blob: 2536f91d237755e4214fb9c9760e9e33b8ebe6f9 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdio.h>
#include <tmmintrin.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/blend.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/synonyms.h"
// For width a multiple of 16
static INLINE unsigned int masked_sad_ssse3(const uint8_t *src_ptr,
int src_stride,
const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride,
int width, int height);
static INLINE unsigned int masked_sad8xh_ssse3(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int height);
static INLINE unsigned int masked_sad4xh_ssse3(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int height);
#define MASKSADMXN_SSSE3(m, n) \
unsigned int aom_masked_sad##m##x##n##_ssse3( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
const uint8_t *second_pred, const uint8_t *msk, int msk_stride, \
int invert_mask) { \
if (!invert_mask) \
return masked_sad_ssse3(src, src_stride, ref, ref_stride, second_pred, \
m, msk, msk_stride, m, n); \
else \
return masked_sad_ssse3(src, src_stride, second_pred, m, ref, \
ref_stride, msk, msk_stride, m, n); \
}
#define MASKSAD8XN_SSSE3(n) \
unsigned int aom_masked_sad8x##n##_ssse3( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
const uint8_t *second_pred, const uint8_t *msk, int msk_stride, \
int invert_mask) { \
if (!invert_mask) \
return masked_sad8xh_ssse3(src, src_stride, ref, ref_stride, \
second_pred, 8, msk, msk_stride, n); \
else \
return masked_sad8xh_ssse3(src, src_stride, second_pred, 8, ref, \
ref_stride, msk, msk_stride, n); \
}
#define MASKSAD4XN_SSSE3(n) \
unsigned int aom_masked_sad4x##n##_ssse3( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
const uint8_t *second_pred, const uint8_t *msk, int msk_stride, \
int invert_mask) { \
if (!invert_mask) \
return masked_sad4xh_ssse3(src, src_stride, ref, ref_stride, \
second_pred, 4, msk, msk_stride, n); \
else \
return masked_sad4xh_ssse3(src, src_stride, second_pred, 4, ref, \
ref_stride, msk, msk_stride, n); \
}
#if CONFIG_EXT_PARTITION
MASKSADMXN_SSSE3(128, 128)
MASKSADMXN_SSSE3(128, 64)
MASKSADMXN_SSSE3(64, 128)
#endif // CONFIG_EXT_PARTITION
MASKSADMXN_SSSE3(64, 64)
MASKSADMXN_SSSE3(64, 32)
MASKSADMXN_SSSE3(32, 64)
MASKSADMXN_SSSE3(32, 32)
MASKSADMXN_SSSE3(32, 16)
MASKSADMXN_SSSE3(16, 32)
MASKSADMXN_SSSE3(16, 16)
MASKSADMXN_SSSE3(16, 8)
MASKSAD8XN_SSSE3(16)
MASKSAD8XN_SSSE3(8)
MASKSAD8XN_SSSE3(4)
MASKSAD4XN_SSSE3(8)
MASKSAD4XN_SSSE3(4)
#if CONFIG_EXT_PARTITION_TYPES
MASKSAD4XN_SSSE3(16)
MASKSADMXN_SSSE3(16, 4)
MASKSAD8XN_SSSE3(32)
MASKSADMXN_SSSE3(32, 8)
MASKSADMXN_SSSE3(16, 64)
MASKSADMXN_SSSE3(64, 16)
#if CONFIG_EXT_PARTITION
MASKSADMXN_SSSE3(32, 128)
MASKSADMXN_SSSE3(128, 32)
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
static INLINE unsigned int masked_sad_ssse3(const uint8_t *src_ptr,
int src_stride,
const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride,
int width, int height) {
int x, y;
__m128i res = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 16) {
const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]);
const __m128i m_inv = _mm_sub_epi8(mask_max, m);
// Calculate 16 predicted pixels.
// Note that the maximum value of any entry of 'pred_l' or 'pred_r'
// is 64 * 255, so we have plenty of space to add rounding constants.
const __m128i data_l = _mm_unpacklo_epi8(a, b);
const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv);
__m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi8(a, b);
const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv);
__m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
const __m128i pred = _mm_packus_epi16(pred_l, pred_r);
res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'.
int32_t sad =
_mm_cvtsi128_si32(res) + _mm_cvtsi128_si32(_mm_srli_si128(res, 8));
return (sad + 31) >> 6;
}
static INLINE unsigned int masked_sad8xh_ssse3(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int height) {
int y;
__m128i res = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
for (y = 0; y < height; y += 2) {
const __m128i src = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)src_ptr),
_mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
const __m128i a0 = _mm_loadl_epi64((const __m128i *)a_ptr);
const __m128i a1 = _mm_loadl_epi64((const __m128i *)&a_ptr[a_stride]);
const __m128i b0 = _mm_loadl_epi64((const __m128i *)b_ptr);
const __m128i b1 = _mm_loadl_epi64((const __m128i *)&b_ptr[b_stride]);
const __m128i m =
_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr),
_mm_loadl_epi64((const __m128i *)&m_ptr[m_stride]));
const __m128i m_inv = _mm_sub_epi8(mask_max, m);
const __m128i data_l = _mm_unpacklo_epi8(a0, b0);
const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv);
__m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpacklo_epi8(a1, b1);
const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv);
__m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
const __m128i pred = _mm_packus_epi16(pred_l, pred_r);
res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
src_ptr += src_stride * 2;
a_ptr += a_stride * 2;
b_ptr += b_stride * 2;
m_ptr += m_stride * 2;
}
int32_t sad =
_mm_cvtsi128_si32(res) + _mm_cvtsi128_si32(_mm_srli_si128(res, 8));
return (sad + 31) >> 6;
}
static INLINE unsigned int masked_sad4xh_ssse3(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int height) {
int y;
__m128i res = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
for (y = 0; y < height; y += 2) {
// Load two rows at a time, this seems to be a bit faster
// than four rows at a time in this case.
const __m128i src = _mm_unpacklo_epi32(
_mm_cvtsi32_si128(*(uint32_t *)src_ptr),
_mm_cvtsi32_si128(*(uint32_t *)&src_ptr[src_stride]));
const __m128i a =
_mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)a_ptr),
_mm_cvtsi32_si128(*(uint32_t *)&a_ptr[a_stride]));
const __m128i b =
_mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)b_ptr),
_mm_cvtsi32_si128(*(uint32_t *)&b_ptr[b_stride]));
const __m128i m =
_mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)m_ptr),
_mm_cvtsi32_si128(*(uint32_t *)&m_ptr[m_stride]));
const __m128i m_inv = _mm_sub_epi8(mask_max, m);
const __m128i data = _mm_unpacklo_epi8(a, b);
const __m128i mask = _mm_unpacklo_epi8(m, m_inv);
__m128i pred_16bit = _mm_maddubs_epi16(data, mask);
pred_16bit = xx_roundn_epu16(pred_16bit, AOM_BLEND_A64_ROUND_BITS);
const __m128i pred = _mm_packus_epi16(pred_16bit, _mm_setzero_si128());
res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
src_ptr += src_stride * 2;
a_ptr += a_stride * 2;
b_ptr += b_stride * 2;
m_ptr += m_stride * 2;
}
// At this point, the SAD is stored in lane 0 of 'res'
int32_t sad = _mm_cvtsi128_si32(res);
return (sad + 31) >> 6;
}
#if CONFIG_HIGHBITDEPTH
// For width a multiple of 8
static INLINE unsigned int highbd_masked_sad_ssse3(
const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
int width, int height);
static INLINE unsigned int highbd_masked_sad4xh_ssse3(
const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
int height);
#define HIGHBD_MASKSADMXN_SSSE3(m, n) \
unsigned int aom_highbd_masked_sad##m##x##n##_ssse3( \
const uint8_t *src8, int src_stride, const uint8_t *ref8, \
int ref_stride, const uint8_t *second_pred8, const uint8_t *msk, \
int msk_stride, int invert_mask) { \
if (!invert_mask) \
return highbd_masked_sad_ssse3(src8, src_stride, ref8, ref_stride, \
second_pred8, m, msk, msk_stride, m, n); \
else \
return highbd_masked_sad_ssse3(src8, src_stride, second_pred8, m, ref8, \
ref_stride, msk, msk_stride, m, n); \
}
#define HIGHBD_MASKSAD4XN_SSSE3(n) \
unsigned int aom_highbd_masked_sad4x##n##_ssse3( \
const uint8_t *src8, int src_stride, const uint8_t *ref8, \
int ref_stride, const uint8_t *second_pred8, const uint8_t *msk, \
int msk_stride, int invert_mask) { \
if (!invert_mask) \
return highbd_masked_sad4xh_ssse3(src8, src_stride, ref8, ref_stride, \
second_pred8, 4, msk, msk_stride, n); \
else \
return highbd_masked_sad4xh_ssse3(src8, src_stride, second_pred8, 4, \
ref8, ref_stride, msk, msk_stride, n); \
}
#if CONFIG_EXT_PARTITION
HIGHBD_MASKSADMXN_SSSE3(128, 128)
HIGHBD_MASKSADMXN_SSSE3(128, 64)
HIGHBD_MASKSADMXN_SSSE3(64, 128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MASKSADMXN_SSSE3(64, 64)
HIGHBD_MASKSADMXN_SSSE3(64, 32)
HIGHBD_MASKSADMXN_SSSE3(32, 64)
HIGHBD_MASKSADMXN_SSSE3(32, 32)
HIGHBD_MASKSADMXN_SSSE3(32, 16)
HIGHBD_MASKSADMXN_SSSE3(16, 32)
HIGHBD_MASKSADMXN_SSSE3(16, 16)
HIGHBD_MASKSADMXN_SSSE3(16, 8)
HIGHBD_MASKSADMXN_SSSE3(8, 16)
HIGHBD_MASKSADMXN_SSSE3(8, 8)
HIGHBD_MASKSADMXN_SSSE3(8, 4)
HIGHBD_MASKSAD4XN_SSSE3(8)
HIGHBD_MASKSAD4XN_SSSE3(4)
#if CONFIG_EXT_PARTITION_TYPES
HIGHBD_MASKSAD4XN_SSSE3(16)
HIGHBD_MASKSADMXN_SSSE3(16, 4)
HIGHBD_MASKSADMXN_SSSE3(8, 32)
HIGHBD_MASKSADMXN_SSSE3(32, 8)
HIGHBD_MASKSADMXN_SSSE3(16, 64)
HIGHBD_MASKSADMXN_SSSE3(64, 16)
#if CONFIG_EXT_PARTITION
HIGHBD_MASKSADMXN_SSSE3(32, 128)
HIGHBD_MASKSADMXN_SSSE3(128, 32)
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
static INLINE unsigned int highbd_masked_sad_ssse3(
const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
int width, int height) {
const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8);
const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8);
const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8);
int x, y;
__m128i res = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i round_const =
_mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m128i one = _mm_set1_epi16(1);
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 8) {
const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
// Zero-extend mask to 16 bits
const __m128i m = _mm_unpacklo_epi8(
_mm_loadl_epi64((const __m128i *)&m_ptr[x]), _mm_setzero_si128());
const __m128i m_inv = _mm_sub_epi16(mask_max, m);
const __m128i data_l = _mm_unpacklo_epi16(a, b);
const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
__m128i pred_l = _mm_madd_epi16(data_l, mask_l);
pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi16(a, b);
const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
__m128i pred_r = _mm_madd_epi16(data_r, mask_r);
pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
// Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15,
// so it is safe to do signed saturation here.
const __m128i pred = _mm_packs_epi32(pred_l, pred_r);
// There is no 16-bit SAD instruction, so we have to synthesize
// an 8-element SAD. We do this by storing 4 32-bit partial SADs,
// and accumulating them at the end
const __m128i diff = _mm_abs_epi16(_mm_sub_epi16(pred, src));
res = _mm_add_epi32(res, _mm_madd_epi16(diff, one));
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// At this point, we have four 32-bit partial SADs stored in 'res'.
res = _mm_hadd_epi32(res, res);
res = _mm_hadd_epi32(res, res);
int sad = _mm_cvtsi128_si32(res);
return (sad + 31) >> 6;
}
static INLINE unsigned int highbd_masked_sad4xh_ssse3(
const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
int height) {
const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8);
const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8);
const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8);
int y;
__m128i res = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i round_const =
_mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m128i one = _mm_set1_epi16(1);
for (y = 0; y < height; y += 2) {
const __m128i src = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)src_ptr),
_mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
const __m128i a =
_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)a_ptr),
_mm_loadl_epi64((const __m128i *)&a_ptr[a_stride]));
const __m128i b =
_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)b_ptr),
_mm_loadl_epi64((const __m128i *)&b_ptr[b_stride]));
// Zero-extend mask to 16 bits
const __m128i m = _mm_unpacklo_epi8(
_mm_unpacklo_epi32(
_mm_cvtsi32_si128(*(const uint32_t *)m_ptr),
_mm_cvtsi32_si128(*(const uint32_t *)&m_ptr[m_stride])),
_mm_setzero_si128());
const __m128i m_inv = _mm_sub_epi16(mask_max, m);
const __m128i data_l = _mm_unpacklo_epi16(a, b);
const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
__m128i pred_l = _mm_madd_epi16(data_l, mask_l);
pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi16(a, b);
const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
__m128i pred_r = _mm_madd_epi16(data_r, mask_r);
pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i pred = _mm_packs_epi32(pred_l, pred_r);
const __m128i diff = _mm_abs_epi16(_mm_sub_epi16(pred, src));
res = _mm_add_epi32(res, _mm_madd_epi16(diff, one));
src_ptr += src_stride * 2;
a_ptr += a_stride * 2;
b_ptr += b_stride * 2;
m_ptr += m_stride * 2;
}
res = _mm_hadd_epi32(res, res);
res = _mm_hadd_epi32(res, res);
int sad = _mm_cvtsi128_si32(res);
return (sad + 31) >> 6;
}
#endif