blob: b7768974dc81d993a2cd0ea4e7171ae2eeb5aab4 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/x86/common_avx2.h"
#include "aom_dsp/x86/lpf_common_sse2.h"
#include "aom/aom_integer.h"
static INLINE void get_limit(const uint8_t *bl, const uint8_t *l,
const uint8_t *t, int bd, __m256i *blt,
__m256i *lt, __m256i *thr) {
const int shift = bd - 8;
const __m128i zero = _mm_setzero_si128();
__m128i x = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)bl), zero);
__m256i y = _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1);
*blt = _mm256_slli_epi16(y, shift);
x = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)l), zero);
y = _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1);
*lt = _mm256_slli_epi16(y, shift);
x = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)t), zero);
y = _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1);
*thr = _mm256_slli_epi16(y, shift);
}
static INLINE void load_highbd_pixel(const uint16_t *s, int size, int pitch,
__m256i *p, __m256i *q) {
int i;
for (i = 0; i < size; i++) {
p[i] = _mm256_loadu_si256((__m256i *)(s - (i + 1) * pitch));
q[i] = _mm256_loadu_si256((__m256i *)(s + i * pitch));
}
}
static INLINE void highbd_hev_mask(const __m256i *p, const __m256i *q,
const __m256i *t, __m256i *hev) {
const __m256i abs_p1p0 = _mm256_abs_epi16(_mm256_sub_epi16(p[1], p[0]));
const __m256i abs_q1q0 = _mm256_abs_epi16(_mm256_sub_epi16(q[1], q[0]));
__m256i h = _mm256_max_epi16(abs_p1p0, abs_q1q0);
h = _mm256_subs_epu16(h, *t);
const __m256i ffff = _mm256_set1_epi16(0xFFFF);
const __m256i zero = _mm256_setzero_si256();
*hev = _mm256_xor_si256(_mm256_cmpeq_epi16(h, zero), ffff);
}
static INLINE void highbd_filter_mask(const __m256i *p, const __m256i *q,
const __m256i *l, const __m256i *bl,
__m256i *mask) {
__m256i abs_p0q0 = _mm256_abs_epi16(_mm256_sub_epi16(p[0], q[0]));
__m256i abs_p1q1 = _mm256_abs_epi16(_mm256_sub_epi16(p[1], q[1]));
abs_p0q0 = _mm256_adds_epu16(abs_p0q0, abs_p0q0);
abs_p1q1 = _mm256_srli_epi16(abs_p1q1, 1);
const __m256i zero = _mm256_setzero_si256();
const __m256i one = _mm256_set1_epi16(1);
const __m256i ffff = _mm256_set1_epi16(0xFFFF);
__m256i max = _mm256_subs_epu16(_mm256_adds_epu16(abs_p0q0, abs_p1q1), *bl);
max = _mm256_xor_si256(_mm256_cmpeq_epi16(max, zero), ffff);
max = _mm256_and_si256(max, _mm256_adds_epu16(*l, one));
int i;
for (i = 1; i < 4; ++i) {
max = _mm256_max_epi16(max,
_mm256_abs_epi16(_mm256_sub_epi16(p[i], p[i - 1])));
max = _mm256_max_epi16(max,
_mm256_abs_epi16(_mm256_sub_epi16(q[i], q[i - 1])));
}
max = _mm256_subs_epu16(max, *l);
*mask = _mm256_cmpeq_epi16(max, zero); // return ~mask
}
static INLINE void flat_mask_internal(const __m256i *th, const __m256i *p,
const __m256i *q, int bd, int start,
int end, __m256i *flat) {
__m256i max = _mm256_setzero_si256();
int i;
for (i = start; i < end; ++i) {
max = _mm256_max_epi16(max, _mm256_abs_epi16(_mm256_sub_epi16(p[i], p[0])));
max = _mm256_max_epi16(max, _mm256_abs_epi16(_mm256_sub_epi16(q[i], q[0])));
}
__m256i ft;
if (bd == 8)
ft = _mm256_subs_epu16(max, *th);
else if (bd == 10)
ft = _mm256_subs_epu16(max, _mm256_slli_epi16(*th, 2));
else // bd == 12
ft = _mm256_subs_epu16(max, _mm256_slli_epi16(*th, 4));
const __m256i zero = _mm256_setzero_si256();
*flat = _mm256_cmpeq_epi16(ft, zero);
}
// Note:
// Access p[3-1], p[0], and q[3-1], q[0]
static INLINE void highbd_flat_mask4(const __m256i *th, const __m256i *p,
const __m256i *q, __m256i *flat, int bd) {
// check the distance 1,2,3 against 0
flat_mask_internal(th, p, q, bd, 1, 4, flat);
}
// Note:
// access p[7-4], p[0], and q[7-4], q[0]
static INLINE void highbd_flat_mask5(const __m256i *th, const __m256i *p,
const __m256i *q, __m256i *flat, int bd) {
flat_mask_internal(th, p, q, bd, 4, 8, flat);
}
static INLINE void pixel_clamp(const __m256i *min, const __m256i *max,
__m256i *pixel) {
__m256i clamped, mask;
mask = _mm256_cmpgt_epi16(*pixel, *max);
clamped = _mm256_andnot_si256(mask, *pixel);
mask = _mm256_and_si256(mask, *max);
clamped = _mm256_or_si256(mask, clamped);
mask = _mm256_cmpgt_epi16(clamped, *min);
clamped = _mm256_and_si256(mask, clamped);
mask = _mm256_andnot_si256(mask, *min);
*pixel = _mm256_or_si256(clamped, mask);
}
static INLINE void highbd_filter4(__m256i *p, __m256i *q, const __m256i *mask,
const __m256i *th, int bd, __m256i *ps,
__m256i *qs) {
__m256i t80;
if (bd == 8)
t80 = _mm256_set1_epi16(0x80);
else if (bd == 10)
t80 = _mm256_set1_epi16(0x200);
else // bd == 12
t80 = _mm256_set1_epi16(0x800);
__m256i ps0 = _mm256_subs_epi16(p[0], t80);
__m256i ps1 = _mm256_subs_epi16(p[1], t80);
__m256i qs0 = _mm256_subs_epi16(q[0], t80);
__m256i qs1 = _mm256_subs_epi16(q[1], t80);
const __m256i one = _mm256_set1_epi16(1);
const __m256i pmax = _mm256_subs_epi16(
_mm256_subs_epi16(_mm256_slli_epi16(one, bd), one), t80);
const __m256i zero = _mm256_setzero_si256();
const __m256i pmin = _mm256_subs_epi16(zero, t80);
__m256i filter = _mm256_subs_epi16(ps1, qs1);
pixel_clamp(&pmin, &pmax, &filter);
__m256i hev;
highbd_hev_mask(p, q, th, &hev);
filter = _mm256_and_si256(filter, hev);
const __m256i x = _mm256_subs_epi16(qs0, ps0);
filter = _mm256_adds_epi16(filter, x);
filter = _mm256_adds_epi16(filter, x);
filter = _mm256_adds_epi16(filter, x);
pixel_clamp(&pmin, &pmax, &filter);
filter = _mm256_and_si256(filter, *mask);
const __m256i t3 = _mm256_set1_epi16(3);
const __m256i t4 = _mm256_set1_epi16(4);
__m256i filter1 = _mm256_adds_epi16(filter, t4);
__m256i filter2 = _mm256_adds_epi16(filter, t3);
pixel_clamp(&pmin, &pmax, &filter1);
pixel_clamp(&pmin, &pmax, &filter2);
filter1 = _mm256_srai_epi16(filter1, 3);
filter2 = _mm256_srai_epi16(filter2, 3);
qs0 = _mm256_subs_epi16(qs0, filter1);
pixel_clamp(&pmin, &pmax, &qs0);
ps0 = _mm256_adds_epi16(ps0, filter2);
pixel_clamp(&pmin, &pmax, &ps0);
qs[0] = _mm256_adds_epi16(qs0, t80);
ps[0] = _mm256_adds_epi16(ps0, t80);
filter = _mm256_adds_epi16(filter1, one);
filter = _mm256_srai_epi16(filter, 1);
filter = _mm256_andnot_si256(hev, filter);
qs1 = _mm256_subs_epi16(qs1, filter);
pixel_clamp(&pmin, &pmax, &qs1);
ps1 = _mm256_adds_epi16(ps1, filter);
pixel_clamp(&pmin, &pmax, &ps1);
qs[1] = _mm256_adds_epi16(qs1, t80);
ps[1] = _mm256_adds_epi16(ps1, t80);
}
void aom_highbd_lpf_horizontal_edge_16_avx2(uint16_t *s, int pitch,
const uint8_t *blt,
const uint8_t *lt,
const uint8_t *thr, int bd) {
__m256i blimit, limit, thresh;
get_limit(blt, lt, thr, bd, &blimit, &limit, &thresh);
__m256i p[8], q[8];
load_highbd_pixel(s, 8, pitch, p, q);
__m256i mask;
highbd_filter_mask(p, q, &limit, &blimit, &mask);
__m256i flat, flat2;
const __m256i one = _mm256_set1_epi16(1);
highbd_flat_mask4(&one, p, q, &flat, bd);
highbd_flat_mask5(&one, p, q, &flat2, bd);
flat = _mm256_and_si256(flat, mask);
flat2 = _mm256_and_si256(flat2, flat);
__m256i ps[2], qs[2];
highbd_filter4(p, q, &mask, &thresh, bd, ps, qs);
// flat and wide flat calculations
__m256i flat_p[3], flat_q[3];
__m256i flat2_p[7], flat2_q[7];
{
const __m256i eight = _mm256_set1_epi16(8);
const __m256i four = _mm256_set1_epi16(4);
__m256i sum_p = _mm256_add_epi16(_mm256_add_epi16(p[6], p[5]),
_mm256_add_epi16(p[4], p[3]));
__m256i sum_q = _mm256_add_epi16(_mm256_add_epi16(q[6], q[5]),
_mm256_add_epi16(q[4], q[3]));
__m256i sum_lp = _mm256_add_epi16(p[0], _mm256_add_epi16(p[2], p[1]));
sum_p = _mm256_add_epi16(sum_p, sum_lp);
__m256i sum_lq = _mm256_add_epi16(q[0], _mm256_add_epi16(q[2], q[1]));
sum_q = _mm256_add_epi16(sum_q, sum_lq);
sum_p = _mm256_add_epi16(eight, _mm256_add_epi16(sum_p, sum_q));
sum_lp = _mm256_add_epi16(four, _mm256_add_epi16(sum_lp, sum_lq));
flat2_p[0] = _mm256_srli_epi16(
_mm256_add_epi16(sum_p, _mm256_add_epi16(p[7], p[0])), 4);
flat2_q[0] = _mm256_srli_epi16(
_mm256_add_epi16(sum_p, _mm256_add_epi16(q[7], q[0])), 4);
flat_p[0] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lp, _mm256_add_epi16(p[3], p[0])), 3);
flat_q[0] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lp, _mm256_add_epi16(q[3], q[0])), 3);
__m256i sum_p7 = _mm256_add_epi16(p[7], p[7]);
__m256i sum_q7 = _mm256_add_epi16(q[7], q[7]);
__m256i sum_p3 = _mm256_add_epi16(p[3], p[3]);
__m256i sum_q3 = _mm256_add_epi16(q[3], q[3]);
sum_q = _mm256_sub_epi16(sum_p, p[6]);
sum_p = _mm256_sub_epi16(sum_p, q[6]);
flat2_p[1] = _mm256_srli_epi16(
_mm256_add_epi16(sum_p, _mm256_add_epi16(sum_p7, p[1])), 4);
flat2_q[1] = _mm256_srli_epi16(
_mm256_add_epi16(sum_q, _mm256_add_epi16(sum_q7, q[1])), 4);
sum_lq = _mm256_sub_epi16(sum_lp, p[2]);
sum_lp = _mm256_sub_epi16(sum_lp, q[2]);
flat_p[1] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lp, _mm256_add_epi16(sum_p3, p[1])), 3);
flat_q[1] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lq, _mm256_add_epi16(sum_q3, q[1])), 3);
sum_p7 = _mm256_add_epi16(sum_p7, p[7]);
sum_q7 = _mm256_add_epi16(sum_q7, q[7]);
sum_p3 = _mm256_add_epi16(sum_p3, p[3]);
sum_q3 = _mm256_add_epi16(sum_q3, q[3]);
sum_p = _mm256_sub_epi16(sum_p, q[5]);
sum_q = _mm256_sub_epi16(sum_q, p[5]);
flat2_p[2] = _mm256_srli_epi16(
_mm256_add_epi16(sum_p, _mm256_add_epi16(sum_p7, p[2])), 4);
flat2_q[2] = _mm256_srli_epi16(
_mm256_add_epi16(sum_q, _mm256_add_epi16(sum_q7, q[2])), 4);
sum_lp = _mm256_sub_epi16(sum_lp, q[1]);
sum_lq = _mm256_sub_epi16(sum_lq, p[1]);
flat_p[2] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lp, _mm256_add_epi16(sum_p3, p[2])), 3);
flat_q[2] = _mm256_srli_epi16(
_mm256_add_epi16(sum_lq, _mm256_add_epi16(sum_q3, q[2])), 3);
int i;
for (i = 3; i < 7; ++i) {
sum_p7 = _mm256_add_epi16(sum_p7, p[7]);
sum_q7 = _mm256_add_epi16(sum_q7, q[7]);
sum_p = _mm256_sub_epi16(sum_p, q[7 - i]);
sum_q = _mm256_sub_epi16(sum_q, p[7 - i]);
flat2_p[i] = _mm256_srli_epi16(
_mm256_add_epi16(sum_p, _mm256_add_epi16(sum_p7, p[i])), 4);
flat2_q[i] = _mm256_srli_epi16(
_mm256_add_epi16(sum_q, _mm256_add_epi16(sum_q7, q[i])), 4);
}
}
// highbd_filter8
p[2] = _mm256_andnot_si256(flat, p[2]);
// p2 remains unchanged if !(flat && mask)
flat_p[2] = _mm256_and_si256(flat, flat_p[2]);
// when (flat && mask)
p[2] = _mm256_or_si256(p[2], flat_p[2]); // full list of p2 values
q[2] = _mm256_andnot_si256(flat, q[2]);
flat_q[2] = _mm256_and_si256(flat, flat_q[2]);
q[2] = _mm256_or_si256(q[2], flat_q[2]); // full list of q2 values
int i;
for (i = 1; i >= 0; i--) {
ps[i] = _mm256_andnot_si256(flat, ps[i]);
flat_p[i] = _mm256_and_si256(flat, flat_p[i]);
p[i] = _mm256_or_si256(ps[i], flat_p[i]);
qs[i] = _mm256_andnot_si256(flat, qs[i]);
flat_q[i] = _mm256_and_si256(flat, flat_q[i]);
q[i] = _mm256_or_si256(qs[i], flat_q[i]);
}
// highbd_filter16
for (i = 6; i >= 0; i--) {
// p[i] remains unchanged if !(flat2 && flat && mask)
p[i] = _mm256_andnot_si256(flat2, p[i]);
flat2_p[i] = _mm256_and_si256(flat2, flat2_p[i]);
// get values for when (flat2 && flat && mask)
p[i] = _mm256_or_si256(p[i], flat2_p[i]); // full list of p values
q[i] = _mm256_andnot_si256(flat2, q[i]);
flat2_q[i] = _mm256_and_si256(flat2, flat2_q[i]);
q[i] = _mm256_or_si256(q[i], flat2_q[i]);
_mm256_storeu_si256((__m256i *)(s - (i + 1) * pitch), p[i]);
_mm256_storeu_si256((__m256i *)(s + i * pitch), q[i]);
}
}
static INLINE void highbd_transpose16x16(uint16_t *src, int src_p,
uint16_t *dst, int dst_p) {
__m256i x[16];
int i;
for (i = 0; i < 16; ++i) {
x[i] = _mm256_loadu_si256((const __m256i *)src);
src += src_p;
}
mm256_transpose_16x16(x, x);
for (i = 0; i < 16; ++i) {
_mm256_storeu_si256((__m256i *)dst, x[i]);
dst += dst_p;
}
}
void aom_highbd_lpf_vertical_16_dual_avx2(uint16_t *s, int p,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
DECLARE_ALIGNED(16, uint16_t, t_dst[256]);
// Transpose 16x16
highbd_transpose16x16(s - 8, p, t_dst, 16);
// Loop filtering
aom_highbd_lpf_horizontal_edge_16_avx2(t_dst + 8 * 16, 16, blimit, limit,
thresh, bd);
// Transpose back
highbd_transpose16x16(t_dst, 16, s - 8, p);
}
static INLINE void get_dual_limit(const uint8_t *b0, const uint8_t *l0,
const uint8_t *t0, const uint8_t *b1,
const uint8_t *l1, const uint8_t *t1, int bd,
__m256i *blt, __m256i *lt, __m256i *thr) {
const __m128i z128 = _mm_setzero_si128();
const __m128i blimit0 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)b0), z128);
const __m128i limit0 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)l0), z128);
const __m128i thresh0 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)t0), z128);
const __m128i blimit1 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)b1), z128);
const __m128i limit1 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)l1), z128);
const __m128i thresh1 =
_mm_unpacklo_epi8(_mm_load_si128((const __m128i *)t1), z128);
*blt = _mm256_inserti128_si256(_mm256_castsi128_si256(blimit0), blimit1, 1);
*lt = _mm256_inserti128_si256(_mm256_castsi128_si256(limit0), limit1, 1);
*thr = _mm256_inserti128_si256(_mm256_castsi128_si256(thresh0), thresh1, 1);
int shift = bd - 8;
*blt = _mm256_slli_epi16(*blt, shift);
*lt = _mm256_slli_epi16(*lt, shift);
*thr = _mm256_slli_epi16(*thr, shift);
}
void aom_highbd_lpf_horizontal_4_dual_avx2(
uint16_t *s, int p, const uint8_t *_blimit0, const uint8_t *_limit0,
const uint8_t *_thresh0, const uint8_t *_blimit1, const uint8_t *_limit1,
const uint8_t *_thresh1, int bd) {
__m256i p3 = _mm256_loadu_si256((__m256i *)(s - 4 * p));
__m256i p2 = _mm256_loadu_si256((__m256i *)(s - 3 * p));
__m256i p1 = _mm256_loadu_si256((__m256i *)(s - 2 * p));
__m256i p0 = _mm256_loadu_si256((__m256i *)(s - 1 * p));
__m256i q0 = _mm256_loadu_si256((__m256i *)(s - 0 * p));
__m256i q1 = _mm256_loadu_si256((__m256i *)(s + 1 * p));
__m256i q2 = _mm256_loadu_si256((__m256i *)(s + 2 * p));
__m256i q3 = _mm256_loadu_si256((__m256i *)(s + 3 * p));
const __m256i abs_p1p0 = _mm256_abs_epi16(_mm256_sub_epi16(p1, p0));
const __m256i abs_q1q0 = _mm256_abs_epi16(_mm256_sub_epi16(q1, q0));
__m256i abs_p0q0 = _mm256_abs_epi16(_mm256_sub_epi16(p0, q0));
__m256i abs_p1q1 = _mm256_abs_epi16(_mm256_sub_epi16(p1, q1));
__m256i blimit, limit, thresh;
get_dual_limit(_blimit0, _limit0, _thresh0, _blimit1, _limit1, _thresh1, bd,
&blimit, &limit, &thresh);
__m256i t80, tff80, tffe0, t1f, t7f;
if (bd == 8) {
t80 = _mm256_set1_epi16(0x80);
tff80 = _mm256_set1_epi16(0xff80);
tffe0 = _mm256_set1_epi16(0xffe0);
t1f = _mm256_srli_epi16(_mm256_set1_epi16(0x1fff), 8);
t7f = _mm256_srli_epi16(_mm256_set1_epi16(0x7fff), 8);
} else if (bd == 10) {
t80 = _mm256_slli_epi16(_mm256_set1_epi16(0x80), 2);
tff80 = _mm256_slli_epi16(_mm256_set1_epi16(0xff80), 2);
tffe0 = _mm256_slli_epi16(_mm256_set1_epi16(0xffe0), 2);
t1f = _mm256_srli_epi16(_mm256_set1_epi16(0x1fff), 6);
t7f = _mm256_srli_epi16(_mm256_set1_epi16(0x7fff), 6);
} else { // bd == 12
t80 = _mm256_slli_epi16(_mm256_set1_epi16(0x80), 4);
tff80 = _mm256_slli_epi16(_mm256_set1_epi16(0xff80), 4);
tffe0 = _mm256_slli_epi16(_mm256_set1_epi16(0xffe0), 4);
t1f = _mm256_srli_epi16(_mm256_set1_epi16(0x1fff), 4);
t7f = _mm256_srli_epi16(_mm256_set1_epi16(0x7fff), 4);
}
__m256i ps1 =
_mm256_subs_epi16(_mm256_loadu_si256((__m256i *)(s - 2 * p)), t80);
__m256i ps0 =
_mm256_subs_epi16(_mm256_loadu_si256((__m256i *)(s - 1 * p)), t80);
__m256i qs0 =
_mm256_subs_epi16(_mm256_loadu_si256((__m256i *)(s + 0 * p)), t80);
__m256i qs1 =
_mm256_subs_epi16(_mm256_loadu_si256((__m256i *)(s + 1 * p)), t80);
// filter_mask and hev_mask
const __m256i zero = _mm256_setzero_si256();
__m256i flat = _mm256_max_epi16(abs_p1p0, abs_q1q0);
__m256i hev = _mm256_subs_epu16(flat, thresh);
const __m256i ffff = _mm256_set1_epi16(0xFFFF);
hev = _mm256_xor_si256(_mm256_cmpeq_epi16(hev, zero), ffff);
abs_p0q0 = _mm256_adds_epu16(abs_p0q0, abs_p0q0);
abs_p1q1 = _mm256_srli_epi16(abs_p1q1, 1);
__m256i mask =
_mm256_subs_epu16(_mm256_adds_epu16(abs_p0q0, abs_p1q1), blimit);
mask = _mm256_xor_si256(_mm256_cmpeq_epi16(mask, zero), ffff);
// mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1;
// So taking maximums continues to work:
const __m256i one = _mm256_set1_epi16(1);
mask = _mm256_and_si256(mask, _mm256_adds_epu16(limit, one));
mask = _mm256_max_epi16(flat, mask);
// mask |= (abs(p1 - p0) > limit) * -1;
// mask |= (abs(q1 - q0) > limit) * -1;
__m256i work = _mm256_max_epi16(
_mm256_or_si256(_mm256_subs_epu16(p2, p1), _mm256_subs_epu16(p1, p2)),
_mm256_or_si256(_mm256_subs_epu16(p3, p2), _mm256_subs_epu16(p2, p3)));
mask = _mm256_max_epi16(work, mask);
work = _mm256_max_epi16(
_mm256_or_si256(_mm256_subs_epu16(q2, q1), _mm256_subs_epu16(q1, q2)),
_mm256_or_si256(_mm256_subs_epu16(q3, q2), _mm256_subs_epu16(q2, q3)));
mask = _mm256_max_epi16(work, mask);
mask = _mm256_subs_epu16(mask, limit);
mask = _mm256_cmpeq_epi16(mask, zero);
// filter4
const __m256i pmax = _mm256_subs_epi16(
_mm256_subs_epi16(_mm256_slli_epi16(one, bd), one), t80);
const __m256i pmin = _mm256_subs_epi16(zero, t80);
__m256i filt = _mm256_subs_epi16(ps1, qs1);
pixel_clamp(&pmin, &pmax, &filt);
filt = _mm256_and_si256(filt, hev);
__m256i work_a = _mm256_subs_epi16(qs0, ps0);
filt = _mm256_adds_epi16(filt, work_a);
filt = _mm256_adds_epi16(filt, work_a);
filt = _mm256_adds_epi16(filt, work_a);
pixel_clamp(&pmin, &pmax, &filt);
// (aom_filter + 3 * (qs0 - ps0)) & mask
filt = _mm256_and_si256(filt, mask);
const __m256i t4 = _mm256_set1_epi16(4);
const __m256i t3 = _mm256_set1_epi16(3);
__m256i filter1 = _mm256_adds_epi16(filt, t4);
pixel_clamp(&pmin, &pmax, &filter1);
__m256i filter2 = _mm256_adds_epi16(filt, t3);
pixel_clamp(&pmin, &pmax, &filter2);
// Filter1 >> 3
work_a = _mm256_cmpgt_epi16(zero, filter1); // get the values that are <0
filter1 = _mm256_srli_epi16(filter1, 3);
work_a = _mm256_and_si256(work_a, tffe0); // sign bits for the values < 0
filter1 = _mm256_and_si256(filter1, t1f); // clamp the range
filter1 = _mm256_or_si256(filter1, work_a); // reinsert the sign bits
// Filter2 >> 3
work_a = _mm256_cmpgt_epi16(zero, filter2);
filter2 = _mm256_srli_epi16(filter2, 3);
work_a = _mm256_and_si256(work_a, tffe0);
filter2 = _mm256_and_si256(filter2, t1f);
filter2 = _mm256_or_si256(filter2, work_a);
// filt >> 1
// equivalent to shifting 0x1f left by bitdepth - 8
// and setting new bits to 1
filt = _mm256_adds_epi16(filter1, one);
work_a = _mm256_cmpgt_epi16(zero, filt);
filt = _mm256_srli_epi16(filt, 1);
work_a = _mm256_and_si256(work_a, tff80);
filt = _mm256_and_si256(filt, t7f);
filt = _mm256_or_si256(filt, work_a);
filt = _mm256_andnot_si256(hev, filt);
filter1 = _mm256_subs_epi16(qs0, filter1);
pixel_clamp(&pmin, &pmax, &filter1);
q0 = _mm256_adds_epi16(filter1, t80);
filter1 = _mm256_subs_epi16(qs1, filt);
pixel_clamp(&pmin, &pmax, &filter1);
q1 = _mm256_adds_epi16(filter1, t80);
filter2 = _mm256_adds_epi16(ps0, filter2);
pixel_clamp(&pmin, &pmax, &filter2);
p0 = _mm256_adds_epi16(filter2, t80);
filter2 = _mm256_adds_epi16(ps1, filt);
pixel_clamp(&pmin, &pmax, &filter2);
p1 = _mm256_adds_epi16(filter2, t80);
_mm256_storeu_si256((__m256i *)(s - 2 * p), p1);
_mm256_storeu_si256((__m256i *)(s - 1 * p), p0);
_mm256_storeu_si256((__m256i *)(s + 0 * p), q0);
_mm256_storeu_si256((__m256i *)(s + 1 * p), q1);
}
void aom_highbd_lpf_horizontal_8_dual_avx2(
uint16_t *s, int p, const uint8_t *_blimit0, const uint8_t *_limit0,
const uint8_t *_thresh0, const uint8_t *_blimit1, const uint8_t *_limit1,
const uint8_t *_thresh1, int bd) {
DECLARE_ALIGNED(16, uint16_t, flat_op2[16]);
DECLARE_ALIGNED(16, uint16_t, flat_op1[16]);
DECLARE_ALIGNED(16, uint16_t, flat_op0[16]);
DECLARE_ALIGNED(16, uint16_t, flat_oq2[16]);
DECLARE_ALIGNED(16, uint16_t, flat_oq1[16]);
DECLARE_ALIGNED(16, uint16_t, flat_oq0[16]);
__m256i p3 = _mm256_loadu_si256((__m256i *)(s - 4 * p));
__m256i q3 = _mm256_loadu_si256((__m256i *)(s + 3 * p));
__m256i p2 = _mm256_loadu_si256((__m256i *)(s - 3 * p));
__m256i q2 = _mm256_loadu_si256((__m256i *)(s + 2 * p));
__m256i p1 = _mm256_loadu_si256((__m256i *)(s - 2 * p));
__m256i q1 = _mm256_loadu_si256((__m256i *)(s + 1 * p));
__m256i p0 = _mm256_loadu_si256((__m256i *)(s - 1 * p));
__m256i q0 = _mm256_loadu_si256((__m256i *)(s + 0 * p));
__m256i blimit, limit, thresh;
get_dual_limit(_blimit0, _limit0, _thresh0, _blimit1, _limit1, _thresh1, bd,
&blimit, &limit, &thresh);
__m256i t80;
if (bd == 8) {
t80 = _mm256_set1_epi16(0x80);
} else if (bd == 10) {
t80 = _mm256_set1_epi16(0x200);
} else { // bd == 12
t80 = _mm256_set1_epi16(0x800);
}
__m256i ps1, ps0, qs0, qs1;
ps1 = _mm256_subs_epi16(p1, t80);
ps0 = _mm256_subs_epi16(p0, t80);
qs0 = _mm256_subs_epi16(q0, t80);
qs1 = _mm256_subs_epi16(q1, t80);
// filter_mask and hev_mask
__m256i abs_p1q1, abs_p0q0, abs_q1q0, abs_p1p0, work;
abs_p1p0 = _mm256_abs_epi16(_mm256_sub_epi16(p1, p0));
abs_q1q0 = _mm256_abs_epi16(_mm256_sub_epi16(q1, q0));
abs_p0q0 = _mm256_abs_epi16(_mm256_sub_epi16(p0, q0));
abs_p1q1 = _mm256_abs_epi16(_mm256_sub_epi16(p1, q1));
__m256i flat = _mm256_max_epi16(abs_p1p0, abs_q1q0);
__m256i hev = _mm256_subs_epu16(flat, thresh);
const __m256i zero = _mm256_set1_epi16(0);
const __m256i ffff = _mm256_set1_epi16(0xFFFF);
hev = _mm256_xor_si256(_mm256_cmpeq_epi16(hev, zero), ffff);
abs_p0q0 = _mm256_adds_epu16(abs_p0q0, abs_p0q0);
abs_p1q1 = _mm256_srli_epi16(abs_p1q1, 1);
__m256i mask =
_mm256_subs_epu16(_mm256_adds_epu16(abs_p0q0, abs_p1q1), blimit);
mask = _mm256_xor_si256(_mm256_cmpeq_epi16(mask, zero), ffff);
// mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1;
// So taking maximums continues to work:
const __m256i one = _mm256_set1_epi16(1);
mask = _mm256_and_si256(mask, _mm256_adds_epu16(limit, one));
mask = _mm256_max_epi16(abs_p1p0, mask);
// mask |= (abs(p1 - p0) > limit) * -1;
mask = _mm256_max_epi16(abs_q1q0, mask);
// mask |= (abs(q1 - q0) > limit) * -1;
work = _mm256_max_epi16(_mm256_abs_epi16(_mm256_sub_epi16(p2, p1)),
_mm256_abs_epi16(_mm256_sub_epi16(q2, q1)));
mask = _mm256_max_epi16(work, mask);
work = _mm256_max_epi16(_mm256_abs_epi16(_mm256_sub_epi16(p3, p2)),
_mm256_abs_epi16(_mm256_sub_epi16(q3, q2)));
mask = _mm256_max_epi16(work, mask);
mask = _mm256_subs_epu16(mask, limit);
mask = _mm256_cmpeq_epi16(mask, zero);
// flat_mask4
flat = _mm256_max_epi16(_mm256_abs_epi16(_mm256_sub_epi16(p2, p0)),
_mm256_abs_epi16(_mm256_sub_epi16(q2, q0)));
work = _mm256_max_epi16(_mm256_abs_epi16(_mm256_sub_epi16(p3, p0)),
_mm256_abs_epi16(_mm256_sub_epi16(q3, q0)));
flat = _mm256_max_epi16(work, flat);
flat = _mm256_max_epi16(abs_p1p0, flat);
flat = _mm256_max_epi16(abs_q1q0, flat);
if (bd == 8)
flat = _mm256_subs_epu16(flat, one);
else if (bd == 10)
flat = _mm256_subs_epu16(flat, _mm256_slli_epi16(one, 2));
else // bd == 12
flat = _mm256_subs_epu16(flat, _mm256_slli_epi16(one, 4));
flat = _mm256_cmpeq_epi16(flat, zero);
flat = _mm256_and_si256(flat, mask); // flat & mask
// Added before shift for rounding part of ROUND_POWER_OF_TWO
__m256i workp_a, workp_b, workp_shft;
workp_a =
_mm256_add_epi16(_mm256_add_epi16(p3, p3), _mm256_add_epi16(p2, p1));
const __m256i four = _mm256_set1_epi16(4);
workp_a = _mm256_add_epi16(_mm256_add_epi16(workp_a, four), p0);
workp_b = _mm256_add_epi16(_mm256_add_epi16(q0, p2), p3);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_op2[0], workp_shft);
workp_b = _mm256_add_epi16(_mm256_add_epi16(q0, q1), p1);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_op1[0], workp_shft);
workp_a = _mm256_add_epi16(_mm256_sub_epi16(workp_a, p3), q2);
workp_b = _mm256_add_epi16(_mm256_sub_epi16(workp_b, p1), p0);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_op0[0], workp_shft);
workp_a = _mm256_add_epi16(_mm256_sub_epi16(workp_a, p3), q3);
workp_b = _mm256_add_epi16(_mm256_sub_epi16(workp_b, p0), q0);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_oq0[0], workp_shft);
workp_a = _mm256_add_epi16(_mm256_sub_epi16(workp_a, p2), q3);
workp_b = _mm256_add_epi16(_mm256_sub_epi16(workp_b, q0), q1);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_oq1[0], workp_shft);
workp_a = _mm256_add_epi16(_mm256_sub_epi16(workp_a, p1), q3);
workp_b = _mm256_add_epi16(_mm256_sub_epi16(workp_b, q1), q2);
workp_shft = _mm256_srli_epi16(_mm256_add_epi16(workp_a, workp_b), 3);
_mm256_storeu_si256((__m256i *)&flat_oq2[0], workp_shft);
// lp filter
const __m256i pmax = _mm256_subs_epi16(
_mm256_subs_epi16(_mm256_slli_epi16(one, bd), one), t80);
const __m256i pmin = _mm256_subs_epi16(zero, t80);
__m256i filt, filter1, filter2, work_a;
filt = _mm256_subs_epi16(ps1, qs1);
pixel_clamp(&pmin, &pmax, &filt);
filt = _mm256_and_si256(filt, hev);
work_a = _mm256_subs_epi16(qs0, ps0);
filt = _mm256_adds_epi16(filt, work_a);
filt = _mm256_adds_epi16(filt, work_a);
filt = _mm256_adds_epi16(filt, work_a);
// (aom_filter + 3 * (qs0 - ps0)) & mask
pixel_clamp(&pmin, &pmax, &filt);
filt = _mm256_and_si256(filt, mask);
const __m256i t4 = _mm256_set1_epi16(4);
const __m256i t3 = _mm256_set1_epi16(3);
filter1 = _mm256_adds_epi16(filt, t4);
filter2 = _mm256_adds_epi16(filt, t3);
// Filter1 >> 3
pixel_clamp(&pmin, &pmax, &filter1);
filter1 = _mm256_srai_epi16(filter1, 3);
// Filter2 >> 3
pixel_clamp(&pmin, &pmax, &filter2);
filter2 = _mm256_srai_epi16(filter2, 3);
// filt >> 1
filt = _mm256_adds_epi16(filter1, one);
filt = _mm256_srai_epi16(filt, 1);
// filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev;
filt = _mm256_andnot_si256(hev, filt);
work_a = _mm256_subs_epi16(qs0, filter1);
pixel_clamp(&pmin, &pmax, &work_a);
work_a = _mm256_adds_epi16(work_a, t80);
q0 = _mm256_loadu_si256((__m256i *)flat_oq0);
work_a = _mm256_andnot_si256(flat, work_a);
q0 = _mm256_and_si256(flat, q0);
q0 = _mm256_or_si256(work_a, q0);
work_a = _mm256_subs_epi16(qs1, filt);
pixel_clamp(&pmin, &pmax, &work_a);
work_a = _mm256_adds_epi16(work_a, t80);
q1 = _mm256_loadu_si256((__m256i *)flat_oq1);
work_a = _mm256_andnot_si256(flat, work_a);
q1 = _mm256_and_si256(flat, q1);
q1 = _mm256_or_si256(work_a, q1);
work_a = _mm256_loadu_si256((__m256i *)(s + 2 * p));
q2 = _mm256_loadu_si256((__m256i *)flat_oq2);
work_a = _mm256_andnot_si256(flat, work_a);
q2 = _mm256_and_si256(flat, q2);
q2 = _mm256_or_si256(work_a, q2);
work_a = _mm256_adds_epi16(ps0, filter2);
pixel_clamp(&pmin, &pmax, &work_a);
work_a = _mm256_adds_epi16(work_a, t80);
p0 = _mm256_loadu_si256((__m256i *)flat_op0);
work_a = _mm256_andnot_si256(flat, work_a);
p0 = _mm256_and_si256(flat, p0);
p0 = _mm256_or_si256(work_a, p0);
work_a = _mm256_adds_epi16(ps1, filt);
pixel_clamp(&pmin, &pmax, &work_a);
work_a = _mm256_adds_epi16(work_a, t80);
p1 = _mm256_loadu_si256((__m256i *)flat_op1);
work_a = _mm256_andnot_si256(flat, work_a);
p1 = _mm256_and_si256(flat, p1);
p1 = _mm256_or_si256(work_a, p1);
work_a = _mm256_loadu_si256((__m256i *)(s - 3 * p));
p2 = _mm256_loadu_si256((__m256i *)flat_op2);
work_a = _mm256_andnot_si256(flat, work_a);
p2 = _mm256_and_si256(flat, p2);
p2 = _mm256_or_si256(work_a, p2);
_mm256_storeu_si256((__m256i *)(s - 3 * p), p2);
_mm256_storeu_si256((__m256i *)(s - 2 * p), p1);
_mm256_storeu_si256((__m256i *)(s - 1 * p), p0);
_mm256_storeu_si256((__m256i *)(s + 0 * p), q0);
_mm256_storeu_si256((__m256i *)(s + 1 * p), q1);
_mm256_storeu_si256((__m256i *)(s + 2 * p), q2);
}
void aom_highbd_lpf_vertical_4_dual_avx2(
uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
DECLARE_ALIGNED(16, uint16_t, t_dst[16 * 8]);
uint16_t *src[2];
uint16_t *dst[2];
// Transpose 8x16
highbd_transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16);
// Loop filtering
aom_highbd_lpf_horizontal_4_dual_avx2(t_dst + 4 * 16, 16, blimit0, limit0,
thresh0, blimit1, limit1, thresh1, bd);
src[0] = t_dst;
src[1] = t_dst + 8;
dst[0] = s - 4;
dst[1] = s - 4 + p * 8;
// Transpose back
highbd_transpose(src, 16, dst, p, 2);
}
void aom_highbd_lpf_vertical_8_dual_avx2(
uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
DECLARE_ALIGNED(16, uint16_t, t_dst[16 * 8]);
uint16_t *src[2];
uint16_t *dst[2];
// Transpose 8x16
highbd_transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16);
// Loop filtering
aom_highbd_lpf_horizontal_8_dual_avx2(t_dst + 4 * 16, 16, blimit0, limit0,
thresh0, blimit1, limit1, thresh1, bd);
src[0] = t_dst;
src[1] = t_dst + 8;
dst[0] = s - 4;
dst[1] = s - 4 + p * 8;
// Transpose back
highbd_transpose(src, 16, dst, p, 2);
}