| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdbool.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/encoder/cnn.h" |
| |
| #define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi)-1) : (a))) |
| |
| typedef struct { |
| const float **input; |
| int in_width; |
| int in_height; |
| int in_stride; |
| const CNN_LAYER_CONFIG *layer_config; |
| float **output; |
| int out_stride; |
| int start_idx; |
| int th_step; |
| } CONVOLVE_OPS; |
| |
| typedef float (*activation_fn)(float); |
| |
| static float softsign(float x) { return x / (float)(fabsf(x) + 1.0); } |
| |
| static float relu(float x) { return (x < 0) ? 0 : x; } |
| |
| static float identity(float x) { return x; } |
| |
| typedef struct { |
| int allocsize; |
| int channels; |
| int width, height, stride; |
| float *buf[CNN_MAX_CHANNELS]; |
| } TENSOR; |
| |
| static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); } |
| |
| static void free_tensor(TENSOR *tensor) { |
| if (tensor->allocsize) { |
| aom_free(tensor->buf[0]); |
| tensor->buf[0] = NULL; |
| tensor->allocsize = 0; |
| } |
| } |
| |
| static bool realloc_tensor(TENSOR *tensor, int channels, int width, |
| int height) { |
| const int newallocsize = channels * width * height; |
| if (tensor->allocsize < newallocsize) { |
| free_tensor(tensor); |
| tensor->buf[0] = |
| (float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize); |
| if (!tensor->buf[0]) return false; |
| tensor->allocsize = newallocsize; |
| } |
| tensor->width = width; |
| tensor->height = height; |
| tensor->stride = width; |
| tensor->channels = channels; |
| for (int c = 1; c < channels; ++c) |
| tensor->buf[c] = &tensor->buf[0][c * width * height]; |
| return true; |
| } |
| |
| static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset, |
| TENSOR *dst) { |
| assert(src->width == dst->width); |
| assert(src->height == dst->height); |
| assert(copy_channels <= src->channels); |
| if (src->stride == dst->width && dst->stride == dst->width) { |
| for (int c = 0; c < copy_channels; ++c) { |
| memcpy(dst->buf[dst_offset + c], src->buf[c], |
| sizeof(*dst->buf[0]) * src->width * src->height); |
| } |
| } else { |
| for (int c = 0; c < copy_channels; ++c) { |
| for (int r = 0; r < dst->height; ++r) { |
| memcpy(&dst->buf[dst_offset + c][r * dst->stride], |
| &src->buf[c][r * src->stride], |
| dst->width * sizeof(*dst->buf[c])); |
| } |
| } |
| } |
| } |
| |
| static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS], |
| int channels, int width, int height, int stride) { |
| tensor->allocsize = 0; |
| tensor->channels = channels; |
| tensor->width = width; |
| tensor->height = height; |
| tensor->stride = stride; |
| if (buf) { |
| for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c]; |
| } else { |
| for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL; |
| } |
| } |
| |
| static void swap_tensor(TENSOR *t1, TENSOR *t2) { |
| TENSOR t = *t1; |
| *t1 = *t2; |
| *t2 = t; |
| } |
| |
| // The concatenated tensor goes into dst with first the channels in |
| // original dst followed by the channels in the src |
| static bool concat_tensor(const TENSOR *src, TENSOR *dst) { |
| assert(src->width == dst->width); |
| assert(src->height == dst->height); |
| |
| const int dst_channels = dst->channels; |
| const int channels = dst->channels + src->channels; |
| const int newallocsize = channels * dst->width * dst->height; |
| if (dst->allocsize < newallocsize) { |
| TENSOR t; |
| init_tensor(&t); |
| // allocate new buffers and copy first the dst channels |
| if (!realloc_tensor(&t, channels, dst->width, dst->height)) return false; |
| copy_tensor(dst, dst->channels, 0, &t); |
| // Swap the tensors and free the old buffers |
| swap_tensor(dst, &t); |
| free_tensor(&t); |
| } |
| for (int c = 1; c < channels; ++c) |
| dst->buf[c] = &dst->buf[0][c * dst->width * dst->height]; |
| // Copy the channels in src after the first dst_channels channels. |
| copy_tensor(src, src->channels, dst_channels, dst); |
| return true; |
| } |
| |
| int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) { |
| return (t1->width == t2->width && t1->height == t2->height); |
| } |
| |
| int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) { |
| return (t1->channels == t2->channels && t1->width == t2->width && |
| t1->height == t2->height); |
| } |
| |
| void av1_find_cnn_layer_output_size(int in_width, int in_height, |
| const CNN_LAYER_CONFIG *layer_config, |
| int *out_width, int *out_height) { |
| assert(layer_config->skip_width > 0); |
| assert(layer_config->skip_height > 0); |
| if (!layer_config->deconvolve) { |
| switch (layer_config->pad) { |
| case PADDING_SAME_ZERO: |
| case PADDING_SAME_REPLICATE: |
| *out_width = (in_width + layer_config->skip_width - 1) / |
| layer_config->skip_width; |
| *out_height = (in_height + layer_config->skip_height - 1) / |
| layer_config->skip_height; |
| break; |
| case PADDING_VALID: |
| *out_width = |
| (in_width - layer_config->filter_width + layer_config->skip_width) / |
| layer_config->skip_width; |
| *out_height = (in_height - layer_config->filter_height + |
| layer_config->skip_height) / |
| layer_config->skip_height; |
| break; |
| default: assert(0 && "Unknown padding type"); |
| } |
| } else { |
| switch (layer_config->pad) { |
| case PADDING_SAME_ZERO: |
| case PADDING_SAME_REPLICATE: |
| *out_width = in_width * layer_config->skip_width; |
| *out_height = in_height * layer_config->skip_height; |
| break; |
| case PADDING_VALID: |
| *out_width = (in_width - 1) * layer_config->skip_width + |
| layer_config->filter_width; |
| *out_height = (in_height - 1) * layer_config->skip_height + |
| layer_config->filter_height; |
| break; |
| default: assert(0 && "Unknown padding type"); |
| } |
| } |
| } |
| |
| void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config, |
| int channels_per_branch[]) { |
| int branch = layer_config->branch; |
| const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
| if (layer_config->branch_copy_type == BRANCH_INPUT) { |
| channels_per_branch[b] = layer_config->in_channels; |
| } else if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
| channels_per_branch[b] = layer_config->out_channels; |
| } else if (layer_config->branch_copy_type == BRANCH_COMBINED) { |
| channels_per_branch[b] = layer_config->out_channels; |
| for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { |
| if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { |
| assert(channels_per_branch[c] > 0); |
| channels_per_branch[b] += channels_per_branch[c]; |
| } |
| } |
| } |
| } |
| } |
| channels_per_branch[branch] = layer_config->out_channels; |
| for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { |
| if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { |
| assert(channels_per_branch[c] > 0); |
| channels_per_branch[branch] += channels_per_branch[c]; |
| } |
| } |
| } |
| |
| #if CONFIG_DEBUG |
| static INLINE int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) { |
| const int num_layers = cnn_config->num_layers; |
| const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config; |
| |
| for (int idx = 0; idx < num_layers; idx++) { |
| if (layer_configs[idx].output_num != -1) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| void av1_find_cnn_output_size(int in_width, int in_height, |
| const CNN_CONFIG *cnn_config, int *out_width, |
| int *out_height, int *out_channels) { |
| int channels_per_branch[CNN_MAX_BRANCHES] = { 0 }; |
| int i_width[CNN_MAX_BRANCHES] = { 0 }; |
| int i_height[CNN_MAX_BRANCHES] = { 0 }; |
| i_width[0] = in_width + cnn_config->ext_width * 2; |
| i_height[0] = in_height + cnn_config->ext_height * 2; |
| |
| #if CONFIG_DEBUG |
| assert(cnn_has_at_least_one_output(cnn_config)); |
| #endif |
| |
| for (int i = 0; i < cnn_config->num_layers; ++i) { |
| const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i]; |
| const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
| const int branch = layer_config->branch; |
| int o_width = 0, o_height = 0; |
| |
| if (layer_config->branch_copy_type == BRANCH_INPUT) { |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
| assert(i_width[branch] > 0 && i_height[branch] > 0); |
| i_width[b] = i_width[branch]; |
| i_height[b] = i_height[branch]; |
| } |
| } |
| } |
| |
| av1_find_cnn_layer_output_size(i_width[branch], i_height[branch], |
| layer_config, &o_width, &o_height); |
| i_width[branch] = o_width; |
| i_height[branch] = o_height; |
| |
| if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
| i_width[b] = o_width; |
| i_height[b] = o_height; |
| } |
| } |
| } |
| |
| find_cnn_out_channels(layer_config, channels_per_branch); |
| |
| const int output_num = layer_config->output_num; |
| if (output_num != -1) { // Current layer is an output layer |
| out_width[output_num] = o_width; |
| out_height[output_num] = o_height; |
| out_channels[output_num] = channels_per_branch[layer_config->branch]; |
| } |
| } |
| } |
| |
| activation_fn get_activation(ACTIVATION layer_activation) { |
| switch (layer_activation) { |
| case NONE: return identity; |
| case RELU: return relu; |
| case SOFTSIGN: return softsign; |
| case SIGMOID: |
| assert(0 && "Sigmoid has not been supported in CNN."); // TO DO |
| return NULL; |
| default: assert(0 && "Unknown activation type"); return NULL; |
| } |
| } |
| |
| static INLINE int get_start_shift_convolve(int width, int filt_width, |
| int stride) { |
| const int mod = (width % stride); |
| const int filt_off = (filt_width - 1) / 2; |
| const int dif = (mod ? mod - 1 : stride - 1); |
| return AOMMIN((dif + (filt_width % 2)) / 2, filt_off); |
| } |
| |
| void av1_cnn_add_c(float **output, int channels, int width, int height, |
| int stride, const float **add) { |
| for (int c = 0; c < channels; ++c) { |
| for (int i = 0; i < height; ++i) |
| for (int j = 0; j < width; ++j) |
| output[c][i * stride + j] += add[c][i * stride + j]; |
| } |
| } |
| |
| void av1_cnn_activate_c(float **output, int channels, int width, int height, |
| int stride, ACTIVATION layer_activation) { |
| activation_fn activation = get_activation(layer_activation); |
| for (int c = 0; c < channels; ++c) { |
| for (int i = 0; i < height; ++i) |
| for (int j = 0; j < width; ++j) |
| output[c][i * stride + j] = activation(output[c][i * stride + j]); |
| } |
| } |
| |
| static bool copy_active_tensor_to_branches(const TENSOR *layer_active_tensor, |
| const CNN_LAYER_CONFIG *layer_config, |
| int branch, TENSOR branch_output[]) { |
| const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
| // Copy layer's active tensor to output tensor of branch b if set in |
| // mask. The output becomes the input of the first layer of the branch |
| // because the layer of the branch is not the first layer. |
| int copy_channels = branch_config->channels_to_copy > 0 |
| ? branch_config->channels_to_copy |
| : layer_active_tensor->channels; |
| if (!realloc_tensor(&branch_output[b], copy_channels, |
| layer_active_tensor->width, |
| layer_active_tensor->height)) { |
| return false; |
| } |
| copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]); |
| } |
| } |
| return true; |
| } |
| |
| // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
| // greater than 1 and padding equal to PADDING_SAME_ZERO. |
| static void convolve_maxpool_padding_zero( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| const int cstep, const int filter_width_half, |
| const int filter_height_half) { |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { |
| for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { |
| for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
| ++hh) { |
| for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
| ++ww) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int ii = hh + l - filter_height_half; |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int jj = ww + m - filter_width_half; |
| if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
| continue; |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| const float a = sum; |
| if (h == hh && w == ww) |
| output[i][u * out_stride + v] = a; |
| else |
| output[i][u * out_stride + v] = |
| AOMMAX(output[i][u * out_stride + v], a); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
| // greater than 1 and padding equal to PADDING_SAME_REPLICATE. |
| static void convolve_maxpool_padding_replicate( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| const int cstep, const int filter_width_half, |
| const int filter_height_half) { |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { |
| for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { |
| for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
| ++hh) { |
| for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
| ++ww) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int ii = |
| CLAMPINDEX(hh + l - filter_height_half, in_height); |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int jj = |
| CLAMPINDEX(ww + m - filter_width_half, in_width); |
| assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| const float a = sum; |
| if (h == hh && w == ww) |
| output[i][u * out_stride + v] = a; |
| else |
| output[i][u * out_stride + v] = |
| AOMMAX(output[i][u * out_stride + v], a); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
| // greater than 1 and padding equal to PADDING_VALID. |
| static void convolve_maxpool_padding_valid( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| const int cstep) { |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; |
| h += layer_config->skip_height, ++u) { |
| for (int w = 0, v = 0; w < in_width - layer_config->filter_width + 1; |
| w += layer_config->skip_width, ++v) { |
| for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
| ++hh) { |
| for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
| ++ww) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int ii = hh + l; |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int jj = ww + m; |
| assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| const float a = sum; |
| if (h == hh && w == ww) |
| output[i][u * out_stride + v] = a; |
| else |
| output[i][u * out_stride + v] = |
| AOMMAX(output[i][u * out_stride + v], a); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 0 with filter_height and filter_width |
| // equal to 1. |
| static void convolve_element_wise(const float **input, int in_width, |
| int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, |
| float **output, int out_stride, int start_idx, |
| int step) { |
| const int start_h = get_start_shift_convolve( |
| in_height, layer_config->filter_height, layer_config->skip_height); |
| const int start_w = |
| get_start_shift_convolve(in_width, layer_config->filter_width, |
| layer_config->skip_width) + |
| start_idx * layer_config->skip_width; |
| const int out_w_step = AOMMAX(step, 1); |
| const int in_w_step = layer_config->skip_width * out_w_step; |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int h = start_h, u = 0; h < in_height; |
| h += layer_config->skip_height, ++u) { |
| const int in_h = h * in_stride; |
| const int out_h = u * out_stride + start_idx; |
| for (int w = start_w, out_index = out_h; w < in_width; |
| w += in_w_step, out_index += out_w_step) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| sum += layer_config->weights[k * layer_config->out_channels + i] * |
| input[k][in_h + w]; |
| } |
| output[i][out_index] = sum; |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 0 and padding equal to |
| // PADDING_SAME_ZERO. |
| static void convolve_no_maxpool_padding_zero( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int filter_width_half, |
| const int filter_height_half, const int ii_shift, const int jj_shift, |
| const int channel_step) { |
| const int start_h = get_start_shift_convolve( |
| in_height, layer_config->filter_height, layer_config->skip_height); |
| const int start_w = get_start_shift_convolve( |
| in_width, layer_config->filter_width, layer_config->skip_width); |
| const int end_ii_shift = filter_height_half + 1; |
| const int end_jj_shift = filter_width_half + 1; |
| // *_filter_margin stores the number of pixels along a dimension in the |
| // intersection of the complement of the image in the extended image |
| // and the filter. |
| const int top_filter_margin = layer_config->filter_width * ii_shift; |
| const int right_filter_margin = end_jj_shift - in_width; |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| for (int h = start_h, u = 0; h < in_height; |
| h += layer_config->skip_height, ++u) { |
| const int out_h = u * out_stride; |
| const int top_cstep = |
| AOMMAX(0, top_filter_margin - h * layer_config->filter_width) * |
| cstep + |
| i; |
| const int start_ii = AOMMAX(0, h - ii_shift); |
| const int end_ii = AOMMIN(in_height, h + end_ii_shift); |
| for (int w = start_w, out_index = out_h; w < in_width; |
| w += layer_config->skip_width, ++out_index) { |
| const int left_cstep = AOMMAX(0, jj_shift - w) * cstep; |
| const int right_cstep = AOMMAX(0, right_filter_margin + w) * cstep; |
| const int start_jj = AOMMAX(0, w - jj_shift); |
| const int end_jj = AOMMIN(in_width, w + end_jj_shift); |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + top_cstep; |
| for (int ii = start_ii; ii < end_ii; ++ii) { |
| off += left_cstep; |
| for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) { |
| sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; |
| } |
| off += right_cstep; |
| } |
| } |
| output[i][out_index] = sum; |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 0 and padding equal to |
| // PADDING_SAME_REPLICATE. |
| static void convolve_no_maxpool_padding_replicate( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
| int start_idx, const int cstep, const int ii_shift, const int jj_shift, |
| const int channel_step) { |
| // h and w are shifted to an offset coordinate system to reduce in-loop |
| // computation. |
| const int start_h = |
| get_start_shift_convolve(in_height, layer_config->filter_height, |
| layer_config->skip_height) - |
| ii_shift; |
| const int start_w = |
| get_start_shift_convolve(in_width, layer_config->filter_width, |
| layer_config->skip_width) - |
| jj_shift; |
| const int end_h = in_height - ii_shift; |
| const int end_w = in_width - jj_shift; |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| for (int h = start_h, u = 0; h < end_h; |
| h += layer_config->skip_height, ++u) { |
| const int out_h = u * out_stride; |
| const int upper_ii_index = layer_config->filter_height + h; |
| for (int w = start_w, out_index = out_h; w < end_w; |
| w += layer_config->skip_width, ++out_index) { |
| const int upper_jj_index = layer_config->filter_width + w; |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int ii = h; ii < upper_ii_index; ++ii) { |
| const int clamped_ii = CLAMPINDEX(ii, in_height); |
| for (int jj = w; jj < upper_jj_index; ++jj) { |
| const int clamped_jj = CLAMPINDEX(jj, in_width); |
| assert(clamped_ii >= 0 && clamped_ii < in_height && |
| clamped_jj >= 0 && clamped_jj < in_width); |
| sum += layer_config->weights[off] * |
| input[k][clamped_ii * in_stride + clamped_jj]; |
| off += cstep; |
| } |
| } |
| } |
| output[i][out_index] = sum; |
| } |
| } |
| } |
| } |
| |
| // CNNConvolve specific to maxpool set as 0 and padding equal to |
| // PADDING_VALID. |
| void av1_cnn_convolve_no_maxpool_padding_valid_c( |
| const float **input, int in_width, int in_height, int in_stride, |
| const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride, |
| int start_idx, int cstep, int channel_step) { |
| assert((layer_config->skip_height == 1 && layer_config->skip_width == 1) || |
| !layer_config->maxpool); |
| assert(layer_config->filter_height > 1 || layer_config->filter_width > 1); |
| assert(layer_config->pad == PADDING_VALID); |
| for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
| for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; |
| h += layer_config->skip_height, ++u) { |
| const int out_h = u * out_stride; |
| const int upper_ii_index = layer_config->filter_height + h; |
| for (int w = 0, out_index = out_h; |
| w < in_width - layer_config->filter_width + 1; |
| w += layer_config->skip_width, ++out_index) { |
| const int upper_jj_index = layer_config->filter_width + w; |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int ii = h; ii < upper_ii_index; ++ii) { |
| for (int jj = w; jj < upper_jj_index; ++jj) { |
| assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
| sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; |
| off += cstep; |
| } |
| } |
| } |
| output[i][out_index] = sum; |
| } |
| } |
| } |
| } |
| |
| static void av1_cnn_convolve(const float **input, int in_width, int in_height, |
| int in_stride, |
| const CNN_LAYER_CONFIG *layer_config, |
| float **output, int out_stride, int start_idx, |
| int step) { |
| assert(!layer_config->deconvolve); |
| const int cstep = layer_config->in_channels * layer_config->out_channels; |
| const int filter_height_half = layer_config->filter_height >> 1; |
| const int filter_width_half = layer_config->filter_width >> 1; |
| const int channel_step = AOMMAX(step, 1); |
| |
| if (layer_config->maxpool && |
| (layer_config->skip_height > 1 || layer_config->skip_width > 1)) { |
| switch (layer_config->pad) { |
| case PADDING_SAME_ZERO: |
| convolve_maxpool_padding_zero(input, in_width, in_height, in_stride, |
| layer_config, output, out_stride, cstep, |
| filter_width_half, filter_height_half); |
| break; |
| case PADDING_SAME_REPLICATE: |
| convolve_maxpool_padding_replicate( |
| input, in_width, in_height, in_stride, layer_config, output, |
| out_stride, cstep, filter_width_half, filter_height_half); |
| break; |
| case PADDING_VALID: |
| convolve_maxpool_padding_valid(input, in_width, in_height, in_stride, |
| layer_config, output, out_stride, cstep); |
| break; |
| default: assert(0 && "Unknown padding type"); |
| } |
| } else { |
| // Results in element-wise matrix multiplication. |
| if (layer_config->filter_height == 1 && layer_config->filter_width == 1) { |
| convolve_element_wise(input, in_width, in_height, in_stride, layer_config, |
| output, out_stride, start_idx, step); |
| return; |
| } |
| const int ii_shift = |
| filter_height_half - (layer_config->filter_height - 1) % 2; |
| const int jj_shift = |
| filter_width_half - (layer_config->filter_width - 1) % 2; |
| switch (layer_config->pad) { |
| case PADDING_SAME_ZERO: |
| convolve_no_maxpool_padding_zero( |
| input, in_width, in_height, in_stride, layer_config, output, |
| out_stride, start_idx, cstep, filter_width_half, filter_height_half, |
| ii_shift, jj_shift, channel_step); |
| break; |
| case PADDING_SAME_REPLICATE: |
| convolve_no_maxpool_padding_replicate( |
| input, in_width, in_height, in_stride, layer_config, output, |
| out_stride, start_idx, cstep, ii_shift, jj_shift, channel_step); |
| break; |
| case PADDING_VALID: |
| av1_cnn_convolve_no_maxpool_padding_valid( |
| input, in_width, in_height, in_stride, layer_config, output, |
| out_stride, start_idx, cstep, channel_step); |
| break; |
| default: assert(0 && "Unknown padding type"); |
| } |
| } |
| } |
| |
| static int convolve_layer(void *arg1, void *arg2) { |
| const CONVOLVE_OPS *convolve_ops = arg1; |
| (void)arg2; |
| av1_cnn_convolve( |
| convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height, |
| convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output, |
| convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step); |
| return 1; |
| } |
| |
| static void convolve_layer_mt(const float **input, int in_width, int in_height, |
| int in_stride, |
| const CNN_LAYER_CONFIG *layer_config, |
| const CNN_THREAD_DATA *thread_data, |
| float **output, int out_stride) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| const int num_workers = thread_data->num_workers; |
| assert(thread_data->workers); |
| |
| CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS]; |
| for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { |
| AVxWorker *const worker = &thread_data->workers[th]; |
| winterface->reset(worker); |
| |
| CONVOLVE_OPS convolve_op = { input, in_width, in_height, |
| in_stride, layer_config, output, |
| out_stride, th, num_workers }; |
| convolve_ops[th] = convolve_op; |
| worker->hook = convolve_layer; |
| worker->data1 = &(convolve_ops[th]); |
| worker->data2 = NULL; |
| |
| // Start convolving. |
| if (th == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait until all workers have finished. |
| for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { |
| winterface->sync(&thread_data->workers[th]); |
| } |
| } |
| |
| static INLINE int get_start_shift_deconvolve(int filt_width, int stride) { |
| const int dif = AOMMAX(filt_width - stride, 0); |
| return dif / 2; |
| } |
| |
| void av1_cnn_batchnorm_c(float **image, int channels, int width, int height, |
| int stride, const float *gamma, const float *beta, |
| const float *mean, const float *std) { |
| assert(gamma && beta && beta && std && "batchnorm has null parameter!"); |
| for (int ch = 0; ch < channels; ch++) { |
| const float ch_gamma = gamma[ch]; |
| const float ch_beta = beta[ch]; |
| const float ch_mean = mean[ch]; |
| const float ch_std = std[ch]; |
| float *image_row = image[ch]; |
| |
| for (int row = 0; row < height; row++) { |
| for (int col = 0; col < width; col++) { |
| image_row[col] = |
| ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta; |
| } |
| image_row += stride; |
| } |
| } |
| } |
| |
| void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height, |
| int in_stride, const CNN_LAYER_CONFIG *layer_config, |
| float **output, int out_stride) { |
| assert(layer_config->deconvolve); |
| |
| const int cstep = layer_config->in_channels * layer_config->out_channels; |
| |
| int out_width = 0; |
| int out_height = 0; |
| av1_find_cnn_layer_output_size(in_width, in_height, layer_config, &out_width, |
| &out_height); |
| switch (layer_config->pad) { |
| case PADDING_SAME_ZERO: |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int u = 0; u < out_height; ++u) { |
| for (int v = 0; v < out_width; ++v) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int h = |
| u - l + |
| get_start_shift_deconvolve(layer_config->filter_height, |
| layer_config->skip_height); |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int w = |
| v - m + |
| get_start_shift_deconvolve(layer_config->filter_width, |
| layer_config->skip_width); |
| if ((h % layer_config->skip_height) != 0 || |
| (w % layer_config->skip_width) != 0) |
| continue; |
| const int ii = h / layer_config->skip_height; |
| const int jj = w / layer_config->skip_width; |
| if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
| continue; |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| output[i][u * out_stride + v] = sum; |
| } |
| } |
| } |
| break; |
| case PADDING_SAME_REPLICATE: |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int u = 0; u < out_height; ++u) { |
| for (int v = 0; v < out_width; ++v) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int h = |
| u - l + |
| get_start_shift_deconvolve(layer_config->filter_height, |
| layer_config->skip_height); |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int w = |
| v - m + |
| get_start_shift_deconvolve(layer_config->filter_width, |
| layer_config->skip_width); |
| if ((h % layer_config->skip_height) != 0 || |
| (w % layer_config->skip_width) != 0) |
| continue; |
| const int ii = |
| CLAMPINDEX(h / layer_config->skip_height, in_height); |
| const int jj = |
| CLAMPINDEX(w / layer_config->skip_width, in_width); |
| assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| output[i][u * out_stride + v] = sum; |
| } |
| } |
| } |
| break; |
| case PADDING_VALID: |
| for (int i = 0; i < layer_config->out_channels; ++i) { |
| for (int u = 0; u < out_height; ++u) { |
| for (int v = 0; v < out_width; ++v) { |
| float sum = layer_config->bias[i]; |
| for (int k = 0; k < layer_config->in_channels; ++k) { |
| int off = k * layer_config->out_channels + i; |
| for (int l = 0; l < layer_config->filter_height; ++l) { |
| const int h = u - l; |
| for (int m = 0; m < layer_config->filter_width; |
| ++m, off += cstep) { |
| const int w = v - m; |
| if ((h % layer_config->skip_height) != 0 || |
| (w % layer_config->skip_width) != 0) |
| continue; |
| const int ii = h / layer_config->skip_height; |
| const int jj = w / layer_config->skip_width; |
| if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
| continue; |
| sum += layer_config->weights[off] * |
| input[k][ii * in_stride + jj]; |
| } |
| } |
| } |
| output[i][u * out_stride + v] = sum; |
| } |
| } |
| } |
| break; |
| default: assert(0 && "Unknown padding type"); |
| } |
| } |
| |
| bool av1_cnn_predict_c(const float **input, int in_width, int in_height, |
| int in_stride, const CNN_CONFIG *cnn_config, |
| const CNN_THREAD_DATA *thread_data, |
| CNN_MULTI_OUT *output_struct) { |
| bool success = false; |
| TENSOR tensor1[CNN_MAX_BRANCHES] = { { 0 } }; |
| TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } }; |
| |
| float **output[CNN_MAX_BRANCHES]; |
| const int *out_chs = output_struct->output_channels; |
| output[0] = output_struct->output_buffer; |
| for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) { |
| output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1]; |
| } |
| |
| int i_width = in_width; |
| int i_height = in_height; |
| int o_width = 0, o_height = 0; |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| init_tensor(&tensor1[b]); |
| init_tensor(&tensor2[b]); |
| } |
| |
| const int *out_stride = output_struct->output_strides; |
| for (int layer = 0; layer < cnn_config->num_layers; ++layer) { |
| const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer]; |
| const int branch = layer_config->branch; |
| const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
| |
| // Allocate input tensor |
| if (layer == 0) { // First layer |
| assert(branch == 0); // First layer must be primary branch |
| assign_tensor(&tensor1[branch], (float **)input, |
| layer_config->in_channels, in_width, in_height, in_stride); |
| } else { // Non-first layer |
| // Swap tensor1 and tensor2 |
| swap_tensor(&tensor1[branch], &tensor2[branch]); |
| |
| i_width = tensor1[branch].width; |
| i_height = tensor1[branch].height; |
| } |
| |
| // Allocate output tensor |
| av1_find_cnn_layer_output_size(i_width, i_height, layer_config, &o_width, |
| &o_height); |
| const int output_num = layer_config->output_num; |
| if (output_num == -1) { // Non-output layer |
| if (!realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width, |
| o_height)) { |
| goto Error; |
| } |
| } else { // Output layer |
| free_tensor(&tensor2[branch]); |
| assign_tensor(&tensor2[branch], output[output_num], |
| layer_config->out_channels, o_width, o_height, |
| out_stride[output_num]); |
| } |
| |
| // If we are combining branches make sure that the branch to combine |
| // is different from the current branch. |
| assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC, |
| !(branch_config->branches_to_combine & (1 << branch)))); |
| |
| if (layer_config->branch_copy_type == BRANCH_INPUT) { |
| if (!copy_active_tensor_to_branches(&tensor1[branch], layer_config, |
| branch, tensor2)) { |
| goto Error; |
| } |
| } |
| // Check consistency of input and output channels |
| assert(tensor1[branch].channels == layer_config->in_channels); |
| assert(tensor2[branch].channels == layer_config->out_channels); |
| |
| // Convolve/Deconvolve |
| if (!cnn_config->layer_config[layer].deconvolve) { |
| if (thread_data->num_workers > 1) { |
| convolve_layer_mt((const float **)tensor1[branch].buf, |
| tensor1[branch].width, tensor1[branch].height, |
| tensor1[branch].stride, layer_config, thread_data, |
| tensor2[branch].buf, tensor2[branch].stride); |
| } else { |
| av1_cnn_convolve((const float **)tensor1[branch].buf, |
| tensor1[branch].width, tensor1[branch].height, |
| tensor1[branch].stride, layer_config, |
| tensor2[branch].buf, tensor2[branch].stride, 0, 1); |
| } |
| } else { |
| av1_cnn_deconvolve((const float **)tensor1[branch].buf, |
| tensor1[branch].width, tensor1[branch].height, |
| tensor1[branch].stride, layer_config, |
| tensor2[branch].buf, tensor2[branch].stride); |
| } |
| |
| if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
| if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, |
| branch, tensor2)) { |
| goto Error; |
| } |
| } |
| |
| // Add tensors from other branches if needed |
| if (layer_config->branch_combine_type == BRANCH_ADD) { |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
| assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch])); |
| av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels, |
| tensor2[branch].width, tensor2[branch].height, |
| tensor2[branch].stride, (const float **)tensor2[b].buf); |
| } |
| } |
| } |
| |
| // Non-linearity |
| if (layer_config->activation != IDENTITY) |
| av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels, |
| tensor2[branch].width, tensor2[branch].height, |
| tensor2[branch].stride, layer_config->activation); |
| |
| if (layer_config->bn_params.bn_gamma) { |
| av1_cnn_batchnorm( |
| tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, |
| tensor2[branch].height, tensor2[branch].stride, |
| layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta, |
| layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std); |
| } |
| |
| // Concatenate tensors |
| if (layer_config->branch_combine_type == BRANCH_CAT) { |
| if (output_num == -1) { // Non-output layer |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
| assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
| assert(tensor2[b].channels > 0); |
| if (!concat_tensor(&tensor2[b], &tensor2[branch])) goto Error; |
| } |
| } |
| } else { // Output layer |
| const int existing_channels = tensor2[branch].channels; |
| int num_chs = existing_channels; |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
| assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
| // Needed only to assign the new channel buffers |
| num_chs += tensor2[b].channels; |
| } |
| } |
| assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width, |
| o_height, out_stride[output_num]); |
| |
| num_chs = existing_channels; |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
| assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
| // Needed only to assign the new channel buffers |
| copy_tensor(&tensor2[b], tensor2[b].channels, num_chs, |
| &tensor2[branch]); |
| num_chs += tensor2[b].channels; |
| } |
| } |
| } |
| } |
| |
| if (layer_config->branch_copy_type == BRANCH_COMBINED) { |
| if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, |
| branch, tensor2)) { |
| goto Error; |
| } |
| } |
| } |
| |
| success = true; |
| Error: |
| for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
| free_tensor(&tensor1[b]); |
| free_tensor(&tensor2[b]); |
| } |
| return success; |
| } |
| |
| // Assume output already has proper allocation |
| // Assume input image buffers all have same resolution and strides |
| bool av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height, |
| int stride, const CNN_CONFIG *cnn_config, |
| const CNN_THREAD_DATA *thread_data, |
| CNN_MULTI_OUT *output) { |
| const float max_val = 255.0; |
| |
| const int in_width = width + 2 * cnn_config->ext_width; |
| const int in_height = height + 2 * cnn_config->ext_height; |
| const int in_channels = cnn_config->layer_config[0].in_channels; |
| float *inputs[CNN_MAX_CHANNELS]; |
| float *input_ = |
| (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); |
| if (!input_) return false; |
| const int in_stride = in_width; |
| |
| for (int c = 0; c < in_channels; ++c) { |
| inputs[c] = input_ + c * in_stride * in_height; |
| float *input = |
| inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; |
| |
| if (cnn_config->strict_bounds) { |
| for (int i = 0; i < height; ++i) |
| for (int j = 0; j < width; ++j) |
| input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
| // extend left and right |
| for (int i = 0; i < height; ++i) { |
| for (int j = -cnn_config->ext_width; j < 0; ++j) |
| input[i * in_stride + j] = input[i * in_stride]; |
| for (int j = width; j < width + cnn_config->ext_width; ++j) |
| input[i * in_stride + j] = input[i * in_stride + width - 1]; |
| } |
| // extend top and bottom |
| for (int i = -cnn_config->ext_height; i < 0; ++i) |
| memcpy(&input[i * in_stride - cnn_config->ext_width], |
| &input[-cnn_config->ext_width], in_width * sizeof(*input)); |
| for (int i = height; i < height + cnn_config->ext_height; ++i) |
| memcpy(&input[i * in_stride - cnn_config->ext_width], |
| &input[(height - 1) * in_stride - cnn_config->ext_width], |
| in_width * sizeof(*input)); |
| } else { |
| for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; |
| ++i) |
| for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; |
| ++j) |
| input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
| } |
| } |
| bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, |
| in_stride, cnn_config, thread_data, output); |
| |
| aom_free(input_); |
| return success; |
| } |
| |
| // Assume output already has proper allocation |
| // Assume input image buffers all have same resolution and strides |
| bool av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height, |
| int stride, |
| const CNN_CONFIG *cnn_config, |
| const CNN_THREAD_DATA *thread_data, |
| int bit_depth, |
| CNN_MULTI_OUT *output) { |
| const float max_val = (float)((1 << bit_depth) - 1); |
| |
| const int in_width = width + 2 * cnn_config->ext_width; |
| const int in_height = height + 2 * cnn_config->ext_height; |
| const int in_channels = cnn_config->layer_config[0].in_channels; |
| float *inputs[CNN_MAX_CHANNELS]; |
| float *input_ = |
| (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); |
| if (!input_) return false; |
| const int in_stride = in_width; |
| |
| for (int c = 0; c < in_channels; ++c) { |
| inputs[c] = input_ + c * in_stride * in_height; |
| float *input = |
| inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; |
| |
| if (cnn_config->strict_bounds) { |
| for (int i = 0; i < height; ++i) |
| for (int j = 0; j < width; ++j) |
| input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
| // extend left and right |
| for (int i = 0; i < height; ++i) { |
| for (int j = -cnn_config->ext_width; j < 0; ++j) |
| input[i * in_stride + j] = input[i * in_stride]; |
| for (int j = width; j < width + cnn_config->ext_width; ++j) |
| input[i * in_stride + j] = input[i * in_stride + width - 1]; |
| } |
| // extend top and bottom |
| for (int i = -cnn_config->ext_height; i < 0; ++i) |
| memcpy(&input[i * in_stride - cnn_config->ext_width], |
| &input[-cnn_config->ext_width], in_width * sizeof(*input)); |
| for (int i = height; i < height + cnn_config->ext_height; ++i) |
| memcpy(&input[i * in_stride - cnn_config->ext_width], |
| &input[(height - 1) * in_stride - cnn_config->ext_width], |
| in_width * sizeof(*input)); |
| } else { |
| for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; |
| ++i) |
| for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; |
| ++j) |
| input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
| } |
| } |
| |
| bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, |
| in_stride, cnn_config, thread_data, output); |
| |
| aom_free(input_); |
| return success; |
| } |
| |
| // Assume output already has proper allocation |
| // Assume input image buffers all have same resolution and strides |
| bool av1_cnn_predict_img(uint8_t **dgd, int width, int height, int stride, |
| const CNN_CONFIG *cnn_config, |
| const CNN_THREAD_DATA *thread_data, float **output, |
| int out_stride) { |
| int out_width = 0, out_height = 0, out_channels = 0; |
| av1_find_cnn_output_size(width, height, cnn_config, &out_width, &out_height, |
| &out_channels); |
| const int output_chs[1] = { out_channels }; |
| const int output_strides[1] = { out_stride }; |
| CNN_MULTI_OUT output_struct = { .output_channels = output_chs, |
| .output_strides = output_strides, |
| .output_buffer = output }; |
| return av1_cnn_predict_img_multi_out(dgd, width, height, stride, cnn_config, |
| thread_data, &output_struct); |
| } |
| |
| // Assume output already has proper allocation |
| // Assume input image buffers all have same resolution and strides |
| bool av1_cnn_predict_img_highbd(uint16_t **dgd, int width, int height, |
| int stride, const CNN_CONFIG *cnn_config, |
| const CNN_THREAD_DATA *thread_data, |
| int bit_depth, float **output, int out_stride) { |
| int out_width = 0, out_height = 0, out_channels = 0; |
| av1_find_cnn_output_size(width, height, cnn_config, &out_width, &out_height, |
| &out_channels); |
| const int output_chs[1] = { out_channels }; |
| const int output_strides[1] = { out_stride }; |
| CNN_MULTI_OUT output_struct = { .output_channels = output_chs, |
| .output_strides = output_strides, |
| .output_buffer = output }; |
| return av1_cnn_predict_img_multi_out_highbd(dgd, width, height, stride, |
| cnn_config, thread_data, |
| bit_depth, &output_struct); |
| } |