col = 0; col < max_blocks_wide; col += stepc) | 
|  | predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col, | 
|  | tx_size); | 
|  | } | 
|  | } else { | 
|  | int ref; | 
|  |  | 
|  | for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
|  | const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; | 
|  | RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; | 
|  |  | 
|  | xd->block_refs[ref] = ref_buf; | 
|  | if ((!av1_is_valid_scale(&ref_buf->sf))) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Reference frame has invalid dimensions"); | 
|  | av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf); | 
|  | } | 
|  | #if CONFIG_WARPED_MOTION | 
|  | if (mbmi->motion_mode == WARPED_CAUSAL) { | 
|  | int i; | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; | 
|  | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
|  |  | 
|  | for (i = 0; i < 3; ++i) { | 
|  | const struct macroblockd_plane *pd = &xd->plane[i]; | 
|  |  | 
|  | av1_warp_plane(&mbmi->wm_params[0], | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, | 
|  | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
|  | pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, | 
|  | pd->pre[0].stride, pd->dst.buf, | 
|  | ((mi_col * MI_SIZE) >> pd->subsampling_x), | 
|  | ((mi_row * MI_SIZE) >> pd->subsampling_y), | 
|  | xd->n8_w * (MI_SIZE >> pd->subsampling_x), | 
|  | xd->n8_h * (MI_SIZE >> pd->subsampling_y), | 
|  | pd->dst.stride, pd->subsampling_x, pd->subsampling_y, 16, | 
|  | 16, 0); | 
|  | } | 
|  | } else { | 
|  | #endif  // CONFIG_WARPED_MOTION | 
|  | #if CONFIG_CB4X4 | 
|  | av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); | 
|  | #else | 
|  | av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, | 
|  | AOMMAX(bsize, BLOCK_8X8)); | 
|  | #endif | 
|  | #if CONFIG_WARPED_MOTION | 
|  | } | 
|  | #endif  // CONFIG_WARPED_MOTION | 
|  | #if CONFIG_MOTION_VAR | 
|  | if (mbmi->motion_mode == OBMC_CAUSAL) { | 
|  | #if CONFIG_NCOBMC | 
|  | av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col); | 
|  | #else | 
|  | av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); | 
|  | #endif | 
|  | } | 
|  | #endif  // CONFIG_MOTION_VAR | 
|  |  | 
|  | // Reconstruction | 
|  | if (!mbmi->skip) { | 
|  | int eobtotal = 0; | 
|  | int plane; | 
|  |  | 
|  | for (plane = 0; plane < MAX_MB_PLANE; ++plane) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | #if CONFIG_CB4X4 | 
|  | const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
|  | #else | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); | 
|  | #endif | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  | int row, col; | 
|  | #if CONFIG_VAR_TX | 
|  | const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; | 
|  | const int bh_var_tx = tx_size_high_unit[max_tx_size]; | 
|  | const int bw_var_tx = tx_size_wide_unit[max_tx_size]; | 
|  | for (row = 0; row < max_blocks_high; row += bh_var_tx) | 
|  | for (col = 0; col < max_blocks_wide; col += bw_var_tx) | 
|  | decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row, col, | 
|  | max_tx_size, &eobtotal); | 
|  | #else | 
|  | const TX_SIZE tx_size = | 
|  | plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; | 
|  | const int stepr = tx_size_high_unit[tx_size]; | 
|  | const int stepc = tx_size_wide_unit[tx_size]; | 
|  | for (row = 0; row < max_blocks_high; row += stepr) | 
|  | for (col = 0; col < max_blocks_wide; col += stepc) | 
|  | eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, | 
|  | plane, row, col, tx_size); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | xd->corrupted |= aom_reader_has_error(r); | 
|  | } | 
|  |  | 
|  | #if CONFIG_NCOBMC && CONFIG_MOTION_VAR | 
|  | static void detoken_and_recon_sb(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | int mi_row, int mi_col, aom_reader *r, | 
|  | BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int hbs = mi_size_wide[bsize] >> 1; | 
|  | #if CONFIG_CB4X4 | 
|  | const int unify_bsize = 1; | 
|  | #else | 
|  | const int unify_bsize = 0; | 
|  | #endif | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif | 
|  | PARTITION_TYPE partition; | 
|  | BLOCK_SIZE subsize; | 
|  | const int has_rows = (mi_row + hbs) < cm->mi_rows; | 
|  | const int has_cols = (mi_col + hbs) < cm->mi_cols; | 
|  |  | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
|  |  | 
|  | partition = get_partition(cm, mi_row, mi_col, bsize); | 
|  | subsize = subsize_lookup[partition][bsize]; | 
|  |  | 
|  | if (!hbs && !unify_bsize) { | 
|  | xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); | 
|  | xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | } else { | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | if (has_rows) | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | if (has_cols) | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | detoken_and_recon_sb(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | detoken_and_recon_sb(pbi, xd, mi_row, mi_col + hbs, r, subsize); | 
|  | detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col, r, subsize); | 
|  | detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize); | 
|  | break; | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | case PARTITION_HORZ_A: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r, | 
|  | bsize2); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2); | 
|  | decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r, | 
|  | bsize2); | 
|  | break; | 
|  | #endif | 
|  | default: assert(0 && "Invalid partition type"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | #if CONFIG_SUPERTX | 
|  | int supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | int mi_row, int mi_col, aom_reader *r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | PARTITION_TYPE partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | BLOCK_SIZE bsize) { | 
|  | decode_mbmi_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif | 
|  | bsize); | 
|  | #if !(CONFIG_MOTION_VAR && CONFIG_NCOBMC) | 
|  | #if CONFIG_SUPERTX | 
|  | if (!supertx_enabled) | 
|  | #endif  // CONFIG_SUPERTX | 
|  | decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | int mi_row, int mi_col, aom_reader *r, | 
|  | int has_rows, int has_cols, | 
|  | BLOCK_SIZE bsize) { | 
|  | #if CONFIG_UNPOISON_PARTITION_CTX | 
|  | const int ctx = | 
|  | partition_plane_context(xd, mi_row, mi_col, has_rows, has_cols, bsize); | 
|  | const aom_prob *const probs = ctx >= 0 ? cm->fc->partition_prob[ctx] : NULL; | 
|  | FRAME_COUNTS *const counts = ctx >= 0 ? xd->counts : NULL; | 
|  | #else | 
|  | const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | const aom_prob *const probs = cm->fc->partition_prob[ctx]; | 
|  | FRAME_COUNTS *const counts = xd->counts; | 
|  | #endif | 
|  | PARTITION_TYPE p; | 
|  | #if CONFIG_EC_ADAPT | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | (void)cm; | 
|  | #elif CONFIG_EC_MULTISYMBOL | 
|  | FRAME_CONTEXT *ec_ctx = cm->fc; | 
|  | #endif | 
|  |  | 
|  | if (has_rows && has_cols) | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | if (bsize <= BLOCK_8X8) | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | p = (PARTITION_TYPE)aom_read_symbol(r, ec_ctx->partition_cdf[ctx], | 
|  | PARTITION_TYPES, ACCT_STR); | 
|  | #else | 
|  | p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); | 
|  | #endif | 
|  | else | 
|  | p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs, | 
|  | ACCT_STR); | 
|  | #else | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | p = (PARTITION_TYPE)aom_read_symbol(r, ec_ctx->partition_cdf[ctx], | 
|  | PARTITION_TYPES, ACCT_STR); | 
|  | #else | 
|  | p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); | 
|  | #endif | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | else if (!has_rows && has_cols) | 
|  | p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; | 
|  | else if (has_rows && !has_cols) | 
|  | p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; | 
|  | else | 
|  | p = PARTITION_SPLIT; | 
|  |  | 
|  | if (counts) ++counts->partition[ctx][p]; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUPERTX | 
|  | static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, | 
|  | aom_reader *r) { | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
|  | return 1; | 
|  | } else { | 
|  | const int ctx = av1_get_skip_context(xd); | 
|  | const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR); | 
|  | FRAME_COUNTS *counts = xd->counts; | 
|  | if (counts) ++counts->skip[ctx][skip]; | 
|  | return skip; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_SUPERTX | 
|  | #if CONFIG_CLPF | 
|  | static int clpf_all_skip(const AV1_COMMON *cm, int mi_col, int mi_row, | 
|  | int size) { | 
|  | int r, c; | 
|  | int skip = 1; | 
|  | const int maxc = AOMMIN(size, cm->mi_cols - mi_col); | 
|  | const int maxr = AOMMIN(size, cm->mi_rows - mi_row); | 
|  | for (r = 0; r < maxr && skip; r++) { | 
|  | for (c = 0; c < maxc && skip; c++) { | 
|  | skip &= !!cm->mi_grid_visible[(mi_row + r) * cm->mi_stride + mi_col + c] | 
|  | ->mbmi.skip; | 
|  | } | 
|  | } | 
|  | return skip; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // TODO(slavarnway): eliminate bsize and subsize in future commits | 
|  | static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
|  | #if CONFIG_SUPERTX | 
|  | int supertx_enabled, | 
|  | #endif | 
|  | int mi_row, int mi_col, aom_reader *r, | 
|  | BLOCK_SIZE bsize, int n4x4_l2) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int n8x8_l2 = n4x4_l2 - 1; | 
|  | const int num_8x8_wh = mi_size_wide[bsize]; | 
|  | const int hbs = num_8x8_wh >> 1; | 
|  | #if CONFIG_CB4X4 | 
|  | const int unify_bsize = 1; | 
|  | #else | 
|  | const int unify_bsize = 0; | 
|  | #endif | 
|  | PARTITION_TYPE partition; | 
|  | BLOCK_SIZE subsize; | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif | 
|  | const int has_rows = (mi_row + hbs) < cm->mi_rows; | 
|  | const int has_cols = (mi_col + hbs) < cm->mi_cols; | 
|  | #if CONFIG_SUPERTX | 
|  | const int read_token = !supertx_enabled; | 
|  | int skip = 0; | 
|  | TX_SIZE supertx_size = max_txsize_lookup[bsize]; | 
|  | const TileInfo *const tile = &xd->tile; | 
|  | int txfm = DCT_DCT; | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
|  |  | 
|  | partition = (n4x4_l2 == 0) ? PARTITION_NONE | 
|  | : read_partition(cm, xd, mi_row, mi_col, r, | 
|  | has_rows, has_cols, bsize); | 
|  | subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition); | 
|  |  | 
|  | #if CONFIG_PVQ | 
|  | assert(partition < PARTITION_TYPES); | 
|  | assert(subsize < BLOCK_SIZES); | 
|  | #endif | 
|  | #if CONFIG_SUPERTX | 
|  | if (!frame_is_intra_only(cm) && partition != PARTITION_NONE && | 
|  | bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) { | 
|  | const int supertx_context = partition_supertx_context_lookup[partition]; | 
|  | supertx_enabled = aom_read( | 
|  | r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR); | 
|  | if (xd->counts) | 
|  | xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++; | 
|  | #if CONFIG_VAR_TX | 
|  | if (supertx_enabled) xd->supertx_size = supertx_size; | 
|  | #endif | 
|  | } | 
|  | #endif  // CONFIG_SUPERTX | 
|  | if (!hbs && !unify_bsize) { | 
|  | // calculate bmode block dimensions (log 2) | 
|  | xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); | 
|  | xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | } else { | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | if (has_rows) | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row + hbs, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | if (has_cols) | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col + hbs, r, | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | partition, | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | decode_partition(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, r, subsize, n8x8_l2); | 
|  | decode_partition(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col + hbs, r, subsize, n8x8_l2); | 
|  | decode_partition(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row + hbs, mi_col, r, subsize, n8x8_l2); | 
|  | decode_partition(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); | 
|  | break; | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | case PARTITION_HORZ_A: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col + hbs, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row + hbs, mi_col, r, partition, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col, r, partition, subsize); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row + hbs, mi_col, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row + hbs, mi_col + hbs, r, partition, bsize2); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row + hbs, mi_col, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col + hbs, r, partition, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col, r, partition, subsize); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row, mi_col + hbs, r, partition, bsize2); | 
|  | decode_block(pbi, xd, | 
|  | #if CONFIG_SUPERTX | 
|  | supertx_enabled, | 
|  | #endif | 
|  | mi_row + hbs, mi_col + hbs, r, partition, bsize2); | 
|  | break; | 
|  | #endif | 
|  | default: assert(0 && "Invalid partition type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUPERTX | 
|  | if (supertx_enabled && read_token) { | 
|  | uint8_t *dst_buf[3]; | 
|  | int dst_stride[3], i; | 
|  | int offset = mi_row * cm->mi_stride + mi_col; | 
|  |  | 
|  | set_segment_id_supertx(cm, mi_row, mi_col, bsize); | 
|  |  | 
|  | #if CONFIG_DELTA_Q | 
|  | if (cm->delta_q_present_flag) { | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | xd->plane[0].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[0].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, 0, cm->bit_depth); | 
|  | xd->plane[1].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[1].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | xd->plane[2].seg_dequant[i][0] = | 
|  | av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | xd->plane[2].seg_dequant[i][1] = | 
|  | av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + offset; | 
|  | xd->mi[0] = cm->mi + offset; | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col, | 
|  | mi_size_wide[bsize], cm->mi_rows, cm->mi_cols, | 
|  | cm->dependent_horz_tiles); | 
|  | #else | 
|  | set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col, | 
|  | mi_size_wide[bsize], cm->mi_rows, cm->mi_cols); | 
|  | #endif | 
|  | set_skip_context(xd, mi_row, mi_col); | 
|  | skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r); | 
|  | if (skip) { | 
|  | reset_skip_context(xd, bsize); | 
|  | } else { | 
|  | #if CONFIG_EXT_TX | 
|  | if (get_ext_tx_types(supertx_size, bsize, 1) > 1) { | 
|  | int eset = get_ext_tx_set(supertx_size, bsize, 1); | 
|  | if (eset > 0) { | 
|  | txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset], | 
|  | cm->fc->inter_ext_tx_prob[eset][supertx_size], | 
|  | ACCT_STR); | 
|  | if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm]; | 
|  | } | 
|  | } | 
|  | #else | 
|  | if (supertx_size < TX_32X32) { | 
|  | txfm = aom_read_tree(r, av1_ext_tx_tree, | 
|  | cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR); | 
|  | if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm]; | 
|  | } | 
|  | #endif  // CONFIG_EXT_TX | 
|  | } | 
|  |  | 
|  | av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | dst_buf[i] = xd->plane[i].dst.buf; | 
|  | dst_stride[i] = xd->plane[i].dst.stride; | 
|  | } | 
|  | dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize, | 
|  | bsize, dst_buf, dst_stride); | 
|  |  | 
|  | if (!skip) { | 
|  | int eobtotal = 0; | 
|  | MB_MODE_INFO *mbmi; | 
|  | set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col); | 
|  | mbmi = &xd->mi[0]->mbmi; | 
|  | mbmi->tx_type = txfm; | 
|  | assert(mbmi->segment_id_supertx != MAX_SEGMENTS); | 
|  | for (i = 0; i < MAX_MB_PLANE; ++i) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[i]; | 
|  | int row, col; | 
|  | const TX_SIZE tx_size = i ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; | 
|  | const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
|  | const int stepr = tx_size_high_unit[tx_size]; | 
|  | const int stepc = tx_size_wide_unit[tx_size]; | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, i); | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, i); | 
|  |  | 
|  | for (row = 0; row < max_blocks_high; row += stepr) | 
|  | for (col = 0; col < max_blocks_wide; col += stepc) | 
|  | eobtotal += reconstruct_inter_block( | 
|  | cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size); | 
|  | } | 
|  | if ((unify_bsize || !(subsize < BLOCK_8X8)) && eobtotal == 0) skip = 1; | 
|  | } | 
|  | set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip); | 
|  | } | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | switch (partition) { | 
|  | case PARTITION_SPLIT: | 
|  | if (bsize > BLOCK_8X8) break; | 
|  | case PARTITION_NONE: | 
|  | case PARTITION_HORZ: | 
|  | case PARTITION_VERT: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); | 
|  | break; | 
|  | default: assert(0 && "Invalid partition type"); | 
|  | } | 
|  | } | 
|  | #else | 
|  | // update partition context | 
|  | if (bsize >= BLOCK_8X8 && | 
|  | (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  |  | 
|  | #if CONFIG_DERING | 
|  | #if CONFIG_EXT_PARTITION | 
|  | if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128) { | 
|  | if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { | 
|  | cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = | 
|  | aom_read_literal(r, DERING_REFINEMENT_BITS, ACCT_STR); | 
|  | } else { | 
|  | cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = | 
|  | 0; | 
|  | } | 
|  | } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64) { | 
|  | #else | 
|  | if (bsize == BLOCK_64X64) { | 
|  | #endif | 
|  | if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { | 
|  | cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = | 
|  | aom_read_literal(r, DERING_REFINEMENT_BITS, ACCT_STR); | 
|  | } else { | 
|  | cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = | 
|  | 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_CLPF | 
|  | #if CONFIG_EXT_PARTITION | 
|  | if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128 && | 
|  | cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) { | 
|  | const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride + | 
|  | mi_col * MI_SIZE / MIN_FB_SIZE; | 
|  | if (cm->clpf_size == CLPF_128X128) { | 
|  | cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } else if (cm->clpf_size == CLPF_64X64) { | 
|  | const int tr = tl + 2; | 
|  | const int bl = tl + 2 * cm->clpf_stride; | 
|  | const int br = tr + 2 * cm->clpf_stride; | 
|  | const int size = 64 / MI_SIZE; | 
|  |  | 
|  | // Up to four bits per SB | 
|  | if (!clpf_all_skip(cm, mi_col, mi_row, size)) | 
|  | cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_col + size < cm->mi_cols && | 
|  | !clpf_all_skip(cm, mi_col + size, mi_row, size)) | 
|  | cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_row + size < cm->mi_rows && | 
|  | !clpf_all_skip(cm, mi_col, mi_row + size, size)) | 
|  | cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows && | 
|  | !clpf_all_skip(cm, mi_col + size, mi_row + size, size)) | 
|  | cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } else if (cm->clpf_size == CLPF_32X32) { | 
|  | int i, j; | 
|  | const int size = 32 / MI_SIZE; | 
|  | for (i = 0; i < 4; ++i) | 
|  | for (j = 0; j < 4; ++j) { | 
|  | const int index = tl + i * cm->clpf_stride + j; | 
|  | if (mi_row + i * size < cm->mi_rows && | 
|  | mi_col + j * size < cm->mi_cols && | 
|  | !clpf_all_skip(cm, mi_col + j * size, mi_row + i * size, size)) | 
|  | cm->clpf_blocks[index] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } | 
|  | } | 
|  | } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64 && | 
|  | #else | 
|  | if (bsize == BLOCK_64X64 && | 
|  | #endif  // CONFIG_EXT_PARTITION | 
|  | cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) { | 
|  | const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride + | 
|  | mi_col * MI_SIZE / MIN_FB_SIZE; | 
|  |  | 
|  | if (!((mi_row * MI_SIZE) & 127) && !((mi_col * MI_SIZE) & 127) && | 
|  | cm->clpf_size == CLPF_128X128) { | 
|  | cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } else if (cm->clpf_size == CLPF_64X64 && | 
|  | !clpf_all_skip(cm, mi_col, mi_row, 64 / MI_SIZE)) { | 
|  | cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } else if (cm->clpf_size == CLPF_32X32) { | 
|  | const int tr = tl + 1; | 
|  | const int bl = tl + cm->clpf_stride; | 
|  | const int br = tr + cm->clpf_stride; | 
|  | const int size = 32 / MI_SIZE; | 
|  |  | 
|  | // Up to four bits per SB | 
|  | if (!clpf_all_skip(cm, mi_col, mi_row, size)) | 
|  | cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_col + size < cm->mi_cols && | 
|  | !clpf_all_skip(cm, mi_col + size, mi_row, size)) | 
|  | cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_row + size < cm->mi_rows && | 
|  | !clpf_all_skip(cm, mi_col, mi_row + size, size)) | 
|  | cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR); | 
|  |  | 
|  | if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows && | 
|  | !clpf_all_skip(cm, mi_col + size, mi_row + size, size)) | 
|  | cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_CLPF | 
|  | } | 
|  |  | 
|  | static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, | 
|  | const size_t read_size, | 
|  | struct aom_internal_error_info *error_info, | 
|  | aom_reader *r, | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | int window_size, | 
|  | #endif  // CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | aom_decrypt_cb decrypt_cb, void *decrypt_state) { | 
|  | // Validate the calculated partition length. If the buffer | 
|  | // described by the partition can't be fully read, then restrict | 
|  | // it to the portion that can be (for EC mode) or throw an error. | 
|  | if (!read_is_valid(data, read_size, data_end)) | 
|  | aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt tile length"); | 
|  |  | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | r->window_size = window_size; | 
|  | #endif | 
|  | if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) | 
|  | aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate bool decoder %d", 1); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_PVQ && !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) | 
|  | static void read_coef_probs_common(av1_coeff_probs_model *coef_probs, | 
|  | aom_reader *r) { | 
|  | int i, j, k, l, m; | 
|  | #if CONFIG_EC_ADAPT | 
|  | const int node_limit = UNCONSTRAINED_NODES - 1; | 
|  | #else | 
|  | const int node_limit = UNCONSTRAINED_NODES; | 
|  | #endif | 
|  |  | 
|  | if (aom_read_bit(r, ACCT_STR)) | 
|  | for (i = 0; i < PLANE_TYPES; ++i) | 
|  | for (j = 0; j < REF_TYPES; ++j) | 
|  | for (k = 0; k < COEF_BANDS; ++k) | 
|  | for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) | 
|  | for (m = 0; m < node_limit; ++m) | 
|  | av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR); | 
|  | } | 
|  |  | 
|  | static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) { | 
|  | const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; | 
|  | TX_SIZE tx_size; | 
|  | for (tx_size = 0; tx_size <= max_tx_size; ++tx_size) | 
|  | read_coef_probs_common(fc->coef_probs[tx_size], r); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void setup_segmentation(AV1_COMMON *const cm, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | struct segmentation *const seg = &cm->seg; | 
|  | int i, j; | 
|  |  | 
|  | seg->update_map = 0; | 
|  | seg->update_data = 0; | 
|  |  | 
|  | seg->enabled = aom_rb_read_bit(rb); | 
|  | if (!seg->enabled) return; | 
|  |  | 
|  | // Segmentation map update | 
|  | if (frame_is_intra_only(cm) || cm->error_resilient_mode) { | 
|  | seg->update_map = 1; | 
|  | } else { | 
|  | seg->update_map = aom_rb_read_bit(rb); | 
|  | } | 
|  | if (seg->update_map) { | 
|  | if (frame_is_intra_only(cm) || cm->error_resilient_mode) { | 
|  | seg->temporal_update = 0; | 
|  | } else { | 
|  | seg->temporal_update = aom_rb_read_bit(rb); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Segmentation data update | 
|  | seg->update_data = aom_rb_read_bit(rb); | 
|  | if (seg->update_data) { | 
|  | seg->abs_delta = aom_rb_read_bit(rb); | 
|  |  | 
|  | av1_clearall_segfeatures(seg); | 
|  |  | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | for (j = 0; j < SEG_LVL_MAX; j++) { | 
|  | int data = 0; | 
|  | const int feature_enabled = aom_rb_read_bit(rb); | 
|  | if (feature_enabled) { | 
|  | av1_enable_segfeature(seg, i, j); | 
|  | data = decode_unsigned_max(rb, av1_seg_feature_data_max(j)); | 
|  | if (av1_is_segfeature_signed(j)) | 
|  | data = aom_rb_read_bit(rb) ? -data : data; | 
|  | } | 
|  | av1_set_segdata(seg, i, j, data); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | static void decode_restoration_mode(AV1_COMMON *cm, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | int p; | 
|  | RestorationInfo *rsi = &cm->rst_info[0]; | 
|  | if (aom_rb_read_bit(rb)) { | 
|  | #if USE_DOMAINTXFMRF | 
|  | if (aom_rb_read_bit(rb)) | 
|  | rsi->frame_restoration_type = | 
|  | (aom_rb_read_bit(rb) ? RESTORE_DOMAINTXFMRF : RESTORE_SGRPROJ); | 
|  | else | 
|  | rsi->frame_restoration_type = RESTORE_WIENER; | 
|  | #else | 
|  | rsi->frame_restoration_type = | 
|  | aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; | 
|  | #endif  // USE_DOMAINTXFMRF | 
|  | } else { | 
|  | rsi->frame_restoration_type = | 
|  | aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; | 
|  | } | 
|  | for (p = 1; p < MAX_MB_PLANE; ++p) { | 
|  | cm->rst_info[p].frame_restoration_type = | 
|  | aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_wiener_filter(WienerInfo *wiener_info, aom_reader *rb) { | 
|  | wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP0_MINV; | 
|  | wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP1_MINV; | 
|  | wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP2_MINV; | 
|  | // The central element has an implicit +WIENER_FILT_STEP | 
|  | wiener_info->vfilter[WIENER_HALFWIN] = | 
|  | -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + | 
|  | wiener_info->vfilter[2]); | 
|  |  | 
|  | wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP0_MINV; | 
|  | wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP1_MINV; | 
|  | wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = | 
|  | aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) + | 
|  | WIENER_FILT_TAP2_MINV; | 
|  | // The central element has an implicit +WIENER_FILT_STEP | 
|  | wiener_info->hfilter[WIENER_HALFWIN] = | 
|  | -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + | 
|  | wiener_info->hfilter[2]); | 
|  | } | 
|  |  | 
|  | static void read_sgrproj_filter(SgrprojInfo *sgrproj_info, aom_reader *rb) { | 
|  | sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); | 
|  | sgrproj_info->xqd[0] = | 
|  | aom_read_literal(rb, SGRPROJ_PRJ_BITS, ACCT_STR) + SGRPROJ_PRJ_MIN0; | 
|  | sgrproj_info->xqd[1] = | 
|  | aom_read_literal(rb, SGRPROJ_PRJ_BITS, ACCT_STR) + SGRPROJ_PRJ_MIN1; | 
|  | } | 
|  |  | 
|  | #if USE_DOMAINTXFMRF | 
|  | static void read_domaintxfmrf_filter(DomaintxfmrfInfo *domaintxfmrf_info, | 
|  | aom_reader *rb) { | 
|  | domaintxfmrf_info->sigma_r = | 
|  | aom_read_literal(rb, DOMAINTXFMRF_PARAMS_BITS, ACCT_STR); | 
|  | } | 
|  | #endif  // USE_DOMAINTXFMRF | 
|  |  | 
|  | static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) { | 
|  | int i, p; | 
|  | const int ntiles = | 
|  | av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL); | 
|  | const int ntiles_uv = | 
|  | av1_get_rest_ntiles(ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x), | 
|  | ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y), | 
|  | NULL, NULL, NULL, NULL); | 
|  | RestorationInfo *rsi = &cm->rst_info[0]; | 
|  | if (rsi->frame_restoration_type != RESTORE_NONE) { | 
|  | if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { | 
|  | for (i = 0; i < ntiles; ++i) { | 
|  | rsi->restoration_type[i] = | 
|  | aom_read_tree(rb, av1_switchable_restore_tree, | 
|  | cm->fc->switchable_restore_prob, ACCT_STR); | 
|  | if (rsi->restoration_type[i] == RESTORE_WIENER) { | 
|  | read_wiener_filter(&rsi->wiener_info[i], rb); | 
|  | } else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) { | 
|  | read_sgrproj_filter(&rsi->sgrproj_info[i], rb); | 
|  | #if USE_DOMAINTXFMRF | 
|  | } else if (rsi->restoration_type[i] == RESTORE_DOMAINTXFMRF) { | 
|  | read_domaintxfmrf_filter(&rsi->domaintxfmrf_info[i], rb); | 
|  | #endif  // USE_DOMAINTXFMRF | 
|  | } | 
|  | } | 
|  | } else if (rsi->frame_restoration_type == RESTORE_WIENER) { | 
|  | for (i = 0; i < ntiles; ++i) { | 
|  | if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) { | 
|  | rsi->restoration_type[i] = RESTORE_WIENER; | 
|  | read_wiener_filter(&rsi->wiener_info[i], rb); | 
|  | } else { | 
|  | rsi->restoration_type[i] = RESTORE_NONE; | 
|  | } | 
|  | } | 
|  | } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { | 
|  | for (i = 0; i < ntiles; ++i) { | 
|  | if (aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)) { | 
|  | rsi->restoration_type[i] = RESTORE_SGRPROJ; | 
|  | read_sgrproj_filter(&rsi->sgrproj_info[i], rb); | 
|  | } else { | 
|  | rsi->restoration_type[i] = RESTORE_NONE; | 
|  | } | 
|  | } | 
|  | #if USE_DOMAINTXFMRF | 
|  | } else if (rsi->frame_restoration_type == RESTORE_DOMAINTXFMRF) { | 
|  | for (i = 0; i < ntiles; ++i) { | 
|  | if (aom_read(rb, RESTORE_NONE_DOMAINTXFMRF_PROB, ACCT_STR)) { | 
|  | rsi->restoration_type[i] = RESTORE_DOMAINTXFMRF; | 
|  | read_domaintxfmrf_filter(&rsi->domaintxfmrf_info[i], rb); | 
|  | } else { | 
|  | rsi->restoration_type[i] = RESTORE_NONE; | 
|  | } | 
|  | } | 
|  | #endif  // USE_DOMAINTXFMRF | 
|  | } | 
|  | } | 
|  | for (p = 1; p < MAX_MB_PLANE; ++p) { | 
|  | rsi = &cm->rst_info[p]; | 
|  | if (rsi->frame_restoration_type == RESTORE_WIENER) { | 
|  | for (i = 0; i < ntiles_uv; ++i) { | 
|  | if (ntiles_uv > 1) | 
|  | rsi->restoration_type[i] = | 
|  | aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR) ? RESTORE_WIENER | 
|  | : RESTORE_NONE; | 
|  | else | 
|  | rsi->restoration_type[i] = RESTORE_WIENER; | 
|  | if (rsi->restoration_type[i] == RESTORE_WIENER) { | 
|  | read_wiener_filter(&rsi->wiener_info[i], rb); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_LOOP_RESTORATION | 
|  |  | 
|  | static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
|  | struct loopfilter *lf = &cm->lf; | 
|  | lf->filter_level = aom_rb_read_literal(rb, 6); | 
|  | lf->sharpness_level = aom_rb_read_literal(rb, 3); | 
|  |  | 
|  | // Read in loop filter deltas applied at the MB level based on mode or ref | 
|  | // frame. | 
|  | lf->mode_ref_delta_update = 0; | 
|  |  | 
|  | lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); | 
|  | if (lf->mode_ref_delta_enabled) { | 
|  | lf->mode_ref_delta_update = aom_rb_read_bit(rb); | 
|  | if (lf->mode_ref_delta_update) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) | 
|  | if (aom_rb_read_bit(rb)) | 
|  | lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); | 
|  |  | 
|  | for (i = 0; i < MAX_MODE_LF_DELTAS; i++) | 
|  | if (aom_rb_read_bit(rb)) | 
|  | lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_CLPF | 
|  | static void setup_clpf(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int width = pbi->cur_buf->buf.y_crop_width; | 
|  | const int height = pbi->cur_buf->buf.y_crop_height; | 
|  |  | 
|  | cm->clpf_blocks = 0; | 
|  | cm->clpf_strength_y = aom_rb_read_literal(rb, 2); | 
|  | cm->clpf_strength_u = aom_rb_read_literal(rb, 2); | 
|  | cm->clpf_strength_v = aom_rb_read_literal(rb, 2); | 
|  | if (cm->clpf_strength_y) { | 
|  | cm->clpf_size = aom_rb_read_literal(rb, 2); | 
|  | if (cm->clpf_size != CLPF_NOSIZE) { | 
|  | int size; | 
|  | cm->clpf_stride = | 
|  | ((width + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> MIN_FB_SIZE_LOG2; | 
|  | size = | 
|  | cm->clpf_stride * ((height + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> | 
|  | MIN_FB_SIZE_LOG2; | 
|  | CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(size)); | 
|  | memset(cm->clpf_blocks, -1, size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int clpf_bit(UNUSED int k, UNUSED int l, | 
|  | UNUSED const YV12_BUFFER_CONFIG *rec, | 
|  | UNUSED const YV12_BUFFER_CONFIG *org, | 
|  | UNUSED const AV1_COMMON *cm, UNUSED int block_size, | 
|  | UNUSED int w, UNUSED int h, UNUSED unsigned int strength, | 
|  | UNUSED unsigned int fb_size_log2, int8_t *bit) { | 
|  | return *bit; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_DERING | 
|  | static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
|  | cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS); | 
|  | } | 
|  | #endif  // CONFIG_DERING | 
|  |  | 
|  | static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { | 
|  | return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; | 
|  | } | 
|  |  | 
|  | static void setup_quantization(AV1_COMMON *const cm, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); | 
|  | cm->y_dc_delta_q = read_delta_q(rb); | 
|  | cm->uv_dc_delta_q = read_delta_q(rb); | 
|  | cm->uv_ac_delta_q = read_delta_q(rb); | 
|  | cm->dequant_bit_depth = cm->bit_depth; | 
|  | #if CONFIG_AOM_QM | 
|  | cm->using_qmatrix = aom_rb_read_bit(rb); | 
|  | if (cm->using_qmatrix) { | 
|  | cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
|  | cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
|  | } else { | 
|  | cm->min_qmlevel = 0; | 
|  | cm->max_qmlevel = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void setup_segmentation_dequant(AV1_COMMON *const cm) { | 
|  | // Build y/uv dequant values based on segmentation. | 
|  | int i = 0; | 
|  | #if CONFIG_AOM_QM | 
|  | int lossless; | 
|  | int j = 0; | 
|  | int qmlevel; | 
|  | int using_qm = cm->using_qmatrix; | 
|  | int minqm = cm->min_qmlevel; | 
|  | int maxqm = cm->max_qmlevel; | 
|  | #endif | 
|  | #if CONFIG_NEW_QUANT | 
|  | int b; | 
|  | int dq; | 
|  | #endif  //  CONFIG_NEW_QUANT | 
|  | if (cm->seg.enabled) { | 
|  | for (i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); | 
|  | cm->y_dequant[i][0] = | 
|  | av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); | 
|  | cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth); | 
|  | cm->uv_dequant[i][0] = | 
|  | av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | cm->uv_dequant[i][1] = | 
|  | av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | #if CONFIG_AOM_QM | 
|  | lossless = qindex == 0 && cm->y_dc_delta_q == 0 && | 
|  | cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; | 
|  | // NB: depends on base index so there is only 1 set per frame | 
|  | // No quant weighting when lossless or signalled not using QM | 
|  | qmlevel = (lossless || using_qm == 0) | 
|  | ? NUM_QM_LEVELS - 1 | 
|  | : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); | 
|  | for (j = 0; j < TX_SIZES; ++j) { | 
|  | cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); | 
|  | cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); | 
|  | cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); | 
|  | cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); | 
|  | } | 
|  | #endif  // CONFIG_AOM_QM | 
|  | #if CONFIG_NEW_QUANT | 
|  | for (dq = 0; dq < QUANT_PROFILES; dq++) { | 
|  | for (b = 0; b < COEF_BANDS; ++b) { | 
|  | av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b, | 
|  | cm->y_dequant_nuq[i][dq][b], NULL, dq); | 
|  | av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b, | 
|  | cm->uv_dequant_nuq[i][dq][b], NULL, dq); | 
|  | } | 
|  | } | 
|  | #endif  //  CONFIG_NEW_QUANT | 
|  | } | 
|  | } else { | 
|  | const int qindex = cm->base_qindex; | 
|  | // When segmentation is disabled, only the first value is used.  The | 
|  | // remaining are don't cares. | 
|  | cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); | 
|  | cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth); | 
|  | cm->uv_dequant[0][0] = | 
|  | av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); | 
|  | cm->uv_dequant[0][1] = | 
|  | av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); | 
|  | #if CONFIG_AOM_QM | 
|  | lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && | 
|  | cm->uv_ac_delta_q == 0; | 
|  | // No quant weighting when lossless or signalled not using QM | 
|  | qmlevel = (lossless || using_qm == 0) | 
|  | ? NUM_QM_LEVELS - 1 | 
|  | : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); | 
|  | for (j = 0; j < TX_SIZES; ++j) { | 
|  | cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); | 
|  | cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); | 
|  | cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); | 
|  | cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); | 
|  | } | 
|  | #endif | 
|  | #if CONFIG_NEW_QUANT | 
|  | for (dq = 0; dq < QUANT_PROFILES; dq++) { | 
|  | for (b = 0; b < COEF_BANDS; ++b) { | 
|  | av1_get_dequant_val_nuq(cm->y_dequant[0][b != 0], b, | 
|  | cm->y_dequant_nuq[0][dq][b], NULL, dq); | 
|  | av1_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], b, | 
|  | cm->uv_dequant_nuq[0][dq][b], NULL, dq); | 
|  | } | 
|  | } | 
|  | #endif  //  CONFIG_NEW_QUANT | 
|  | } | 
|  | } | 
|  |  | 
|  | static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { | 
|  | return aom_rb_read_bit(rb) ? SWITCHABLE | 
|  | : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); | 
|  | } | 
|  |  | 
|  | static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
|  | cm->render_width = cm->width; | 
|  | cm->render_height = cm->height; | 
|  | if (aom_rb_read_bit(rb)) | 
|  | av1_read_frame_size(rb, &cm->render_width, &cm->render_height); | 
|  | } | 
|  |  | 
|  | static void resize_mv_buffer(AV1_COMMON *cm) { | 
|  | aom_free(cm->cur_frame->mvs); | 
|  | cm->cur_frame->mi_rows = cm->mi_rows; | 
|  | cm->cur_frame->mi_cols = cm->mi_cols; | 
|  | CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, | 
|  | (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, | 
|  | sizeof(*cm->cur_frame->mvs))); | 
|  | } | 
|  |  | 
|  | static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { | 
|  | #if CONFIG_SIZE_LIMIT | 
|  | if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Dimensions of %dx%d beyond allowed size of %dx%d.", | 
|  | width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); | 
|  | #endif | 
|  | if (cm->width != width || cm->height != height) { | 
|  | const int new_mi_rows = | 
|  | ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; | 
|  | const int new_mi_cols = | 
|  | ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; | 
|  |  | 
|  | // Allocations in av1_alloc_context_buffers() depend on individual | 
|  | // dimensions as well as the overall size. | 
|  | if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { | 
|  | if (av1_alloc_context_buffers(cm, width, height)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate context buffers"); | 
|  | } else { | 
|  | av1_set_mb_mi(cm, width, height); | 
|  | } | 
|  | av1_init_context_buffers(cm); | 
|  | cm->width = width; | 
|  | cm->height = height; | 
|  | } | 
|  | if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || | 
|  | cm->mi_cols > cm->cur_frame->mi_cols) { | 
|  | resize_mv_buffer(cm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
|  | int width, height; | 
|  | BufferPool *const pool = cm->buffer_pool; | 
|  | av1_read_frame_size(rb, &width, &height); | 
|  | resize_context_buffers(cm, width, height); | 
|  | setup_render_size(cm, rb); | 
|  |  | 
|  | lock_buffer_pool(pool); | 
|  | if (aom_realloc_frame_buffer( | 
|  | get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, | 
|  | cm->subsampling_y, | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | cm->use_highbitdepth, | 
|  | #endif | 
|  | AOM_BORDER_IN_PIXELS, cm->byte_alignment, | 
|  | &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, | 
|  | pool->cb_priv)) { | 
|  | unlock_buffer_pool(pool); | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate frame buffer"); | 
|  | } | 
|  | unlock_buffer_pool(pool); | 
|  |  | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; | 
|  | } | 
|  |  | 
|  | static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, | 
|  | int ref_xss, int ref_yss, | 
|  | aom_bit_depth_t this_bit_depth, | 
|  | int this_xss, int this_yss) { | 
|  | return ref_bit_depth == this_bit_depth && ref_xss == this_xss && | 
|  | ref_yss == this_yss; | 
|  | } | 
|  |  | 
|  | static void setup_frame_size_with_refs(AV1_COMMON *cm, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | int width, height; | 
|  | int found = 0, i; | 
|  | int has_valid_ref_frame = 0; | 
|  | BufferPool *const pool = cm->buffer_pool; | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | if (aom_rb_read_bit(rb)) { | 
|  | YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; | 
|  | width = buf->y_crop_width; | 
|  | height = buf->y_crop_height; | 
|  | cm->render_width = buf->render_width; | 
|  | cm->render_height = buf->render_height; | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | av1_read_frame_size(rb, &width, &height); | 
|  | setup_render_size(cm, rb); | 
|  | } | 
|  |  | 
|  | if (width <= 0 || height <= 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid frame size"); | 
|  |  | 
|  | // Check to make sure at least one of frames that this frame references | 
|  | // has valid dimensions. | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | RefBuffer *const ref_frame = &cm->frame_refs[i]; | 
|  | has_valid_ref_frame |= | 
|  | valid_ref_frame_size(ref_frame->buf->y_crop_width, | 
|  | ref_frame->buf->y_crop_height, width, height); | 
|  | } | 
|  | if (!has_valid_ref_frame) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Referenced frame has invalid size"); | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | RefBuffer *const ref_frame = &cm->frame_refs[i]; | 
|  | if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, | 
|  | ref_frame->buf->subsampling_x, | 
|  | ref_frame->buf->subsampling_y, cm->bit_depth, | 
|  | cm->subsampling_x, cm->subsampling_y)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Referenced frame has incompatible color format"); | 
|  | } | 
|  |  | 
|  | resize_context_buffers(cm, width, height); | 
|  |  | 
|  | lock_buffer_pool(pool); | 
|  | if (aom_realloc_frame_buffer( | 
|  | get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, | 
|  | cm->subsampling_y, | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | cm->use_highbitdepth, | 
|  | #endif | 
|  | AOM_BORDER_IN_PIXELS, cm->byte_alignment, | 
|  | &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, | 
|  | pool->cb_priv)) { | 
|  | unlock_buffer_pool(pool); | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate frame buffer"); | 
|  | } | 
|  | unlock_buffer_pool(pool); | 
|  |  | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; | 
|  | pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; | 
|  | } | 
|  |  | 
|  | static void read_tile_info(AV1Decoder *const pbi, | 
|  | struct aom_read_bit_buffer *const rb) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | #if CONFIG_EXT_TILE | 
|  | // Read the tile width/height | 
|  | #if CONFIG_EXT_PARTITION | 
|  | if (cm->sb_size == BLOCK_128X128) { | 
|  | cm->tile_width = aom_rb_read_literal(rb, 5) + 1; | 
|  | cm->tile_height = aom_rb_read_literal(rb, 5) + 1; | 
|  | } else | 
|  | #endif  // CONFIG_EXT_PARTITION | 
|  | { | 
|  | cm->tile_width = aom_rb_read_literal(rb, 6) + 1; | 
|  | cm->tile_height = aom_rb_read_literal(rb, 6) + 1; | 
|  | } | 
|  |  | 
|  | #if CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  | cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb); | 
|  | #endif  // CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  |  | 
|  | cm->tile_width <<= cm->mib_size_log2; | 
|  | cm->tile_height <<= cm->mib_size_log2; | 
|  |  | 
|  | cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); | 
|  | cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); | 
|  |  | 
|  | // Get the number of tiles | 
|  | cm->tile_cols = 1; | 
|  | while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; | 
|  |  | 
|  | cm->tile_rows = 1; | 
|  | while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; | 
|  |  | 
|  | if (cm->tile_cols * cm->tile_rows > 1) { | 
|  | // Read the number of bytes used to store tile size | 
|  | pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
|  | pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
|  | } | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | if (cm->tile_rows <= 1) | 
|  | cm->dependent_horz_tiles = aom_rb_read_bit(rb); | 
|  | else | 
|  | cm->dependent_horz_tiles = 0; | 
|  | #endif | 
|  | #else | 
|  | int min_log2_tile_cols, max_log2_tile_cols, max_ones; | 
|  | av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); | 
|  |  | 
|  | // columns | 
|  | max_ones = max_log2_tile_cols - min_log2_tile_cols; | 
|  | cm->log2_tile_cols = min_log2_tile_cols; | 
|  | while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++; | 
|  |  | 
|  | if (cm->log2_tile_cols > 6) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid number of tile columns"); | 
|  |  | 
|  | // rows | 
|  | cm->log2_tile_rows = aom_rb_read_bit(rb); | 
|  | if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb); | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | if (cm->log2_tile_rows != 0) | 
|  | cm->dependent_horz_tiles = aom_rb_read_bit(rb); | 
|  | else | 
|  | cm->dependent_horz_tiles = 0; | 
|  | #endif | 
|  | #if CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  | cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb); | 
|  | #endif  // CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  |  | 
|  | cm->tile_cols = 1 << cm->log2_tile_cols; | 
|  | cm->tile_rows = 1 << cm->log2_tile_rows; | 
|  |  | 
|  | cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); | 
|  | cm->tile_width >>= cm->log2_tile_cols; | 
|  | cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); | 
|  | cm->tile_height >>= cm->log2_tile_rows; | 
|  |  | 
|  | // round to integer multiples of superblock size | 
|  | cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2); | 
|  | cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2); | 
|  |  | 
|  | // tile size magnitude | 
|  | #if !CONFIG_TILE_GROUPS | 
|  | if (cm->tile_rows > 1 || cm->tile_cols > 1) | 
|  | #endif | 
|  | pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
|  | #endif  // CONFIG_EXT_TILE | 
|  |  | 
|  | #if CONFIG_TILE_GROUPS | 
|  | // Store an index to the location of the tile group information | 
|  | pbi->tg_size_bit_offset = rb->bit_offset; | 
|  | pbi->tg_size = 1 << (cm->log2_tile_rows + cm->log2_tile_cols); | 
|  | if (cm->log2_tile_rows + cm->log2_tile_cols > 0) { | 
|  | pbi->tg_start = | 
|  | aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); | 
|  | pbi->tg_size = | 
|  | 1 + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int mem_get_varsize(const uint8_t *src, const int sz) { | 
|  | switch (sz) { | 
|  | case 1: return src[0]; | 
|  | case 2: return mem_get_le16(src); | 
|  | case 3: return mem_get_le24(src); | 
|  | case 4: return mem_get_le32(src); | 
|  | default: assert("Invalid size" && 0); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_TILE | 
|  | // Reads the next tile returning its size and adjusting '*data' accordingly | 
|  | // based on 'is_last'. | 
|  | static void get_tile_buffer(const uint8_t *const data_end, | 
|  | struct aom_internal_error_info *error_info, | 
|  | const uint8_t **data, aom_decrypt_cb decrypt_cb, | 
|  | void *decrypt_state, | 
|  | TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], | 
|  | int tile_size_bytes, int col, int row) { | 
|  | size_t size; | 
|  |  | 
|  | size_t copy_size = 0; | 
|  | const uint8_t *copy_data = NULL; | 
|  |  | 
|  | if (!read_is_valid(*data, tile_size_bytes, data_end)) | 
|  | aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt tile length"); | 
|  | if (decrypt_cb) { | 
|  | uint8_t be_data[4]; | 
|  | decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); | 
|  |  | 
|  | // Only read number of bytes in cm->tile_size_bytes. | 
|  | size = mem_get_varsize(be_data, tile_size_bytes); | 
|  | } else { | 
|  | size = mem_get_varsize(*data, tile_size_bytes); | 
|  | } | 
|  |  | 
|  | // The top bit indicates copy mode | 
|  | if ((size >> (tile_size_bytes * 8 - 1)) == 1) { | 
|  | // The remaining bits in the top byte signal the row offset | 
|  | int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; | 
|  |  | 
|  | // Currently, only use tiles in same column as reference tiles. | 
|  | copy_data = tile_buffers[row - offset][col].data; | 
|  | copy_size = tile_buffers[row - offset][col].size; | 
|  | size = 0; | 
|  | } | 
|  |  | 
|  | *data += tile_size_bytes; | 
|  |  | 
|  | if (size > (size_t)(data_end - *data)) | 
|  | aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt tile size"); | 
|  |  | 
|  | if (size > 0) { | 
|  | tile_buffers[row][col].data = *data; | 
|  | tile_buffers[row][col].size = size; | 
|  | } else { | 
|  | tile_buffers[row][col].data = copy_data; | 
|  | tile_buffers[row][col].size = copy_size; | 
|  | } | 
|  |  | 
|  | *data += size; | 
|  |  | 
|  | tile_buffers[row][col].raw_data_end = *data; | 
|  | } | 
|  |  | 
|  | static void get_tile_buffers( | 
|  | AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, | 
|  | TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  | const int have_tiles = tile_cols * tile_rows > 1; | 
|  |  | 
|  | if (!have_tiles) { | 
|  | const uint32_t tile_size = data_end - data; | 
|  | tile_buffers[0][0].data = data; | 
|  | tile_buffers[0][0].size = tile_size; | 
|  | tile_buffers[0][0].raw_data_end = NULL; | 
|  | } else { | 
|  | // We locate only the tile buffers that are required, which are the ones | 
|  | // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always | 
|  | // need the last (bottom right) tile buffer, as we need to know where the | 
|  | // end of the compressed frame buffer is for proper superframe decoding. | 
|  |  | 
|  | const uint8_t *tile_col_data_end[MAX_TILE_COLS]; | 
|  | const uint8_t *const data_start = data; | 
|  |  | 
|  | const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
|  | const int single_row = pbi->dec_tile_row >= 0; | 
|  | const int tile_rows_start = single_row ? dec_tile_row : 0; | 
|  | const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; | 
|  | const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
|  | const int single_col = pbi->dec_tile_col >= 0; | 
|  | const int tile_cols_start = single_col ? dec_tile_col : 0; | 
|  | const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
|  |  | 
|  | const int tile_col_size_bytes = pbi->tile_col_size_bytes; | 
|  | const int tile_size_bytes = pbi->tile_size_bytes; | 
|  |  | 
|  | size_t tile_col_size; | 
|  | int r, c; | 
|  |  | 
|  | // Read tile column sizes for all columns (we need the last tile buffer) | 
|  | for (c = 0; c < tile_cols; ++c) { | 
|  | const int is_last = c == tile_cols - 1; | 
|  | if (!is_last) { | 
|  | tile_col_size = mem_get_varsize(data, tile_col_size_bytes); | 
|  | data += tile_col_size_bytes; | 
|  | tile_col_data_end[c] = data + tile_col_size; | 
|  | } else { | 
|  | tile_col_size = data_end - data; | 
|  | tile_col_data_end[c] = data_end; | 
|  | } | 
|  | data += tile_col_size; | 
|  | } | 
|  |  | 
|  | data = data_start; | 
|  |  | 
|  | // Read the required tile sizes. | 
|  | for (c = tile_cols_start; c < tile_cols_end; ++c) { | 
|  | const int is_last = c == tile_cols - 1; | 
|  |  | 
|  | if (c > 0) data = tile_col_data_end[c - 1]; | 
|  |  | 
|  | if (!is_last) data += tile_col_size_bytes; | 
|  |  | 
|  | // Get the whole of the last column, otherwise stop at the required tile. | 
|  | for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { | 
|  | tile_buffers[r][c].col = c; | 
|  |  | 
|  | get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
|  | pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, | 
|  | tile_size_bytes, c, r); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have not read the last column, then read it to get the last tile. | 
|  | if (tile_cols_end != tile_cols) { | 
|  | c = tile_cols - 1; | 
|  |  | 
|  | data = tile_col_data_end[c - 1]; | 
|  |  | 
|  | for (r = 0; r < tile_rows; ++r) { | 
|  | tile_buffers[r][c].col = c; | 
|  |  | 
|  | get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
|  | pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, | 
|  | tile_size_bytes, c, r); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | // Reads the next tile returning its size and adjusting '*data' accordingly | 
|  | // based on 'is_last'. | 
|  | static void get_tile_buffer(const uint8_t *const data_end, | 
|  | const int tile_size_bytes, int is_last, | 
|  | struct aom_internal_error_info *error_info, | 
|  | const uint8_t **data, aom_decrypt_cb decrypt_cb, | 
|  | void *decrypt_state, TileBufferDec *const buf) { | 
|  | size_t size; | 
|  |  | 
|  | if (!is_last) { | 
|  | if (!read_is_valid(*data, 4, data_end)) | 
|  | aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt tile length"); | 
|  |  | 
|  | if (decrypt_cb) { | 
|  | uint8_t be_data[4]; | 
|  | decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); | 
|  | size = mem_get_varsize(be_data, tile_size_bytes); | 
|  | } else { | 
|  | size = mem_get_varsize(*data, tile_size_bytes); | 
|  | } | 
|  | *data += tile_size_bytes; | 
|  |  | 
|  | if (size > (size_t)(data_end - *data)) | 
|  | aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt tile size"); | 
|  | } else { | 
|  | size = data_end - *data; | 
|  | } | 
|  |  | 
|  | buf->data = *data; | 
|  | buf->size = size; | 
|  |  | 
|  | *data += size; | 
|  | } | 
|  |  | 
|  | static void get_tile_buffers( | 
|  | AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, | 
|  | TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | #if CONFIG_TILE_GROUPS | 
|  | int r, c; | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  | int tc = 0; | 
|  | int first_tile_in_tg = 0; | 
|  | int hdr_offset; | 
|  | struct aom_read_bit_buffer rb_tg_hdr; | 
|  | uint8_t clear_data[MAX_AV1_HEADER_SIZE]; | 
|  | const int num_tiles = tile_rows * tile_cols; | 
|  | const int num_bits = OD_ILOG(num_tiles) - 1; | 
|  | const int hdr_size = pbi->uncomp_hdr_size + pbi->first_partition_size; | 
|  | const int tg_size_bit_offset = pbi->tg_size_bit_offset; | 
|  |  | 
|  | for (r = 0; r < tile_rows; ++r) { | 
|  | for (c = 0; c < tile_cols; ++c, ++tc) { | 
|  | TileBufferDec *const buf = &tile_buffers[r][c]; | 
|  | hdr_offset = (tc && tc == first_tile_in_tg) ? hdr_size : 0; | 
|  |  | 
|  | buf->col = c; | 
|  | if (hdr_offset) { | 
|  | init_read_bit_buffer(pbi, &rb_tg_hdr, data, data_end, clear_data); | 
|  | rb_tg_hdr.bit_offset = tg_size_bit_offset; | 
|  | if (num_tiles) { | 
|  | pbi->tg_start = aom_rb_read_literal(&rb_tg_hdr, num_bits); | 
|  | pbi->tg_size = 1 + aom_rb_read_literal(&rb_tg_hdr, num_bits); | 
|  | } | 
|  | } | 
|  | first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0; | 
|  | data += hdr_offset; | 
|  | get_tile_buffer(data_end, pbi->tile_size_bytes, 0, &pbi->common.error, | 
|  | &data, pbi->decrypt_cb, pbi->decrypt_state, buf); | 
|  | } | 
|  | } | 
|  | #else | 
|  | int r, c; | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  |  | 
|  | for (r = 0; r < tile_rows; ++r) { | 
|  | for (c = 0; c < tile_cols; ++c) { | 
|  | const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); | 
|  | TileBufferDec *const buf = &tile_buffers[r][c]; | 
|  | buf->col = c; | 
|  | get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error, | 
|  | &data, pbi->decrypt_cb, pbi->decrypt_state, buf); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif  // CONFIG_EXT_TILE | 
|  |  | 
|  | #if CONFIG_PVQ | 
|  | static void daala_dec_init(AV1_COMMON *const cm, daala_dec_ctx *daala_dec, | 
|  | aom_reader *r) { | 
|  | daala_dec->r = r; | 
|  | od_adapt_ctx_reset(&daala_dec->state.adapt, 0); | 
|  |  | 
|  | // TODO(yushin) : activity masking info needs be signaled by a bitstream | 
|  | daala_dec->use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING; | 
|  |  | 
|  | #if !CONFIG_DAALA_DIST | 
|  | daala_dec->use_activity_masking = 0; | 
|  | #endif | 
|  |  | 
|  | if (daala_dec->use_activity_masking) | 
|  | daala_dec->qm = OD_HVS_QM; | 
|  | else | 
|  | daala_dec->qm = OD_FLAT_QM; | 
|  |  | 
|  | od_init_qm(daala_dec->state.qm, daala_dec->state.qm_inv, | 
|  | daala_dec->qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT); | 
|  |  | 
|  | if (daala_dec->use_activity_masking) { | 
|  | int pli; | 
|  | int use_masking = daala_dec->use_activity_masking; | 
|  | int segment_id = 0; | 
|  | int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); | 
|  |  | 
|  | for (pli = 0; pli < MAX_MB_PLANE; pli++) { | 
|  | int i; | 
|  | int q; | 
|  |  | 
|  | q = qindex; | 
|  | if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) { | 
|  | od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q, | 
|  | &OD_DEFAULT_QMS[use_masking][0][pli], NULL); | 
|  | } else { | 
|  | i = 0; | 
|  | while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL && | 
|  | q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q | 
|  | << OD_COEFF_SHIFT) { | 
|  | i++; | 
|  | } | 
|  | od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q, | 
|  | &OD_DEFAULT_QMS[use_masking][i][pli], | 
|  | &OD_DEFAULT_QMS[use_masking][i + 1][pli]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // #if CONFIG_PVQ | 
|  |  | 
|  | static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, | 
|  | const uint8_t *data_end) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  | const int n_tiles = tile_cols * tile_rows; | 
|  | TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
|  | #if CONFIG_EXT_TILE | 
|  | const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
|  | const int single_row = pbi->dec_tile_row >= 0; | 
|  | const int tile_rows_start = single_row ? dec_tile_row : 0; | 
|  | const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
|  | const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
|  | const int single_col = pbi->dec_tile_col >= 0; | 
|  | const int tile_cols_start = single_col ? dec_tile_col : 0; | 
|  | const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
|  | const int inv_col_order = pbi->inv_tile_order && !single_col; | 
|  | const int inv_row_order = pbi->inv_tile_order && !single_row; | 
|  | #else | 
|  | const int tile_rows_start = 0; | 
|  | const int tile_rows_end = tile_rows; | 
|  | const int tile_cols_start = 0; | 
|  | const int tile_cols_end = tile_cols; | 
|  | const int inv_col_order = pbi->inv_tile_order; | 
|  | const int inv_row_order = pbi->inv_tile_order; | 
|  | #endif  // CONFIG_EXT_TILE | 
|  | int tile_row, tile_col; | 
|  |  | 
|  | #if CONFIG_ENTROPY | 
|  | cm->do_subframe_update = n_tiles == 1; | 
|  | #endif  // CONFIG_ENTROPY | 
|  |  | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter && | 
|  | pbi->lf_worker.data1 == NULL) { | 
|  | CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, | 
|  | aom_memalign(32, sizeof(LFWorkerData))); | 
|  | pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker; | 
|  | if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Loop filter thread creation failed"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter) { | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; | 
|  | // Be sure to sync as we might be resuming after a failed frame decode. | 
|  | winterface->sync(&pbi->lf_worker); | 
|  | av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, | 
|  | pbi->mb.plane); | 
|  | } | 
|  |  | 
|  | assert(tile_rows <= MAX_TILE_ROWS); | 
|  | assert(tile_cols <= MAX_TILE_COLS); | 
|  |  | 
|  | get_tile_buffers(pbi, data, data_end, tile_buffers); | 
|  |  | 
|  | if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { | 
|  | aom_free(pbi->tile_data); | 
|  | CHECK_MEM_ERROR(cm, pbi->tile_data, | 
|  | aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data)))); | 
|  | pbi->allocated_tiles = n_tiles; | 
|  | } | 
|  | #if CONFIG_ACCOUNTING | 
|  | if (pbi->acct_enabled) { | 
|  | aom_accounting_reset(&pbi->accounting); | 
|  | } | 
|  | #endif | 
|  | // Load all tile information into tile_data. | 
|  | for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { | 
|  | for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { | 
|  | const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col; | 
|  |  | 
|  | td->cm = cm; | 
|  | td->xd = pbi->mb; | 
|  | td->xd.corrupted = 0; | 
|  | td->xd.counts = | 
|  | cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD | 
|  | ? &cm->counts | 
|  | : NULL; | 
|  | av1_zero(td->dqcoeff); | 
|  | #if CONFIG_PVQ | 
|  | av1_zero(td->pvq_ref_coeff); | 
|  | #endif | 
|  | av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col); | 
|  | setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, | 
|  | &td->bit_reader, | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | 1 << cm->ans_window_size_log2, | 
|  | #endif  // CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | pbi->decrypt_cb, pbi->decrypt_state); | 
|  | #if CONFIG_ACCOUNTING | 
|  | if (pbi->acct_enabled) { | 
|  | td->bit_reader.accounting = &pbi->accounting; | 
|  | } else { | 
|  | td->bit_reader.accounting = NULL; | 
|  | } | 
|  | #endif | 
|  | av1_init_macroblockd(cm, &td->xd, | 
|  | #if CONFIG_PVQ | 
|  | td->pvq_ref_coeff, | 
|  | #endif | 
|  | td->dqcoeff); | 
|  | #if CONFIG_PVQ | 
|  | daala_dec_init(cm, &td->xd.daala_dec, &td->bit_reader); | 
|  | #endif | 
|  | #if CONFIG_EC_ADAPT | 
|  | // Initialise the tile context from the frame context | 
|  | td->tctx = *cm->fc; | 
|  | td->xd.tile_ctx = &td->tctx; | 
|  | #endif | 
|  | #if CONFIG_PALETTE | 
|  | td->xd.plane[0].color_index_map = td->color_index_map[0]; | 
|  | td->xd.plane[1].color_index_map = td->color_index_map[1]; | 
|  | #endif  // CONFIG_PALETTE | 
|  | } | 
|  | } | 
|  |  | 
|  | for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { | 
|  | const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; | 
|  | int mi_row = 0; | 
|  | TileInfo tile_info; | 
|  |  | 
|  | av1_tile_set_row(&tile_info, cm, row); | 
|  |  | 
|  | for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { | 
|  | const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; | 
|  | TileData *const td = pbi->tile_data + tile_cols * row + col; | 
|  | #if CONFIG_ACCOUNTING | 
|  | if (pbi->acct_enabled) { | 
|  | td->bit_reader.accounting->last_tell_frac = | 
|  | aom_reader_tell_frac(&td->bit_reader); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | av1_tile_set_col(&tile_info, cm, col); | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | if (!cm->dependent_horz_tiles || tile_row == 0) { | 
|  | av1_zero_above_context(cm, tile_info.mi_col_start, | 
|  | tile_info.mi_col_end); | 
|  | } | 
|  | #else | 
|  | av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end); | 
|  | #endif | 
|  |  | 
|  | for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
|  | mi_row += cm->mib_size) { | 
|  | int mi_col; | 
|  |  | 
|  | av1_zero_left_context(&td->xd); | 
|  |  | 
|  | for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
|  | mi_col += cm->mib_size) { | 
|  | av1_update_boundary_info(cm, &tile_info, mi_row, mi_col); | 
|  | decode_partition(pbi, &td->xd, | 
|  | #if CONFIG_SUPERTX | 
|  | 0, | 
|  | #endif  // CONFIG_SUPERTX | 
|  | mi_row, mi_col, &td->bit_reader, cm->sb_size, | 
|  | b_width_log2_lookup[cm->sb_size]); | 
|  | #if CONFIG_NCOBMC && CONFIG_MOTION_VAR | 
|  | detoken_and_recon_sb(pbi, &td->xd, mi_row, mi_col, &td->bit_reader, | 
|  | cm->sb_size); | 
|  | #endif | 
|  | } | 
|  | pbi->mb.corrupted |= td->xd.corrupted; | 
|  | if (pbi->mb.corrupted) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Failed to decode tile data"); | 
|  | #if CONFIG_ENTROPY | 
|  | if (cm->do_subframe_update && | 
|  | cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
|  | const int mi_rows_per_update = | 
|  | MI_SIZE * AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1); | 
|  | if ((mi_row + MI_SIZE) % mi_rows_per_update == 0 && | 
|  | mi_row + MI_SIZE < cm->mi_rows && | 
|  | cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { | 
|  | av1_partial_adapt_probs(cm, mi_row, mi_col); | 
|  | ++cm->coef_probs_update_idx; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(mi_row > 0); | 
|  |  | 
|  | // when Parallel deblocking is enabled, deblocking should not | 
|  | // be interleaved with decoding. Instead, deblocking should be done | 
|  | // after the entire frame is decoded. | 
|  | #if !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING | 
|  | // Loopfilter one tile row. | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter) { | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; | 
|  | const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size); | 
|  | const int lf_end = tile_info.mi_row_end - cm->mib_size; | 
|  |  | 
|  | // Delay the loopfilter if the first tile row is only | 
|  | // a single superblock high. | 
|  | if (lf_end <= 0) continue; | 
|  |  | 
|  | // Decoding has completed. Finish up the loop filter in this thread. | 
|  | if (tile_info.mi_row_end >= cm->mi_rows) continue; | 
|  |  | 
|  | winterface->sync(&pbi->lf_worker); | 
|  | lf_data->start = lf_start; | 
|  | lf_data->stop = lf_end; | 
|  | if (pbi->max_threads > 1) { | 
|  | winterface->launch(&pbi->lf_worker); | 
|  | } else { | 
|  | winterface->execute(&pbi->lf_worker); | 
|  | } | 
|  | } | 
|  | #endif  // !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING | 
|  |  | 
|  | // After loopfiltering, the last 7 row pixels in each superblock row may | 
|  | // still be changed by the longest loopfilter of the next superblock row. | 
|  | if (cm->frame_parallel_decode) | 
|  | av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2); | 
|  | } | 
|  |  | 
|  | #if CONFIG_VAR_TX | 
|  | // Loopfilter the whole frame. | 
|  | av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, | 
|  | cm->lf.filter_level, 0, 0); | 
|  | #else | 
|  | #if CONFIG_PARALLEL_DEBLOCKING | 
|  | // Loopfilter all rows in the frame in the frame. | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter) { | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; | 
|  | winterface->sync(&pbi->lf_worker); | 
|  | lf_data->start = 0; | 
|  | lf_data->stop = cm->mi_rows; | 
|  | winterface->execute(&pbi->lf_worker); | 
|  | } | 
|  | #else | 
|  | // Loopfilter remaining rows in the frame. | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter) { | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; | 
|  | winterface->sync(&pbi->lf_worker); | 
|  | lf_data->start = lf_data->stop; | 
|  | lf_data->stop = cm->mi_rows; | 
|  | winterface->execute(&pbi->lf_worker); | 
|  | } | 
|  | #endif  // CONFIG_PARALLEL_DEBLOCKING | 
|  | #endif  // CONFIG_VAR_TX | 
|  | if (cm->frame_parallel_decode) | 
|  | av1_frameworker_broadcast(pbi->cur_buf, INT_MAX); | 
|  |  | 
|  | #if CONFIG_EXT_TILE | 
|  | if (n_tiles == 1) { | 
|  | #if CONFIG_ANS | 
|  | return data_end; | 
|  | #else | 
|  | // Find the end of the single tile buffer | 
|  | return aom_reader_find_end(&pbi->tile_data->bit_reader); | 
|  | #endif  // CONFIG_ANS | 
|  | } else { | 
|  | // Return the end of the last tile buffer | 
|  | return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; | 
|  | } | 
|  | #else | 
|  | #if CONFIG_ANS | 
|  | return data_end; | 
|  | #else | 
|  | { | 
|  | // Get last tile data. | 
|  | TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1; | 
|  | return aom_reader_find_end(&td->bit_reader); | 
|  | } | 
|  | #endif  // CONFIG_ANS | 
|  | #endif  // CONFIG_EXT_TILE | 
|  | } | 
|  |  | 
|  | static int tile_worker_hook(TileWorkerData *const tile_data, | 
|  | const TileInfo *const tile) { | 
|  | AV1Decoder *const pbi = tile_data->pbi; | 
|  | const AV1_COMMON *const cm = &pbi->common; | 
|  | int mi_row, mi_col; | 
|  |  | 
|  | if (setjmp(tile_data->error_info.jmp)) { | 
|  | tile_data->error_info.setjmp = 0; | 
|  | tile_data->xd.corrupted = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tile_data->error_info.setjmp = 1; | 
|  | tile_data->xd.error_info = &tile_data->error_info; | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | if (!cm->dependent_horz_tiles) { | 
|  | av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); | 
|  | } | 
|  | #else | 
|  | av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); | 
|  | #endif | 
|  |  | 
|  | for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; | 
|  | mi_row += cm->mib_size) { | 
|  | av1_zero_left_context(&tile_data->xd); | 
|  |  | 
|  | for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; | 
|  | mi_col += cm->mib_size) { | 
|  | decode_partition(pbi, &tile_data->xd, | 
|  | #if CONFIG_SUPERTX | 
|  | 0, | 
|  | #endif | 
|  | mi_row, mi_col, &tile_data->bit_reader, cm->sb_size, | 
|  | b_width_log2_lookup[cm->sb_size]); | 
|  | #if CONFIG_NCOBMC && CONFIG_MOTION_VAR | 
|  | detoken_and_recon_sb(pbi, &tile_data->xd, mi_row, mi_col, | 
|  | &tile_data->bit_reader, cm->sb_size); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | return !tile_data->xd.corrupted; | 
|  | } | 
|  |  | 
|  | // sorts in descending order | 
|  | static int compare_tile_buffers(const void *a, const void *b) { | 
|  | const TileBufferDec *const buf1 = (const TileBufferDec *)a; | 
|  | const TileBufferDec *const buf2 = (const TileBufferDec *)b; | 
|  | return (int)(buf2->size - buf1->size); | 
|  | } | 
|  |  | 
|  | static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, | 
|  | const uint8_t *data_end) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  | const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols); | 
|  | TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
|  | #if CONFIG_EXT_TILE | 
|  | const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
|  | const int single_row = pbi->dec_tile_row >= 0; | 
|  | const int tile_rows_start = single_row ? dec_tile_row : 0; | 
|  | const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
|  | const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
|  | const int single_col = pbi->dec_tile_col >= 0; | 
|  | const int tile_cols_start = single_col ? dec_tile_col : 0; | 
|  | const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
|  | #else | 
|  | const int tile_rows_start = 0; | 
|  | const int tile_rows_end = tile_rows; | 
|  | const int tile_cols_start = 0; | 
|  | const int tile_cols_end = tile_cols; | 
|  | #endif  // CONFIG_EXT_TILE | 
|  | int tile_row, tile_col; | 
|  | int i; | 
|  |  | 
|  | #if !(CONFIG_ANS || CONFIG_EXT_TILE) | 
|  | int final_worker = -1; | 
|  | #endif  // !(CONFIG_ANS || CONFIG_EXT_TILE) | 
|  |  | 
|  | assert(tile_rows <= MAX_TILE_ROWS); | 
|  | assert(tile_cols <= MAX_TILE_COLS); | 
|  |  | 
|  | assert(tile_cols * tile_rows > 1); | 
|  |  | 
|  | // TODO(jzern): See if we can remove the restriction of passing in max | 
|  | // threads to the decoder. | 
|  | if (pbi->num_tile_workers == 0) { | 
|  | const int num_threads = pbi->max_threads & ~1; | 
|  | CHECK_MEM_ERROR(cm, pbi->tile_workers, | 
|  | aom_malloc(num_threads * sizeof(*pbi->tile_workers))); | 
|  | // Ensure tile data offsets will be properly aligned. This may fail on | 
|  | // platforms without DECLARE_ALIGNED(). | 
|  | assert((sizeof(*pbi->tile_worker_data) % 16) == 0); | 
|  | CHECK_MEM_ERROR( | 
|  | cm, pbi->tile_worker_data, | 
|  | aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); | 
|  | CHECK_MEM_ERROR(cm, pbi->tile_worker_info, | 
|  | aom_malloc(num_threads * sizeof(*pbi->tile_worker_info))); | 
|  | for (i = 0; i < num_threads; ++i) { | 
|  | AVxWorker *const worker = &pbi->tile_workers[i]; | 
|  | ++pbi->num_tile_workers; | 
|  |  | 
|  | winterface->init(worker); | 
|  | if (i < num_threads - 1 && !winterface->reset(worker)) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Tile decoder thread creation failed"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset tile decoding hook | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &pbi->tile_workers[i]; | 
|  | winterface->sync(worker); | 
|  | worker->hook = (AVxWorkerHook)tile_worker_hook; | 
|  | worker->data1 = &pbi->tile_worker_data[i]; | 
|  | worker->data2 = &pbi->tile_worker_info[i]; | 
|  | } | 
|  |  | 
|  | // Initialize thread frame counts. | 
|  | if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; | 
|  | av1_zero(twd->counts); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Load tile data into tile_buffers | 
|  | get_tile_buffers(pbi, data, data_end, tile_buffers); | 
|  |  | 
|  | for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { | 
|  | // Sort the buffers in this tile row based on size in descending order. | 
|  | qsort(&tile_buffers[tile_row][tile_cols_start], | 
|  | tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]), | 
|  | compare_tile_buffers); | 
|  |  | 
|  | // Rearrange the tile buffers in this tile row such that per-tile group | 
|  | // the largest, and presumably the most difficult tile will be decoded in | 
|  | // the main thread. This should help minimize the number of instances | 
|  | // where the main thread is waiting for a worker to complete. | 
|  | { | 
|  | int group_start; | 
|  | for (group_start = tile_cols_start; group_start < tile_cols_end; | 
|  | group_start += num_workers) { | 
|  | const int group_end = AOMMIN(group_start + num_workers, tile_cols); | 
|  | const TileBufferDec largest = tile_buffers[tile_row][group_start]; | 
|  | memmove(&tile_buffers[tile_row][group_start], | 
|  | &tile_buffers[tile_row][group_start + 1], | 
|  | (group_end - group_start - 1) * sizeof(tile_buffers[0][0])); | 
|  | tile_buffers[tile_row][group_end - 1] = largest; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (tile_col = tile_cols_start; tile_col < tile_cols_end;) { | 
|  | // Launch workers for individual columns | 
|  | for (i = 0; i < num_workers && tile_col < tile_cols_end; | 
|  | ++i, ++tile_col) { | 
|  | TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | AVxWorker *const worker = &pbi->tile_workers[i]; | 
|  | TileWorkerData *const twd = (TileWorkerData *)worker->data1; | 
|  | TileInfo *const tile_info = (TileInfo *)worker->data2; | 
|  |  | 
|  | twd->pbi = pbi; | 
|  | twd->xd = pbi->mb; | 
|  | twd->xd.corrupted = 0; | 
|  | twd->xd.counts = | 
|  | cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD | 
|  | ? &twd->counts | 
|  | : NULL; | 
|  | av1_zero(twd->dqcoeff); | 
|  | av1_tile_init(tile_info, cm, tile_row, buf->col); | 
|  | av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col); | 
|  | setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, | 
|  | &twd->bit_reader, | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | 1 << cm->ans_window_size_log2, | 
|  | #endif  // CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | pbi->decrypt_cb, pbi->decrypt_state); | 
|  | av1_init_macroblockd(cm, &twd->xd, | 
|  | #if CONFIG_PVQ | 
|  | twd->pvq_ref_coeff, | 
|  | #endif | 
|  | twd->dqcoeff); | 
|  | #if CONFIG_PVQ | 
|  | daala_dec_init(cm, &twd->xd.daala_dec, &twd->bit_reader); | 
|  | #endif | 
|  | #if CONFIG_PALETTE | 
|  | twd->xd.plane[0].color_index_map = twd->color_index_map[0]; | 
|  | twd->xd.plane[1].color_index_map = twd->color_index_map[1]; | 
|  | #endif  // CONFIG_PALETTE | 
|  |  | 
|  | worker->had_error = 0; | 
|  | if (i == num_workers - 1 || tile_col == tile_cols_end - 1) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  |  | 
|  | #if !(CONFIG_ANS || CONFIG_EXT_TILE) | 
|  | if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) { | 
|  | final_worker = i; | 
|  | } | 
|  | #endif  // !(CONFIG_ANS || CONFIG_EXT_TILE) | 
|  | } | 
|  |  | 
|  | // Sync all workers | 
|  | for (; i > 0; --i) { | 
|  | AVxWorker *const worker = &pbi->tile_workers[i - 1]; | 
|  | // TODO(jzern): The tile may have specific error data associated with | 
|  | // its aom_internal_error_info which could be propagated to the main | 
|  | // info in cm. Additionally once the threads have been synced and an | 
|  | // error is detected, there's no point in continuing to decode tiles. | 
|  | pbi->mb.corrupted |= !winterface->sync(worker); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accumulate thread frame counts. | 
|  | if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; | 
|  | av1_accumulate_frame_counts(&cm->counts, &twd->counts); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_TILE | 
|  | // Return the end of the last tile buffer | 
|  | return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; | 
|  | #else | 
|  | #if CONFIG_ANS | 
|  | return data_end; | 
|  | #else | 
|  | assert(final_worker != -1); | 
|  | { | 
|  | TileWorkerData *const twd = | 
|  | (TileWorkerData *)pbi->tile_workers[final_worker].data1; | 
|  | return aom_reader_find_end(&twd->bit_reader); | 
|  | } | 
|  | #endif  // CONFIG_ANS | 
|  | #endif  // CONFIG_EXT_TILE | 
|  | } | 
|  |  | 
|  | static void error_handler(void *data) { | 
|  | AV1_COMMON *const cm = (AV1_COMMON *)data; | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); | 
|  | } | 
|  |  | 
|  | static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | if (cm->profile >= PROFILE_2) { | 
|  | cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10; | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | cm->use_highbitdepth = 1; | 
|  | #endif | 
|  | } else { | 
|  | cm->bit_depth = AOM_BITS_8; | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | cm->use_highbitdepth = 0; | 
|  | #endif | 
|  | } | 
|  | cm->color_space = aom_rb_read_literal(rb, 3); | 
|  | if (cm->color_space != AOM_CS_SRGB) { | 
|  | // [16,235] (including xvycc) vs [0,255] range | 
|  | cm->color_range = aom_rb_read_bit(rb); | 
|  | if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { | 
|  | cm->subsampling_x = aom_rb_read_bit(rb); | 
|  | cm->subsampling_y = aom_rb_read_bit(rb); | 
|  | if (cm->subsampling_x == 1 && cm->subsampling_y == 1) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "4:2:0 color not supported in profile 1 or 3"); | 
|  | if (aom_rb_read_bit(rb)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Reserved bit set"); | 
|  | } else { | 
|  | cm->subsampling_y = cm->subsampling_x = 1; | 
|  | } | 
|  | } else { | 
|  | if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { | 
|  | // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. | 
|  | // 4:2:2 or 4:4:0 chroma sampling is not allowed. | 
|  | cm->subsampling_y = cm->subsampling_x = 0; | 
|  | if (aom_rb_read_bit(rb)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Reserved bit set"); | 
|  | } else { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "4:4:4 color not supported in profile 0 or 2"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | void read_sequence_header(SequenceHeader *seq_params) { | 
|  | /* Placeholder for actually reading from the bitstream */ | 
|  | seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG; | 
|  | seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7; | 
|  | seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static size_t read_uncompressed_header(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | MACROBLOCKD *const xd = &pbi->mb; | 
|  | BufferPool *const pool = cm->buffer_pool; | 
|  | RefCntBuffer *const frame_bufs = pool->frame_bufs; | 
|  | int i, mask, ref_index = 0; | 
|  | size_t sz; | 
|  |  | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | /* TODO: Move outside frame loop or inside key-frame branch */ | 
|  | read_sequence_header(&pbi->seq_params); | 
|  | #endif | 
|  |  | 
|  | cm->last_frame_type = cm->frame_type; | 
|  | cm->last_intra_only = cm->intra_only; | 
|  |  | 
|  | #if CONFIG_EXT_REFS | 
|  | // NOTE: By default all coded frames to be used as a reference | 
|  | cm->is_reference_frame = 1; | 
|  | #endif  // CONFIG_EXT_REFS | 
|  |  | 
|  | if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Invalid frame marker"); | 
|  |  | 
|  | cm->profile = av1_read_profile(rb); | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | if (cm->profile >= MAX_PROFILES) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Unsupported bitstream profile"); | 
|  | #else | 
|  | if (cm->profile >= PROFILE_2) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Unsupported bitstream profile"); | 
|  | #endif | 
|  |  | 
|  | cm->show_existing_frame = aom_rb_read_bit(rb); | 
|  |  | 
|  | if (cm->show_existing_frame) { | 
|  | // Show an existing frame directly. | 
|  | const int existing_frame_idx = aom_rb_read_literal(rb, 3); | 
|  | const int frame_to_show = cm->ref_frame_map[existing_frame_idx]; | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | if (pbi->seq_params.frame_id_numbers_present_flag) { | 
|  | int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; | 
|  | int display_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
|  | /* Compare display_frame_id with ref_frame_id and check valid for | 
|  | * referencing */ | 
|  | if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || | 
|  | cm->valid_for_referencing[existing_frame_idx] == 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Reference buffer frame ID mismatch"); | 
|  | } | 
|  | #endif | 
|  | lock_buffer_pool(pool); | 
|  | if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { | 
|  | unlock_buffer_pool(pool); | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Buffer %d does not contain a decoded frame", | 
|  | frame_to_show); | 
|  | } | 
|  | ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); | 
|  | unlock_buffer_pool(pool); | 
|  |  | 
|  | cm->lf.filter_level = 0; | 
|  | cm->show_frame = 1; | 
|  | pbi->refresh_frame_flags = 0; | 
|  |  | 
|  | if (cm->frame_parallel_decode) { | 
|  | for (i = 0; i < REF_FRAMES; ++i) | 
|  | cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb); | 
|  | cm->show_frame = aom_rb_read_bit(rb); | 
|  | cm->error_resilient_mode = aom_rb_read_bit(rb); | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | if (pbi->seq_params.frame_id_numbers_present_flag) { | 
|  | int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; | 
|  | int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2; | 
|  | int prev_frame_id = 0; | 
|  | if (cm->frame_type != KEY_FRAME) { | 
|  | prev_frame_id = cm->current_frame_id; | 
|  | } | 
|  | cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
|  |  | 
|  | if (cm->frame_type != KEY_FRAME) { | 
|  | int diff_frame_id; | 
|  | if (cm->current_frame_id > prev_frame_id) { | 
|  | diff_frame_id = cm->current_frame_id - prev_frame_id; | 
|  | } else { | 
|  | diff_frame_id = | 
|  | (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; | 
|  | } | 
|  | /* Check current_frame_id for conformance */ | 
|  | if (prev_frame_id == cm->current_frame_id || | 
|  | diff_frame_id >= (1 << (frame_id_length - 1))) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid value of current_frame_id"); | 
|  | } | 
|  | } | 
|  | /* Check if some frames need to be marked as not valid for referencing */ | 
|  | for (i = 0; i < REF_FRAMES; i++) { | 
|  | if (cm->frame_type == KEY_FRAME) { | 
|  | cm->valid_for_referencing[i] = 0; | 
|  | } else if (cm->current_frame_id - (1 << diff_len) > 0) { | 
|  | if (cm->ref_frame_id[i] > cm->current_frame_id || | 
|  | cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) | 
|  | cm->valid_for_referencing[i] = 0; | 
|  | } else { | 
|  | if (cm->ref_frame_id[i] > cm->current_frame_id && | 
|  | cm->ref_frame_id[i] < | 
|  | (1 << frame_id_length) + cm->current_frame_id - (1 << diff_len)) | 
|  | cm->valid_for_referencing[i] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (cm->frame_type == KEY_FRAME) { | 
|  | if (!av1_read_sync_code(rb)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Invalid frame sync code"); | 
|  |  | 
|  | read_bitdepth_colorspace_sampling(cm, rb); | 
|  | pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; | 
|  |  | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | cm->frame_refs[i].idx = INVALID_IDX; | 
|  | cm->frame_refs[i].buf = NULL; | 
|  | } | 
|  |  | 
|  | setup_frame_size(cm, rb); | 
|  | if (pbi->need_resync) { | 
|  | memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); | 
|  | pbi->need_resync = 0; | 
|  | } | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8; | 
|  | #endif  // CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | #if CONFIG_PALETTE | 
|  | cm->allow_screen_content_tools = aom_rb_read_bit(rb); | 
|  | #endif  // CONFIG_PALETTE | 
|  | } else { | 
|  | cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb); | 
|  | #if CONFIG_PALETTE | 
|  | if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb); | 
|  | #endif  // CONFIG_PALETTE | 
|  | if (cm->error_resilient_mode) { | 
|  | cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL; | 
|  | } else { | 
|  | if (cm->intra_only) { | 
|  | cm->reset_frame_context = aom_rb_read_bit(rb) | 
|  | ? RESET_FRAME_CONTEXT_ALL | 
|  | : RESET_FRAME_CONTEXT_CURRENT; | 
|  | } else { | 
|  | cm->reset_frame_context = aom_rb_read_bit(rb) | 
|  | ? RESET_FRAME_CONTEXT_CURRENT | 
|  | : RESET_FRAME_CONTEXT_NONE; | 
|  | if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) | 
|  | cm->reset_frame_context = aom_rb_read_bit(rb) | 
|  | ? RESET_FRAME_CONTEXT_ALL | 
|  | : RESET_FRAME_CONTEXT_CURRENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->intra_only) { | 
|  | if (!av1_read_sync_code(rb)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Invalid frame sync code"); | 
|  |  | 
|  | read_bitdepth_colorspace_sampling(cm, rb); | 
|  |  | 
|  | pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
|  | setup_frame_size(cm, rb); | 
|  | if (pbi->need_resync) { | 
|  | memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); | 
|  | pbi->need_resync = 0; | 
|  | } | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8; | 
|  | #endif | 
|  | } else if (pbi->need_resync != 1) { /* Skip if need resync */ | 
|  | pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
|  |  | 
|  | #if CONFIG_EXT_REFS | 
|  | if (!pbi->refresh_frame_flags) { | 
|  | // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame | 
|  | //       will not be used as a reference | 
|  | cm->is_reference_frame = 0; | 
|  | } | 
|  | #endif  // CONFIG_EXT_REFS | 
|  |  | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
|  | const int idx = cm->ref_frame_map[ref]; | 
|  | RefBuffer *const ref_frame = &cm->frame_refs[i]; | 
|  | ref_frame->idx = idx; | 
|  | ref_frame->buf = &frame_bufs[idx].buf; | 
|  | cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | if (pbi->seq_params.frame_id_numbers_present_flag) { | 
|  | int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; | 
|  | int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2; | 
|  | int delta_frame_id_minus1 = aom_rb_read_literal(rb, diff_len); | 
|  | int ref_frame_id = | 
|  | ((cm->current_frame_id - (delta_frame_id_minus1 + 1) + | 
|  | (1 << frame_id_length)) % | 
|  | (1 << frame_id_length)); | 
|  | /* Compare values derived from delta_frame_id_minus1 and | 
|  | * refresh_frame_flags. Also, check valid for referencing */ | 
|  | if (ref_frame_id != cm->ref_frame_id[ref] || | 
|  | cm->valid_for_referencing[ref] == 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Reference buffer frame ID mismatch"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_FRAME_SIZE | 
|  | if (cm->error_resilient_mode == 0) { | 
|  | setup_frame_size_with_refs(cm, rb); | 
|  | } else { | 
|  | setup_frame_size(cm, rb); | 
|  | } | 
|  | #else | 
|  | setup_frame_size_with_refs(cm, rb); | 
|  | #endif | 
|  |  | 
|  | cm->allow_high_precision_mv = aom_rb_read_bit(rb); | 
|  | cm->interp_filter = read_frame_interp_filter(rb); | 
|  | #if CONFIG_TEMPMV_SIGNALING | 
|  | if (!cm->error_resilient_mode) { | 
|  | cm->use_prev_frame_mvs = aom_rb_read_bit(rb); | 
|  | } | 
|  | #endif | 
|  | for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | RefBuffer *const ref_buf = &cm->frame_refs[i]; | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | av1_setup_scale_factors_for_frame( | 
|  | &ref_buf->sf, ref_buf->buf->y_crop_width, | 
|  | ref_buf->buf->y_crop_height, cm->width, cm->height, | 
|  | cm->use_highbitdepth); | 
|  | #else | 
|  | av1_setup_scale_factors_for_frame( | 
|  | &ref_buf->sf, ref_buf->buf->y_crop_width, | 
|  | ref_buf->buf->y_crop_height, cm->width, cm->height); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #if CONFIG_TEMPMV_SIGNALING | 
|  | cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | if (pbi->seq_params.frame_id_numbers_present_flag) { | 
|  | /* If bitmask is set, update reference frame id values and | 
|  | mark frames as valid for reference */ | 
|  | int refresh_frame_flags = | 
|  | cm->frame_type == KEY_FRAME ? 0xFF : pbi->refresh_frame_flags; | 
|  | for (i = 0; i < REF_FRAMES; i++) { | 
|  | if ((refresh_frame_flags >> i) & 1) { | 
|  | cm->ref_frame_id[i] = cm->current_frame_id; | 
|  | cm->valid_for_referencing[i] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; | 
|  | #endif | 
|  | get_frame_new_buffer(cm)->color_space = cm->color_space; | 
|  | get_frame_new_buffer(cm)->color_range = cm->color_range; | 
|  | get_frame_new_buffer(cm)->render_width = cm->render_width; | 
|  | get_frame_new_buffer(cm)->render_height = cm->render_height; | 
|  |  | 
|  | if (pbi->need_resync) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Keyframe / intra-only frame required to reset decoder" | 
|  | " state"); | 
|  | } | 
|  |  | 
|  | if (!cm->error_resilient_mode) { | 
|  | cm->refresh_frame_context = aom_rb_read_bit(rb) | 
|  | ? REFRESH_FRAME_CONTEXT_FORWARD | 
|  | : REFRESH_FRAME_CONTEXT_BACKWARD; | 
|  | } else { | 
|  | cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD; | 
|  | } | 
|  |  | 
|  | // This flag will be overridden by the call to av1_setup_past_independence | 
|  | // below, forcing the use of context 0 for those frame types. | 
|  | cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); | 
|  |  | 
|  | // Generate next_ref_frame_map. | 
|  | lock_buffer_pool(pool); | 
|  | for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { | 
|  | if (mask & 1) { | 
|  | cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; | 
|  | ++frame_bufs[cm->new_fb_idx].ref_count; | 
|  | } else { | 
|  | cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; | 
|  | } | 
|  | // Current thread holds the reference frame. | 
|  | if (cm->ref_frame_map[ref_index] >= 0) | 
|  | ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; | 
|  | ++ref_index; | 
|  | } | 
|  |  | 
|  | for (; ref_index < REF_FRAMES; ++ref_index) { | 
|  | cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; | 
|  |  | 
|  | // Current thread holds the reference frame. | 
|  | if (cm->ref_frame_map[ref_index] >= 0) | 
|  | ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; | 
|  | } | 
|  | unlock_buffer_pool(pool); | 
|  | pbi->hold_ref_buf = 1; | 
|  |  | 
|  | if (frame_is_intra_only(cm) || cm->error_resilient_mode) | 
|  | av1_setup_past_independence(cm); | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION | 
|  | set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); | 
|  | #else | 
|  | set_sb_size(cm, BLOCK_64X64); | 
|  | #endif  // CONFIG_EXT_PARTITION | 
|  |  | 
|  | setup_loopfilter(cm, rb); | 
|  | #if CONFIG_DERING | 
|  | setup_dering(cm, rb); | 
|  | #endif | 
|  | #if CONFIG_CLPF | 
|  | setup_clpf(pbi, rb); | 
|  | #endif | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | av1_alloc_restoration_buffers(cm); | 
|  | decode_restoration_mode(cm, rb); | 
|  | #endif  // CONFIG_LOOP_RESTORATION | 
|  | setup_quantization(cm, rb); | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | xd->bd = (int)cm->bit_depth; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_ENTROPY | 
|  | av1_default_coef_probs(cm); | 
|  | if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || | 
|  | cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) { | 
|  | for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; | 
|  | } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) { | 
|  | cm->frame_contexts[cm->frame_context_idx] = *cm->fc; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY | 
|  |  | 
|  | setup_segmentation(cm, rb); | 
|  |  | 
|  | #if CONFIG_DELTA_Q | 
|  | { | 
|  | struct segmentation *const seg = &cm->seg; | 
|  | int segment_quantizer_active = 0; | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) { | 
|  | segment_quantizer_active = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | cm->delta_q_res = 1; | 
|  | if (segment_quantizer_active == 0) { | 
|  | cm->delta_q_present_flag = aom_rb_read_bit(rb); | 
|  | } else { | 
|  | cm->delta_q_present_flag = 0; | 
|  | } | 
|  | if (cm->delta_q_present_flag) { | 
|  | xd->prev_qindex = cm->base_qindex; | 
|  | cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | const int qindex = cm->seg.enabled | 
|  | ? av1_get_qindex(&cm->seg, i, cm->base_qindex) | 
|  | : cm->base_qindex; | 
|  | xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && | 
|  | cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; | 
|  | xd->qindex[i] = qindex; | 
|  | } | 
|  |  | 
|  | setup_segmentation_dequant(cm); | 
|  | cm->tx_mode = read_tx_mode(cm, xd, rb); | 
|  | cm->reference_mode = read_frame_reference_mode(cm, rb); | 
|  |  | 
|  | read_tile_info(pbi, rb); | 
|  | sz = aom_rb_read_literal(rb, 16); | 
|  |  | 
|  | if (sz == 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid header size"); | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_TX | 
|  | #if !CONFIG_EC_ADAPT || !CONFIG_DAALA_EC | 
|  | static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j, k; | 
|  | int s; | 
|  | for (s = 1; s < EXT_TX_SETS_INTER; ++s) { | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
|  | if (!use_inter_ext_tx_for_txsize[s][i]) continue; | 
|  | for (j = 0; j < num_ext_tx_set_inter[s] - 1; ++j) | 
|  | av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
|  | if (!use_intra_ext_tx_for_txsize[s][i]) continue; | 
|  | for (j = 0; j < INTRA_MODES; ++j) | 
|  | for (k = 0; k < num_ext_tx_set_intra[s] - 1; ++k) | 
|  | av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k], | 
|  | ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // !CONFIG_EC_ADAPT || !CONFIG_DAALA_EC | 
|  | #else | 
|  |  | 
|  | #endif  // CONFIG_EXT_TX | 
|  | #if CONFIG_SUPERTX | 
|  | static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) { | 
|  | int i, j; | 
|  | if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { | 
|  | for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { | 
|  | for (j = TX_8X8; j < TX_SIZES; ++j) { | 
|  | av1_diff_update_prob(r, &fc->supertx_prob[i][j], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_SUPERTX | 
|  |  | 
|  | #if CONFIG_GLOBAL_MOTION | 
|  | static void read_global_motion_params(WarpedMotionParams *params, | 
|  | aom_prob *probs, aom_reader *r) { | 
|  | TransformationType type = | 
|  | aom_read_tree(r, av1_global_motion_types_tree, probs, ACCT_STR); | 
|  | set_default_gmparams(params); | 
|  | params->wmtype = type; | 
|  | switch (type) { | 
|  | case HOMOGRAPHY: | 
|  | params->wmmat[6] = aom_read_primitive_symmetric(r, GM_ABS_ROW3HOMO_BITS) * | 
|  | GM_ROW3HOMO_DECODE_FACTOR; | 
|  | params->wmmat[7] = aom_read_primitive_symmetric(r, GM_ABS_ROW3HOMO_BITS) * | 
|  | GM_ROW3HOMO_DECODE_FACTOR; | 
|  | case AFFINE: | 
|  | case ROTZOOM: | 
|  | params->wmmat[2] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * | 
|  | GM_ALPHA_DECODE_FACTOR + | 
|  | (1 << WARPEDMODEL_PREC_BITS); | 
|  | params->wmmat[3] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * | 
|  | GM_ALPHA_DECODE_FACTOR; | 
|  | if (type == AFFINE || type == HOMOGRAPHY) { | 
|  | params->wmmat[4] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * | 
|  | GM_ALPHA_DECODE_FACTOR; | 
|  | params->wmmat[5] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * | 
|  | GM_ALPHA_DECODE_FACTOR + | 
|  | (1 << WARPEDMODEL_PREC_BITS); | 
|  | } else { | 
|  | params->wmmat[4] = -params->wmmat[3]; | 
|  | params->wmmat[5] = params->wmmat[2]; | 
|  | } | 
|  | // fallthrough intended | 
|  | case TRANSLATION: | 
|  | params->wmmat[0] = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * | 
|  | GM_TRANS_DECODE_FACTOR; | 
|  | params->wmmat[1] = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * | 
|  | GM_TRANS_DECODE_FACTOR; | 
|  | break; | 
|  | case IDENTITY: break; | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_global_motion(AV1_COMMON *cm, aom_reader *r) { | 
|  | int frame; | 
|  | for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { | 
|  | read_global_motion_params(&cm->global_motion[frame], | 
|  | cm->fc->global_motion_types_prob, r); | 
|  | /* | 
|  | printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", | 
|  | frame, cm->current_video_frame, cm->show_frame, | 
|  | cm->global_motion[frame].wmmat[0], | 
|  | cm->global_motion[frame].wmmat[1], | 
|  | cm->global_motion[frame].wmmat[2], | 
|  | cm->global_motion[frame].wmmat[3]); | 
|  | */ | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_GLOBAL_MOTION | 
|  |  | 
|  | static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, | 
|  | size_t partition_size) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | #if CONFIG_SUPERTX | 
|  | MACROBLOCKD *const xd = &pbi->mb; | 
|  | #endif | 
|  | FRAME_CONTEXT *const fc = cm->fc; | 
|  | aom_reader r; | 
|  | int k, i; | 
|  | #if !CONFIG_EC_ADAPT || CONFIG_EXT_INTRA | 
|  | int j; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | r.window_size = 1 << cm->ans_window_size_log2; | 
|  | #endif | 
|  | if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb, | 
|  | pbi->decrypt_state)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate bool decoder 0"); | 
|  |  | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | decode_restoration(cm, &r); | 
|  | #endif | 
|  |  | 
|  | if (cm->tx_mode == TX_MODE_SELECT) read_tx_size_probs(fc, &r); | 
|  |  | 
|  | #if !CONFIG_PVQ | 
|  | #if !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) | 
|  | read_coef_probs(fc, cm->tx_mode, &r); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_VAR_TX | 
|  | for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) | 
|  | av1_diff_update_prob(&r, &fc->txfm_partition_prob[k], ACCT_STR); | 
|  | #endif  // CONFIG_VAR_TX | 
|  | #endif  // !CONFIG_PVQ | 
|  | for (k = 0; k < SKIP_CONTEXTS; ++k) | 
|  | av1_diff_update_prob(&r, &fc->skip_probs[k], ACCT_STR); | 
|  |  | 
|  | #if CONFIG_DELTA_Q | 
|  | for (k = 0; k < DELTA_Q_CONTEXTS; ++k) | 
|  | av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR); | 
|  | #endif | 
|  |  | 
|  | #if !CONFIG_EC_ADAPT | 
|  | if (cm->seg.enabled && cm->seg.update_map) { | 
|  | if (cm->seg.temporal_update) { | 
|  | for (k = 0; k < PREDICTION_PROBS; k++) | 
|  | av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k], ACCT_STR); | 
|  | } | 
|  | for (k = 0; k < MAX_SEGMENTS - 1; k++) | 
|  | av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k], ACCT_STR); | 
|  | } | 
|  |  | 
|  | for (j = 0; j < INTRA_MODES; j++) { | 
|  | for (i = 0; i < INTRA_MODES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i], ACCT_STR); | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | for (i = 0; i < PARTITION_TYPES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &fc->partition_prob[0][i], ACCT_STR); | 
|  | for (j = 1; j < PARTITION_CONTEXTS_PRIMARY; ++j) | 
|  | for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); | 
|  | #else | 
|  | for (j = 0; j < PARTITION_CONTEXTS_PRIMARY; ++j) | 
|  | for (i = 0; i < PARTITION_TYPES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  |  | 
|  | #if CONFIG_UNPOISON_PARTITION_CTX | 
|  | for (; j < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++j) | 
|  | av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_VERT], ACCT_STR); | 
|  | for (; j < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++j) | 
|  | av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_HORZ], ACCT_STR); | 
|  | #endif  // CONFIG_UNPOISON_PARTITION_CTX | 
|  | #endif  // !CONFIG_EC_ADAPT | 
|  |  | 
|  | #if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP | 
|  | for (i = 0; i < INTRA_FILTERS + 1; ++i) | 
|  | for (j = 0; j < INTRA_FILTERS - 1; ++j) | 
|  | av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j], ACCT_STR); | 
|  | #endif  // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob); | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | av1_copy(cm->fc->kf_y_cdf, av1_kf_y_mode_cdf); | 
|  | #endif | 
|  | #if !CONFIG_EC_ADAPT | 
|  | for (k = 0; k < INTRA_MODES; k++) | 
|  | for (j = 0; j < INTRA_MODES; j++) | 
|  | for (i = 0; i < INTRA_MODES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i], ACCT_STR); | 
|  | #endif | 
|  | } else { | 
|  | #if !CONFIG_REF_MV | 
|  | nmv_context *const nmvc = &fc->nmvc; | 
|  | #endif | 
|  | read_inter_mode_probs(fc, &r); | 
|  |  | 
|  | #if CONFIG_EXT_INTER | 
|  | read_inter_compound_mode_probs(fc, &r); | 
|  | if (cm->reference_mode != COMPOUND_REFERENCE) { | 
|  | for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { | 
|  | if (is_interintra_allowed_bsize_group(i)) { | 
|  | av1_diff_update_prob(&r, &fc->interintra_prob[i], ACCT_STR); | 
|  | } | 
|  | } | 
|  | for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { | 
|  | for (j = 0; j < INTERINTRA_MODES - 1; j++) | 
|  | av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j], ACCT_STR); | 
|  | } | 
|  | for (i = 0; i < BLOCK_SIZES; i++) { | 
|  | if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) { | 
|  | av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cm->reference_mode != SINGLE_REFERENCE) { | 
|  | for (i = 0; i < BLOCK_SIZES; i++) { | 
|  | for (j = 0; j < COMPOUND_TYPES - 1; j++) { | 
|  | av1_diff_update_prob(&r, &fc->compound_type_prob[i][j], ACCT_STR); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_INTER | 
|  |  | 
|  | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
|  | for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) { | 
|  | for (j = 0; j < MOTION_MODES - 1; ++j) | 
|  | av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j], ACCT_STR); | 
|  | } | 
|  | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
|  |  | 
|  | #if !CONFIG_EC_ADAPT | 
|  | if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < INTRA_INTER_CONTEXTS; i++) | 
|  | av1_diff_update_prob(&r, &fc->intra_inter_prob[i], ACCT_STR); | 
|  |  | 
|  | if (cm->reference_mode != SINGLE_REFERENCE) | 
|  | setup_compound_reference_mode(cm); | 
|  | read_frame_reference_mode_probs(cm, &r); | 
|  |  | 
|  | #if !CONFIG_EC_ADAPT | 
|  | for (j = 0; j < BLOCK_SIZE_GROUPS; j++) { | 
|  | for (i = 0; i < INTRA_MODES - 1; ++i) | 
|  | av1_diff_update_prob(&r, &fc->y_mode_prob[j][i], ACCT_STR); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_REF_MV | 
|  | for (i = 0; i < NMV_CONTEXTS; ++i) | 
|  | read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r); | 
|  | #else | 
|  | read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); | 
|  | #endif | 
|  | #if !CONFIG_EC_ADAPT | 
|  | read_ext_tx_probs(fc, &r); | 
|  | #endif  // EC_ADAPT, DAALA_EC | 
|  | #if CONFIG_SUPERTX | 
|  | if (!xd->lossless[0]) read_supertx_probs(fc, &r); | 
|  | #endif | 
|  | #if CONFIG_GLOBAL_MOTION | 
|  | read_global_motion(cm, &r); | 
|  | #endif  // EC_ADAPT, DAALA_EC | 
|  | } | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | av1_coef_pareto_cdfs(fc); | 
|  | #if CONFIG_REF_MV | 
|  | for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]); | 
|  | #else | 
|  | av1_set_mv_cdfs(&fc->nmvc); | 
|  | #endif | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | av1_set_mode_cdfs(cm); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | return aom_reader_has_error(&r); | 
|  | } | 
|  |  | 
|  | #ifdef NDEBUG | 
|  | #define debug_check_frame_counts(cm) (void)0 | 
|  | #else  // !NDEBUG | 
|  | // Counts should only be incremented when frame_parallel_decoding_mode and | 
|  | // error_resilient_mode are disabled. | 
|  | static void debug_check_frame_counts(const AV1_COMMON *const cm) { | 
|  | FRAME_COUNTS zero_counts; | 
|  | av1_zero(zero_counts); | 
|  | assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD || | 
|  | cm->error_resilient_mode); | 
|  | assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, | 
|  | sizeof(cm->counts.y_mode))); | 
|  | assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, | 
|  | sizeof(cm->counts.uv_mode))); | 
|  | assert(!memcmp(cm->counts.partition, zero_counts.partition, | 
|  | sizeof(cm->counts.partition))); | 
|  | assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); | 
|  | assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, | 
|  | sizeof(cm->counts.eob_branch))); | 
|  | #if CONFIG_EC_MULTISYMBOL | 
|  | assert(!memcmp(cm->counts.blockz_count, zero_counts.blockz_count, | 
|  | sizeof(cm->counts.blockz_count))); | 
|  | #endif | 
|  | assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, | 
|  | sizeof(cm->counts.switchable_interp))); | 
|  | assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, | 
|  | sizeof(cm->counts.inter_mode))); | 
|  | #if CONFIG_EXT_INTER | 
|  | assert(!memcmp(cm->counts.inter_compound_mode, | 
|  | zero_counts.inter_compound_mode, | 
|  | sizeof(cm->counts.inter_compound_mode))); | 
|  | assert(!memcmp(cm->counts.interintra, zero_counts.interintra, | 
|  | sizeof(cm->counts.interintra))); | 
|  | assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra, | 
|  | sizeof(cm->counts.wedge_interintra))); | 
|  | assert(!memcmp(cm->counts.compound_interinter, | 
|  | zero_counts.compound_interinter, | 
|  | sizeof(cm->counts.compound_interinter))); | 
|  | #endif  // CONFIG_EXT_INTER | 
|  | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
|  | assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode, | 
|  | sizeof(cm->counts.motion_mode))); | 
|  | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
|  | assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, | 
|  | sizeof(cm->counts.intra_inter))); | 
|  | assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, | 
|  | sizeof(cm->counts.comp_inter))); | 
|  | assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, | 
|  | sizeof(cm->counts.single_ref))); | 
|  | assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, | 
|  | sizeof(cm->counts.comp_ref))); | 
|  | #if CONFIG_EXT_REFS | 
|  | assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref, | 
|  | sizeof(cm->counts.comp_bwdref))); | 
|  | #endif  // CONFIG_EXT_REFS | 
|  | assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size, | 
|  | sizeof(cm->counts.tx_size))); | 
|  | assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); | 
|  | #if CONFIG_REF_MV | 
|  | assert( | 
|  | !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0]))); | 
|  | assert( | 
|  | !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0]))); | 
|  | #else | 
|  | assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); | 
|  | #endif | 
|  | assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx, | 
|  | sizeof(cm->counts.inter_ext_tx))); | 
|  | assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx, | 
|  | sizeof(cm->counts.intra_ext_tx))); | 
|  | } | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | static struct aom_read_bit_buffer *init_read_bit_buffer( | 
|  | AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, | 
|  | const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) { | 
|  | rb->bit_offset = 0; | 
|  | rb->error_handler = error_handler; | 
|  | rb->error_handler_data = &pbi->common; | 
|  | if (pbi->decrypt_cb) { | 
|  | const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data); | 
|  | pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); | 
|  | rb->bit_buffer = clear_data; | 
|  | rb->bit_buffer_end = clear_data + n; | 
|  | } else { | 
|  | rb->bit_buffer = data; | 
|  | rb->bit_buffer_end = data_end; | 
|  | } | 
|  | return rb; | 
|  | } | 
|  |  | 
|  | //------------------------------------------------------------------------------ | 
|  |  | 
|  | int av1_read_sync_code(struct aom_read_bit_buffer *const rb) { | 
|  | return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 && | 
|  | aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 && | 
|  | aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2; | 
|  | } | 
|  |  | 
|  | void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width, | 
|  | int *height) { | 
|  | *width = aom_rb_read_literal(rb, 16) + 1; | 
|  | *height = aom_rb_read_literal(rb, 16) + 1; | 
|  | } | 
|  |  | 
|  | BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { | 
|  | int profile = aom_rb_read_bit(rb); | 
|  | profile |= aom_rb_read_bit(rb) << 1; | 
|  | if (profile > 2) profile += aom_rb_read_bit(rb); | 
|  | return (BITSTREAM_PROFILE)profile; | 
|  | } | 
|  |  | 
|  | void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data, | 
|  | const uint8_t *data_end, const uint8_t **p_data_end) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | MACROBLOCKD *const xd = &pbi->mb; | 
|  | struct aom_read_bit_buffer rb; | 
|  | int context_updated = 0; | 
|  | uint8_t clear_data[MAX_AV1_HEADER_SIZE]; | 
|  | size_t first_partition_size; | 
|  | YV12_BUFFER_CONFIG *new_fb; | 
|  |  | 
|  | #if CONFIG_BITSTREAM_DEBUG | 
|  | bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); | 
|  | #endif | 
|  |  | 
|  | first_partition_size = read_uncompressed_header( | 
|  | pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); | 
|  | #if CONFIG_TILE_GROUPS | 
|  | pbi->first_partition_size = first_partition_size; | 
|  | pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb); | 
|  | #endif | 
|  | new_fb = get_frame_new_buffer(cm); | 
|  | xd->cur_buf = new_fb; | 
|  | #if CONFIG_GLOBAL_MOTION | 
|  | xd->global_motion = cm->global_motion; | 
|  | #endif  // CONFIG_GLOBAL_MOTION | 
|  |  | 
|  | if (!first_partition_size) { | 
|  | // showing a frame directly | 
|  | *p_data_end = data + aom_rb_bytes_read(&rb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | data += aom_rb_bytes_read(&rb); | 
|  | if (!read_is_valid(data, first_partition_size, data_end)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Truncated packet or corrupt header length"); | 
|  |  | 
|  | #if CONFIG_REF_MV | 
|  | cm->setup_mi(cm); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_TEMPMV_SIGNALING | 
|  | if (cm->use_prev_frame_mvs) { | 
|  | RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; | 
|  | cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; | 
|  | assert(!cm->error_resilient_mode && | 
|  | cm->width == last_fb_ref_buf->buf->y_width && | 
|  | cm->height == last_fb_ref_buf->buf->y_height && | 
|  | !cm->prev_frame->intra_only); | 
|  | } | 
|  | #else | 
|  | cm->use_prev_frame_mvs = | 
|  | !cm->error_resilient_mode && cm->width == cm->last_width && | 
|  | cm->height == cm->last_height && !cm->last_intra_only && | 
|  | cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); | 
|  | #endif | 
|  | #if CONFIG_EXT_REFS | 
|  | // NOTE(zoeliu): As cm->prev_frame can take neither a frame of | 
|  | //               show_exisiting_frame=1, nor can it take a frame not used as | 
|  | //               a reference, it is probable that by the time it is being | 
|  | //               referred to, the frame buffer it originally points to may | 
|  | //               already get expired and have been reassigned to the current | 
|  | //               newly coded frame. Hence, we need to check whether this is | 
|  | //               the case, and if yes, we have 2 choices: | 
|  | //               (1) Simply disable the use of previous frame mvs; or | 
|  | //               (2) Have cm->prev_frame point to one reference frame buffer, | 
|  | //                   e.g. LAST_FRAME. | 
|  | if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) { | 
|  | // Reassign the LAST_FRAME buffer to cm->prev_frame. | 
|  | RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; | 
|  | cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; | 
|  | } | 
|  | #endif  // CONFIG_EXT_REFS | 
|  |  | 
|  | av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); | 
|  |  | 
|  | *cm->fc = cm->frame_contexts[cm->frame_context_idx]; | 
|  | if (!cm->fc->initialized) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Uninitialized entropy context."); | 
|  |  | 
|  | av1_zero(cm->counts); | 
|  |  | 
|  | xd->corrupted = 0; | 
|  | new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); | 
|  | if (new_fb->corrupted) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Decode failed. Frame data header is corrupted."); | 
|  |  | 
|  | if (cm->lf.filter_level && !cm->skip_loop_filter) { | 
|  | av1_loop_filter_frame_init(cm, cm->lf.filter_level); | 
|  | } | 
|  |  | 
|  | // If encoded in frame parallel mode, frame context is ready after decoding | 
|  | // the frame header. | 
|  | if (cm->frame_parallel_decode && | 
|  | cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) { | 
|  | AVxWorker *const worker = pbi->frame_worker_owner; | 
|  | FrameWorkerData *const frame_worker_data = worker->data1; | 
|  | if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { | 
|  | context_updated = 1; | 
|  | cm->frame_contexts[cm->frame_context_idx] = *cm->fc; | 
|  | } | 
|  | av1_frameworker_lock_stats(worker); | 
|  | pbi->cur_buf->row = -1; | 
|  | pbi->cur_buf->col = -1; | 
|  | frame_worker_data->frame_context_ready = 1; | 
|  | // Signal the main thread that context is ready. | 
|  | av1_frameworker_signal_stats(worker); | 
|  | av1_frameworker_unlock_stats(worker); | 
|  | } | 
|  |  | 
|  | #if CONFIG_ENTROPY | 
|  | av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); | 
|  | cm->coef_probs_update_idx = 0; | 
|  | #endif  // CONFIG_ENTROPY | 
|  |  | 
|  | if (pbi->max_threads > 1 | 
|  | #if CONFIG_EXT_TILE | 
|  | && pbi->dec_tile_col < 0  // Decoding all columns | 
|  | #endif                          // CONFIG_EXT_TILE | 
|  | && cm->tile_cols > 1) { | 
|  | // Multi-threaded tile decoder | 
|  | *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); | 
|  | if (!xd->corrupted) { | 
|  | if (!cm->skip_loop_filter) { | 
|  | // If multiple threads are used to decode tiles, then we use those | 
|  | // threads to do parallel loopfiltering. | 
|  | av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, | 
|  | 0, 0, pbi->tile_workers, pbi->num_tile_workers, | 
|  | &pbi->lf_row_sync); | 
|  | } | 
|  | } else { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Decode failed. Frame data is corrupted."); | 
|  | } | 
|  | } else { | 
|  | *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); | 
|  | } | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || | 
|  | cm->rst_info[1].frame_restoration_type != RESTORE_NONE || | 
|  | cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { | 
|  | av1_loop_restoration_frame(new_fb, cm, cm->rst_info, 7, 0, NULL); | 
|  | } | 
|  | #endif  // CONFIG_LOOP_RESTORATION | 
|  |  | 
|  | #if CONFIG_DERING | 
|  | if (cm->dering_level && !cm->skip_loop_filter) { | 
|  | av1_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level); | 
|  | } | 
|  | #endif  // CONFIG_DERING | 
|  |  | 
|  | #if CONFIG_CLPF | 
|  | if (!cm->skip_loop_filter) { | 
|  | const YV12_BUFFER_CONFIG *const frame = &pbi->cur_buf->buf; | 
|  | if (cm->clpf_strength_y) { | 
|  | av1_clpf_frame(frame, NULL, cm, cm->clpf_size != CLPF_NOSIZE, | 
|  | cm->clpf_strength_y + (cm->clpf_strength_y == 3), | 
|  | 4 + cm->clpf_size, AOM_PLANE_Y, clpf_bit); | 
|  | } | 
|  | if (cm->clpf_strength_u) { | 
|  | av1_clpf_frame(frame, NULL, cm, 0,  // No block signals for chroma | 
|  | cm->clpf_strength_u + (cm->clpf_strength_u == 3), 4, | 
|  | AOM_PLANE_U, NULL); | 
|  | } | 
|  | if (cm->clpf_strength_v) { | 
|  | av1_clpf_frame(frame, NULL, cm, 0,  // No block signals for chroma | 
|  | cm->clpf_strength_v + (cm->clpf_strength_v == 3), 4, | 
|  | AOM_PLANE_V, NULL); | 
|  | } | 
|  | } | 
|  | if (cm->clpf_blocks) aom_free(cm->clpf_blocks); | 
|  | #endif | 
|  |  | 
|  | if (!xd->corrupted) { | 
|  | if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
|  | #if CONFIG_ENTROPY | 
|  | cm->partial_prob_update = 0; | 
|  | #endif  // CONFIG_ENTROPY | 
|  | av1_adapt_coef_probs(cm); | 
|  | av1_adapt_intra_frame_probs(cm); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) { | 
|  | av1_adapt_inter_frame_probs(cm); | 
|  | av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); | 
|  | } | 
|  | } else { | 
|  | debug_check_frame_counts(cm); | 
|  | } | 
|  | } else { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Decode failed. Frame data is corrupted."); | 
|  | } | 
|  |  | 
|  | // Non frame parallel update frame context here. | 
|  | if (!cm->error_resilient_mode && !context_updated) | 
|  | cm->frame_contexts[cm->frame_context_idx] = *cm->fc; | 
|  | } |