| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom_dsp/fwd_txfm.h" |
| #include <assert.h> |
| #include "./aom_dsp_rtcd.h" |
| |
| void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { |
| // The 2D transform is done with two passes which are actually pretty |
| // similar. In the first one, we transform the columns and transpose |
| // the results. In the second one, we transform the rows. To achieve that, |
| // as the first pass results are transposed, we transpose the columns (that |
| // is the transposed rows) and transpose the results (so that it goes back |
| // in normal/row positions). |
| int pass; |
| // We need an intermediate buffer between passes. |
| tran_low_t intermediate[4 * 4]; |
| const tran_low_t *in_low = NULL; |
| tran_low_t *out = intermediate; |
| // Do the two transform/transpose passes |
| for (pass = 0; pass < 2; ++pass) { |
| tran_high_t in_high[4]; // canbe16 |
| tran_high_t step[4]; // canbe16 |
| tran_high_t temp1, temp2; // needs32 |
| int i; |
| for (i = 0; i < 4; ++i) { |
| // Load inputs. |
| if (pass == 0) { |
| in_high[0] = input[0 * stride] * 16; |
| in_high[1] = input[1 * stride] * 16; |
| in_high[2] = input[2 * stride] * 16; |
| in_high[3] = input[3 * stride] * 16; |
| if (i == 0 && in_high[0]) { |
| ++in_high[0]; |
| } |
| } else { |
| assert(in_low != NULL); |
| in_high[0] = in_low[0 * 4]; |
| in_high[1] = in_low[1 * 4]; |
| in_high[2] = in_low[2 * 4]; |
| in_high[3] = in_low[3 * 4]; |
| ++in_low; |
| } |
| // Transform. |
| step[0] = in_high[0] + in_high[3]; |
| step[1] = in_high[1] + in_high[2]; |
| step[2] = in_high[1] - in_high[2]; |
| step[3] = in_high[0] - in_high[3]; |
| temp1 = (step[0] + step[1]) * cospi_16_64; |
| temp2 = (step[0] - step[1]) * cospi_16_64; |
| out[0] = (tran_low_t)fdct_round_shift(temp1); |
| out[2] = (tran_low_t)fdct_round_shift(temp2); |
| temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; |
| out[1] = (tran_low_t)fdct_round_shift(temp1); |
| out[3] = (tran_low_t)fdct_round_shift(temp2); |
| // Do next column (which is a transposed row in second/horizontal pass) |
| ++input; |
| out += 4; |
| } |
| // Setup in/out for next pass. |
| in_low = intermediate; |
| out = output; |
| } |
| |
| { |
| int i, j; |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; |
| } |
| } |
| } |
| |
| void aom_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { |
| int r, c; |
| tran_low_t sum = 0; |
| for (r = 0; r < 4; ++r) |
| for (c = 0; c < 4; ++c) sum += input[r * stride + c]; |
| |
| output[0] = sum << 1; |
| } |
| |
| void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { |
| int i, j; |
| tran_low_t intermediate[64]; |
| int pass; |
| tran_low_t *output = intermediate; |
| const tran_low_t *in = NULL; |
| |
| // Transform columns |
| for (pass = 0; pass < 2; ++pass) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 |
| tran_high_t t0, t1, t2, t3; // needs32 |
| tran_high_t x0, x1, x2, x3; // canbe16 |
| |
| for (i = 0; i < 8; i++) { |
| // stage 1 |
| if (pass == 0) { |
| s0 = (input[0 * stride] + input[7 * stride]) * 4; |
| s1 = (input[1 * stride] + input[6 * stride]) * 4; |
| s2 = (input[2 * stride] + input[5 * stride]) * 4; |
| s3 = (input[3 * stride] + input[4 * stride]) * 4; |
| s4 = (input[3 * stride] - input[4 * stride]) * 4; |
| s5 = (input[2 * stride] - input[5 * stride]) * 4; |
| s6 = (input[1 * stride] - input[6 * stride]) * 4; |
| s7 = (input[0 * stride] - input[7 * stride]) * 4; |
| ++input; |
| } else { |
| s0 = in[0 * 8] + in[7 * 8]; |
| s1 = in[1 * 8] + in[6 * 8]; |
| s2 = in[2 * 8] + in[5 * 8]; |
| s3 = in[3 * 8] + in[4 * 8]; |
| s4 = in[3 * 8] - in[4 * 8]; |
| s5 = in[2 * 8] - in[5 * 8]; |
| s6 = in[1 * 8] - in[6 * 8]; |
| s7 = in[0 * 8] - in[7 * 8]; |
| ++in; |
| } |
| |
| // fdct4(step, step); |
| x0 = s0 + s3; |
| x1 = s1 + s2; |
| x2 = s1 - s2; |
| x3 = s0 - s3; |
| t0 = (x0 + x1) * cospi_16_64; |
| t1 = (x0 - x1) * cospi_16_64; |
| t2 = x2 * cospi_24_64 + x3 * cospi_8_64; |
| t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; |
| output[0] = (tran_low_t)fdct_round_shift(t0); |
| output[2] = (tran_low_t)fdct_round_shift(t2); |
| output[4] = (tran_low_t)fdct_round_shift(t1); |
| output[6] = (tran_low_t)fdct_round_shift(t3); |
| |
| // Stage 2 |
| t0 = (s6 - s5) * cospi_16_64; |
| t1 = (s6 + s5) * cospi_16_64; |
| t2 = fdct_round_shift(t0); |
| t3 = fdct_round_shift(t1); |
| |
| // Stage 3 |
| x0 = s4 + t2; |
| x1 = s4 - t2; |
| x2 = s7 - t3; |
| x3 = s7 + t3; |
| |
| // Stage 4 |
| t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
| t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
| t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
| t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
| output[1] = (tran_low_t)fdct_round_shift(t0); |
| output[3] = (tran_low_t)fdct_round_shift(t2); |
| output[5] = (tran_low_t)fdct_round_shift(t1); |
| output[7] = (tran_low_t)fdct_round_shift(t3); |
| output += 8; |
| } |
| in = intermediate; |
| output = final_output; |
| } |
| |
| // Rows |
| for (i = 0; i < 8; ++i) { |
| for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; |
| } |
| } |
| |
| void aom_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) { |
| int r, c; |
| tran_low_t sum = 0; |
| for (r = 0; r < 8; ++r) |
| for (c = 0; c < 8; ++c) sum += input[r * stride + c]; |
| |
| output[0] = sum; |
| } |
| |
| void aom_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { |
| // The 2D transform is done with two passes which are actually pretty |
| // similar. In the first one, we transform the columns and transpose |
| // the results. In the second one, we transform the rows. To achieve that, |
| // as the first pass results are transposed, we transpose the columns (that |
| // is the transposed rows) and transpose the results (so that it goes back |
| // in normal/row positions). |
| int pass; |
| // We need an intermediate buffer between passes. |
| tran_low_t intermediate[256]; |
| const tran_low_t *in_low = NULL; |
| tran_low_t *out = intermediate; |
| // Do the two transform/transpose passes |
| for (pass = 0; pass < 2; ++pass) { |
| tran_high_t step1[8]; // canbe16 |
| tran_high_t step2[8]; // canbe16 |
| tran_high_t step3[8]; // canbe16 |
| tran_high_t in_high[8]; // canbe16 |
| tran_high_t temp1, temp2; // needs32 |
| int i; |
| for (i = 0; i < 16; i++) { |
| if (0 == pass) { |
| // Calculate input for the first 8 results. |
| in_high[0] = (input[0 * stride] + input[15 * stride]) * 4; |
| in_high[1] = (input[1 * stride] + input[14 * stride]) * 4; |
| in_high[2] = (input[2 * stride] + input[13 * stride]) * 4; |
| in_high[3] = (input[3 * stride] + input[12 * stride]) * 4; |
| in_high[4] = (input[4 * stride] + input[11 * stride]) * 4; |
| in_high[5] = (input[5 * stride] + input[10 * stride]) * 4; |
| in_high[6] = (input[6 * stride] + input[9 * stride]) * 4; |
| in_high[7] = (input[7 * stride] + input[8 * stride]) * 4; |
| // Calculate input for the next 8 results. |
| step1[0] = (input[7 * stride] - input[8 * stride]) * 4; |
| step1[1] = (input[6 * stride] - input[9 * stride]) * 4; |
| step1[2] = (input[5 * stride] - input[10 * stride]) * 4; |
| step1[3] = (input[4 * stride] - input[11 * stride]) * 4; |
| step1[4] = (input[3 * stride] - input[12 * stride]) * 4; |
| step1[5] = (input[2 * stride] - input[13 * stride]) * 4; |
| step1[6] = (input[1 * stride] - input[14 * stride]) * 4; |
| step1[7] = (input[0 * stride] - input[15 * stride]) * 4; |
| } else { |
| // Calculate input for the first 8 results. |
| assert(in_low != NULL); |
| in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2); |
| in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2); |
| in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2); |
| in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2); |
| in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2); |
| in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2); |
| in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2); |
| in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2); |
| // Calculate input for the next 8 results. |
| step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2); |
| step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2); |
| step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2); |
| step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2); |
| step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2); |
| step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2); |
| step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2); |
| step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2); |
| in_low++; |
| } |
| // Work on the first eight values; fdct8(input, even_results); |
| { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 |
| tran_high_t t0, t1, t2, t3; // needs32 |
| tran_high_t x0, x1, x2, x3; // canbe16 |
| |
| // stage 1 |
| s0 = in_high[0] + in_high[7]; |
| s1 = in_high[1] + in_high[6]; |
| s2 = in_high[2] + in_high[5]; |
| s3 = in_high[3] + in_high[4]; |
| s4 = in_high[3] - in_high[4]; |
| s5 = in_high[2] - in_high[5]; |
| s6 = in_high[1] - in_high[6]; |
| s7 = in_high[0] - in_high[7]; |
| |
| // fdct4(step, step); |
| x0 = s0 + s3; |
| x1 = s1 + s2; |
| x2 = s1 - s2; |
| x3 = s0 - s3; |
| t0 = (x0 + x1) * cospi_16_64; |
| t1 = (x0 - x1) * cospi_16_64; |
| t2 = x3 * cospi_8_64 + x2 * cospi_24_64; |
| t3 = x3 * cospi_24_64 - x2 * cospi_8_64; |
| out[0] = (tran_low_t)fdct_round_shift(t0); |
| out[4] = (tran_low_t)fdct_round_shift(t2); |
| out[8] = (tran_low_t)fdct_round_shift(t1); |
| out[12] = (tran_low_t)fdct_round_shift(t3); |
| |
| // Stage 2 |
| t0 = (s6 - s5) * cospi_16_64; |
| t1 = (s6 + s5) * cospi_16_64; |
| t2 = fdct_round_shift(t0); |
| t3 = fdct_round_shift(t1); |
| |
| // Stage 3 |
| x0 = s4 + t2; |
| x1 = s4 - t2; |
| x2 = s7 - t3; |
| x3 = s7 + t3; |
| |
| // Stage 4 |
| t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
| t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
| t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
| t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
| out[2] = (tran_low_t)fdct_round_shift(t0); |
| out[6] = (tran_low_t)fdct_round_shift(t2); |
| out[10] = (tran_low_t)fdct_round_shift(t1); |
| out[14] = (tran_low_t)fdct_round_shift(t3); |
| } |
| // Work on the next eight values; step1 -> odd_results |
| { |
| // step 2 |
| temp1 = (step1[5] - step1[2]) * cospi_16_64; |
| temp2 = (step1[4] - step1[3]) * cospi_16_64; |
| step2[2] = fdct_round_shift(temp1); |
| step2[3] = fdct_round_shift(temp2); |
| temp1 = (step1[4] + step1[3]) * cospi_16_64; |
| temp2 = (step1[5] + step1[2]) * cospi_16_64; |
| step2[4] = fdct_round_shift(temp1); |
| step2[5] = fdct_round_shift(temp2); |
| // step 3 |
| step3[0] = step1[0] + step2[3]; |
| step3[1] = step1[1] + step2[2]; |
| step3[2] = step1[1] - step2[2]; |
| step3[3] = step1[0] - step2[3]; |
| step3[4] = step1[7] - step2[4]; |
| step3[5] = step1[6] - step2[5]; |
| step3[6] = step1[6] + step2[5]; |
| step3[7] = step1[7] + step2[4]; |
| // step 4 |
| temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; |
| temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; |
| step2[1] = fdct_round_shift(temp1); |
| step2[2] = fdct_round_shift(temp2); |
| temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; |
| temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; |
| step2[5] = fdct_round_shift(temp1); |
| step2[6] = fdct_round_shift(temp2); |
| // step 5 |
| step1[0] = step3[0] + step2[1]; |
| step1[1] = step3[0] - step2[1]; |
| step1[2] = step3[3] + step2[2]; |
| step1[3] = step3[3] - step2[2]; |
| step1[4] = step3[4] - step2[5]; |
| step1[5] = step3[4] + step2[5]; |
| step1[6] = step3[7] - step2[6]; |
| step1[7] = step3[7] + step2[6]; |
| // step 6 |
| temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; |
| temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; |
| out[1] = (tran_low_t)fdct_round_shift(temp1); |
| out[9] = (tran_low_t)fdct_round_shift(temp2); |
| temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; |
| temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; |
| out[5] = (tran_low_t)fdct_round_shift(temp1); |
| out[13] = (tran_low_t)fdct_round_shift(temp2); |
| temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; |
| temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; |
| out[3] = (tran_low_t)fdct_round_shift(temp1); |
| out[11] = (tran_low_t)fdct_round_shift(temp2); |
| temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; |
| temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; |
| out[7] = (tran_low_t)fdct_round_shift(temp1); |
| out[15] = (tran_low_t)fdct_round_shift(temp2); |
| } |
| // Do next column (which is a transposed row in second/horizontal pass) |
| input++; |
| out += 16; |
| } |
| // Setup in/out for next pass. |
| in_low = intermediate; |
| out = output; |
| } |
| } |
| |
| void aom_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) { |
| int r, c; |
| int sum = 0; |
| for (r = 0; r < 16; ++r) |
| for (c = 0; c < 16; ++c) sum += input[r * stride + c]; |
| |
| output[0] = (tran_low_t)(sum >> 1); |
| } |
| |
| static INLINE tran_high_t dct_32_round(tran_high_t input) { |
| tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); |
| // TODO(debargha, peter.derivaz): Find new bounds for this assert, |
| // and make the bounds consts. |
| // assert(-131072 <= rv && rv <= 131071); |
| return rv; |
| } |
| |
| static INLINE tran_high_t half_round_shift(tran_high_t input) { |
| tran_high_t rv = (input + 1 + (input < 0)) >> 2; |
| return rv; |
| } |
| |
| void aom_fdct32(const tran_high_t *input, tran_high_t *output, int round) { |
| tran_high_t step[32]; |
| // Stage 1 |
| step[0] = input[0] + input[(32 - 1)]; |
| step[1] = input[1] + input[(32 - 2)]; |
| step[2] = input[2] + input[(32 - 3)]; |
| step[3] = input[3] + input[(32 - 4)]; |
| step[4] = input[4] + input[(32 - 5)]; |
| step[5] = input[5] + input[(32 - 6)]; |
| step[6] = input[6] + input[(32 - 7)]; |
| step[7] = input[7] + input[(32 - 8)]; |
| step[8] = input[8] + input[(32 - 9)]; |
| step[9] = input[9] + input[(32 - 10)]; |
| step[10] = input[10] + input[(32 - 11)]; |
| step[11] = input[11] + input[(32 - 12)]; |
| step[12] = input[12] + input[(32 - 13)]; |
| step[13] = input[13] + input[(32 - 14)]; |
| step[14] = input[14] + input[(32 - 15)]; |
| step[15] = input[15] + input[(32 - 16)]; |
| step[16] = -input[16] + input[(32 - 17)]; |
| step[17] = -input[17] + input[(32 - 18)]; |
| step[18] = -input[18] + input[(32 - 19)]; |
| step[19] = -input[19] + input[(32 - 20)]; |
| step[20] = -input[20] + input[(32 - 21)]; |
| step[21] = -input[21] + input[(32 - 22)]; |
| step[22] = -input[22] + input[(32 - 23)]; |
| step[23] = -input[23] + input[(32 - 24)]; |
| step[24] = -input[24] + input[(32 - 25)]; |
| step[25] = -input[25] + input[(32 - 26)]; |
| step[26] = -input[26] + input[(32 - 27)]; |
| step[27] = -input[27] + input[(32 - 28)]; |
| step[28] = -input[28] + input[(32 - 29)]; |
| step[29] = -input[29] + input[(32 - 30)]; |
| step[30] = -input[30] + input[(32 - 31)]; |
| step[31] = -input[31] + input[(32 - 32)]; |
| |
| // Stage 2 |
| output[0] = step[0] + step[16 - 1]; |
| output[1] = step[1] + step[16 - 2]; |
| output[2] = step[2] + step[16 - 3]; |
| output[3] = step[3] + step[16 - 4]; |
| output[4] = step[4] + step[16 - 5]; |
| output[5] = step[5] + step[16 - 6]; |
| output[6] = step[6] + step[16 - 7]; |
| output[7] = step[7] + step[16 - 8]; |
| output[8] = -step[8] + step[16 - 9]; |
| output[9] = -step[9] + step[16 - 10]; |
| output[10] = -step[10] + step[16 - 11]; |
| output[11] = -step[11] + step[16 - 12]; |
| output[12] = -step[12] + step[16 - 13]; |
| output[13] = -step[13] + step[16 - 14]; |
| output[14] = -step[14] + step[16 - 15]; |
| output[15] = -step[15] + step[16 - 16]; |
| |
| output[16] = step[16]; |
| output[17] = step[17]; |
| output[18] = step[18]; |
| output[19] = step[19]; |
| |
| output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); |
| output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); |
| output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); |
| output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); |
| |
| output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); |
| output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); |
| output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); |
| output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); |
| |
| output[28] = step[28]; |
| output[29] = step[29]; |
| output[30] = step[30]; |
| output[31] = step[31]; |
| |
| // dump the magnitude by 4, hence the intermediate values are within |
| // the range of 16 bits. |
| if (round) { |
| output[0] = half_round_shift(output[0]); |
| output[1] = half_round_shift(output[1]); |
| output[2] = half_round_shift(output[2]); |
| output[3] = half_round_shift(output[3]); |
| output[4] = half_round_shift(output[4]); |
| output[5] = half_round_shift(output[5]); |
| output[6] = half_round_shift(output[6]); |
| output[7] = half_round_shift(output[7]); |
| output[8] = half_round_shift(output[8]); |
| output[9] = half_round_shift(output[9]); |
| output[10] = half_round_shift(output[10]); |
| output[11] = half_round_shift(output[11]); |
| output[12] = half_round_shift(output[12]); |
| output[13] = half_round_shift(output[13]); |
| output[14] = half_round_shift(output[14]); |
| output[15] = half_round_shift(output[15]); |
| |
| output[16] = half_round_shift(output[16]); |
| output[17] = half_round_shift(output[17]); |
| output[18] = half_round_shift(output[18]); |
| output[19] = half_round_shift(output[19]); |
| output[20] = half_round_shift(output[20]); |
| output[21] = half_round_shift(output[21]); |
| output[22] = half_round_shift(output[22]); |
| output[23] = half_round_shift(output[23]); |
| output[24] = half_round_shift(output[24]); |
| output[25] = half_round_shift(output[25]); |
| output[26] = half_round_shift(output[26]); |
| output[27] = half_round_shift(output[27]); |
| output[28] = half_round_shift(output[28]); |
| output[29] = half_round_shift(output[29]); |
| output[30] = half_round_shift(output[30]); |
| output[31] = half_round_shift(output[31]); |
| } |
| |
| // Stage 3 |
| step[0] = output[0] + output[(8 - 1)]; |
| step[1] = output[1] + output[(8 - 2)]; |
| step[2] = output[2] + output[(8 - 3)]; |
| step[3] = output[3] + output[(8 - 4)]; |
| step[4] = -output[4] + output[(8 - 5)]; |
| step[5] = -output[5] + output[(8 - 6)]; |
| step[6] = -output[6] + output[(8 - 7)]; |
| step[7] = -output[7] + output[(8 - 8)]; |
| step[8] = output[8]; |
| step[9] = output[9]; |
| step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); |
| step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); |
| step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); |
| step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); |
| step[14] = output[14]; |
| step[15] = output[15]; |
| |
| step[16] = output[16] + output[23]; |
| step[17] = output[17] + output[22]; |
| step[18] = output[18] + output[21]; |
| step[19] = output[19] + output[20]; |
| step[20] = -output[20] + output[19]; |
| step[21] = -output[21] + output[18]; |
| step[22] = -output[22] + output[17]; |
| step[23] = -output[23] + output[16]; |
| step[24] = -output[24] + output[31]; |
| step[25] = -output[25] + output[30]; |
| step[26] = -output[26] + output[29]; |
| step[27] = -output[27] + output[28]; |
| step[28] = output[28] + output[27]; |
| step[29] = output[29] + output[26]; |
| step[30] = output[30] + output[25]; |
| step[31] = output[31] + output[24]; |
| |
| // Stage 4 |
| output[0] = step[0] + step[3]; |
| output[1] = step[1] + step[2]; |
| output[2] = -step[2] + step[1]; |
| output[3] = -step[3] + step[0]; |
| output[4] = step[4]; |
| output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); |
| output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); |
| output[7] = step[7]; |
| output[8] = step[8] + step[11]; |
| output[9] = step[9] + step[10]; |
| output[10] = -step[10] + step[9]; |
| output[11] = -step[11] + step[8]; |
| output[12] = -step[12] + step[15]; |
| output[13] = -step[13] + step[14]; |
| output[14] = step[14] + step[13]; |
| output[15] = step[15] + step[12]; |
| |
| output[16] = step[16]; |
| output[17] = step[17]; |
| output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); |
| output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); |
| output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); |
| output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); |
| output[22] = step[22]; |
| output[23] = step[23]; |
| output[24] = step[24]; |
| output[25] = step[25]; |
| output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); |
| output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); |
| output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); |
| output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); |
| output[30] = step[30]; |
| output[31] = step[31]; |
| |
| // Stage 5 |
| step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); |
| step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); |
| step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); |
| step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); |
| step[4] = output[4] + output[5]; |
| step[5] = -output[5] + output[4]; |
| step[6] = -output[6] + output[7]; |
| step[7] = output[7] + output[6]; |
| step[8] = output[8]; |
| step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); |
| step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); |
| step[11] = output[11]; |
| step[12] = output[12]; |
| step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); |
| step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); |
| step[15] = output[15]; |
| |
| step[16] = output[16] + output[19]; |
| step[17] = output[17] + output[18]; |
| step[18] = -output[18] + output[17]; |
| step[19] = -output[19] + output[16]; |
| step[20] = -output[20] + output[23]; |
| step[21] = -output[21] + output[22]; |
| step[22] = output[22] + output[21]; |
| step[23] = output[23] + output[20]; |
| step[24] = output[24] + output[27]; |
| step[25] = output[25] + output[26]; |
| step[26] = -output[26] + output[25]; |
| step[27] = -output[27] + output[24]; |
| step[28] = -output[28] + output[31]; |
| step[29] = -output[29] + output[30]; |
| step[30] = output[30] + output[29]; |
| step[31] = output[31] + output[28]; |
| |
| // Stage 6 |
| output[0] = step[0]; |
| output[1] = step[1]; |
| output[2] = step[2]; |
| output[3] = step[3]; |
| output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); |
| output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); |
| output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); |
| output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); |
| output[8] = step[8] + step[9]; |
| output[9] = -step[9] + step[8]; |
| output[10] = -step[10] + step[11]; |
| output[11] = step[11] + step[10]; |
| output[12] = step[12] + step[13]; |
| output[13] = -step[13] + step[12]; |
| output[14] = -step[14] + step[15]; |
| output[15] = step[15] + step[14]; |
| |
| output[16] = step[16]; |
| output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); |
| output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); |
| output[19] = step[19]; |
| output[20] = step[20]; |
| output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); |
| output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); |
| output[23] = step[23]; |
| output[24] = step[24]; |
| output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); |
| output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); |
| output[27] = step[27]; |
| output[28] = step[28]; |
| output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); |
| output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); |
| output[31] = step[31]; |
| |
| // Stage 7 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| step[4] = output[4]; |
| step[5] = output[5]; |
| step[6] = output[6]; |
| step[7] = output[7]; |
| step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); |
| step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); |
| step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); |
| step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); |
| step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); |
| step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); |
| step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); |
| step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); |
| |
| step[16] = output[16] + output[17]; |
| step[17] = -output[17] + output[16]; |
| step[18] = -output[18] + output[19]; |
| step[19] = output[19] + output[18]; |
| step[20] = output[20] + output[21]; |
| step[21] = -output[21] + output[20]; |
| step[22] = -output[22] + output[23]; |
| step[23] = output[23] + output[22]; |
| step[24] = output[24] + output[25]; |
| step[25] = -output[25] + output[24]; |
| step[26] = -output[26] + output[27]; |
| step[27] = output[27] + output[26]; |
| step[28] = output[28] + output[29]; |
| step[29] = -output[29] + output[28]; |
| step[30] = -output[30] + output[31]; |
| step[31] = output[31] + output[30]; |
| |
| // Final stage --- outputs indices are bit-reversed. |
| output[0] = step[0]; |
| output[16] = step[1]; |
| output[8] = step[2]; |
| output[24] = step[3]; |
| output[4] = step[4]; |
| output[20] = step[5]; |
| output[12] = step[6]; |
| output[28] = step[7]; |
| output[2] = step[8]; |
| output[18] = step[9]; |
| output[10] = step[10]; |
| output[26] = step[11]; |
| output[6] = step[12]; |
| output[22] = step[13]; |
| output[14] = step[14]; |
| output[30] = step[15]; |
| |
| output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); |
| output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); |
| output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); |
| output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); |
| output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); |
| output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); |
| output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); |
| output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); |
| output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); |
| output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); |
| output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); |
| output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); |
| output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); |
| output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); |
| output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); |
| output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); |
| } |
| |
| void aom_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { |
| int i, j; |
| tran_high_t output[32 * 32]; |
| |
| // Columns |
| for (i = 0; i < 32; ++i) { |
| tran_high_t temp_in[32], temp_out[32]; |
| for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; |
| aom_fdct32(temp_in, temp_out, 0); |
| for (j = 0; j < 32; ++j) |
| output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
| } |
| |
| // Rows |
| for (i = 0; i < 32; ++i) { |
| tran_high_t temp_in[32], temp_out[32]; |
| for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; |
| aom_fdct32(temp_in, temp_out, 0); |
| for (j = 0; j < 32; ++j) |
| out[j + i * 32] = |
| (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); |
| } |
| } |
| |
| // Note that although we use dct_32_round in dct32 computation flow, |
| // this 2d fdct32x32 for rate-distortion optimization loop is operating |
| // within 16 bits precision. |
| void aom_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { |
| int i, j; |
| tran_high_t output[32 * 32]; |
| |
| // Columns |
| for (i = 0; i < 32; ++i) { |
| tran_high_t temp_in[32], temp_out[32]; |
| for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; |
| aom_fdct32(temp_in, temp_out, 0); |
| for (j = 0; j < 32; ++j) |
| // TODO(cd): see quality impact of only doing |
| // output[j * 32 + i] = (temp_out[j] + 1) >> 2; |
| // PS: also change code in aom_dsp/x86/aom_dct_sse2.c |
| output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
| } |
| |
| // Rows |
| for (i = 0; i < 32; ++i) { |
| tran_high_t temp_in[32], temp_out[32]; |
| for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; |
| aom_fdct32(temp_in, temp_out, 1); |
| for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j]; |
| } |
| } |
| |
| void aom_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) { |
| int r, c; |
| int sum = 0; |
| for (r = 0; r < 32; ++r) |
| for (c = 0; c < 32; ++c) sum += input[r * stride + c]; |
| |
| output[0] = (tran_low_t)(sum >> 3); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void aom_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, |
| int stride) { |
| aom_fdct4x4_c(input, output, stride); |
| } |
| |
| void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, |
| int stride) { |
| aom_fdct8x8_c(input, final_output, stride); |
| } |
| |
| void aom_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output, |
| int stride) { |
| aom_fdct8x8_1_c(input, final_output, stride); |
| } |
| |
| void aom_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, |
| int stride) { |
| aom_fdct16x16_c(input, output, stride); |
| } |
| |
| void aom_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output, |
| int stride) { |
| aom_fdct16x16_1_c(input, output, stride); |
| } |
| |
| void aom_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { |
| aom_fdct32x32_c(input, out, stride); |
| } |
| |
| void aom_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, |
| int stride) { |
| aom_fdct32x32_rd_c(input, out, stride); |
| } |
| |
| void aom_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out, |
| int stride) { |
| aom_fdct32x32_1_c(input, out, stride); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |