blob: d4b02cc006d6cb9597a9273c66c9a6f014ed98f0 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/obmc.h"
#define USE_PRECOMPUTED_WEDGE_MASK 1
#define USE_PRECOMPUTED_WEDGE_SIGN 1
// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
const WarpTypesAllowed *const warp_types,
const WarpedMotionParams *const gm_params,
int build_for_obmc, int x_scale, int y_scale,
WarpedMotionParams *final_warp_params) {
if (x_scale != SCALE_SUBPEL_SHIFTS || y_scale != SCALE_SUBPEL_SHIFTS)
return 0;
if (final_warp_params != NULL) *final_warp_params = default_warp_params;
if (build_for_obmc) return 0;
if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params));
return 1;
} else if (warp_types->global_warp_allowed && !gm_params->invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
return 0;
}
void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const SubpelParams *subpel_params,
const struct scale_factors *sf, int w, int h,
ConvolveParams *conv_params,
InterpFilters interp_filters,
const WarpTypesAllowed *warp_types, int p_col,
int p_row, int plane, int ref,
const MB_MODE_INFO *mi, int build_for_obmc,
const MACROBLOCKD *xd, int can_use_previous) {
// Make sure the selected motion mode is valid for this configuration
assert_motion_mode_valid(mi->motion_mode, xd->global_motion, xd, mi,
can_use_previous);
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
WarpedMotionParams final_warp_params;
const int do_warp =
(w >= 8 && h >= 8 &&
av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]],
build_for_obmc, subpel_params->xs, subpel_params->ys,
&final_warp_params));
if (do_warp && xd->cur_frame_force_integer_mv == 0) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const pre_buf = &pd->pre[ref];
av1_warp_plane(&final_warp_params,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
pre_buf->buf0, pre_buf->width, pre_buf->height,
pre_buf->stride, dst, p_col, p_row, w, h, dst_stride,
pd->subsampling_x, pd->subsampling_y, conv_params);
} else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf,
w, h, conv_params, interp_filters, xd->bd);
} else {
inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf, w, h,
conv_params, interp_filters);
}
}
#if USE_PRECOMPUTED_WEDGE_MASK
static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) {
if (shift >= 0) {
memcpy(dst + shift, src, width - shift);
memset(dst, src[0], shift);
} else {
shift = -shift;
memcpy(dst, src + shift, width - shift);
memset(dst + width - shift, src[width - 1], shift);
}
}
#endif // USE_PRECOMPUTED_WEDGE_MASK
#if USE_PRECOMPUTED_WEDGE_SIGN
/* clang-format off */
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
};
/* clang-format on */
#else
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]);
#endif // USE_PRECOMPUTED_WEDGE_SIGN
// [negative][direction]
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
wedge_masks[BLOCK_8X8] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
wedge_masks[BLOCK_8X16] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
wedge_masks[BLOCK_16X8] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
wedge_masks[BLOCK_16X16] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
wedge_masks[BLOCK_16X32] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
wedge_masks[BLOCK_32X16] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
wedge_masks[BLOCK_32X32] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
wedge_masks[BLOCK_8X32] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
wedge_masks[BLOCK_32X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
};
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index];
assert(wedge_index >= 0 &&
wedge_index < (1 << get_wedge_bits_lookup(sb_type)));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->type));
(void)sb_type;
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
case COMPOUND_DIFFWTD: return comp_data->seg_mask;
default: assert(0); return NULL;
}
}
static void diffwtd_mask_d16(uint8_t *mask, int which_inverse, int mask_base,
const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride, int h,
int w, ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_d16_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
default: assert(0);
}
}
static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride, int h, int w) {
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff =
abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_c(uint8_t *mask,
DIFFWTD_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
int h, int w) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w);
break;
case DIFFWTD_38_INV:
diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w);
break;
default: assert(0);
}
}
static AOM_FORCE_INLINE void diffwtd_mask_highbd(
uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
const unsigned int bd) {
assert(bd >= 8);
if (bd == 8) {
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
} else {
const unsigned int bd_shift = bd - 8;
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
}
}
void av1_build_compound_diffwtd_mask_highbd_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
break;
default: assert(0);
}
}
static void init_wedge_master_masks() {
int i, j;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
// Note: index [0] stores the masters, and [1] its complement.
#if USE_PRECOMPUTED_WEDGE_MASK
// Generate prototype by shifting the masters
int shift = h / 4;
for (i = 0; i < h; i += 2) {
shift_copy(wedge_master_oblique_even,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
MASK_MASTER_SIZE);
shift--;
shift_copy(wedge_master_oblique_odd,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
MASK_MASTER_SIZE);
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
}
#else
static const double smoother_param = 2.85;
const int a[2] = { 2, 1 };
const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]);
for (i = 0; i < h; i++) {
for (j = 0; j < w; ++j) {
int x = (2 * j + 1 - w);
int y = (2 * i + 1 - h);
double d = (a[0] * x + a[1] * y) / asqrt;
const int msk = (int)rint((1.0 + tanh(d / smoother_param)) * 32);
wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j] = msk;
const int mskx = (int)rint((1.0 + tanh(x / smoother_param)) * 32);
wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j] = mskx;
}
}
#endif // USE_PRECOMPUTED_WEDGE_MASK
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - mskx;
}
}
}
#if !USE_PRECOMPUTED_WEDGE_SIGN
// If the signs for the wedges for various blocksizes are
// inconsistent flip the sign flag. Do it only once for every
// wedge codebook.
static void init_wedge_signs() {
BLOCK_SIZE sb_type;
memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup));
for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) {
const int bw = block_size_wide[sb_type];
const int bh = block_size_high[sb_type];
const wedge_params_type wedge_params = wedge_params_lookup[sb_type];
const int wbits = wedge_params.bits;
const int wtypes = 1 << wbits;
int i, w;
if (wbits) {
for (w = 0; w < wtypes; ++w) {
// Get the mask master, i.e. index [0]
const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type);
int avg = 0;
for (i = 0; i < bw; ++i) avg += mask[i];
for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE];
avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1);
// Default sign of this wedge is 1 if the average < 32, 0 otherwise.
// If default sign is 1:
// If sign requested is 0, we need to flip the sign and return
// the complement i.e. index [1] instead. If sign requested is 1
// we need to flip the sign and return index [0] instead.
// If default sign is 0:
// If sign requested is 0, we need to return index [0] the master
// if sign requested is 1, we need to return the complement index [1]
// instead.
wedge_params.signflip[w] = (avg < 32);
}
}
}
}
#endif // !USE_PRECOMPUTED_WEDGE_SIGN
static void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const wedge_params_type *wedge_params = &wedge_params_lookup[bsize];
const int wbits = wedge_params->bits;
const int wtypes = 1 << wbits;
int w;
if (wbits == 0) continue;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[0][w] = dst;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[1][w] = dst;
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
#if !USE_PRECOMPUTED_WEDGE_SIGN
init_wedge_signs();
#endif // !USE_PRECOMPUTED_WEDGE_SIGN
init_wedge_masks();
}
static void build_masked_compound_no_round(
uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, ConvolveParams *conv_params, MACROBLOCKD *xd) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << mi_size_high_log2[sb_type]) == h;
const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, block_size_wide[sb_type],
w, h, subw, subh, conv_params, xd->bd);
else
aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, block_size_wide[sb_type], w,
h, subw, subh, conv_params);
}
void av1_make_masked_inter_predictor(
const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride,
const SubpelParams *subpel_params, const struct scale_factors *sf, int w,
int h, ConvolveParams *conv_params, InterpFilters interp_filters, int plane,
const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref,
MACROBLOCKD *xd, int can_use_previous) {
MB_MODE_INFO *mi = xd->mi[0];
(void)dst;
(void)dst_stride;
mi->interinter_comp.seg_mask = xd->seg_mask;
const INTERINTER_COMPOUND_DATA *comp_data = &mi->interinter_comp;
// We're going to call av1_make_inter_predictor to generate a prediction into
// a temporary buffer, then will blend that temporary buffer with that from
// the other reference.
//
#define INTER_PRED_BYTES_PER_PIXEL 2
DECLARE_ALIGNED(32, uint8_t,
tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]);
#undef INTER_PRED_BYTES_PER_PIXEL
uint8_t *tmp_dst = get_buf_by_bd(xd, tmp_buf);
const int tmp_buf_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *org_dst = conv_params->dst;
int org_dst_stride = conv_params->dst_stride;
CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
conv_params->dst = tmp_buf16;
conv_params->dst_stride = tmp_buf_stride;
assert(conv_params->do_average == 0);
// This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_params,
sf, w, h, conv_params, interp_filters, warp_types,
p_col, p_row, plane, ref, mi, 0, xd,
can_use_previous);
if (!plane && comp_data->type == COMPOUND_DIFFWTD) {
av1_build_compound_diffwtd_mask_d16(
comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, h, w, conv_params, xd->bd);
}
build_masked_compound_no_round(dst, dst_stride, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, comp_data,
mi->sb_type, h, w, conv_params, xd);
}
void av1_jnt_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi,
int order_idx, int *fwd_offset, int *bck_offset,
int *use_jnt_comp_avg, int is_compound) {
assert(fwd_offset != NULL && bck_offset != NULL);
if (!is_compound || mbmi->compound_idx) {
*use_jnt_comp_avg = 0;
return;
}
*use_jnt_comp_avg = 1;
const int bck_idx = cm->frame_refs[mbmi->ref_frame[0] - LAST_FRAME].idx;
const int fwd_idx = cm->frame_refs[mbmi->ref_frame[1] - LAST_FRAME].idx;
const int cur_frame_index = cm->cur_frame->cur_frame_offset;
int bck_frame_index = 0, fwd_frame_index = 0;
if (bck_idx >= 0) {
bck_frame_index = cm->buffer_pool->frame_bufs[bck_idx].cur_frame_offset;
}
if (fwd_idx >= 0) {
fwd_frame_index = cm->buffer_pool->frame_bufs[fwd_idx].cur_frame_offset;
}
int d0 = clamp(abs(get_relative_dist(cm, fwd_frame_index, cur_frame_index)),
0, MAX_FRAME_DISTANCE);
int d1 = clamp(abs(get_relative_dist(cm, cur_frame_index, bck_frame_index)),
0, MAX_FRAME_DISTANCE);
const int order = d0 <= d1;
if (d0 == 0 || d1 == 0) {
*fwd_offset = quant_dist_lookup_table[order_idx][3][order];
*bck_offset = quant_dist_lookup_table[order_idx][3][1 - order];
return;
}
int i;
for (i = 0; i < 3; ++i) {
int c0 = quant_dist_weight[i][order];
int c1 = quant_dist_weight[i][!order];
int d0_c0 = d0 * c0;
int d1_c1 = d1 * c1;
if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break;
}
*fwd_offset = quant_dist_lookup_table[order_idx][i][order];
*bck_offset = quant_dist_lookup_table[order_idx][i][1 - order];
}
void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &planes[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf,
const int num_planes) {
if (src != NULL) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i],
src->crop_widths[is_uv], src->crop_heights[is_uv],
src->strides[is_uv], mi_row, mi_col, sf,
pd->subsampling_x, pd->subsampling_y);
}
}
}
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
static const uint8_t obmc_mask_2[2] = { 45, 64 };
static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 64, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
64, 64, 64, 64, 64, 64, 64, 64 };
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
case 64: return obmc_mask_64;
default: assert(0); return NULL;
}
}
static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc,
uint8_t mi_hw, MB_MODE_INFO *mi,
void *fun_ctxt, const int num_planes) {
(void)xd;
(void)rel_mi_rc;
(void)mi_hw;
(void)mi;
++*(int *)fun_ctxt;
(void)num_planes;
}
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->overlappable_neighbors[0] = 0;
mbmi->overlappable_neighbors[1] = 0;
if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return;
foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr,
&mbmi->overlappable_neighbors[0]);
foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr,
&mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
// block-size of current plane is smaller than 8x8, always only blend with the
// left neighbor(s) (skip blending with the above side).
#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd, int dir) {
assert(is_motion_variation_allowed_bsize(bsize));
const BLOCK_SIZE bsize_plane =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return 1; break;
#else
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return dir == 0; break;
#endif
default: return 0;
}
}
void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
return;
}
struct obmc_inter_pred_ctxt {
uint8_t **adjacent;
int *adjacent_stride;
};
static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col,
uint8_t above_mi_width,
MB_MODE_INFO *above_mi,
void *fun_ctxt,
const int num_planes) {
(void)above_mi;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_col];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
const uint8_t *const mask = av1_get_obmc_mask(bh);
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
else
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bw, bh);
}
}
static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mi,
void *fun_ctxt,
const int num_planes) {
(void)left_mi;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y;
const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
const uint8_t *const mask = av1_get_obmc_mask(bw);
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
else
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bw, bh);
}
}
// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
// handle above row
struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
foreach_overlappable_nb_above(cm, xd, mi_col,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_obmc_inter_pred_above, &ctxt_above);
// handle left column
struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
foreach_overlappable_nb_left(cm, xd, mi_row,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_obmc_inter_pred_left, &ctxt_left);
}
void av1_setup_build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
const int num_planes) {
const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
const int above_mi_col = ctxt->mi_col + rel_mi_col;
av1_modify_neighbor_predictor_for_obmc(above_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
NULL, pd->subsampling_x, pd->subsampling_y);
}
const int num_refs = 1 + has_second_ref(above_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col,
&ref_buf->sf, num_planes);
}
xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
xd->mb_to_right_edge = ctxt->mb_to_far_edge +
(xd->n4_w - rel_mi_col - above_mi_width) * MI_SIZE * 8;
}
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi,
struct build_prediction_ctxt *ctxt,
const int num_planes) {
const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
const int left_mi_row = ctxt->mi_row + rel_mi_row;
av1_modify_neighbor_predictor_for_obmc(left_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
NULL, pd->subsampling_x, pd->subsampling_y);
}
const int num_refs = 1 + has_second_ref(left_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col,
&ref_buf->sf, num_planes);
}
xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row);
xd->mb_to_bottom_edge =
ctxt->mb_to_far_edge +
(xd->n4_h - rel_mi_row - left_mi_height) * MI_SIZE * 8;
}
/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
8, 8, 4, 4, 2, 2
};
/* clang-format on */
static void build_smooth_interintra_mask(uint8_t *mask, int stride,
BLOCK_SIZE plane_bsize,
INTERINTRA_MODE mode) {
int i, j;
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
mask += stride;
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
mask += stride;
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j)
mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
mask += stride;
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
memset(mask, 32, bw * sizeof(mask[0]));
mask += stride;
}
break;
}
}
static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra,
int wedge_index, int wedge_sign,
BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred, int compstride,
const uint8_t *interpred, int interstride,
const uint8_t *intrapred, int intrastride) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subw = 2 * mi_size_wide[bsize] == bw;
const int subh = 2 * mi_size_high[bsize] == bh;
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
interpred, interstride, mask, block_size_wide[bsize],
bw, bh, subw, subh);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred,
interstride, mask, bw, bw, bh, 0, 0);
}
static void combine_interintra_highbd(
INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index,
int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred8, int compstride, const uint8_t *interpred8,
int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * mi_size_high[bsize] == bh;
const int subw = 2 * mi_size_wide[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bw, bh, subw, subh, bd);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bw, bh, 0, 0,
bd);
}
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
BUFFER_SET *ctx, uint8_t *dst,
int dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
assert(xd->mi[0]->use_intrabc == 0);
av1_predict_intra_block(cm, xd, pd->width, pd->height,
max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
FILTER_INTRA_MODES, ctx->plane[plane],
ctx->stride[plane], dst, dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride) {
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
combine_interintra_highbd(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign,
bsize, plane_bsize, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred,
intra_stride, xd->bd);
return;
}
combine_interintra(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign,
bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride);
}
// build interintra_predictors for one plane
void av1_build_interintra_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *pred, int stride,
BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor),
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, pred, stride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
} else {
DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
intrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
MAX_SB_SIZE);
}
}
void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *upred, uint8_t *vpred,
int ustride, int vstride,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
av1_build_interintra_predictors_sbp(cm, xd, upred, ustride, ctx, 1, bsize);
av1_build_interintra_predictors_sbp(cm, xd, vpred, vstride, ctx, 2, bsize);
}