|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <tmmintrin.h> | 
|  |  | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "aom_dsp/aom_filter.h" | 
|  | #include "aom_dsp/x86/convolve.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/emmintrin_compat.h" | 
|  |  | 
|  | // filters only for the 4_h8 convolution | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { | 
|  | 0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { | 
|  | 4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10 | 
|  | }; | 
|  |  | 
|  | // filters for 8_h8 and 16_h8 | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = { | 
|  | 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = { | 
|  | 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = { | 
|  | 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = { | 
|  | 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 | 
|  | }; | 
|  |  | 
|  | // These are reused by the avx2 intrinsics. | 
|  | filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3; | 
|  |  | 
|  | void aom_filter_block1d4_h8_intrin_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i firstFilters, secondFilters, shuffle1, shuffle2; | 
|  | __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; | 
|  | __m128i addFilterReg64, filtersReg, srcReg, minReg; | 
|  | unsigned int i; | 
|  |  | 
|  | // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 | 
|  | addFilterReg64 = _mm_set1_epi32((int)0x0400040u); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the first 16 bits in the filter into the first lane | 
|  | firstFilters = _mm_shufflelo_epi16(filtersReg, 0); | 
|  | // duplicate only the third 16 bit in the filter into the first lane | 
|  | secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); | 
|  | // duplicate only the seconds 16 bits in the filter into the second lane | 
|  | // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 | 
|  | firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); | 
|  | // duplicate only the forth 16 bits in the filter into the second lane | 
|  | // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 | 
|  | secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); | 
|  |  | 
|  | // loading the local filters | 
|  | shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8); | 
|  | shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); | 
|  |  | 
|  | for (i = 0; i < output_height; i++) { | 
|  | srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); | 
|  | srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); | 
|  |  | 
|  | // extract the higher half of the lane | 
|  | srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); | 
|  | srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); | 
|  |  | 
|  | minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); | 
|  |  | 
|  | // add and saturate all the results together | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); | 
|  | srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); | 
|  |  | 
|  | // shift by 7 bit each 16 bits | 
|  | srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits | 
|  | srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); | 
|  | src_ptr += src_pixels_per_line; | 
|  |  | 
|  | // save only 4 bytes | 
|  | *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); | 
|  |  | 
|  | output_ptr += output_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_filter_block1d8_h8_intrin_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; | 
|  | __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; | 
|  | __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; | 
|  | __m128i addFilterReg64, filtersReg, minReg; | 
|  | unsigned int i; | 
|  |  | 
|  | // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 | 
|  | addFilterReg64 = _mm_set1_epi32((int)0x0400040u); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the first 16 bits (first and second byte) | 
|  | // across 128 bit register | 
|  | firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 128 bit register | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 128 bit register | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  | // duplicate only the forth 16 bits (seventh and eighth byte) | 
|  | // across 128 bit register | 
|  | forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); | 
|  |  | 
|  | filt1Reg = _mm_load_si128((__m128i const *)filt1_global); | 
|  | filt2Reg = _mm_load_si128((__m128i const *)filt2_global); | 
|  | filt3Reg = _mm_load_si128((__m128i const *)filt3_global); | 
|  | filt4Reg = _mm_load_si128((__m128i const *)filt4_global); | 
|  |  | 
|  | for (i = 0; i < output_height; i++) { | 
|  | srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); | 
|  | srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg); | 
|  | srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); | 
|  | srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); | 
|  |  | 
|  | // add and saturate all the results together | 
|  | minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); | 
|  |  | 
|  | srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); | 
|  |  | 
|  | // shift by 7 bit each 16 bits | 
|  | srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits | 
|  | srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); | 
|  |  | 
|  | src_ptr += src_pixels_per_line; | 
|  |  | 
|  | // save only 8 bytes | 
|  | _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); | 
|  |  | 
|  | output_ptr += output_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_filter_block1d8_v8_intrin_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, | 
|  | ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i addFilterReg64, filtersReg, minReg; | 
|  | __m128i firstFilters, secondFilters, thirdFilters, forthFilters; | 
|  | __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5; | 
|  | __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; | 
|  | __m128i srcReg8; | 
|  | unsigned int i; | 
|  |  | 
|  | // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 | 
|  | addFilterReg64 = _mm_set1_epi32((int)0x0400040u); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the first 16 bits in the filter | 
|  | firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); | 
|  | // duplicate only the second 16 bits in the filter | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits in the filter | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  | // duplicate only the forth 16 bits in the filter | 
|  | forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); | 
|  |  | 
|  | // load the first 7 rows of 8 bytes | 
|  | srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr); | 
|  | srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); | 
|  | srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  | srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  | srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  |  | 
|  | for (i = 0; i < output_height; i++) { | 
|  | // load the last 8 bytes | 
|  | srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); | 
|  |  | 
|  | // merge the result together | 
|  | srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2); | 
|  | srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); | 
|  |  | 
|  | // merge the result together | 
|  | srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6); | 
|  | srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); | 
|  | srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); | 
|  | srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); | 
|  | srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); | 
|  | srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); | 
|  |  | 
|  | // shift by 7 bit each 16 bit | 
|  | srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits | 
|  | srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); | 
|  |  | 
|  | src_ptr += src_pitch; | 
|  |  | 
|  | // shift down a row | 
|  | srcReg1 = srcReg2; | 
|  | srcReg2 = srcReg3; | 
|  | srcReg3 = srcReg4; | 
|  | srcReg4 = srcReg5; | 
|  | srcReg5 = srcReg6; | 
|  | srcReg6 = srcReg7; | 
|  | srcReg7 = srcReg8; | 
|  |  | 
|  | // save only 8 bytes convolve result | 
|  | _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); | 
|  |  | 
|  | output_ptr += out_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | filter8_1dfunction aom_filter_block1d16_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_v8_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h8_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v8_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v8_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_avg_ssse3; | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | filter8_1dfunction aom_filter_block1d16_v8_add_src_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h8_add_src_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v8_add_src_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_add_src_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v8_add_src_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_add_src_ssse3; | 
|  | #endif | 
|  |  | 
|  | filter8_1dfunction aom_filter_block1d16_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_v2_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h2_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v2_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h2_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v2_avg_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h2_avg_ssse3; | 
|  |  | 
|  | // void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                                uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                                const int16_t *filter_x, int x_step_q4, | 
|  | //                                const int16_t *filter_y, int y_step_q4, | 
|  | //                                int w, int h); | 
|  | // void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                               uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                               const int16_t *filter_x, int x_step_q4, | 
|  | //                               const int16_t *filter_y, int y_step_q4, | 
|  | //                               int w, int h); | 
|  | // void aom_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                                    uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                                    const int16_t *filter_x, int x_step_q4, | 
|  | //                                    const int16_t *filter_y, int y_step_q4, | 
|  | //                                    int w, int h); | 
|  | // void aom_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                                   uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                                   const int16_t *filter_x, int x_step_q4, | 
|  | //                                   const int16_t *filter_y, int y_step_q4, | 
|  | //                                   int w, int h); | 
|  | FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3); | 
|  | FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3); | 
|  | FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3); | 
|  | FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_, | 
|  | ssse3); | 
|  |  | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | FUN_CONV_1D_NO_BILINEAR(add_src_horiz, x_step_q4, filter_x, h, src, add_src_, | 
|  | ssse3); | 
|  | FUN_CONV_1D_NO_BILINEAR(add_src_vert, y_step_q4, filter_y, v, | 
|  | src - src_stride * 3, add_src_, ssse3); | 
|  | #endif | 
|  |  | 
|  | #define TRANSPOSE_8X8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ | 
|  | out2, out3, out4, out5, out6, out7)                 \ | 
|  | {                                                                       \ | 
|  | const __m128i tr0_0 = _mm_unpacklo_epi8(in0, in1);                    \ | 
|  | const __m128i tr0_1 = _mm_unpacklo_epi8(in2, in3);                    \ | 
|  | const __m128i tr0_2 = _mm_unpacklo_epi8(in4, in5);                    \ | 
|  | const __m128i tr0_3 = _mm_unpacklo_epi8(in6, in7);                    \ | 
|  | \ | 
|  | const __m128i tr1_0 = _mm_unpacklo_epi16(tr0_0, tr0_1);               \ | 
|  | const __m128i tr1_1 = _mm_unpackhi_epi16(tr0_0, tr0_1);               \ | 
|  | const __m128i tr1_2 = _mm_unpacklo_epi16(tr0_2, tr0_3);               \ | 
|  | const __m128i tr1_3 = _mm_unpackhi_epi16(tr0_2, tr0_3);               \ | 
|  | \ | 
|  | const __m128i tr2_0 = _mm_unpacklo_epi32(tr1_0, tr1_2);               \ | 
|  | const __m128i tr2_1 = _mm_unpackhi_epi32(tr1_0, tr1_2);               \ | 
|  | const __m128i tr2_2 = _mm_unpacklo_epi32(tr1_1, tr1_3);               \ | 
|  | const __m128i tr2_3 = _mm_unpackhi_epi32(tr1_1, tr1_3);               \ | 
|  | \ | 
|  | out0 = _mm_unpacklo_epi64(tr2_0, tr2_0);                              \ | 
|  | out1 = _mm_unpackhi_epi64(tr2_0, tr2_0);                              \ | 
|  | out2 = _mm_unpacklo_epi64(tr2_1, tr2_1);                              \ | 
|  | out3 = _mm_unpackhi_epi64(tr2_1, tr2_1);                              \ | 
|  | out4 = _mm_unpacklo_epi64(tr2_2, tr2_2);                              \ | 
|  | out5 = _mm_unpackhi_epi64(tr2_2, tr2_2);                              \ | 
|  | out6 = _mm_unpacklo_epi64(tr2_3, tr2_3);                              \ | 
|  | out7 = _mm_unpackhi_epi64(tr2_3, tr2_3);                              \ | 
|  | } | 
|  |  | 
|  | static void filter_horiz_w8_ssse3(const uint8_t *src_x, ptrdiff_t src_pitch, | 
|  | uint8_t *dst, const int16_t *x_filter) { | 
|  | const __m128i k_256 = _mm_set1_epi16(1 << 8); | 
|  | const __m128i f_values = _mm_load_si128((const __m128i *)x_filter); | 
|  | // pack and duplicate the filter values | 
|  | const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); | 
|  | const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); | 
|  | const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); | 
|  | const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); | 
|  | const __m128i A = _mm_loadl_epi64((const __m128i *)src_x); | 
|  | const __m128i B = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch)); | 
|  | const __m128i C = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 2)); | 
|  | const __m128i D = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 3)); | 
|  | const __m128i E = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 4)); | 
|  | const __m128i F = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 5)); | 
|  | const __m128i G = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 6)); | 
|  | const __m128i H = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 7)); | 
|  | // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 | 
|  | const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); | 
|  | // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 | 
|  | const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); | 
|  | // 40 41 50 51 42 43 52 53 44 45 54 55 46 47 56 57 | 
|  | const __m128i tr0_2 = _mm_unpacklo_epi16(E, F); | 
|  | // 60 61 70 71 62 63 72 73 64 65 74 75 66 67 76 77 | 
|  | const __m128i tr0_3 = _mm_unpacklo_epi16(G, H); | 
|  | // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 | 
|  | const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); | 
|  | // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 | 
|  | const __m128i tr1_1 = _mm_unpackhi_epi32(tr0_0, tr0_1); | 
|  | // 40 41 50 51 60 61 70 71 42 43 52 53 62 63 72 73 | 
|  | const __m128i tr1_2 = _mm_unpacklo_epi32(tr0_2, tr0_3); | 
|  | // 44 45 54 55 64 65 74 75 46 47 56 57 66 67 76 77 | 
|  | const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); | 
|  | // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 | 
|  | const __m128i s1s0 = _mm_unpacklo_epi64(tr1_0, tr1_2); | 
|  | const __m128i s3s2 = _mm_unpackhi_epi64(tr1_0, tr1_2); | 
|  | const __m128i s5s4 = _mm_unpacklo_epi64(tr1_1, tr1_3); | 
|  | const __m128i s7s6 = _mm_unpackhi_epi64(tr1_1, tr1_3); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); | 
|  | const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); | 
|  | const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); | 
|  | const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); | 
|  | // add and saturate the results together | 
|  | const __m128i min_x2x1 = _mm_min_epi16(x2, x1); | 
|  | const __m128i max_x2x1 = _mm_max_epi16(x2, x1); | 
|  | __m128i temp = _mm_adds_epi16(x0, x3); | 
|  | temp = _mm_adds_epi16(temp, min_x2x1); | 
|  | temp = _mm_adds_epi16(temp, max_x2x1); | 
|  | // round and shift by 7 bit each 16 bit | 
|  | temp = _mm_mulhrs_epi16(temp, k_256); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 8 bytes convolve result | 
|  | _mm_storel_epi64((__m128i *)dst, temp); | 
|  | } | 
|  |  | 
|  | static void transpose8x8_to_dst(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride) { | 
|  | __m128i A, B, C, D, E, F, G, H; | 
|  |  | 
|  | A = _mm_loadl_epi64((const __m128i *)src); | 
|  | B = _mm_loadl_epi64((const __m128i *)(src + src_stride)); | 
|  | C = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); | 
|  | D = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); | 
|  | E = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4)); | 
|  | F = _mm_loadl_epi64((const __m128i *)(src + src_stride * 5)); | 
|  | G = _mm_loadl_epi64((const __m128i *)(src + src_stride * 6)); | 
|  | H = _mm_loadl_epi64((const __m128i *)(src + src_stride * 7)); | 
|  |  | 
|  | TRANSPOSE_8X8(A, B, C, D, E, F, G, H, A, B, C, D, E, F, G, H); | 
|  |  | 
|  | _mm_storel_epi64((__m128i *)dst, A); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 1), B); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 2), C); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 3), D); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 4), E); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 5), F); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 6), G); | 
|  | _mm_storel_epi64((__m128i *)(dst + dst_stride * 7), H); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *x_filters, int x0_q4, | 
|  | int x_step_q4, int w, int h) { | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); | 
|  | int x, y, z; | 
|  | src -= SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | // This function processes 8x8 areas.  The intermediate height is not always | 
|  | // a multiple of 8, so force it to be a multiple of 8 here. | 
|  | y = h + (8 - (h & 0x7)); | 
|  |  | 
|  | do { | 
|  | int x_q4 = x0_q4; | 
|  | for (x = 0; x < w; x += 8) { | 
|  | // process 8 src_x steps | 
|  | for (z = 0; z < 8; ++z) { | 
|  | const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; | 
|  | const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | temp[z * 8 + i] = src_x[i * src_stride + 3]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // transpose the 8x8 filters values back to dst | 
|  | transpose8x8_to_dst(temp, 8, dst + x, dst_stride); | 
|  | } | 
|  |  | 
|  | src += src_stride * 8; | 
|  | dst += dst_stride * 8; | 
|  | } while (y -= 8); | 
|  | } | 
|  |  | 
|  | static void filter_horiz_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, | 
|  | uint8_t *dst, const int16_t *filter) { | 
|  | const __m128i k_256 = _mm_set1_epi16(1 << 8); | 
|  | const __m128i f_values = _mm_load_si128((const __m128i *)filter); | 
|  | // pack and duplicate the filter values | 
|  | const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); | 
|  | const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); | 
|  | const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); | 
|  | const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); | 
|  | const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); | 
|  | const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); | 
|  | const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | // TRANSPOSE... | 
|  | // 00 01 02 03 04 05 06 07 | 
|  | // 10 11 12 13 14 15 16 17 | 
|  | // 20 21 22 23 24 25 26 27 | 
|  | // 30 31 32 33 34 35 36 37 | 
|  | // | 
|  | // TO | 
|  | // | 
|  | // 00 10 20 30 | 
|  | // 01 11 21 31 | 
|  | // 02 12 22 32 | 
|  | // 03 13 23 33 | 
|  | // 04 14 24 34 | 
|  | // 05 15 25 35 | 
|  | // 06 16 26 36 | 
|  | // 07 17 27 37 | 
|  | // | 
|  | // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 | 
|  | const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); | 
|  | // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 | 
|  | const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); | 
|  | // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 | 
|  | const __m128i s1s0 = _mm_unpacklo_epi32(tr0_0, tr0_1); | 
|  | // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 | 
|  | const __m128i s5s4 = _mm_unpackhi_epi32(tr0_0, tr0_1); | 
|  | // 02 03 12 13 22 23 32 33 | 
|  | const __m128i s3s2 = _mm_srli_si128(s1s0, 8); | 
|  | // 06 07 16 17 26 27 36 37 | 
|  | const __m128i s7s6 = _mm_srli_si128(s5s4, 8); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); | 
|  | const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); | 
|  | const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); | 
|  | const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); | 
|  | // add and saturate the results together | 
|  | const __m128i min_x2x1 = _mm_min_epi16(x2, x1); | 
|  | const __m128i max_x2x1 = _mm_max_epi16(x2, x1); | 
|  | __m128i temp = _mm_adds_epi16(x0, x3); | 
|  | temp = _mm_adds_epi16(temp, min_x2x1); | 
|  | temp = _mm_adds_epi16(temp, max_x2x1); | 
|  | // round and shift by 7 bit each 16 bit | 
|  | temp = _mm_mulhrs_epi16(temp, k_256); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 4 bytes | 
|  | *(int *)dst = _mm_cvtsi128_si32(temp); | 
|  | } | 
|  |  | 
|  | static void transpose4x4_to_dst(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride) { | 
|  | __m128i A = _mm_cvtsi32_si128(*(const int *)src); | 
|  | __m128i B = _mm_cvtsi32_si128(*(const int *)(src + src_stride)); | 
|  | __m128i C = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 2)); | 
|  | __m128i D = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 3)); | 
|  | // 00 10 01 11 02 12 03 13 | 
|  | const __m128i tr0_0 = _mm_unpacklo_epi8(A, B); | 
|  | // 20 30 21 31 22 32 23 33 | 
|  | const __m128i tr0_1 = _mm_unpacklo_epi8(C, D); | 
|  | // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 | 
|  | A = _mm_unpacklo_epi16(tr0_0, tr0_1); | 
|  | B = _mm_srli_si128(A, 4); | 
|  | C = _mm_srli_si128(A, 8); | 
|  | D = _mm_srli_si128(A, 12); | 
|  |  | 
|  | *(int *)(dst) = _mm_cvtsi128_si32(A); | 
|  | *(int *)(dst + dst_stride) = _mm_cvtsi128_si32(B); | 
|  | *(int *)(dst + dst_stride * 2) = _mm_cvtsi128_si32(C); | 
|  | *(int *)(dst + dst_stride * 3) = _mm_cvtsi128_si32(D); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *x_filters, int x0_q4, | 
|  | int x_step_q4, int w, int h) { | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); | 
|  | int x, y, z; | 
|  | src -= SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | for (y = 0; y < h; y += 4) { | 
|  | int x_q4 = x0_q4; | 
|  | for (x = 0; x < w; x += 4) { | 
|  | // process 4 src_x steps | 
|  | for (z = 0; z < 4; ++z) { | 
|  | const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; | 
|  | const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | temp[z * 4 + i] = src_x[i * src_stride + 3]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // transpose the 4x4 filters values back to dst | 
|  | transpose4x4_to_dst(temp, 4, dst + x, dst_stride); | 
|  | } | 
|  |  | 
|  | src += src_stride * 4; | 
|  | dst += dst_stride * 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void filter_vert_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, | 
|  | uint8_t *dst, const int16_t *filter) { | 
|  | const __m128i k_256 = _mm_set1_epi16(1 << 8); | 
|  | const __m128i f_values = _mm_load_si128((const __m128i *)filter); | 
|  | // pack and duplicate the filter values | 
|  | const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); | 
|  | const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); | 
|  | const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); | 
|  | const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); | 
|  | const __m128i A = _mm_cvtsi32_si128(*(const int *)src_ptr); | 
|  | const __m128i B = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch)); | 
|  | const __m128i C = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 2)); | 
|  | const __m128i D = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 3)); | 
|  | const __m128i E = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 4)); | 
|  | const __m128i F = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 5)); | 
|  | const __m128i G = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 6)); | 
|  | const __m128i H = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 7)); | 
|  | const __m128i s1s0 = _mm_unpacklo_epi8(A, B); | 
|  | const __m128i s3s2 = _mm_unpacklo_epi8(C, D); | 
|  | const __m128i s5s4 = _mm_unpacklo_epi8(E, F); | 
|  | const __m128i s7s6 = _mm_unpacklo_epi8(G, H); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); | 
|  | const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); | 
|  | const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); | 
|  | const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); | 
|  | // add and saturate the results together | 
|  | const __m128i min_x2x1 = _mm_min_epi16(x2, x1); | 
|  | const __m128i max_x2x1 = _mm_max_epi16(x2, x1); | 
|  | __m128i temp = _mm_adds_epi16(x0, x3); | 
|  | temp = _mm_adds_epi16(temp, min_x2x1); | 
|  | temp = _mm_adds_epi16(temp, max_x2x1); | 
|  | // round and shift by 7 bit each 16 bit | 
|  | temp = _mm_mulhrs_epi16(temp, k_256); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 4 bytes | 
|  | *(int *)dst = _mm_cvtsi128_si32(temp); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *y_filters, int y0_q4, | 
|  | int y_step_q4, int w, int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  |  | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  |  | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void filter_vert_w8_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, | 
|  | uint8_t *dst, const int16_t *filter) { | 
|  | const __m128i k_256 = _mm_set1_epi16(1 << 8); | 
|  | const __m128i f_values = _mm_load_si128((const __m128i *)filter); | 
|  | // pack and duplicate the filter values | 
|  | const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); | 
|  | const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); | 
|  | const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); | 
|  | const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); | 
|  | const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); | 
|  | const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); | 
|  | const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | const __m128i E = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  | const __m128i F = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  | const __m128i G = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  | const __m128i H = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); | 
|  | const __m128i s1s0 = _mm_unpacklo_epi8(A, B); | 
|  | const __m128i s3s2 = _mm_unpacklo_epi8(C, D); | 
|  | const __m128i s5s4 = _mm_unpacklo_epi8(E, F); | 
|  | const __m128i s7s6 = _mm_unpacklo_epi8(G, H); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); | 
|  | const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); | 
|  | const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); | 
|  | const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); | 
|  | // add and saturate the results together | 
|  | const __m128i min_x2x1 = _mm_min_epi16(x2, x1); | 
|  | const __m128i max_x2x1 = _mm_max_epi16(x2, x1); | 
|  | __m128i temp = _mm_adds_epi16(x0, x3); | 
|  | temp = _mm_adds_epi16(temp, min_x2x1); | 
|  | temp = _mm_adds_epi16(temp, max_x2x1); | 
|  | // round and shift by 7 bit each 16 bit | 
|  | temp = _mm_mulhrs_epi16(temp, k_256); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 8 bytes convolve result | 
|  | _mm_storel_epi64((__m128i *)dst, temp); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *y_filters, int y0_q4, | 
|  | int y_step_q4, int w, int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void filter_vert_w16_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, | 
|  | uint8_t *dst, const int16_t *filter, int w) { | 
|  | const __m128i k_256 = _mm_set1_epi16(1 << 8); | 
|  | const __m128i f_values = _mm_load_si128((const __m128i *)filter); | 
|  | // pack and duplicate the filter values | 
|  | const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); | 
|  | const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); | 
|  | const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); | 
|  | const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < w; i += 16) { | 
|  | const __m128i A = _mm_loadu_si128((const __m128i *)src_ptr); | 
|  | const __m128i B = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)); | 
|  | const __m128i C = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | const __m128i D = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | const __m128i E = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  | const __m128i F = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  | const __m128i G = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  | const __m128i H = | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); | 
|  | // merge the result together | 
|  | const __m128i s1s0_lo = _mm_unpacklo_epi8(A, B); | 
|  | const __m128i s7s6_lo = _mm_unpacklo_epi8(G, H); | 
|  | const __m128i s1s0_hi = _mm_unpackhi_epi8(A, B); | 
|  | const __m128i s7s6_hi = _mm_unpackhi_epi8(G, H); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x0_lo = _mm_maddubs_epi16(s1s0_lo, f1f0); | 
|  | const __m128i x3_lo = _mm_maddubs_epi16(s7s6_lo, f7f6); | 
|  | const __m128i x0_hi = _mm_maddubs_epi16(s1s0_hi, f1f0); | 
|  | const __m128i x3_hi = _mm_maddubs_epi16(s7s6_hi, f7f6); | 
|  | // add and saturate the results together | 
|  | const __m128i x3x0_lo = _mm_adds_epi16(x0_lo, x3_lo); | 
|  | const __m128i x3x0_hi = _mm_adds_epi16(x0_hi, x3_hi); | 
|  | // merge the result together | 
|  | const __m128i s3s2_lo = _mm_unpacklo_epi8(C, D); | 
|  | const __m128i s3s2_hi = _mm_unpackhi_epi8(C, D); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x1_lo = _mm_maddubs_epi16(s3s2_lo, f3f2); | 
|  | const __m128i x1_hi = _mm_maddubs_epi16(s3s2_hi, f3f2); | 
|  | // merge the result together | 
|  | const __m128i s5s4_lo = _mm_unpacklo_epi8(E, F); | 
|  | const __m128i s5s4_hi = _mm_unpackhi_epi8(E, F); | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | const __m128i x2_lo = _mm_maddubs_epi16(s5s4_lo, f5f4); | 
|  | const __m128i x2_hi = _mm_maddubs_epi16(s5s4_hi, f5f4); | 
|  | // add and saturate the results together | 
|  | __m128i temp_lo = _mm_adds_epi16(x3x0_lo, _mm_min_epi16(x1_lo, x2_lo)); | 
|  | __m128i temp_hi = _mm_adds_epi16(x3x0_hi, _mm_min_epi16(x1_hi, x2_hi)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | temp_lo = _mm_adds_epi16(temp_lo, _mm_max_epi16(x1_lo, x2_lo)); | 
|  | temp_hi = _mm_adds_epi16(temp_hi, _mm_max_epi16(x1_hi, x2_hi)); | 
|  | // round and shift by 7 bit each 16 bit | 
|  | temp_lo = _mm_mulhrs_epi16(temp_lo, k_256); | 
|  | temp_hi = _mm_mulhrs_epi16(temp_hi, k_256); | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | temp_hi = _mm_packus_epi16(temp_lo, temp_hi); | 
|  | src_ptr += 16; | 
|  | // save 16 bytes convolve result | 
|  | _mm_store_si128((__m128i *)&dst[i], temp_hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w16(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *y_filters, int y0_q4, | 
|  | int y_step_q4, int w, int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, | 
|  | w); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scaledconvolve2d(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const InterpKernel *const x_filters, int x0_q4, | 
|  | int x_step_q4, const InterpKernel *const y_filters, | 
|  | int y0_q4, int y_step_q4, int w, int h) { | 
|  | // Note: Fixed size intermediate buffer, temp, places limits on parameters. | 
|  | // 2d filtering proceeds in 2 steps: | 
|  | //   (1) Interpolate horizontally into an intermediate buffer, temp. | 
|  | //   (2) Interpolate temp vertically to derive the sub-pixel result. | 
|  | // Deriving the maximum number of rows in the temp buffer (135): | 
|  | // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). | 
|  | // --Largest block size is 64x64 pixels. | 
|  | // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the | 
|  | //   original frame (in 1/16th pixel units). | 
|  | // --Must round-up because block may be located at sub-pixel position. | 
|  | // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. | 
|  | // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. | 
|  | // --Require an additional 8 rows for the horiz_w8 transpose tail. | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[(MAX_EXT_SIZE + 8) * MAX_SB_SIZE]); | 
|  | const int intermediate_height = | 
|  | (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; | 
|  |  | 
|  | assert(w <= MAX_SB_SIZE); | 
|  | assert(h <= MAX_SB_SIZE); | 
|  | assert(y_step_q4 <= 32); | 
|  | assert(x_step_q4 <= 32); | 
|  |  | 
|  | if (w >= 8) { | 
|  | scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), | 
|  | src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4, | 
|  | x_step_q4, w, intermediate_height); | 
|  | } else { | 
|  | scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), | 
|  | src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4, | 
|  | x_step_q4, w, intermediate_height); | 
|  | } | 
|  |  | 
|  | if (w >= 16) { | 
|  | scaledconvolve_vert_w16(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), | 
|  | MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, | 
|  | y_step_q4, w, h); | 
|  | } else if (w == 8) { | 
|  | scaledconvolve_vert_w8(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), | 
|  | MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, | 
|  | y_step_q4, w, h); | 
|  | } else { | 
|  | scaledconvolve_vert_w4(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), | 
|  | MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, | 
|  | y_step_q4, w, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const InterpKernel *get_filter_base(const int16_t *filter) { | 
|  | // NOTE: This assumes that the filter table is 256-byte aligned. | 
|  | // TODO(agrange) Modify to make independent of table alignment. | 
|  | return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF)); | 
|  | } | 
|  |  | 
|  | static int get_filter_offset(const int16_t *f, const InterpKernel *base) { | 
|  | return (int)((const InterpKernel *)(intptr_t)f - base); | 
|  | } | 
|  |  | 
|  | void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const int16_t *filter_x, | 
|  | int x_step_q4, const int16_t *filter_y, int y_step_q4, | 
|  | int w, int h) { | 
|  | const InterpKernel *const filters_x = get_filter_base(filter_x); | 
|  | const int x0_q4 = get_filter_offset(filter_x, filters_x); | 
|  |  | 
|  | const InterpKernel *const filters_y = get_filter_base(filter_y); | 
|  | const int y0_q4 = get_filter_offset(filter_y, filters_y); | 
|  |  | 
|  | scaledconvolve2d(src, src_stride, dst, dst_stride, filters_x, x0_q4, | 
|  | x_step_q4, filters_y, y0_q4, y_step_q4, w, h); | 
|  | } | 
|  |  | 
|  | // void aom_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                          uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                          const int16_t *filter_x, int x_step_q4, | 
|  | //                          const int16_t *filter_y, int y_step_q4, | 
|  | //                          int w, int h); | 
|  | // void aom_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                              uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                              const int16_t *filter_x, int x_step_q4, | 
|  | //                              const int16_t *filter_y, int y_step_q4, | 
|  | //                              int w, int h); | 
|  | FUN_CONV_2D(, ssse3); | 
|  | FUN_CONV_2D(avg_, ssse3); | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | FUN_CONV_2D_NO_BILINEAR(add_src_, add_src_, ssse3); | 
|  | #endif |