blob: cca7ce3657900dc8a5624232f351091a7b8f79d0 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_txfm.h"
#include "./av1_rtcd.h"
using libaom_test::ACMRandom;
using libaom_test::input_base;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::Fwd_Txfm2d_Func;
using libaom_test::TYPE_TXFM;
namespace {
#if CONFIG_AOM_HIGHBITDEPTH
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tr1::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam;
class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
count_ = 500;
TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg =
av1_get_fwd_txfm_cfg(tx_type_, tx_size_);
const TXFM_2D_CFG *fwd_txfm_cfg = fwd_txfm_flip_cfg.cfg;
int amplify_bit = fwd_txfm_cfg->shift[0] + fwd_txfm_cfg->shift[1] +
fwd_txfm_cfg->shift[2];
ud_flip_ = fwd_txfm_flip_cfg.ud_flip;
lr_flip_ = fwd_txfm_flip_cfg.lr_flip;
amplify_factor_ =
amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_];
txfm1d_size_ = libaom_test::get_txfm1d_size(tx_size_);
txfm2d_size_ = txfm1d_size_ * txfm1d_size_;
get_txfm1d_type(tx_type_, &type0_, &type1_);
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(input_[0]) * txfm2d_size_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(16, sizeof(output_[0]) * txfm2d_size_));
ref_input_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_));
ref_output_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_));
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
double avg_abs_error = 0;
for (int ci = 0; ci < count_; ci++) {
for (int ni = 0; ni < txfm2d_size_; ++ni) {
input_[ni] = rnd.Rand16() % input_base;
ref_input_[ni] = static_cast<double>(input_[ni]);
output_[ni] = 0;
ref_output_[ni] = 0;
}
fwd_txfm_(input_, output_, txfm1d_size_, tx_type_, bd);
if (lr_flip_ && ud_flip_)
libaom_test::fliplrud(ref_input_, txfm1d_size_, txfm1d_size_);
else if (lr_flip_)
libaom_test::fliplr(ref_input_, txfm1d_size_, txfm1d_size_);
else if (ud_flip_)
libaom_test::flipud(ref_input_, txfm1d_size_, txfm1d_size_);
reference_hybrid_2d(ref_input_, ref_output_, txfm1d_size_, type0_,
type1_);
for (int ni = 0; ni < txfm2d_size_; ++ni) {
ref_output_[ni] = round(ref_output_[ni] * amplify_factor_);
EXPECT_GE(max_error_,
fabs(output_[ni] - ref_output_[ni]) / amplify_factor_);
}
avg_abs_error += compute_avg_abs_error<int32_t, double>(
output_, ref_output_, txfm2d_size_);
}
avg_abs_error /= amplify_factor_;
avg_abs_error /= count_;
// max_abs_avg_error comes from upper bound of avg_abs_error
// printf("type0: %d type1: %d txfm_size: %d accuracy_avg_abs_error:
// %f\n", type0_, type1_, txfm1d_size_, avg_abs_error);
EXPECT_GE(max_avg_error_, avg_abs_error);
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(ref_input_);
aom_free(ref_output_);
}
private:
double max_error_;
double max_avg_error_;
int count_;
double amplify_factor_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
int txfm1d_size_;
int txfm2d_size_;
Fwd_Txfm2d_Func fwd_txfm_;
TYPE_TXFM type0_;
TYPE_TXFM type1_;
int16_t *input_;
int32_t *output_;
double *ref_input_;
double *ref_output_;
int ud_flip_; // flip upside down
int lr_flip_; // flip left to right
};
TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); }
const AV1FwdTxfm2dParam av1_fwd_txfm2d_param_c[] = {
#if CONFIG_EXT_TX
AV1FwdTxfm2dParam(FLIPADST_DCT, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(DCT_FLIPADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(ADST_FLIPADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(FLIPADST_ADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(FLIPADST_DCT, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(DCT_FLIPADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(ADST_FLIPADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(FLIPADST_ADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(FLIPADST_DCT, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(DCT_FLIPADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(ADST_FLIPADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(FLIPADST_ADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(FLIPADST_DCT, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(DCT_FLIPADST, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(FLIPADST_FLIPADST, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(ADST_FLIPADST, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(FLIPADST_ADST, TX_32X32, 70, 7),
#endif
AV1FwdTxfm2dParam(DCT_DCT, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(ADST_DCT, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(DCT_ADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(ADST_ADST, TX_4X4, 2, 0.2),
AV1FwdTxfm2dParam(DCT_DCT, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(ADST_DCT, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(DCT_ADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(ADST_ADST, TX_8X8, 5, 0.6),
AV1FwdTxfm2dParam(DCT_DCT, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(ADST_DCT, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(DCT_ADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(ADST_ADST, TX_16X16, 11, 1.5),
AV1FwdTxfm2dParam(DCT_DCT, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(ADST_DCT, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(DCT_ADST, TX_32X32, 70, 7),
AV1FwdTxfm2dParam(ADST_ADST, TX_32X32, 70, 7)
};
INSTANTIATE_TEST_CASE_P(C, AV1FwdTxfm2d,
::testing::ValuesIn(av1_fwd_txfm2d_param_c));
#endif // CONFIG_AOM_HIGHBITDEPTH
} // namespace