| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/scan.h" |
| #include "aom/aom_codec.h" |
| #include "aom/aom_integer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/msvc.h" // for round() |
| |
| using libaom_test::ACMRandom; |
| |
| namespace { |
| |
| const int kNumCoeffs = 256; |
| const double C1 = 0.995184726672197; |
| const double C2 = 0.98078528040323; |
| const double C3 = 0.956940335732209; |
| const double C4 = 0.923879532511287; |
| const double C5 = 0.881921264348355; |
| const double C6 = 0.831469612302545; |
| const double C7 = 0.773010453362737; |
| const double C8 = 0.707106781186548; |
| const double C9 = 0.634393284163646; |
| const double C10 = 0.555570233019602; |
| const double C11 = 0.471396736825998; |
| const double C12 = 0.38268343236509; |
| const double C13 = 0.290284677254462; |
| const double C14 = 0.195090322016128; |
| const double C15 = 0.098017140329561; |
| |
| void butterfly_16x16_dct_1d(double input[16], double output[16]) { |
| double step[16]; |
| double intermediate[16]; |
| double temp1, temp2; |
| |
| // step 1 |
| step[0] = input[0] + input[15]; |
| step[1] = input[1] + input[14]; |
| step[2] = input[2] + input[13]; |
| step[3] = input[3] + input[12]; |
| step[4] = input[4] + input[11]; |
| step[5] = input[5] + input[10]; |
| step[6] = input[6] + input[9]; |
| step[7] = input[7] + input[8]; |
| step[8] = input[7] - input[8]; |
| step[9] = input[6] - input[9]; |
| step[10] = input[5] - input[10]; |
| step[11] = input[4] - input[11]; |
| step[12] = input[3] - input[12]; |
| step[13] = input[2] - input[13]; |
| step[14] = input[1] - input[14]; |
| step[15] = input[0] - input[15]; |
| |
| // step 2 |
| output[0] = step[0] + step[7]; |
| output[1] = step[1] + step[6]; |
| output[2] = step[2] + step[5]; |
| output[3] = step[3] + step[4]; |
| output[4] = step[3] - step[4]; |
| output[5] = step[2] - step[5]; |
| output[6] = step[1] - step[6]; |
| output[7] = step[0] - step[7]; |
| |
| temp1 = step[8] * C7; |
| temp2 = step[15] * C9; |
| output[8] = temp1 + temp2; |
| |
| temp1 = step[9] * C11; |
| temp2 = step[14] * C5; |
| output[9] = temp1 - temp2; |
| |
| temp1 = step[10] * C3; |
| temp2 = step[13] * C13; |
| output[10] = temp1 + temp2; |
| |
| temp1 = step[11] * C15; |
| temp2 = step[12] * C1; |
| output[11] = temp1 - temp2; |
| |
| temp1 = step[11] * C1; |
| temp2 = step[12] * C15; |
| output[12] = temp2 + temp1; |
| |
| temp1 = step[10] * C13; |
| temp2 = step[13] * C3; |
| output[13] = temp2 - temp1; |
| |
| temp1 = step[9] * C5; |
| temp2 = step[14] * C11; |
| output[14] = temp2 + temp1; |
| |
| temp1 = step[8] * C9; |
| temp2 = step[15] * C7; |
| output[15] = temp2 - temp1; |
| |
| // step 3 |
| step[0] = output[0] + output[3]; |
| step[1] = output[1] + output[2]; |
| step[2] = output[1] - output[2]; |
| step[3] = output[0] - output[3]; |
| |
| temp1 = output[4] * C14; |
| temp2 = output[7] * C2; |
| step[4] = temp1 + temp2; |
| |
| temp1 = output[5] * C10; |
| temp2 = output[6] * C6; |
| step[5] = temp1 + temp2; |
| |
| temp1 = output[5] * C6; |
| temp2 = output[6] * C10; |
| step[6] = temp2 - temp1; |
| |
| temp1 = output[4] * C2; |
| temp2 = output[7] * C14; |
| step[7] = temp2 - temp1; |
| |
| step[8] = output[8] + output[11]; |
| step[9] = output[9] + output[10]; |
| step[10] = output[9] - output[10]; |
| step[11] = output[8] - output[11]; |
| |
| step[12] = output[12] + output[15]; |
| step[13] = output[13] + output[14]; |
| step[14] = output[13] - output[14]; |
| step[15] = output[12] - output[15]; |
| |
| // step 4 |
| output[0] = (step[0] + step[1]); |
| output[8] = (step[0] - step[1]); |
| |
| temp1 = step[2] * C12; |
| temp2 = step[3] * C4; |
| temp1 = temp1 + temp2; |
| output[4] = 2 * (temp1 * C8); |
| |
| temp1 = step[2] * C4; |
| temp2 = step[3] * C12; |
| temp1 = temp2 - temp1; |
| output[12] = 2 * (temp1 * C8); |
| |
| output[2] = 2 * ((step[4] + step[5]) * C8); |
| output[14] = 2 * ((step[7] - step[6]) * C8); |
| |
| temp1 = step[4] - step[5]; |
| temp2 = step[6] + step[7]; |
| output[6] = (temp1 + temp2); |
| output[10] = (temp1 - temp2); |
| |
| intermediate[8] = step[8] + step[14]; |
| intermediate[9] = step[9] + step[15]; |
| |
| temp1 = intermediate[8] * C12; |
| temp2 = intermediate[9] * C4; |
| temp1 = temp1 - temp2; |
| output[3] = 2 * (temp1 * C8); |
| |
| temp1 = intermediate[8] * C4; |
| temp2 = intermediate[9] * C12; |
| temp1 = temp2 + temp1; |
| output[13] = 2 * (temp1 * C8); |
| |
| output[9] = 2 * ((step[10] + step[11]) * C8); |
| |
| intermediate[11] = step[10] - step[11]; |
| intermediate[12] = step[12] + step[13]; |
| intermediate[13] = step[12] - step[13]; |
| intermediate[14] = step[8] - step[14]; |
| intermediate[15] = step[9] - step[15]; |
| |
| output[15] = (intermediate[11] + intermediate[12]); |
| output[1] = -(intermediate[11] - intermediate[12]); |
| |
| output[7] = 2 * (intermediate[13] * C8); |
| |
| temp1 = intermediate[14] * C12; |
| temp2 = intermediate[15] * C4; |
| temp1 = temp1 - temp2; |
| output[11] = -2 * (temp1 * C8); |
| |
| temp1 = intermediate[14] * C4; |
| temp2 = intermediate[15] * C12; |
| temp1 = temp2 + temp1; |
| output[5] = 2 * (temp1 * C8); |
| } |
| |
| void reference_16x16_dct_2d(int16_t input[256], double output[256]) { |
| // First transform columns |
| for (int i = 0; i < 16; ++i) { |
| double temp_in[16], temp_out[16]; |
| for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i]; |
| butterfly_16x16_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 16; ++i) { |
| double temp_in[16], temp_out[16]; |
| for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16]; |
| butterfly_16x16_dct_1d(temp_in, temp_out); |
| // Scale by some magic number |
| for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2; |
| } |
| } |
| |
| typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); |
| typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); |
| typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, |
| int tx_type); |
| typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, |
| int tx_type); |
| |
| typedef std::tr1::tuple<FdctFunc, IdctFunc, int, aom_bit_depth_t> Dct16x16Param; |
| typedef std::tr1::tuple<FhtFunc, IhtFunc, int, aom_bit_depth_t> Ht16x16Param; |
| typedef std::tr1::tuple<IdctFunc, IdctFunc, int, aom_bit_depth_t> |
| Idct16x16Param; |
| |
| void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride, |
| int /*tx_type*/) { |
| aom_fdct16x16_c(in, out, stride); |
| } |
| |
| void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, |
| int /*tx_type*/) { |
| aom_idct16x16_256_add_c(in, dest, stride); |
| } |
| |
| void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { |
| av1_fht16x16_c(in, out, stride, tx_type); |
| } |
| |
| void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, |
| int tx_type) { |
| av1_iht16x16_256_add_c(in, dest, stride, tx_type); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void idct16x16_10(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_256_add_c(in, out, stride, 10); |
| } |
| |
| void idct16x16_12(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_256_add_c(in, out, stride, 12); |
| } |
| |
| void idct16x16_10_ref(const tran_low_t *in, uint8_t *out, int stride, |
| int /*tx_type*/) { |
| idct16x16_10(in, out, stride); |
| } |
| |
| void idct16x16_12_ref(const tran_low_t *in, uint8_t *out, int stride, |
| int /*tx_type*/) { |
| idct16x16_12(in, out, stride); |
| } |
| |
| void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { |
| av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 10); |
| } |
| |
| void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { |
| av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12); |
| } |
| |
| #if HAVE_SSE2 |
| void idct16x16_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_10_add_c(in, out, stride, 10); |
| } |
| |
| void idct16x16_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_10_add_c(in, out, stride, 12); |
| } |
| |
| void idct16x16_256_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_256_add_sse2(in, out, stride, 10); |
| } |
| |
| void idct16x16_256_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_256_add_sse2(in, out, stride, 12); |
| } |
| |
| void idct16x16_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_10_add_sse2(in, out, stride, 10); |
| } |
| |
| void idct16x16_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { |
| aom_highbd_idct16x16_10_add_sse2(in, out, stride, 12); |
| } |
| #endif // HAVE_SSE2 |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| class Trans16x16TestBase { |
| public: |
| virtual ~Trans16x16TestBase() {} |
| |
| protected: |
| virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; |
| |
| virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; |
| |
| void RunAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| uint32_t max_error = 0; |
| int64_t total_error = 0; |
| const int count_test_block = 10000; |
| for (int i = 0; i < count_test_block; ++i) { |
| DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); |
| #endif |
| |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (bit_depth_ == AOM_BITS_8) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| test_input_block[j] = src[j] - dst[j]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| src16[j] = rnd.Rand16() & mask_; |
| dst16[j] = rnd.Rand16() & mask_; |
| test_input_block[j] = src16[j] - dst16[j]; |
| #endif |
| } |
| } |
| |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(test_input_block, test_temp_block, pitch_)); |
| if (bit_depth_ == AOM_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| #endif |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int32_t diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| #else |
| const int32_t diff = dst[j] - src[j]; |
| #endif |
| const uint32_t error = diff * diff; |
| if (max_error < error) max_error = error; |
| total_error += error; |
| } |
| } |
| |
| EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) |
| << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; |
| |
| EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) |
| << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; |
| } |
| |
| void RunCoeffCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) |
| input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); |
| |
| fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); |
| ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); |
| |
| // The minimum quant value is 4. |
| for (int j = 0; j < kNumCoeffs; ++j) |
| EXPECT_EQ(output_block[j], output_ref_block[j]); |
| } |
| } |
| |
| void RunMemCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; |
| } |
| if (i == 0) { |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; |
| } else if (i == 1) { |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; |
| } |
| |
| fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(input_extreme_block, output_block, pitch_)); |
| |
| // The minimum quant value is 4. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| EXPECT_EQ(output_block[j], output_ref_block[j]); |
| EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) |
| << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; |
| } |
| } |
| } |
| |
| void RunQuantCheck(int dc_thred, int ac_thred) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 100000; |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); |
| |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); |
| #endif |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; |
| } |
| if (i == 0) |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; |
| if (i == 1) |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; |
| |
| fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); |
| |
| // clear reconstructed pixel buffers |
| memset(dst, 0, kNumCoeffs * sizeof(uint8_t)); |
| memset(ref, 0, kNumCoeffs * sizeof(uint8_t)); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| memset(dst16, 0, kNumCoeffs * sizeof(uint16_t)); |
| memset(ref16, 0, kNumCoeffs * sizeof(uint16_t)); |
| #endif |
| |
| // quantization with maximum allowed step sizes |
| output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred; |
| for (int j = 1; j < kNumCoeffs; ++j) |
| output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred; |
| if (bit_depth_ == AOM_BITS_8) { |
| inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_); |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_)); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_, |
| tx_type_); |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(output_ref_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| #endif |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]); |
| #endif |
| } |
| } |
| } |
| |
| void RunInvAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| double out_r[kNumCoeffs]; |
| |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (bit_depth_ == AOM_BITS_8) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| in[j] = src[j] - dst[j]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| src16[j] = rnd.Rand16() & mask_; |
| dst16[j] = rnd.Rand16() & mask_; |
| in[j] = src16[j] - dst16[j]; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } |
| |
| reference_16x16_dct_2d(in, out_r); |
| for (int j = 0; j < kNumCoeffs; ++j) |
| coeff[j] = static_cast<tran_low_t>(round(out_r[j])); |
| |
| if (bit_depth_ == AOM_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16)); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), 16)); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| #else |
| const int diff = dst[j] - src[j]; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| const uint32_t error = diff * diff; |
| EXPECT_GE(1u, error) << "Error: 16x16 IDCT has error " << error |
| << " at index " << j; |
| } |
| } |
| } |
| |
| void CompareInvReference(IdctFunc ref_txfm, int thresh) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 10000; |
| const int eob = 10; |
| const int16_t *scan = av1_default_scan_orders[TX_16X16].scan; |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (j < eob) { |
| // Random values less than the threshold, either positive or negative |
| coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); |
| } else { |
| coeff[scan[j]] = 0; |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| dst[j] = 0; |
| ref[j] = 0; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } else { |
| dst16[j] = 0; |
| ref16[j] = 0; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| ref_txfm(coeff, ref, pitch_); |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); |
| } else { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_); |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; |
| #else |
| const int diff = dst[j] - ref[j]; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| const uint32_t error = diff * diff; |
| EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error " |
| << error << " at index " << j; |
| } |
| } |
| } |
| |
| int pitch_; |
| int tx_type_; |
| aom_bit_depth_t bit_depth_; |
| int mask_; |
| FhtFunc fwd_txfm_ref; |
| IhtFunc inv_txfm_ref; |
| }; |
| |
| class Trans16x16DCT : public Trans16x16TestBase, |
| public ::testing::TestWithParam<Dct16x16Param> { |
| public: |
| virtual ~Trans16x16DCT() {} |
| |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| tx_type_ = GET_PARAM(2); |
| bit_depth_ = GET_PARAM(3); |
| pitch_ = 16; |
| fwd_txfm_ref = fdct16x16_ref; |
| inv_txfm_ref = idct16x16_ref; |
| mask_ = (1 << bit_depth_) - 1; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| switch (bit_depth_) { |
| case AOM_BITS_10: inv_txfm_ref = idct16x16_10_ref; break; |
| case AOM_BITS_12: inv_txfm_ref = idct16x16_12_ref; break; |
| default: inv_txfm_ref = idct16x16_ref; break; |
| } |
| #else |
| inv_txfm_ref = idct16x16_ref; |
| #endif |
| } |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { |
| fwd_txfm_(in, out, stride); |
| } |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride); |
| } |
| |
| FdctFunc fwd_txfm_; |
| IdctFunc inv_txfm_; |
| }; |
| |
| TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); } |
| |
| TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); } |
| |
| TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); } |
| |
| TEST_P(Trans16x16DCT, QuantCheck) { |
| // Use maximally allowed quantization step sizes for DC and AC |
| // coefficients respectively. |
| RunQuantCheck(1336, 1828); |
| } |
| |
| TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } |
| |
| class Trans16x16HT : public Trans16x16TestBase, |
| public ::testing::TestWithParam<Ht16x16Param> { |
| public: |
| virtual ~Trans16x16HT() {} |
| |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| tx_type_ = GET_PARAM(2); |
| bit_depth_ = GET_PARAM(3); |
| pitch_ = 16; |
| fwd_txfm_ref = fht16x16_ref; |
| inv_txfm_ref = iht16x16_ref; |
| mask_ = (1 << bit_depth_) - 1; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| switch (bit_depth_) { |
| case AOM_BITS_10: inv_txfm_ref = iht16x16_10; break; |
| case AOM_BITS_12: inv_txfm_ref = iht16x16_12; break; |
| default: inv_txfm_ref = iht16x16_ref; break; |
| } |
| #else |
| inv_txfm_ref = iht16x16_ref; |
| #endif |
| } |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { |
| fwd_txfm_(in, out, stride, tx_type_); |
| } |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride, tx_type_); |
| } |
| |
| FhtFunc fwd_txfm_; |
| IhtFunc inv_txfm_; |
| }; |
| |
| TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); } |
| |
| TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); } |
| |
| TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); } |
| |
| TEST_P(Trans16x16HT, QuantCheck) { |
| // The encoder skips any non-DC intra prediction modes, |
| // when the quantization step size goes beyond 988. |
| RunQuantCheck(429, 729); |
| } |
| |
| class InvTrans16x16DCT : public Trans16x16TestBase, |
| public ::testing::TestWithParam<Idct16x16Param> { |
| public: |
| virtual ~InvTrans16x16DCT() {} |
| |
| virtual void SetUp() { |
| ref_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| thresh_ = GET_PARAM(2); |
| bit_depth_ = GET_PARAM(3); |
| pitch_ = 16; |
| mask_ = (1 << bit_depth_) - 1; |
| } |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {} |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride); |
| } |
| |
| IdctFunc ref_txfm_; |
| IdctFunc inv_txfm_; |
| int thresh_; |
| }; |
| |
| TEST_P(InvTrans16x16DCT, CompareReference) { |
| CompareInvReference(ref_txfm_, thresh_); |
| } |
| |
| class PartialTrans16x16Test : public ::testing::TestWithParam< |
| std::tr1::tuple<FdctFunc, aom_bit_depth_t> > { |
| public: |
| virtual ~PartialTrans16x16Test() {} |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| bit_depth_ = GET_PARAM(1); |
| } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| aom_bit_depth_t bit_depth_; |
| FdctFunc fwd_txfm_; |
| }; |
| |
| TEST_P(PartialTrans16x16Test, Extremes) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int16_t maxval = |
| static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); |
| #else |
| const int16_t maxval = 255; |
| #endif |
| const int minval = -maxval; |
| DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); |
| |
| for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval; |
| output[0] = 0; |
| ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); |
| EXPECT_EQ((maxval * kNumCoeffs) >> 1, output[0]); |
| |
| for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval; |
| output[0] = 0; |
| ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); |
| EXPECT_EQ((minval * kNumCoeffs) >> 1, output[0]); |
| } |
| |
| TEST_P(PartialTrans16x16Test, Random) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int16_t maxval = |
| static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); |
| #else |
| const int16_t maxval = 255; |
| #endif |
| DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| |
| int sum = 0; |
| for (int i = 0; i < kNumCoeffs; ++i) { |
| const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1); |
| input[i] = val; |
| sum += val; |
| } |
| output[0] = 0; |
| ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); |
| EXPECT_EQ(sum >> 1, output[0]); |
| } |
| |
| using std::tr1::make_tuple; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| INSTANTIATE_TEST_CASE_P( |
| C, Trans16x16DCT, |
| ::testing::Values( |
| make_tuple(&aom_highbd_fdct16x16_c, &idct16x16_10, 0, AOM_BITS_10), |
| make_tuple(&aom_highbd_fdct16x16_c, &idct16x16_12, 0, AOM_BITS_12), |
| make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c, 0, AOM_BITS_8))); |
| #else |
| INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT, |
| ::testing::Values(make_tuple(&aom_fdct16x16_c, |
| &aom_idct16x16_256_add_c, |
| 0, AOM_BITS_8))); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| INSTANTIATE_TEST_CASE_P( |
| C, Trans16x16HT, |
| ::testing::Values( |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 0, AOM_BITS_10), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 1, AOM_BITS_10), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 2, AOM_BITS_10), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 3, AOM_BITS_10), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 0, AOM_BITS_12), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 1, AOM_BITS_12), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 2, AOM_BITS_12), |
| make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 3, AOM_BITS_12), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8))); |
| INSTANTIATE_TEST_CASE_P( |
| C, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_8), |
| make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_10), |
| make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_12))); |
| #else |
| INSTANTIATE_TEST_CASE_P( |
| C, Trans16x16HT, |
| ::testing::Values( |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8))); |
| INSTANTIATE_TEST_CASE_P(C, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_fdct16x16_1_c, |
| AOM_BITS_8))); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| #if HAVE_NEON_ASM && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_CASE_P( |
| NEON, Trans16x16DCT, |
| ::testing::Values(make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_neon, |
| 0, AOM_BITS_8))); |
| #endif |
| |
| #if HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, Trans16x16DCT, |
| ::testing::Values(make_tuple(&aom_fdct16x16_sse2, |
| &aom_idct16x16_256_add_sse2, 0, AOM_BITS_8))); |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, Trans16x16HT, |
| ::testing::Values(make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, |
| 0, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, |
| 1, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, |
| 2, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, |
| 3, AOM_BITS_8))); |
| INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_fdct16x16_1_sse2, |
| AOM_BITS_8))); |
| #endif // HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_fdct16x16_1_avx2, |
| AOM_BITS_8))); |
| #endif // HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, Trans16x16DCT, |
| ::testing::Values( |
| make_tuple(&aom_highbd_fdct16x16_sse2, &idct16x16_10, 0, AOM_BITS_10), |
| make_tuple(&aom_highbd_fdct16x16_c, &idct16x16_256_add_10_sse2, 0, |
| AOM_BITS_10), |
| make_tuple(&aom_highbd_fdct16x16_sse2, &idct16x16_12, 0, AOM_BITS_12), |
| make_tuple(&aom_highbd_fdct16x16_c, &idct16x16_256_add_12_sse2, 0, |
| AOM_BITS_12), |
| make_tuple(&aom_fdct16x16_sse2, &aom_idct16x16_256_add_c, 0, |
| AOM_BITS_8))); |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, Trans16x16HT, |
| ::testing::Values( |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 3, |
| AOM_BITS_8))); |
| // Optimizations take effect at a threshold of 3155, so we use a value close to |
| // that to test both branches. |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, InvTrans16x16DCT, |
| ::testing::Values(make_tuple(&idct16x16_10_add_10_c, |
| &idct16x16_10_add_10_sse2, 3167, AOM_BITS_10), |
| make_tuple(&idct16x16_10, &idct16x16_256_add_10_sse2, |
| 3167, AOM_BITS_10), |
| make_tuple(&idct16x16_10_add_12_c, |
| &idct16x16_10_add_12_sse2, 3167, AOM_BITS_12), |
| make_tuple(&idct16x16_12, &idct16x16_256_add_12_sse2, |
| 3167, AOM_BITS_12))); |
| // TODO(luoyi): |
| // For this test case, we should test function: aom_highbd_fdct16x16_1_sse2. |
| // However this function is not available yet. if we mistakely test |
| // aom_fdct16x16_1_sse2, it could only pass AOM_BITS_8/AOM_BITS_10 but not |
| // AOM_BITS_12. |
| INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_fdct16x16_1_sse2, |
| AOM_BITS_8))); |
| #endif // HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT, |
| ::testing::Values(make_tuple(&aom_fdct16x16_msa, |
| &aom_idct16x16_256_add_msa, |
| 0, AOM_BITS_8))); |
| #if !CONFIG_EXT_TX |
| // TODO(yaowu): re-enable this after msa versions are updated to match C. |
| INSTANTIATE_TEST_CASE_P( |
| DISABLED_MSA, Trans16x16HT, |
| ::testing::Values( |
| make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 0, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 1, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 2, AOM_BITS_8), |
| make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 3, |
| AOM_BITS_8))); |
| #endif // !CONFIG_EXT_TX |
| INSTANTIATE_TEST_CASE_P(MSA, PartialTrans16x16Test, |
| ::testing::Values(make_tuple(&aom_fdct16x16_1_msa, |
| AOM_BITS_8))); |
| #endif // HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| } // namespace |