blob: cb8eb2c3987711026c7459472fbb987e4dbedac1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/quantize.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#if CONFIG_EXT_REFS
#define LAST_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) // NOLINT
#define LAST2_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) // NOLINT
#define LAST3_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) // NOLINT
#define GOLDEN_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) // NOLINT
#define BWDREF_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME)) // NOLINT
#define ALTREF_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME)) // NOLINT
#else
#define LAST_FRAME_MODE_MASK \
((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define GOLDEN_FRAME_MODE_MASK \
((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define ALTREF_FRAME_MODE_MASK \
((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME))
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | 0x01)
#else
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
#endif // CONFIG_EXT_REFS
#define MIN_EARLY_TERM_INDEX 3
#define NEW_MV_DISCOUNT_FACTOR 8
const double ext_tx_th = 0.99;
typedef struct {
PREDICTION_MODE mode;
MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;
typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
struct rdcost_block_args {
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[16];
ENTROPY_CONTEXT t_left[16];
int this_rate;
int64_t this_dist;
int64_t this_sse;
int64_t this_rd;
int64_t best_rd;
int exit_early;
int use_fast_coef_costing;
const scan_order *so;
uint8_t skippable;
};
#define LAST_NEW_MV_INDEX 6
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
{ NEARESTMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST2_FRAME, NONE } },
{ NEARESTMV, { LAST3_FRAME, NONE } },
{ NEARESTMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEARESTMV, { ALTREF_FRAME, NONE } },
{ NEARESTMV, { GOLDEN_FRAME, NONE } },
{ DC_PRED, { INTRA_FRAME, NONE } },
{ NEWMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEWMV, { LAST2_FRAME, NONE } },
{ NEWMV, { LAST3_FRAME, NONE } },
{ NEWMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEWMV, { ALTREF_FRAME, NONE } },
{ NEWMV, { GOLDEN_FRAME, NONE } },
{ NEARMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST2_FRAME, NONE } },
{ NEARMV, { LAST3_FRAME, NONE } },
{ NEARMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEARMV, { ALTREF_FRAME, NONE } },
{ NEARMV, { GOLDEN_FRAME, NONE } },
{ ZEROMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST2_FRAME, NONE } },
{ ZEROMV, { LAST3_FRAME, NONE } },
{ ZEROMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { GOLDEN_FRAME, NONE } },
{ ZEROMV, { ALTREF_FRAME, NONE } },
// TODO(zoeliu): May need to reconsider the order on the modes to check
{ NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ TM_PRED, { INTRA_FRAME, NONE } },
{ NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST2_FRAME, ALTREF_FRAME } },
{ ZEROMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST_FRAME, BWDREF_FRAME } },
{ ZEROMV, { LAST2_FRAME, BWDREF_FRAME } },
{ ZEROMV, { LAST3_FRAME, BWDREF_FRAME } },
{ ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ H_PRED, { INTRA_FRAME, NONE } },
{ V_PRED, { INTRA_FRAME, NONE } },
{ D135_PRED, { INTRA_FRAME, NONE } },
{ D207_PRED, { INTRA_FRAME, NONE } },
{ D153_PRED, { INTRA_FRAME, NONE } },
{ D63_PRED, { INTRA_FRAME, NONE } },
{ D117_PRED, { INTRA_FRAME, NONE } },
{ D45_PRED, { INTRA_FRAME, NONE } },
};
static const REF_DEFINITION av1_ref_order[MAX_REFS] = {
{ { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ { LAST2_FRAME, NONE } }, { { LAST3_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ { GOLDEN_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ { LAST2_FRAME, ALTREF_FRAME } }, { { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ { LAST_FRAME, BWDREF_FRAME } }, { { LAST2_FRAME, BWDREF_FRAME } },
{ { LAST3_FRAME, BWDREF_FRAME } }, { { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ { INTRA_FRAME, NONE } },
};
static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n,
int min_plane, int max_plane) {
int i;
for (i = min_plane; i < max_plane; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &x->e_mbd.plane[i];
p->coeff = ctx->coeff_pbuf[i][m];
p->qcoeff = ctx->qcoeff_pbuf[i][m];
pd->dqcoeff = ctx->dqcoeff_pbuf[i][m];
p->eobs = ctx->eobs_pbuf[i][m];
ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n];
ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n];
ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n];
ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n];
ctx->coeff_pbuf[i][n] = p->coeff;
ctx->qcoeff_pbuf[i][n] = p->qcoeff;
ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff;
ctx->eobs_pbuf[i][n] = p->eobs;
}
}
static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum,
int64_t *out_dist_sum, int *skip_txfm_sb,
int64_t *skip_sse_sb) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
int i;
int64_t rate_sum = 0;
int64_t dist_sum = 0;
const int ref = xd->mi[0]->mbmi.ref_frame[0];
unsigned int sse;
unsigned int var = 0;
unsigned int sum_sse = 0;
int64_t total_sse = 0;
int skip_flag = 1;
const int shift = 6;
int rate;
int64_t dist;
const int dequant_shift =
#if CONFIG_AOM_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
#endif // CONFIG_AOM_HIGHBITDEPTH
3;
x->pred_sse[ref] = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size];
const int64_t dc_thr = p->quant_thred[0] >> shift;
const int64_t ac_thr = p->quant_thred[1] >> shift;
// The low thresholds are used to measure if the prediction errors are
// low enough so that we can skip the mode search.
const int64_t low_dc_thr = AOMMIN(50, dc_thr >> 2);
const int64_t low_ac_thr = AOMMIN(80, ac_thr >> 2);
int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
int idx, idy;
int lw = b_width_log2_lookup[unit_size] + 2;
int lh = b_height_log2_lookup[unit_size] + 2;
sum_sse = 0;
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw);
uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh);
int block_idx = (idy << 1) + idx;
int low_err_skip = 0;
var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride,
&sse);
x->bsse[(i << 2) + block_idx] = sse;
sum_sse += sse;
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE;
if (!x->select_tx_size) {
// Check if all ac coefficients can be quantized to zero.
if (var < ac_thr || var == 0) {
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY;
// Check if dc coefficient can be quantized to zero.
if (sse - var < dc_thr || sse == var) {
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC;
if (!sse || (var < low_ac_thr && sse - var < low_dc_thr))
low_err_skip = 1;
}
}
}
if (skip_flag && !low_err_skip) skip_flag = 0;
if (i == 0) x->pred_sse[ref] += sse;
}
}
total_sse += sum_sse;
// Fast approximate the modelling function.
if (cpi->sf.simple_model_rd_from_var) {
int64_t rate;
const int64_t square_error = sum_sse;
int quantizer = (pd->dequant[1] >> dequant_shift);
if (quantizer < 120)
rate = (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT);
else
rate = 0;
dist = (square_error * quantizer) >> 8;
rate_sum += rate;
dist_sum += dist;
} else {
av1_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
pd->dequant[1] >> dequant_shift, &rate,
&dist);
rate_sum += rate;
dist_sum += dist;
}
}
*skip_txfm_sb = skip_flag;
*skip_sse_sb = total_sse << 4;
*out_rate_sum = (int)rate_sum;
*out_dist_sum = dist_sum << 4;
}
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
int block_size) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
#if CONFIG_AOM_HIGHBITDEPTH
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
assert(error >= 0 && sqcoeff >= 0);
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
/* The trailing '0' is a terminator which is used inside cost_coeffs() to
* decide whether to include cost of a trailing EOB node or not (i.e. we
* can skip this if the last coefficient in this transform block, e.g. the
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
* were non-zero). */
static const int16_t band_counts[TX_SIZES][8] = {
{ 1, 2, 3, 4, 3, 16 - 13, 0 },
{ 1, 2, 3, 4, 11, 64 - 21, 0 },
{ 1, 2, 3, 4, 11, 256 - 21, 0 },
{ 1, 2, 3, 4, 11, 1024 - 21, 0 },
};
static int cost_coeffs(MACROBLOCK *x, int plane, int block, ENTROPY_CONTEXT *A,
ENTROPY_CONTEXT *L, TX_SIZE tx_size, const int16_t *scan,
const int16_t *nb, int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
const struct macroblockd_plane *pd = &xd->plane[plane];
const PLANE_TYPE type = pd->plane_type;
const int16_t *band_count = &band_counts[tx_size][1];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
x->token_costs[tx_size][type][is_inter_block(mbmi)];
uint8_t token_cache[32 * 32];
int pt = combine_entropy_contexts(*A, *L);
int c, cost;
#if CONFIG_AOM_HIGHBITDEPTH
const int *cat6_high_cost = av1_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = av1_get_high_cost_table(8);
#endif
// Check for consistency of tx_size with mode info
assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
: get_uv_tx_size(mbmi, pd) == tx_size);
if (eob == 0) {
// single eob token
cost = token_costs[0][0][pt][EOB_TOKEN];
c = 0;
} else {
int band_left = *band_count++;
// dc token
int v = qcoeff[0];
int16_t prev_t;
EXTRABIT e;
av1_get_token_extra(v, &prev_t, &e);
cost =
(*token_costs)[0][pt][prev_t] + av1_get_cost(prev_t, e, cat6_high_cost);
token_cache[0] = av1_pt_energy_class[prev_t];
++token_costs;
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
int16_t t;
v = qcoeff[rc];
av1_get_token_extra(v, &t, &e);
if (use_fast_coef_costing) {
cost += (*token_costs)[!prev_t][!prev_t][t] +
av1_get_cost(t, e, cat6_high_cost);
} else {
pt = get_coef_context(nb, token_cache, c);
cost +=
(*token_costs)[!prev_t][pt][t] + av1_get_cost(t, e, cat6_high_cost);
token_cache[rc] = av1_pt_energy_class[t];
}
prev_t = t;
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
}
// eob token
if (band_left) {
if (use_fast_coef_costing) {
cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
} else {
pt = get_coef_context(nb, token_cache, c);
cost += (*token_costs)[0][pt][EOB_TOKEN];
}
}
}
// is eob first coefficient;
*A = *L = (c > 0);
return cost;
}
static void dist_block(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
int64_t *out_dist, int64_t *out_sse) {
const int ss_txfrm_size = tx_size << 1;
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int64_t this_sse;
int shift = tx_size == TX_32X32 ? 0 : 2;
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
#if CONFIG_AOM_HIGHBITDEPTH
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
*out_dist = av1_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
&this_sse, bd) >>
shift;
#else
*out_dist =
av1_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> shift;
#endif // CONFIG_AOM_HIGHBITDEPTH
*out_sse = this_sse >> shift;
}
static int rate_block(int plane, int block, int blk_row, int blk_col,
TX_SIZE tx_size, struct rdcost_block_args *args) {
return cost_coeffs(args->x, plane, block, args->t_above + blk_col,
args->t_left + blk_row, tx_size, args->so->scan,
args->so->neighbors, args->use_fast_coef_costing);
}
static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd1, rd2, rd;
int rate;
int64_t dist;
int64_t sse;
if (args->exit_early) return;
if (!is_inter_block(mbmi)) {
struct encode_b_args arg = { x, NULL, &mbmi->skip };
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
&arg);
dist_block(x, plane, block, tx_size, &dist, &sse);
} else if (max_txsize_lookup[plane_bsize] == tx_size) {
if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
SKIP_TXFM_NONE) {
// full forward transform and quantization
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
dist_block(x, plane, block, tx_size, &dist, &sse);
} else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
SKIP_TXFM_AC_ONLY) {
// compute DC coefficient
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block);
av1_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size);
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
dist = sse;
if (x->plane[plane].eobs[block]) {
const int64_t orig_sse = (int64_t)coeff[0] * coeff[0];
const int64_t resd_sse = coeff[0] - dqcoeff[0];
int64_t dc_correct = orig_sse - resd_sse * resd_sse;
#if CONFIG_AOM_HIGHBITDEPTH
dc_correct >>= ((xd->bd - 8) * 2);
#endif
if (tx_size != TX_32X32) dc_correct >>= 2;
dist = AOMMAX(0, sse - dc_correct);
}
} else {
// SKIP_TXFM_AC_DC
// skip forward transform
x->plane[plane].eobs[block] = 0;
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
dist = sse;
}
} else {
// full forward transform and quantization
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
dist_block(x, plane, block, tx_size, &dist, &sse);
}
rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
if (args->this_rd + rd > args->best_rd) {
args->exit_early = 1;
return;
}
rate = rate_block(plane, block, blk_row, blk_col, tx_size, args);
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
// TODO(jingning): temporarily enabled only for luma component
rd = AOMMIN(rd1, rd2);
if (plane == 0)
x->zcoeff_blk[tx_size][block] =
!x->plane[plane].eobs[block] ||
(rd1 > rd2 && !xd->lossless[mbmi->segment_id]);
args->this_rate += rate;
args->this_dist += dist;
args->this_sse += sse;
args->this_rd += rd;
if (args->this_rd > args->best_rd) {
args->exit_early = 1;
return;
}
args->skippable &= !x->plane[plane].eobs[block];
}
static void txfm_rd_in_plane(MACROBLOCK *x, int *rate, int64_t *distortion,
int *skippable, int64_t *sse, int64_t ref_best_rd,
int plane, BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
TX_TYPE tx_type;
struct rdcost_block_args args;
av1_zero(args);
args.x = x;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_casting;
args.skippable = 1;
if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
tx_type = get_tx_type(pd->plane_type, xd, 0);
args.so = get_scan(tx_size, tx_type);
av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
&args);
if (args.exit_early) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
*distortion = args.this_dist;
*rate = args.this_rate;
*sse = args.this_sse;
*skippable = args.skippable;
}
}
static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skip,
int64_t *sse, int64_t ref_best_rd,
BLOCK_SIZE bs) {
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
const AV1_COMMON *const cm = &cpi->common;
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
int r, s;
int64_t d, psse, this_rd, best_rd = INT64_MAX;
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
int s0 = av1_cost_bit(skip_prob, 0);
int s1 = av1_cost_bit(skip_prob, 1);
const int is_inter = is_inter_block(mbmi);
mbmi->tx_size = AOMMIN(max_tx_size, largest_tx_size);
if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) {
for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x, &r, &d, &s, &psse, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
if (r == INT_MAX) continue;
if (is_inter)
r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
else
r += cpi->intra_tx_type_costs[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
if (s)
this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
else
this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
if (is_inter && !xd->lossless[mbmi->segment_id] && !s)
this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
if (this_rd < ((best_tx_type == DCT_DCT) ? ext_tx_th : 1) * best_rd) {
best_rd = this_rd;
best_tx_type = mbmi->tx_type;
}
}
}
mbmi->tx_type = best_tx_type;
txfm_rd_in_plane(x, rate, distortion, skip, sse, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id] &&
*rate != INT_MAX) {
if (is_inter)
*rate += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
else
*rate += cpi->intra_tx_type_costs
[mbmi->tx_size][intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
}
static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skip,
int64_t *sse, int64_t ref_best_rd,
BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
mbmi->tx_size = TX_4X4;
mbmi->tx_type = DCT_DCT;
txfm_rd_in_plane(x, rate, distortion, skip, sse, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
}
static void choose_tx_size_from_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skip,
int64_t *psse, int64_t ref_best_rd,
BLOCK_SIZE bs) {
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
int r, s;
int64_t d, sse;
int64_t rd = INT64_MAX;
int n, m;
int s0, s1;
int64_t best_rd = INT64_MAX, last_rd = INT64_MAX;
TX_SIZE best_tx = TX_SIZES;
int start_tx, end_tx;
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
const int is_inter = is_inter_block(mbmi);
uint8_t zcoeff_blk[TX_SIZES][256];
int num_4x4_blks = 1 << (num_pels_log2_lookup[bs] - 4);
const aom_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
assert(skip_prob > 0);
s0 = av1_cost_bit(skip_prob, 0);
s1 = av1_cost_bit(skip_prob, 1);
if (tx_select) {
start_tx = max_tx_size;
end_tx = (max_tx_size == TX_32X32) ? TX_8X8 : TX_4X4;
} else {
const TX_SIZE chosen_tx_size =
AOMMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]);
start_tx = chosen_tx_size;
end_tx = chosen_tx_size;
}
*distortion = INT64_MAX;
*rate = INT_MAX;
*skip = 0;
*psse = INT64_MAX;
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
#if CONFIG_REF_MV
if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) continue;
#endif
last_rd = INT64_MAX;
for (n = start_tx; n >= end_tx; --n) {
int r_tx_size = 0;
for (m = 0; m <= n - (n == (int)max_tx_size); ++m) {
if (m == n)
r_tx_size += av1_cost_zero(tx_probs[m]);
else
r_tx_size += av1_cost_one(tx_probs[m]);
}
if (n >= TX_32X32 && tx_type != DCT_DCT) {
continue;
}
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x, &r, &d, &s, &sse, ref_best_rd, 0, bs, n,
cpi->sf.use_fast_coef_costing);
if (n < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
r != INT_MAX) {
if (is_inter)
r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
else
r += cpi->intra_tx_type_costs
[mbmi->tx_size][intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
if (r == INT_MAX) continue;
if (s) {
if (is_inter) {
rd = RDCOST(x->rdmult, x->rddiv, s1, sse);
} else {
rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, sse);
}
} else {
rd = RDCOST(x->rdmult, x->rddiv, r + s0 + r_tx_size * tx_select, d);
}
if (tx_select && !(s && is_inter)) r += r_tx_size;
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !s)
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, sse));
// Early termination in transform size search.
if (cpi->sf.tx_size_search_breakout &&
(rd == INT64_MAX || (s == 1 && tx_type != DCT_DCT && n < start_tx) ||
(n < (int)max_tx_size && rd > last_rd)))
break;
last_rd = rd;
if (rd <
(is_inter && best_tx_type == DCT_DCT ? ext_tx_th : 1) * best_rd) {
best_tx = n;
best_rd = rd;
*distortion = d;
*rate = r;
*skip = s;
*psse = sse;
best_tx_type = mbmi->tx_type;
memcpy(zcoeff_blk, x->zcoeff_blk[n], num_4x4_blks);
}
}
}
mbmi->tx_size = best_tx;
mbmi->tx_type = best_tx_type;
if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT);
if (best_tx < TX_SIZES)
memcpy(x->zcoeff_blk[best_tx], zcoeff_blk, num_4x4_blks);
}
static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skip, int64_t *psse,
BLOCK_SIZE bs, int64_t ref_best_rd) {
MACROBLOCKD *xd = &x->e_mbd;
int64_t sse;
int64_t *ret_sse = psse ? psse : &sse;
assert(bs == xd->mi[0]->mbmi.sb_type);
if (CONFIG_MISC_FIXES && xd->lossless[0]) {
choose_smallest_tx_size(cpi, x, rate, distortion, skip, ret_sse,
ref_best_rd, bs);
} else if (cpi->sf.tx_size_search_method == USE_LARGESTALL ||
xd->lossless[xd->mi[0]->mbmi.segment_id]) {
choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
bs);
} else {
choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
bs);
}
}
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D63_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D207_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D153_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int64_t rd_pick_intra4x4block(const AV1_COMP *const cpi, MACROBLOCK *x,
int row, int col,
PREDICTION_MODE *best_mode,
const int *bmode_costs, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l, int *bestrate,
int *bestratey, int64_t *bestdistortion,
BLOCK_SIZE bsize, int64_t rd_thresh) {
PREDICTION_MODE mode;
MACROBLOCKD *const xd = &x->e_mbd;
int64_t best_rd = rd_thresh;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
uint8_t best_dst[8 * 8];
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t best_dst16[8 * 8];
#endif
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
xd->mi[0]->mbmi.tx_size = TX_4X4;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff =
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
xd->mi[0]->bmi[block].as_mode = mode;
av1_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst,
dst_stride, col + idx, row + idy, 0);
aom_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst,
dst_stride, xd->bd);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
const scan_order *so = get_scan(TX_4X4, tx_type);
av1_highbd_fwd_txfm_4x4(src_diff, coeff, 8, DCT_DCT, 1);
av1_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], xd->bd,
DCT_DCT, 1);
} else {
int64_t unused;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
const scan_order *so = get_scan(TX_4X4, tx_type);
av1_highbd_fwd_txfm_4x4(src_diff, coeff, 8, tx_type, 0);
av1_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
distortion +=
av1_highbd_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
16, &unused, xd->bd) >>
2;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], xd->bd,
tx_type, 0);
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(best_dst16 + idy * 8,
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
}
next_highbd : {}
}
if (best_rd >= rd_thresh) return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
return best_rd;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff =
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
xd->mi[0]->bmi[block].as_mode = mode;
av1_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst,
dst_stride, col + idx, row + idy, 0);
aom_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
const scan_order *so = get_scan(TX_4X4, tx_type);
av1_fwd_txfm_4x4(src_diff, coeff, 8, DCT_DCT, 1);
av1_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], DCT_DCT, 1);
} else {
int64_t unused;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block);
const scan_order *so = get_scan(TX_4X4, tx_type);
av1_fwd_txfm_4x4(src_diff, coeff, 8, tx_type, 0);
av1_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
so->scan, so->neighbors,
cpi->sf.use_fast_coef_costing);
distortion += av1_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
16, &unused) >>
2;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], tx_type, 0);
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
num_4x4_blocks_wide * 4);
}
next : {}
}
if (best_rd >= rd_thresh) return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
num_4x4_blocks_wide * 4);
return best_rd;
}
static int64_t rd_pick_intra_sub_8x8_y_mode(const AV1_COMP *const cpi,
MACROBLOCK *mb, int *rate,
int *rate_y, int64_t *distortion,
int64_t best_rd) {
int i, j;
const MACROBLOCKD *const xd = &mb->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
int cost = 0;
int64_t total_distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
const int *bmode_costs = cpi->mbmode_cost;
#if CONFIG_EXT_INTRA
mic->mbmi.intra_angle_delta[0] = 0;
#endif // CONFIG_EXT_INTRA
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
PREDICTION_MODE best_mode = DC_PRED;
int r = INT_MAX, ry = INT_MAX;
int64_t d = INT64_MAX, this_rd = INT64_MAX;
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, i);
const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, i);
bmode_costs = cpi->y_mode_costs[A][L];
}
this_rd = rd_pick_intra4x4block(
cpi, mb, idy, idx, &best_mode, bmode_costs,
xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r,
&ry, &d, bsize, best_rd - total_rd);
if (this_rd >= best_rd - total_rd) return INT64_MAX;
total_rd += this_rd;
cost += r;
total_distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_high; ++j)
mic->bmi[i + j * 2].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_wide; ++j)
mic->bmi[i + j].as_mode = best_mode;
if (total_rd >= best_rd) return INT64_MAX;
}
}
*rate = cost;
*rate_y = tot_rate_y;
*distortion = total_distortion;
mic->mbmi.mode = mic->bmi[3].as_mode;
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
}
#if CONFIG_EXT_INTRA
static INLINE int write_uniform_cost(int n, int v) {
const int l = get_unsigned_bits(n), m = (1 << l) - n;
if (l == 0) return 0;
return (v < m) ? ((l - 1) * av1_cost_bit(128, 0))
: (l * av1_cost_bit(128, 0));
}
static int64_t pick_intra_angle_routine_sby(
const AV1_COMP *const cpi, MACROBLOCK *x, int8_t angle_delta,
int max_angle_delta, int *rate, int *rate_tokenonly, int64_t *distortion,
int *skippable, int8_t *best_angle_delta, TX_SIZE *best_tx_size,
TX_TYPE *best_tx_type, BLOCK_SIZE bsize, int mode_cost, int64_t *best_rd,
int64_t best_rd_in) {
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
mbmi->intra_angle_delta[0] = angle_delta;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
bsize, best_rd_in);
if (this_rate_tokenonly == INT_MAX) return INT64_MAX;
this_rate = this_rate_tokenonly + mode_cost +
write_uniform_cost(2 * max_angle_delta + 1,
mbmi->intra_angle_delta[0] + max_angle_delta);
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->intra_angle_delta[0];
*best_tx_size = mbmi->tx_size;
*best_tx_type = mbmi->tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
return this_rd;
}
static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int mode_cost,
int64_t best_rd) {
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
const int max_angle_delta =
av1_max_angle_delta_y[max_txsize_lookup[bsize]][mbmi->mode];
int i;
int8_t angle_delta, best_angle_delta = 0;
int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
TX_SIZE best_tx_size = mbmi->tx_size;
TX_TYPE best_tx_type = mbmi->tx_type;
for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
if (angle_delta > max_angle_delta) continue;
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
this_rd = pick_intra_angle_routine_sby(
cpi, x, (1 - 2 * i) * angle_delta, max_angle_delta, rate,
rate_tokenonly, distortion, skippable, &best_angle_delta,
&best_tx_size, &best_tx_type, bsize, mode_cost, &best_rd, best_rd_in);
rd_cost[2 * angle_delta + i] = this_rd;
if (angle_delta == 0) {
if (this_rd == INT64_MAX) return best_rd;
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
int skip_search;
int64_t rd_thresh;
if (angle_delta > max_angle_delta) continue;
for (i = 0; i < 2; ++i) {
skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
this_rd = pick_intra_angle_routine_sby(
cpi, x, (1 - 2 * i) * angle_delta, max_angle_delta, rate,
rate_tokenonly, distortion, skippable, &best_angle_delta,
&best_tx_size, &best_tx_type, bsize, mode_cost, &best_rd, best_rd);
}
}
}
mbmi->tx_size = best_tx_size;
mbmi->intra_angle_delta[0] = best_angle_delta;
mbmi->tx_type = best_tx_type;
return best_rd;
}
// Indices are sign, integer, and fractional part of the gradient value
static const uint8_t gradient_to_angle_bin[2][7][16] = {
{
{
6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0,
},
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
},
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
},
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
},
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
},
{
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
},
{
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
},
},
{
{
6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4,
},
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3,
},
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
},
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
},
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
},
{
3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2,
},
{
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
},
},
};
static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
};
// Use gradient analysis to calculate angle histogram. Prediction modes
// corresponding to angles of small percentage will be marked in the mask.
static void angle_estimation(const uint8_t *src, const int src_stride,
const int rows, const int cols,
uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
const int angle_skip_thresh = 10;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
int index = mode_to_angle_bin[i];
uint64_t score = 2 * hist[index];
int weight = 2;
if (index > 0) {
score += hist[index - 1];
weight += 1;
}
if (index < DIRECTIONAL_MODES - 1) {
score += hist[index + 1];
weight += 1;
}
if (score * angle_skip_thresh < hist_sum * weight) {
directional_mode_skip_mask[i] = 1;
}
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static void highbd_angle_estimation(const uint8_t *src8, const int src_stride,
const int rows, const int cols,
uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
const int angle_skip_thresh = 10;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
int index = mode_to_angle_bin[i];
uint64_t score = 2 * hist[index];
int weight = 2;
if (index > 0) {
score += hist[index - 1];
weight += 1;
}
if (index < DIRECTIONAL_MODES - 1) {
score += hist[index + 1];
weight += 1;
}
if (score * angle_skip_thresh < hist_sum * weight)
directional_mode_skip_mask[i] = 1;
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_EXT_INTRA
// This function is used only for intra_only frames
static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t best_rd) {
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE best_tx = TX_4X4;
#if CONFIG_EXT_INTRA
int8_t best_angle_delta = 0;
uint8_t directional_mode_skip_mask[INTRA_MODES];
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
#endif // CONFIG_EXT_INTRA
TX_TYPE best_tx_type = DCT_DCT;
const int *bmode_costs;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const PREDICTION_MODE A = av1_above_block_mode(xd->mi[0], above_mi, 0);
const PREDICTION_MODE L = av1_left_block_mode(xd->mi[0], left_mi, 0);
bmode_costs = cpi->y_mode_costs[A][L];
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
#if CONFIG_EXT_INTRA
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask);
#endif // CONFIG_EXT_INTRA
/* Y Search for intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
mbmi->mode = mode;
#if CONFIG_EXT_INTRA
if (is_directional_mode(mbmi->mode)) {
if (directional_mode_skip_mask[mbmi->mode]) continue;
this_rate_tokenonly = INT_MAX;
this_rd = rd_pick_intra_angle_sby(
cpi, x, &this_rate, &this_rate_tokenonly, &this_distortion, &s, bsize,
bmode_costs[mbmi->mode], best_rd);
} else {
mbmi->intra_angle_delta[0] = 0;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
bsize, best_rd);
}
#else
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
bsize, best_rd);
#endif // CONFIG_EXT_INTRA
if (this_rate_tokenonly == INT_MAX) continue;
this_rate = this_rate_tokenonly + bmode_costs[mode];
#if CONFIG_EXT_INTRA
if (is_directional_mode(mbmi->mode)) {
const int max_angle_delta =
av1_max_angle_delta_y[max_tx_size][mbmi->mode];
this_rate +=
write_uniform_cost(2 * max_angle_delta + 1,
max_angle_delta + mbmi->intra_angle_delta[0]);
}
#endif // CONFIG_EXT_INTRA
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = mbmi->tx_size;
best_tx_type = mbmi->tx_type;
#if CONFIG_EXT_INTRA
best_angle_delta = mbmi->intra_angle_delta[0];
#endif // CONFIG_EXT_INTRA
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
mbmi->mode = mode_selected;
mbmi->tx_size = best_tx;
mbmi->tx_type = best_tx_type;
#if CONFIG_EXT_INTRA
mbmi->intra_angle_delta[0] = best_angle_delta;
#endif // CONFIG_EXT_INTRA
return best_rd;
}
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skippable, int64_t *sse,
BLOCK_SIZE bsize, int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
int plane;
int pnrate = 0, pnskip = 1;
int64_t pndist = 0, pnsse = 0;
int is_cost_valid = 1;
if (ref_best_rd < 0) is_cost_valid = 0;
if (is_inter_block(mbmi) && is_cost_valid) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
av1_subtract_plane(x, bsize, plane);
}
*rate = 0;
*distortion = 0;
*sse = 0;
*skippable = 1;
if (is_cost_valid) {
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, plane,
bsize, uv_tx_size, cpi->sf.use_fast_coef_costing);
if (pnrate == INT_MAX) {
is_cost_valid = 0;
break;
}
*rate += pnrate;
*distortion += pndist;
*sse += pnsse;
*skippable &= pnskip;
}
}
if (!is_cost_valid) {
// reset cost value
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
}
return is_cost_valid;
}
#if CONFIG_EXT_INTRA
static int64_t pick_intra_angle_routine_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable, int8_t *best_angle_delta,
BLOCK_SIZE bsize, int rate_overhead, int64_t *best_rd, int64_t best_rd_in) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse, this_rd;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
&this_sse, bsize, best_rd_in))
return INT64_MAX;
this_rate = this_rate_tokenonly + rate_overhead;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->intra_angle_delta[1];
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
return this_rd;
}
static int rd_pick_intra_angle_sbuv(const AV1_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
int8_t angle_delta, best_angle_delta = 0;
int i;
*rate_tokenonly = INT_MAX;
*skippable = 0;
*distortion = INT64_MAX;
for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA_UV; angle_delta += 2) {
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
mbmi->intra_angle_delta[1] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(
cpi, x, rate, rate_tokenonly, distortion, skippable,
&best_angle_delta, bsize, rate_overhead, &best_rd, best_rd_in);
rd_cost[2 * angle_delta + i] = this_rd;
if (angle_delta == 0) {
if (this_rd == INT64_MAX) return 0;
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA_UV; angle_delta += 2) {
int skip_search;
int64_t rd_thresh;
for (i = 0; i < 2; ++i) {
skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
mbmi->intra_angle_delta[1] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(
cpi, x, rate, rate_tokenonly, distortion, skippable,
&best_angle_delta, bsize, rate_overhead, &best_rd, best_rd);
}
}
}
mbmi->intra_angle_delta[1] = best_angle_delta;
return *rate_tokenonly != INT_MAX;
}
#endif // CONFIG_EXT_INTRA
static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, BLOCK_SIZE bsize,
TX_SIZE max_tx_size) {
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
#if CONFIG_EXT_INTRA
int8_t best_angle_delta = 0;
int rate_overhead;
#endif // CONFIG_EXT_INTRA
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse;
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue;
mbmi->uv_mode = mode;
#if CONFIG_EXT_INTRA
rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] +
write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1, 0);
if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode(mbmi->uv_mode)) {
if (!rd_pick_intra_angle_sbuv(cpi, x, &this_rate, &this_rate_tokenonly,
&this_distortion, &s, bsize, rate_overhead,
best_rd))
continue;
rate_overhead =
cpi->intra_uv_mode_cost[mbmi->mode][mode] +
write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->intra_angle_delta[1]);
} else {
mbmi->intra_angle_delta[1] = 0;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
&this_sse, bsize, best_rd))
continue;
rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode];
}
this_rate = this_rate_tokenonly + rate_overhead;
#else
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
&this_sse, bsize, best_rd))
continue;
this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[mbmi->mode][mode];
#endif // CONFIG_EXT_INTRA
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
#if CONFIG_EXT_INTRA
best_angle_delta = mbmi->intra_angle_delta[1];
#endif // CONFIG_EXT_INTRA
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE);
}
}
mbmi->uv_mode = mode_selected;
#if CONFIG_EXT_INTRA
mbmi->intra_angle_delta[1] = best_angle_delta;
#endif // CONFIG_EXT_INTRA
return best_rd;
}
static int64_t rd_sbuv_dcpred(const AV1_COMP *cpi, MACROBLOCK *x, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, BLOCK_SIZE bsize) {
int64_t unused;
x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED;
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused,
bsize, INT64_MAX);
*rate = *rate_tokenonly +
cpi->intra_uv_mode_cost[x->e_mbd.mi[0]->mbmi.mode][DC_PRED];
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
TX_SIZE max_tx_size, int *rate_uv,
int *rate_uv_tokenonly, int64_t *dist_uv,
int *skip_uv, PREDICTION_MODE *mode_uv) {
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv,
skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
max_tx_size);
*mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
}
static int cost_mv_ref(const AV1_COMP *const cpi, PREDICTION_MODE mode,
int16_t mode_context) {
#if CONFIG_REF_MV
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET);
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = cpi->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = cpi->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (is_all_zero_mv) return mode_cost;
if (mode == ZEROMV) {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
#else
assert(is_inter_mode(mode));
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
#endif
}
static int set_and_cost_bmi_mvs(const AV1_COMP *const cpi, MACROBLOCK *x,
MACROBLOCKD *xd, int i, PREDICTION_MODE mode,
int_mv this_mv[2],
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int_mv seg_mvs[MAX_REF_FRAMES],
int_mv *best_ref_mv[2], const int *mvjcost,
int *mvcost[2]) {
MODE_INFO *const mic = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mic->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
int thismvcost = 0;
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
const int is_compound = has_second_ref(mbmi);
int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
switch (mode) {
case NEWMV:
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
if (is_compound) {
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
}
break;
case NEARMV:
case NEARESTMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
if (is_compound)
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
this_mv[0].as_int = 0;
if (is_compound) this_mv[1].as_int = 0;
break;
default: break;
}
mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
mic->bmi[i].as_mode = mode;
#if CONFIG_REF_MV
if (mode == NEWMV) {
mic->bmi[i].pred_mv[0].as_int =
mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int;
if (is_compound)
mic->bmi[i].pred_mv[1].as_int =
mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_int;
} else {
mic->bmi[i].pred_mv[0].as_int = this_mv[0].as_int;
if (is_compound) mic->bmi[i].pred_mv[1].as_int = this_mv[1].as_int;
}
#endif
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
#if CONFIG_REF_MV
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame,
mbmi->sb_type, i);
#endif
return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost;
}
static int64_t encode_inter_mb_segment(const AV1_COMP *const cpi, MACROBLOCK *x,
int64_t best_yrd, int i, int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
int ir, int ic, int mi_row, int mi_col) {
int k;
MACROBLOCKD *xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
int idx, idy;
void (*fwd_txm4x4)(const int16_t *input, tran_low_t *output, int stride);
const uint8_t *const src =
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
uint8_t *const dst =
&pd->dst.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i);
const scan_order *so = get_scan(TX_4X4, tx_type);
av1_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? av1_highbd_fwht4x4
: aom_highbd_fdct4x4;
} else {
fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? av1_fwht4x4 : aom_fdct4x4;
}
#else
fwd_txm4x4 = xd->lossless[mi->mbmi.segment_id] ? av1_fwht4x4 : aom_fdct4x4;
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(
height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
} else {
aom_subtract_block(height, width,
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
}
#else
aom_subtract_block(height, width,
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
#endif // CONFIG_AOM_HIGHBITDEPTH
k = i;
for (idy = 0; idy < height / 4; ++idy) {
for (idx = 0; idx < width / 4; ++idx) {
int64_t ssz, rd, rd1, rd2;
tran_low_t *coeff;
k += (idy * 2 + idx);
coeff = BLOCK_OFFSET(p->coeff, k);
fwd_txm4x4(av1_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
coeff, 8);
av1_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
thisdistortion += av1_highbd_block_error(
coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, xd->bd);
} else {
thisdistortion +=
av1_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz);
}
#else
thisdistortion +=
av1_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz);
#endif // CONFIG_AOM_HIGHBITDEPTH
thissse += ssz;
thisrate +=
cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
rd = AOMMIN(rd1, rd2);
if (rd >= best_yrd) return INT64_MAX;
}
}
*distortion = thisdistortion >> 2;
*labelyrate = thisrate;
*sse = thissse >> 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int eobs;
int brate;
int byrate;
int64_t bdist;
int64_t bsse;
int64_t brdcost;
int_mv mvs[2];
ENTROPY_CONTEXT ta[2];
ENTROPY_CONTEXT tl[2];
} SEG_RDSTAT;
typedef struct {
int_mv *ref_mv[2];
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int64_t sse;
int segment_yrate;
PREDICTION_MODE modes[4];
SEG_RDSTAT rdstat[4][INTER_MODES];
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
return (mv->row >> 3) < x->mv_row_min || (mv->row >> 3) > x->mv_row_max ||
(mv->col >> 3) < x->mv_col_min || (mv->col >> 3) > x->mv_col_max;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
p->src.buf =
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
pd->pre[0].buf =
&pd->pre[0].buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
if (has_second_ref(mbmi))
pd->pre[1].buf =
&pd->pre[1]
.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)];
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
static INLINE int mv_has_subpel(const MV *mv) {
return (mv->row & 0x0F) || (mv->col & 0x0F);
}
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
// TODO(aconverse): Find out if this is still productive then clean up or remove
static int check_best_zero_mv(const AV1_COMP *const cpi,
const int16_t mode_context[MAX_REF_FRAMES],
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int this_mode,
const MV_REFERENCE_FRAME ref_frames[2],
const BLOCK_SIZE bsize, int block) {
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
(ref_frames[1] == NONE ||
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
#if CONFIG_REF_MV
int16_t rfc =
av1_mode_context_analyzer(mode_context, ref_frames, bsize, block);
#else
int16_t rfc = mode_context[ref_frames[0]];
#endif
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
#if !CONFIG_REF_MV
(void)bsize;
(void)block;
#endif
if (this_mode == NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEARESTMV) {
if (c2 > c3) return 0;
} else {
assert(this_mode == ZEROMV);
if (ref_frames[1] == NONE) {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
return 0;
} else {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
return 0;
}
}
}
return 1;
}
static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row,
int mi_col, int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv, const int block) {
const AV1_COMMON *const cm = &cpi->common;
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int refs[2] = { mbmi->ref_frame[0],
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
int_mv ref_mv[2];
int ite, ref;
struct scale_factors sf;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
int last_besterr[2] = { INT_MAX, INT_MAX };
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
};
// Prediction buffer from second frame.
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]);
uint8_t *second_pred;
#else
DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]);
#endif // CONFIG_AOM_HIGHBITDEPTH
for (ref = 0; ref < 2; ++ref) {
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
if (scaled_ref_frame[ref]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL);
}
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
}
// Since we have scaled the reference frames to match the size of the current
// frame we must use a unit scaling factor during mode selection.
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height, cm->use_highbitdepth);
#else
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
MV tmp_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
// Get the prediction block from the 'other' reference frame.
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
av1_highbd_build_inter_predictor(
ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
&frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, &mbmi->interp_filter,
MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd);
} else {
second_pred = (uint8_t *)second_pred_alloc_16;
av1_build_inter_predictor(
ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
&frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, &mbmi->interp_filter,
MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE);
}
#else
av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf,
pw, ph, 0, &mbmi->interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Do compound motion search on the current reference frame.
if (id) xd->plane[0].pre[0] = ref_yv12[id];
av1_set_mv_search_range(x, &ref_mv[id].as_mv);
// Use the mv result from the single mode as mv predictor.
tmp_mv = frame_mv[refs[id]].as_mv;
tmp_mv.col >>= 3;
tmp_mv.row >>= 3;
#if CONFIG_REF_MV
av1_set_mvcost(x, refs[id], id, mbmi->ref_mv_idx);
#endif
// Small-range full-pixel motion search.
bestsme = av1_refining_search_8p_c(x, &tmp_mv, sadpb, search_range,
&cpi->fn_ptr[bsize], &ref_mv[id].as_mv,
second_pred);
if (bestsme < INT_MAX)
bestsme = av1_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
second_pred, &cpi->fn_ptr[bsize], 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
if (cpi->sf.use_upsampled_references) {
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, refs[id]);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3),
NULL, pd->subsampling_x, pd->subsampling_y);
// If bsize < BLOCK_8X8, adjust pred pointer for this block
if (bsize < BLOCK_8X8)
pd->pre[0].buf =
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, block,
pd->pre[0].stride))
<< 3];
bestsme = cpi->find_fractional_mv_step(
x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0,
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred, pw, ph, 1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
(void)block;
bestsme = cpi->find_fractional_mv_step(
x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0,
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred, pw, ph, 0);
}
}
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id) xd->plane[0].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_mv = tmp_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Restore the prediction frame pointers to their unscaled versions.
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
*rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
}
static int64_t rd_pick_best_sub8x8_mode(
const AV1_COMP *const cpi, MACROBLOCK *x, int_mv *best_ref_mv,
int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate,
int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse,
int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf,
int filter_idx, int mi_row, int mi_col) {
int i;
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
int mode_idx;
int k, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
PREDICTION_MODE this_mode;
const AV1_COMMON *cm = &cpi->common;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int segmentyrate = 0;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
ENTROPY_CONTEXT t_above[2], t_left[2];
int subpelmv = 1, have_ref = 0;
const int has_second_rf = has_second_ref(mbmi);
const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
av1_zero(*bsi);
bsi->segment_rd = best_rd;
bsi->ref_mv[0] = best_ref_mv;
bsi->ref_mv[1] = second_best_ref_mv;
bsi->mvp.as_int = best_ref_mv->as_int;
bsi->mvthresh = mvthresh;
for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV;
memcpy(t_above, pd->above_context, sizeof(t_above));
memcpy(t_left, pd->left_context, sizeof(t_left));
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT][2];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
PREDICTION_MODE mode_selected = ZEROMV;
int64_t best_rd = INT64_MAX;
const int i = idy * 2 + idx;
int ref;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
frame_mv[ZEROMV][frame].as_int = 0;
av1_append_sub8x8_mvs_for_idx(cm, xd, i, ref, mi_row, mi_col,
&frame_mv[NEARESTMV][frame],
&frame_mv[NEARMV][frame]);
}
// search for the best motion vector on this segment
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
mode_idx = INTER_OFFSET(this_mode);
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
if (!(inter_mode_mask & (1 << this_mode))) continue;
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv,
this_mode, mbmi->ref_frame, bsize, i))
continue;
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
sizeof(bsi->rdstat[i][mode_idx].ta));
memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
sizeof(bsi->rdstat[i][mode_idx].tl));
// motion search for newmv (single predictor case only)
if (!has_second_rf && this_mode == NEWMV &&
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) {
MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
int step_param = 0;
int bestsme = INT_MAX;
int sadpb = x->sadperbit4;
MV mvp_full;
int max_mv;
int cost_list[5];
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_rd < label_mv_thresh) break;
if (cpi->oxcf.mode != BEST) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
}
}
if (i == 0)
max_mv = x->max_mv_context[mbmi->ref_frame[0]];
else
max_mv =
AOMMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and the best ref mvs of the current block for
// the given reference.
step_param =
(av1_init_search_range(max_mv) + cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
mvp_full.row = bsi->mvp.as_mv.row >> 3;
mvp_full.col = bsi->mvp.as_mv.col >> 3;
if (cpi->sf.adaptive_motion_search) {
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
step_param = AOMMAX(step_param, 8);
}
// adjust src pointer for this block
mi_buf_shift(x, i);
av1_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
#endif
bestsme = av1_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, sadpb,
cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
&bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1);
if (bestsme < INT_MAX) {
int distortion;
if (cpi->sf.use_upsampled_references) {
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, mbmi->ref_frame[0]);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_stride, (mi_row << 3),
(mi_col << 3), NULL, pd->subsampling_x,
pd->subsampling_y);
// adjust pred pointer for this block
pd->pre[0].buf =
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, i,
pd->pre[0].stride))
<< 3];
cpi->find_fractional_mv_step(
x, new_mv, &bsi->ref_mv[0]->as_mv,
cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph,
1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
cpi->find_fractional_mv_step(
x, new_mv, &bsi->ref_mv[0]->as_mv,
cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0, 0);
}
// save motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame[0]].as_mv = *new_mv;
}
if (cpi->sf.adaptive_motion_search)
x->pred_mv[mbmi->ref_frame[0]] = *new_mv;
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
if (has_second_rf) {
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
continue;
}
if (has_second_rf && this_mode == NEWMV &&
mbmi->interp_filter == EIGHTTAP) {
// adjust src pointers
mi_buf_shift(x, i);
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row,
mi_col, seg_mvs[i], &rate_mv, i);
seg_mvs[i][mbmi->ref_frame[0]].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
seg_mvs[i][mbmi->ref_frame[1]].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs(
cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i],
bsi->ref_mv, x->nmvjointcost, x->mvcost);
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
bsi->rdstat[i][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
}
// Trap vectors that reach beyond the UMV borders
if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
(has_second_rf && mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
subpelmv = 0;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (!subpelmv && have_ref &&
ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
sizeof(SEG_RDSTAT));
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs =
ref_bsi->rdstat[i + 1][mode_idx].eobs;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs =
ref_bsi->rdstat[i + 2][mode_idx].eobs;
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
continue;
}
}
bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment(
cpi, x, bsi->segment_rd - this_segment_rd, i,
&bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist,
&bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta,
bsi->rdstat[i][mode_idx].tl, idy, idx, mi_row, mi_col);
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[i][mode_idx].brdcost +=
RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0);
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
}
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
} /*for each 4x4 mode*/
if (best_rd == INT64_MAX) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
mode_idx = INTER_OFFSET(mode_selected);
memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected],
frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
x->mvcost);
br += bsi->rdstat[i][mode_idx].brate;
bd += bsi->rdstat[i][mode_idx].bdist;
block_sse += bsi->rdstat[i][mode_idx].bsse;
segmentyrate += bsi->rdstat[i][mode_idx].byrate;
this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
if (this_segment_rd > bsi->segment_rd) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
}
} /* for each label */
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->sse = block_sse;
// update the coding decisions
for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode;
if (bsi->segment_rd > best_rd) return INT64_MAX;
/* set it to the best */
for (i = 0; i < 4; i++) {
mode_idx = INTER_OFFSET(bsi->modes[i]);
mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (has_second_ref(mbmi))
mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
mi->bmi[i].as_mode = bsi->modes[i];
}
/*
* used to set mbmi->mv.as_int
*/
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
*skippable = av1_is_skippable_in_plane(x, BLOCK_8X8, 0);
*psse = bsi->sse;
mbmi->mode = bsi->modes[3];
return bsi->segment_rd;
}
static void estimate_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
aom_prob *comp_mode_p) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
aom_prob intra_inter_p = av1_get_intra_inter_prob(cm, xd);
aom_prob comp_inter_p = 128;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
comp_inter_p = av1_get_reference_mode_prob(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = av1_cost_bit(intra_inter_p, 0);
if (cm->reference_mode != COMPOUND_REFERENCE) {
aom_prob ref_single_p1 = av1_get_pred_prob_single_ref_p1(cm, xd);
aom_prob ref_single_p2 = av1_get_pred_prob_single_ref_p2(cm, xd);
#if CONFIG_EXT_REFS
aom_prob ref_single_p3 = av1_get_pred_prob_single_ref_p3(cm, xd);
aom_prob ref_single_p4 = av1_get_pred_prob_single_ref_p4(cm, xd);
aom_prob ref_single_p5 = av1_get_pred_prob_single_ref_p5(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += av1_cost_bit(comp_inter_p, 0);
ref_costs_single[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] = ref_costs_single[LAST3_FRAME] =
ref_costs_single[BWDREF_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p3, 1);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p3, 1);
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p4, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p4, 1);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p5, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p5, 1);
#else
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_single[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] = 512;
ref_costs_single[LAST3_FRAME] = 512;
ref_costs_single[BWDREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->reference_mode != SINGLE_REFERENCE) {
#if CONFIG_EXT_REFS
aom_prob fwdref_comp_p = av1_get_pred_prob_comp_fwdref_p(cm, xd);
aom_prob fwdref_comp_p1 = av1_get_pred_prob_comp_fwdref_p1(cm, xd);
aom_prob fwdref_comp_p2 = av1_get_pred_prob_comp_fwdref_p2(cm, xd);
aom_prob bwdref_comp_p = av1_get_pred_prob_comp_bwdref_p(cm, xd);
#else
aom_prob ref_comp_p = av1_get_pred_prob_comp_ref_p(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += av1_cost_bit(comp_inter_p, 1);
ref_costs_comp[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] = ref_costs_comp[LAST3_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0;
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
ref_costs_comp[LAST_FRAME] += av1_cost_bit(fwdref_comp_p, 0);
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(fwdref_comp_p, 0);
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(fwdref_comp_p, 1);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(fwdref_comp_p, 1);
ref_costs_comp[LAST_FRAME] += av1_cost_bit(fwdref_comp_p1, 1);
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(fwdref_comp_p1, 0);
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(fwdref_comp_p2, 0);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(fwdref_comp_p2, 1);
// NOTE: BWDREF and ALTREF each add an extra cost by coding 1 more bit.
ref_costs_comp[BWDREF_FRAME] += av1_cost_bit(bwdref_comp_p, 0);
ref_costs_comp[ALTREF_FRAME] += av1_cost_bit(bwdref_comp_p, 1);
#else
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_comp[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] = 512;
ref_costs_comp[LAST3_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME] = 512;
ref_costs_comp[ALTREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(const MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
int64_t comp_pred_diff[REFERENCE_MODES],
int skippable) {
const MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->skippable = skippable;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
}
static void setup_buffer_inter(
const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size, int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE]) {
const AV1_COMMON *cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
assert(yv12 != NULL);
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
// Gets an initial list of candidate vectors from neighbours and orders them
av1_find_mv_refs(
cm, xd, mi, ref_frame,
#if CONFIG_REF_MV
&mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame],
#endif
candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context);
// Candidate refinement carried out at encoder and decoder
av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates,
&frame_nearest_mv[ref_frame],
&frame_near_mv[ref_frame]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (!av1_is_scaled(sf) && block_size >= BLOCK_8X8)
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
block_size);
}
static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
int ref = mbmi->ref_frame[0];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
av1_set_mv_search_range(x, &ref_mv);
#if CONFIG_REF_MV
av1_set_mvcost(x, ref, 0, mbmi->ref_mv_idx);
#endif
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param =
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
int boffset =
2 * (b_width_log2_lookup[BLOCK_64X64] -
AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = AOMMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5) step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[0] = backup_yv12[i];
}
return;
}
}
}
}
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list), &ref_mv,
&tmp_mv->as_mv, INT_MAX, 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
if (cpi->sf.use_upsampled_references) {
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3),
NULL, pd->subsampling_x, pd->subsampling_y);
bestsme = cpi->find_fractional_mv_step(
x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, 1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
cpi->find_fractional_mv_step(
x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0, 0);
}
}
*rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
x->mvcost, MV_COST_WEIGHT);
if (cpi->sf.adaptive_motion_search) x->pred_mv[ref] = tmp_mv->as_mv;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
}
static INLINE void restore_dst_buf(MACROBLOCKD *xd,
uint8_t *orig_dst[MAX_MB_PLANE],
int orig_dst_stride[MAX_MB_PLANE]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
}
// In some situations we want to discount tha pparent cost of a new motion
// vector. Where there is a subtle motion field and especially where there is
// low spatial complexity then it can be hard to cover the cost of a new motion
// vector in a single block, even if that motion vector reduces distortion.
// However, once established that vector may be usable through the nearest and
// near mv modes to reduce distortion in subsequent blocks and also improve
// visual quality.
static int discount_newmv_test(const AV1_COMP *const cpi, int this_mode,
int_mv this_mv,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int ref_frame) {
return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) &&
(this_mv.as_int != 0) &&
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
}
#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
}
static int64_t handle_inter_mode(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2,
int64_t *distortion, int *skippable, int *rate_y, int *rate_uv,
int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row,
int mi_col,
#if CONFIG_MOTION_VAR
uint8_t *above_pred_buf[3], int above_pred_stride[3],
uint8_t *left_pred_buf[3], int left_pred_stride[3],
#endif // CONFIG_MOTION_VAR
int_mv single_newmv[MAX_REF_FRAMES],
InterpFilter (*single_filter)[MAX_REF_FRAMES],
int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse,
const int64_t ref_best_rd) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const int is_comp_pred = has_second_ref(mbmi);
const int this_mode = mbmi->mode;
int_mv *frame_mv = mode_mv[this_mode];
int i;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv cur_mv[2];
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]);
uint8_t *tmp_buf;
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int64_t rd = INT64_MAX;
uint8_t *orig_dst[MAX_MB_PLANE];
int orig_dst_stride[MAX_MB_PLANE];
uint8_t *tmp_dst[MAX_MB_PLANE];
int tmp_dst_stride[MAX_MB_PLANE];
InterpFilter assign_filter = SWITCHABLE;
uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 };
int64_t bsse[MAX_MB_PLANE << 2] = { 0 };
int bsl = mi_width_log2_lookup[bsize];
int pred_filter_search =
cpi->sf.cb_pred_filter_search
? (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) &
0x1
: 0;
int skip_txfm_sb = 0;
int64_t skip_sse_sb = INT64_MAX;
int64_t distortion_y = 0, distortion_uv = 0;
int16_t mode_ctx = mbmi_ext->mode_context[refs[0]];
#if CONFIG_MOTION_VAR
int allow_motion_variation = is_motion_variation_allowed(mbmi);
int rate2_nocoeff, best_rate2 = INT_MAX, best_skippable, best_xskip,
best_disable_skip = 0;
int64_t best_distortion = INT64_MAX;
MB_MODE_INFO best_mbmi;
#endif // CONFIG_MOTION_VAR
int tmp_rate;
int64_t tmp_dist;
int rs;
#if CONFIG_REF_MV
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame,
bsize, -1);
#endif
if (this_mode == NEWMV) {
int rate_mv;
if (is_comp_pred) {
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col,
single_newmv, &rate_mv, 0);
} else {
#if CONFIG_REF_MV
for (i = 0; i < 2; ++i) {
if (!av1_use_mv_hp(&x->mbmi_ext->ref_mvs[refs[i]][0].as_mv)) {
MV *this_mv = &frame_mv[refs[i]].as_mv;
if (this_mv->row & 1) this_mv->row += (this_mv->row > 0 ? -1 : 1);
if (this_mv->col & 1) this_mv->col += (this_mv->col > 0 ? -1 : 1);
}
}
#endif
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
rate_mv += av1_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
*rate2 += rate_mv;
} else {
int_mv tmp_mv;
single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv);
if (tmp_mv.as_int == INVALID_MV) return INT64_MAX;
frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int =
tmp_mv.as_int;
single_newmv[refs[0]].as_int = tmp_mv.as_int;
// Estimate the rate implications of a new mv but discount this
// under certain circumstances where we want to help initiate a weak
// motion field, where the distortion gain for a single block may not
// be enough to overcome the cost of a new mv.
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
*rate2 += AOMMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
} else {
*rate2 += rate_mv;
}
}
}
for (i = 0; i < is_comp_pred + 1; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
#if CONFIG_REF_MV
if (this_mode == NEARESTMV && is_comp_pred) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
for (i = 0; i < 2; ++i) {
lower_mv_precision(&cur_mv[i].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
if (this_mode == NEARMV && is_comp_pred) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const int ref_mv_idx = mbmi->ref_mv_idx + 1;
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
for (i = 0; i < 2; ++i) {
lower_mv_precision(&cur_mv[i].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
#endif
// do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
} else {
tmp_buf = (uint8_t *)tmp_buf16;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
for (i = 0; i < MAX_MB_PLANE; i++) {
tmp_dst[i] = tmp_buf + i * 64 * 64;
tmp_dst_stride[i] = 64;
}
for (i = 0; i < MAX_MB_PLANE; i++) {
orig_dst[i] = xd->plane[i].dst.buf;
orig_dst_stride[i] = xd->plane[i].dst.stride;
}
// We don't include the cost of the second reference here, because there
// are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
// words if you present them in that order, the second one is always known
// if the first is known.
//
// Under some circumstances we discount the cost of new mv mode to encourage
// initiation of a motion field.
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, refs[0]))
*rate2 += AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx),
cost_mv_ref(cpi, NEARESTMV, mode_ctx));
else
*rate2 += cost_mv_ref(cpi, this_mode, mode_ctx);
if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
mbmi->mode != NEARESTMV)
return INT64_MAX;
if (cm->interp_filter == SWITCHABLE) {
if (pred_filter_search) {
InterpFilter af = SWITCHABLE, lf = SWITCHABLE;
if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter;
if (this_mode != NEWMV || af == lf) assign_filter = af;
}
if (is_comp_pred) {
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV) {
return INT64_MAX;
}
if (cpi->sf.adaptive_mode_search) {
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]]) {
assign_filter = single_filter[this_mode][refs[0]];
}
}
}
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
assign_filter = EIGHTTAP;
}
#if CONFIG_EXT_INTERP
if (!is_interp_needed(xd)) assign_filter = EIGHTTAP;
#endif
} else {
assign_filter = cm->interp_filter;
}
mbmi->interp_filter = assign_filter == SWITCHABLE ? EIGHTTAP : assign_filter;
rs = av1_get_switchable_rate(cpi, xd);
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb,
&skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
memcpy(bsse, x->bsse, sizeof(bsse));
if (assign_filter == SWITCHABLE) {
// do interp_filter search
if (is_interp_needed(xd)) {
InterpFilter best_filter = mbmi->interp_filter;
int best_in_temp = 0;
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
for (i = EIGHTTAP + 1; i < SWITCHABLE_FILTERS; ++i) {
int tmp_skip_sb = 0;
int64_t tmp_skip_sse = INT64_MAX;
int64_t tmp_rd;
int tmp_rs;
mbmi->interp_filter = i;
tmp_rs = av1_get_switchable_rate(cpi, xd);
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &tmp_skip_sb,
&tmp_skip_sse);
tmp_rd = RDCOST(x->rdmult, x->rddiv, tmp_rs + tmp_rate, tmp_dist);
if (tmp_rd < rd) {
rd = tmp_rd;
best_filter = mbmi->interp_filter;
skip_txfm_sb = tmp_skip_sb;
skip_sse_sb = tmp_skip_sse;
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
memcpy(bsse, x->bsse, sizeof(bsse));
best_in_temp = !best_in_temp;
if (best_in_temp) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
} else {
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
}
}
}
if (best_in_temp) {
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
} else {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
}
mbmi->interp_filter = best_filter;
} else {
#if !CONFIG_EXT_INTERP
int best_rs = av1_get_switchable_rate(cpi, xd);
int tmp_rs;
InterpFilter best_filter = mbmi->interp_filter;
for (i = 1; i < SWITCHABLE_FILTERS; ++i) {
mbmi->interp_filter = i;
tmp_rs = av1_get_switchable_rate(cpi, xd);
if (tmp_rs < best_rs) {
best_rs = tmp_rs;
best_filter = i;
}
}
mbmi->interp_filter = best_filter;
#else
assert(0);
#endif
}
}
if (cm->interp_filter != SWITCHABLE)
assert(cm->interp_filter == mbmi->interp_filter);
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter;
if (cpi->sf.adaptive_mode_search)
if (is_comp_pred)
if (single_skippable[this_mode][refs[0]] &&
single_skippable[this_mode][refs[1]])
memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm));
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
*rate2 += av1_get_switchable_rate(cpi, xd);
#if CONFIG_MOTION_VAR
rate2_nocoeff = *rate2;
#endif // CONFIG_MOTION_VAR
memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm));
memcpy(x->bsse, bsse, sizeof(bsse));
#if CONFIG_MOTION_VAR
rd = INT64_MAX;
for (mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->motion_mode < (allow_motion_variation ? MOTION_MODES : 1);
mbmi->motion_mode++) {
int64_t tmp_rd, tmp_dist;
int tmp_rate;
int tmp_rate2 = rate2_nocoeff;
if (mbmi->motion_mode == OBMC_CAUSAL) {
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, 0, NULL, NULL,
above_pred_buf, above_pred_stride,
left_pred_buf, left_pred_stride);
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb,
&skip_sse_sb);
}
x->skip = 0;
*rate2 = tmp_rate2;
if (allow_motion_variation)
*rate2 += cpi->motion_mode_cost[bsize][mbmi->motion_mode];
*distortion = 0;
#endif // CONFIG_MOTION_VAR
if (!skip_txfm_sb) {
int skippable_y, skippable_uv;
int64_t sseuv = INT64_MAX;
int64_t rdcosty = INT64_MAX;
// Y cost and distortion
av1_subtract_plane(x, bsize, 0);
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize,
ref_best_rd);
if (*rate_y == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode != SIMPLE_TRANSLATION) {
continue;
} else {
#endif // CONFIG_MOTION_VAR
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
#if CONFIG_MOTION_VAR
}
#endif // CONFIG_MOTION_VAR
}
*rate2 += *rate_y;
*distortion += distortion_y;
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
&sseuv, bsize, ref_best_rd - rdcosty)) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
#if CONFIG_MOTION_VAR
continue;
#else
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
#endif // CONFIG_MOTION_VAR
}
*psse += sseuv;
*rate2 += *rate_uv;
*distortion += distortion_uv;
*skippable = skippable_y && skippable_uv;
#if CONFIG_MOTION_VAR
if (*skippable) {
*rate2 -= *rate_uv + *rate_y;
*rate_y = 0;
*rate_uv = 0;
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
mbmi->skip = 0;
// here mbmi->skip temporarily plays a role as what this_skip2 does
} else if (!xd->lossless[mbmi->segment_id] &&
(RDCOST(x->rdmult, x->rddiv,
*rate_y + *rate_uv +
av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
*distortion) >=
RDCOST(x->rdmult, x->rddiv,
av1_cost_bit(av1_get_skip_prob(cm, xd), 1), *psse))) {
*rate2 -= *rate_uv + *rate_y;
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
*distortion = *psse;
*rate_y = 0;
*rate_uv = 0;
mbmi->skip = 1;
} else {
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
mbmi->skip = 0;
}
*disable_skip = 0;
#endif // CONFIG_MOTION_VAR
} else {
x->skip = 1;
*disable_skip = 1;
#if CONFIG_MOTION_VAR
mbmi->skip = 0;
#endif // CONFIG_MOTION_VAR
// The cost of skip bit needs to be added.
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
*distortion = skip_sse_sb;
}
#if CONFIG_MOTION_VAR
tmp_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
if (mbmi->motion_mode == SIMPLE_TRANSLATION || (tmp_rd < rd)) {
best_mbmi = *mbmi;
rd = tmp_rd;
best_rate2 = *rate2;
best_distortion = *distortion;
best_skippable = *skippable;
best_xskip = x->skip;
best_disable_skip = *disable_skip;
}
}
if (rd == INT64_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
*mbmi = best_mbmi;
*rate2 = best_rate2;
*distortion = best_distortion;
*skippable = best_skippable;
x->skip = best_xskip;
*disable_skip = best_disable_skip;
#endif // CONFIG_MOTION_VAR
if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return 0; // The rate-distortion cost will be re-calculated by caller.
}
void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = xd->plane;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip = 0;
int64_t dist_y = 0, dist_uv = 0;
TX_SIZE max_uv_tx_size;
ctx->skip = 0;
xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
xd->mi[0]->mbmi.ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
&y_skip, bsize, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
} else {
y_skip = 0;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
}
max_uv_tx_size = get_uv_tx_size_impl(
xd->mi[0]->mbmi.tx_size, bsize, pd[1].subsampling_x, pd[1].subsampling_y);
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv,
&uv_skip, AOMMAX(BLOCK_8X8, bsize), max_uv_tx_size);
if (y_skip && uv_skip) {
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
rd_cost->dist = dist_y + dist_uv;
} else {
rd_cost->rate =
rate_y + rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
rd_cost->dist = dist_y + dist_uv;
}
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
}
// This function is designed to apply a bias or adjustment to an rd value based
// on the relative variance of the source and reconstruction.
#define LOW_VAR_THRESH 16
#define VLOW_ADJ_MAX 25
#define VHIGH_ADJ_MAX 8
static void rd_variance_adjustment(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int64_t *this_rd,
MV_REFERENCE_FRAME ref_frame,
unsigned int source_variance) {
MACROBLOCKD *const xd = &x->e_mbd;
unsigned int recon_variance;
unsigned int absvar_diff = 0;
int64_t var_error = 0;
int64_t var_factor = 0;
if (*this_rd == INT64_MAX) return;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
recon_variance = av1_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
bsize, xd->bd);
} else {
recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
if ((source_variance + recon_variance) > LOW_VAR_THRESH) {
absvar_diff = (source_variance > recon_variance)
? (source_variance - recon_variance)
: (recon_variance - source_variance);
var_error = ((int64_t)200 * source_variance * recon_variance) /
(((int64_t)source_variance * source_variance) +
((int64_t)recon_variance * recon_variance));
var_error = 100 - var_error;
}
// Source variance above a threshold and ref frame is intra.
// This case is targeted mainly at discouraging intra modes that give rise
// to a predictor with a low spatial complexity compared to the source.
if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
(source_variance > recon_variance)) {
var_factor = AOMMIN(absvar_diff, AOMMIN(VLOW_ADJ_MAX, var_error));
// A second possible case of interest is where the source variance
// is very low and we wish to discourage false texture or motion trails.
} else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
(recon_variance > source_variance)) {
var_factor = AOMMIN(absvar_diff, AOMMIN(VHIGH_ADJ_MAX, var_error));
}
*this_rd += (*this_rd * var_factor) / 100;
}
// Do we have an internal image edge (e.g. formatting bars).
int av1_internal_image_edge(const AV1_COMP *cpi) {
return (cpi->oxcf.pass == 2) &&
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge = AOMMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge = AOMMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
// Checks to see if a super block is at the edge of the active image.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) {
return av1_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) ||
av1_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE);
}
void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const RD_OPT *const rd_opt = &cpi->rd;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const struct segmentation *const seg = &cm->seg;
PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i, k;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE];
int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
InterpFilter single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
static const int flag_list[REFS_PER_FRAME + 1] = {
0,
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
MB_MODE_INFO best_mbmode;
#if CONFIG_REF_MV
int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
#endif
int best_mode_skippable = 0;
int midx, best_mode_index = -1;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
aom_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
unsigned int best_pred_sse = UINT_MAX;
PREDICTION_MODE best_intra_mode = DC_PRED;
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
int64_t dist_uv[TX_SIZES];
int skip_uv[TX_SIZES];
PREDICTION_MODE mode_uv[TX_SIZES];
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
int best_skip2 = 0;
uint8_t ref_frame_skip_mask[2] = { 0 };
uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
int mode_skip_start = sf->mode_skip_start + 1;
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
int64_t mode_threshold[MAX_MODES];
int *mode_map = tile_data->mode_map[bsize];
const int mode_search_skip_flags = sf->mode_search_skip_flags;
#if CONFIG_EXT_INTRA
int angle_stats_ready = 0;
int8_t uv_angle_delta[TX_SIZES];
uint8_t directional_mode_skip_mask[INTRA_MODES];
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
#endif // CONFIG_EXT_INTRA
#if CONFIG_MOTION_VAR
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_SB_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_SB_SQUARE;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTRA
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#endif // CONFIG_EXT_INTRA
av1_zero(best_mbmode);
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX;
for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = 0; i < MB_MODE_COUNT; ++i) {
for (k = 0; k < MAX_REF_FRAMES; ++k) {
single_inter_filter[i][k] = SWITCHABLE;
single_skippable[i][k] = 0;
}
}
rd_cost->rate = INT_MAX;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
x->mbmi_ext->mode_context[ref_frame] = 0;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
#if CONFIG_REF_MV
for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
x->mbmi_ext->mode_context[ref_frame] = 0;
av1_find_mv_refs(cm, xd, mi, ref_frame, &mbmi_ext->ref_mv_count[ref_frame],
mbmi_ext->ref_mv_stack[ref_frame], candidates, mi_row,
mi_col, NULL, NULL, mbmi_ext->mode_context);
if (mbmi_ext->ref_mv_count[ref_frame] < 2) {
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
if (mbmi_ext->ref_mvs[rf[0]][0].as_int != 0 ||
mbmi_ext->ref_mvs[rf[0]][1].as_int != 0 ||
mbmi_ext->ref_mvs[rf[1]][0].as_int != 0 ||
mbmi_ext->ref_mvs[rf[1]][1].as_int != 0)
mbmi_ext->mode_context[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET);
}
}
#endif
#if CONFIG_MOTION_VAR
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_stride2);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
#endif // CONFIG_MOTION_VAR
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
// Skip checking missing references in both single and compound reference
// modes. Note that a mode will be skipped iff both reference frames
// are masked out.
#if CONFIG_EXT_REFS
if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01);
} else {
#endif // CONFIG_EXT_REFS
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#if CONFIG_EXT_REFS
}
#endif // CONFIG_EXT_REFS
} else {
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
break;
}
}
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
}
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
ref_frame_skip_mask[0] = (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (sf->alt_ref_search_fp) {
mode_skip_mask[ALTREF_FRAME] = 0;
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
}
}
if (sf->alt_ref_search_fp)
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
if (sf->adaptive_mode_search) {
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
cpi->rc.frames_since_golden >= 3)
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
}
if (bsize > sf->max_intra_bsize) {
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
}
mode_skip_mask[INTRA_FRAME] |=
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0;
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
midx = sf->schedule_mode_search ? mode_skip_start : 0;
while (midx > 4) {
uint8_t end_pos = 0;
for (i = 5; i < midx; ++i) {
if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
uint8_t tmp = mode_map[i];
mode_map[i] = mode_map[i - 1];
mode_map[i - 1] = tmp;
end_pos = i;
}
}
midx = end_pos;
}
for (midx = 0; midx < MAX_MODES; ++midx) {
int mode_index = mode_map[midx];
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int this_skip2 = 0;
int64_t total_sse = INT64_MAX;
#if CONFIG_REF_MV
uint8_t ref_frame_type;
#endif
this_mode = av1_mode_order[mode_index].mode;
ref_frame = av1_mode_order[mode_index].ref_frame[0];
second_ref_frame = av1_mode_order[mode_index].ref_frame[1];
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
#endif
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (midx == mode_skip_start && best_mode_index >= 0) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK;
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
continue;
if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue;
// Test best rd so far against threshold for trying this mode.
if (best_mode_skippable && sf->schedule_mode_search)
mode_threshold[mode_index] <<= 1;
if (best_rd < mode_threshold[mode_index]) continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
// Skip compound inter modes if ARF is not available.
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
} else {
if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
}
if (ref_frame == INTRA_FRAME) {
if (sf->adaptive_mode_search)
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
continue;
if (this_mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
continue;
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(this_mode, best_intra_mode)) continue;
}
}
} else {
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame };
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode,
ref_frames, bsize, -1))
continue;
}
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
#if CONFIG_MOTION_VAR
mbmi->motion_mode = SIMPLE_TRANSLATION;
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTRA
mbmi->intra_angle_delta[0] = 0;
#endif // CONFIG_EXT_INTRA
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
struct macroblockd_plane *const pd = &xd->plane[1];
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
#if CONFIG_EXT_INTRA
if (is_directional_mode(mbmi->mode)) {
int rate_dummy;
if (!angle_stats_ready) {
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
angle_stats_ready = 1;
}
if (directional_mode_skip_mask[mbmi->mode]) continue;
rate_y = INT_MAX;
this_rd = rd_pick_intra_angle_sby(
cpi, x, &rate_dummy, &rate_y, &distortion_y, &skippable, bsize,
cpi->mbmode_cost[mbmi->mode], best_rd);
} else {
mbmi->intra_angle_delta[0] = 0;
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
best_rd);
}
#else
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
best_rd);
#endif // CONFIG_EXT_INTRA
if (rate_y == INT_MAX) continue;
uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize, pd->subsampling_x,
pd->subsampling_y);
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx],
&skip_uv[uv_tx], &mode_uv[uv_tx]);
#if CONFIG_EXT_INTRA
uv_angle_delta[uv_tx] = mbmi->intra_angle_delta[1];
#endif // CONFIG_EXT_INTRA
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
#if CONFIG_EXT_INTRA
mbmi->intra_angle_delta[1] = uv_angle_delta[uv_tx];
#endif // CONFIG_EXT_INTRA
rate2 = rate_y + cpi->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
if (this_mode != DC_PRED && this_mode != TM_PRED)
rate2 += intra_cost_penalty;
#if CONFIG_EXT_INTRA
if (is_directional_mode(mbmi->mode)) {
const int max_angle_delta =
av1_max_angle_delta_y[max_tx_size][mbmi->mode];
rate2 +=
write_uniform_cost(2 * max_angle_delta + 1,
max_angle_delta + mbmi->intra_angle_delta[0]);
}
#endif // CONFIG_EXT_INTRA
distortion2 = distortion_y + distortion_uv;
av1_encode_intra_block_plane(x, bsize, 0);
} else {
#if CONFIG_REF_MV
int_mv backup_ref_mv[2];
backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0];
if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0];
mbmi->ref_mv_idx = 0;
ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (this_mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
int ref;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv =
(ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv
: mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
}
#endif
this_rd = handle_inter_mode(cpi, x, bsize, &rate2, &distortion2,
&skippable, &rate_y, &rate_uv, &disable_skip,
frame_mv, mi_row, mi_col,
#if CONFIG_MOTION_VAR
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
#endif // CONFIG_MOTION_VAR
single_newmv, single_inter_filter,
single_skippable, &total_sse, best_rd);
#if CONFIG_REF_MV
if ((mbmi->mode == NEARMV &&
mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
(mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1)) {
int_mv backup_mv = frame_mv[NEARMV][ref_frame];
MB_MODE_INFO backup_mbmi = *mbmi;
int backup_skip = x->skip;
uint8_t backup_zcoeff_blk[256];
int64_t tmp_ref_rd = this_rd;
int ref_idx;
// TODO(jingning): This should be deprecated shortly.
int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0;
int ref_set =
AOMMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset);
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset);
// Dummy
int_mv backup_fmv[2];
backup_fmv[0] = frame_mv[NEWMV][ref_frame];
if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame];
memcpy(backup_zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
sizeof(backup_zcoeff_blk[0]) * ctx->num_4x4_blk);
rate2 += cpi->drl_mode_cost[drl_ctx][0];
if (this_rd < INT64_MAX) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0,
distortion2) <
RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse))
tmp_ref_rd =
RDCOST(x->rdmult, x->rddiv, rate2 + rate_skip0, distortion2);
else
tmp_ref_rd =
RDCOST(x->rdmult, x->rddiv,
rate2 + rate_skip1 - rate_y - rate_uv, total_sse);
}
for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) {
int64_t tmp_alt_rd = INT64_MAX;
int tmp_rate = 0, tmp_rate_y = 0, tmp_rate_uv = 0;
int tmp_skip = 1;
int64_t tmp_dist = 0, tmp_sse = 0;
int dummy_disable_skip = 0;
int ref;
int_mv cur_mv;
mbmi->ref_mv_idx = 1 + ref_idx;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv =
(ref == 0)
? mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.this_mv
: mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
cur_mv =
mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset]
.this_mv;
lower_mv_precision(&cur_mv.as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv.as_mv, xd);
if (!mv_check_bounds(x, &cur_mv.as_mv)) {
int dummy_single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
int_mv dummy_single_newmv[MAX_REF_FRAMES] = { { 0 } };
frame_mv[NEARMV][ref_frame] = cur_mv;
tmp_alt_rd = handle_inter_mode(
cpi, x, bsize, &tmp_rate, &tmp_dist, &tmp_skip, &tmp_rate_y,
&tmp_rate_uv, &dummy_disable_skip, frame_mv, mi_row, mi_col,
#if CONFIG_MOTION_VAR
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
#endif // CONFIG_MOTION_VAR
dummy_single_newmv, single_inter_filter, dummy_single_skippable,
&tmp_sse, best_rd);
}
for (i = 0; i < mbmi->ref_mv_idx; ++i) {
uint8_t drl1_ctx = 0;
drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
i + idx_offset);
tmp_rate += cpi->drl_mode_cost[drl1_ctx][1];
}
if (mbmi_ext->ref_mv_count[ref_frame_type] >
mbmi->ref_mv_idx + idx_offset + 1 &&
ref_idx < ref_set - 1) {
uint8_t drl1_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
mbmi->ref_mv_idx + idx_offset);
tmp_rate += cpi->drl_mode_cost[drl1_ctx][0];
}
if (tmp_alt_rd < INT64_MAX) {
#if CONFIG_MOTION_VAR
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate, tmp_dist);
#else
if (RDCOST(x->rdmult, x->rddiv,
tmp_rate_y + tmp_rate_uv + rate_skip0, tmp_dist) <
RDCOST(x->rdmult, x->rddiv, rate_skip1, tmp_sse))
tmp_alt_rd =
RDCOST(x->rdmult, x->rddiv, tmp_rate + rate_skip0, tmp_dist);
else
tmp_alt_rd = RDCOST(
x->rdmult, x->rddiv,
tmp_rate + rate_skip1 - tmp_rate_y - tmp_rate_uv, tmp_sse);
#endif // CONFIG_MOTION_VAR
}
if (tmp_ref_rd > tmp_alt_rd) {
rate2 = tmp_rate;
distortion2 = tmp_dist;
skippable = tmp_skip;
disable_skip = dummy_disable_skip;
rate_y = tmp_rate_y;
rate_uv = tmp_rate_uv;
total_sse = tmp_sse;
this_rd = tmp_alt_rd;
mbmi->ref_mv_idx = 1 + ref_idx;
tmp_ref_rd = tmp_alt_rd;
backup_mbmi = *mbmi;
backup_skip = x->skip;
memcpy(backup_zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
sizeof(backup_zcoeff_blk[0]) * ctx->num_4x4_blk);
} else {
*mbmi = backup_mbmi;
x->skip = backup_skip;
memcpy(x->zcoeff_blk[mbmi->tx_size], backup_zcoeff_blk,
sizeof(backup_zcoeff_blk[0]) * ctx->num_4x4_blk);
}
}
frame_mv[NEARMV][ref_frame] = backup_mv;
frame_mv[NEWMV][ref_frame] = backup_fmv[0];
if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1];
}
mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0];
if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1];
#endif
if (this_rd == INT64_MAX) continue;
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (comp_pred) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
#if CONFIG_MOTION_VAR
if (ref_frame == INTRA_FRAME) {
#else
if (!disable_skip) {
#endif // CONFIG_MOTION_VAR
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// Cost the skip mb case
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
} else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
#if CONFIG_REF_MV
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0,
distortion2) <
RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse)) {
#else
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
#endif
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
#if CONFIG_MOTION_VAR
} else {
this_skip2 = mbmi->skip;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
#endif // CONFIG_MOTION_VAR
}
// Apply an adjustment to the rd value based on the similarity of the
// source variance and reconstructed variance.
rd_variance_adjustment(cpi, x, bsize, &this_rd, ref_frame,
x->source_variance);
if (ref_frame == INTRA_FRAME) {
// Keep record of best intra rd
if (this_rd < best_intra_rd) {
best_intra_rd = this_rd;
best_intra_mode = mbmi->mode;
}
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
int max_plane = MAX_MB_PLANE;
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
max_plane = 1;
} else {
best_pred_sse = x->pred_sse[ref_frame];
}
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = this_skip2;
best_mode_skippable = skippable;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred) {
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (x->skip && !comp_pred) break;
}
// The inter modes' rate costs are not calculated precisely in some cases.
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
// ZEROMV. Here, checks are added for those cases, and the mode decisions
// are corrected.
if (best_mbmode.mode == NEWMV) {
const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1] };
int comp_pred_mode = refs[1] > INTRA_FRAME;
#if CONFIG_REF_MV
const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame);
if (!comp_pred_mode) {
int i;
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
: INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
lower_mv_precision(&cur_mv.as_mv, cm->allow_high_precision_mv);
if (cur_mv.as_int == best_mbmode.mv[0].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int)
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == 0)
best_mbmode.mode = ZEROMV;
} else {
int i;
const int allow_hp = cm->allow_high_precision_mv;
int_mv nearestmv[2] = { frame_mv[NEARESTMV][refs[0]],
frame_mv[NEARESTMV][refs[1]] };
int_mv nearmv[2] = { frame_mv[NEARMV][refs[0]],
frame_mv[NEARMV][refs[1]] };
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
: INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv;
lower_mv_precision(&nearmv[0].as_mv, allow_hp);
lower_mv_precision(&nearmv[1].as_mv, allow_hp);
if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
if (mbmi_ext->ref_mv_count[rf_type] >= 1) {
nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv;
nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv;
}
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) {
lower_mv_precision(&nearestmv[i].as_mv, allow_hp);
lower_mv_precision(&nearmv[i].as_mv, allow_hp);
}
if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZEROMV;
}
#else
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARESTMV;
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARMV;
else if (best_mbmode.mv[0].as_int == 0 &&
((comp_pred_mode && best_mbmode.mv[1].as_int == 0) ||
!comp_pred_mode))
best_mbmode.mode = ZEROMV;
#endif
}
#if CONFIG_REF_MV
if (best_mbmode.ref_frame[0] > INTRA_FRAME && best_mbmode.mv[0].as_int == 0 &&
(best_mbmode.ref_frame[1] == NONE || best_mbmode.mv[1].as_int == 0)) {
int8_t ref_frame_type = av1_ref_frame_type(best_mbmode.ref_frame);
int16_t mode_ctx = mbmi_ext->mode_context[ref_frame_type];
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) best_mbmode.mode = ZEROMV;
}
#endif
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
if (!cpi->rc.is_src_frame_alt_ref)
av1_update_rd_thresh_fact(tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_mode_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
#if CONFIG_REF_MV
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
if (mbmi->mode != NEWMV)
mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int;
else
mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int;
}
#endif
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
x->skip |= best_mode_skippable;
if (!x->skip && !x->select_tx_size) {
int has_high_freq_coeff = 0;
int plane;
int max_plane = is_inter_block(&xd->mi[0]->mbmi) ? MAX_MB_PLANE : 1;
for (plane = 0; plane < max_plane; ++plane) {
x->plane[plane].eobs = ctx->eobs_pbuf[plane][1];
has_high_freq_coeff |= av1_has_high_freq_in_plane(x, bsize, plane);
}
for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) {
x->plane[plane].eobs = ctx->eobs_pbuf[plane][2];
has_high_freq_coeff |= av1_has_high_freq_in_plane(x, bsize, plane);
}
best_mode_skippable |= !has_high_freq_coeff;
}
assert(best_mode_index >= 0);
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
best_mode_skippable);
}
void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
TileDataEnc *tile_data, MACROBLOCK *x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
unsigned char segment_id = mbmi->segment_id;
const int comp_pred = 0;
int i;
int64_t best_pred_diff[REFERENCE_MODES];
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
aom_prob comp_mode_p;
InterpFilter best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
mbmi->mode = ZEROMV;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->mv[0].as_int = 0;
mbmi->tx_size = max_txsize_lookup[bsize];
#if CONFIG_MOTION_VAR
mbmi->motion_mode = SIMPLE_TRANSLATION;
#endif // CONFIG_MOTION_VAR
x->skip = 1;
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
mbmi->pred_mv[0].as_int = 0;
#endif
if (cm->interp_filter != BILINEAR) {
best_filter = EIGHTTAP;
if (cm->interp_filter == SWITCHABLE) {
#if CONFIG_EXT_INTERP
if (is_interp_needed(xd))
#endif
{
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
mbmi->interp_filter = i;
rs = av1_get_switchable_rate(cpi, xd);
if (rs < best_rs) {
best_rs = rs;
best_filter = mbmi->interp_filter;
}
}
}
}
}
// Set the appropriate filter
if (cm->interp_filter == SWITCHABLE) {
mbmi->interp_filter = best_filter;
rate2 += av1_get_switchable_rate(cpi, xd);
} else {
mbmi->interp_filter = cm->interp_filter;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += av1_cost_bit(comp_mode_p, comp_pred);
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mbmi->interp_filter));
av1_update_rd_thresh_fact(tile_data->thresh_freq_fact,
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
av1_zero(best_pred_diff);
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE);
store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, 0);
}
void av1_rd_pick_inter_mode_sub8x8(const AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const RD_OPT *const rd_opt = &cpi->rd;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[MAX_REF_FRAMES][MAX_MB_PLANE];
static const int flag_list[REFS_PER_FRAME + 1] = {
0,
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
MB_MODE_INFO best_mbmode;
int ref_index, best_ref_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
aom_prob comp_mode_p;
InterpFilter tmp_best_filter = SWITCHABLE;
int rate_uv_intra, rate_uv_tokenonly = INT_MAX;
int64_t dist_uv = INT64_MAX;
int skip_uv;
PREDICTION_MODE mode_uv = DC_PRED;
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
int_mv seg_mvs[4][MAX_REF_FRAMES];
b_mode_info best_bmodes[4];
int best_skip2 = 0;
int ref_frame_skip_mask[2] = { 0 };
int internal_active_edge =
av1_active_edge_sb(cpi, mi_row, mi_col) && av1_internal_image_edge(cpi);
memset(x->zcoeff_blk[TX_4X4], 0, 4);
av1_zero(best_mbmode);
for (i = 0; i < 4; i++) {
int j;
for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV;
}
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = INT64_MAX;
rate_uv_intra = INT_MAX;
rd_cost->rate = INT_MAX;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
x->mbmi_ext->mode_context[ref_frame] = 0;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
} else {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int i;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
ref_frame = av1_ref_order[ref_index].ref_frame[0];
second_ref_frame = av1_ref_order[ref_index].ref_frame[1];
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
#endif
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
if (ref_index == 3) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST3_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) |
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
}
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
continue;
// Test best rd so far against threshold for trying this mode.
if (!internal_active_edge &&
rd_less_than_thresh(best_rd,
rd_opt->threshes[segment_id][bsize][ref_index],
tile_data->thresh_freq_fact[bsize][ref_index]))
continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// sub8x8 blocks.
if (ref_frame > INTRA_FRAME &&
av1_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
if (second_ref_frame > INTRA_FRAME &&
av1_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
continue;
if (comp_pred)
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
else if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
continue;
}
mbmi->tx_size = TX_4X4;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
#if CONFIG_MOTION_VAR
mbmi->motion_mode = SIMPLE_TRANSLATION;
#endif // CONFIG_MOTION_VAR
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
if (ref_frame == INTRA_FRAME) {
int rate;
#if CONFIG_EXT_INTRA
mbmi->intra_angle_delta[0] = 0;
#endif // CONFIG_EXT_INTRA
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y,
best_rd) >= best_rd)
continue;
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
if (rate_uv_intra == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra,
&rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv);
}
rate2 += rate_uv_intra;
rate_uv = rate_uv_tokenonly;
distortion2 += dist_uv;
distortion_uv = dist_uv;
mbmi->uv_mode = mode_uv;
} else {
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref =
comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
b_mode_info tmp_best_bmodes[16];
MB_MODE_INFO tmp_best_mbmode;
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
int pred_exists = 0;
int uv_skippable;
this_rd_thresh = (ref_frame == LAST_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST]
: rd_opt->threshes[segment_id][bsize][THR_ALTR];
#if CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == LAST2_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST2]
: this_rd_thresh;
this_rd_thresh = (ref_frame == LAST3_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST3]
: this_rd_thresh;
#endif // CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == GOLDEN_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_GOLD]
: this_rd_thresh;
#if CONFIG_EXT_REFS
// TODO(zoeliu): To explore whether this_rd_thresh should consider
// BWDREF_FRAME and ALTREF_FRAME
#endif // CONFIG_EXT_REFS
if (cm->interp_filter != BILINEAR) {
tmp_best_filter = EIGHTTAP;
if (x->source_variance < sf->disable_filter_search_var_thresh) {
tmp_best_filter = EIGHTTAP;
} else if (sf->adaptive_pred_interp_filter == 1 &&
ctx->pred_interp_filter < SWITCHABLE) {
tmp_best_filter = ctx->pred_interp_filter;
} else if (sf->adaptive_pred_interp_filter == 2) {
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE
? ctx->pred_interp_filter
: 0;
} else {
for (switchable_filter_index = 0;
switchable_filter_index < SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest, rs;
int64_t rs_rd;
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
mbmi->interp_filter = switchable_filter_index;
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index,
mi_row, mi_col);
if (tmp_rd == INT64_MAX) continue;
rs = av1_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
tmp_rd += rs_rd;
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->interp_filter == SWITCHABLE) ||
(mbmi->interp_filter == cm->interp_filter &&
cm->interp_filter != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_sse = total_sse;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
for (i = 0; i < 4; i++) {
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
}
pred_exists = 1;
if (switchable_filter_index == 0 && sf->use_rd_breakout &&
best_rd < INT64_MAX) {
if (tmp_best_rdu / 2 > best_rd) {
// skip searching the other filters if the first is
// already substantially larger than the best so far
tmp_best_filter = mbmi->interp_filter;
tmp_best_rdu = INT64_MAX;
break;
}
}
}
} // switchable_filter_index loop
}
}
if (tmp_best_rdu == INT64_MAX && pred_exists) continue;
mbmi->interp_filter =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter
: cm->interp_filter);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col);
if (tmp_rd == INT64_MAX) continue;
} else {
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
}
#if CONFIG_EXT_INTERP
if (cm->interp_filter == SWITCHABLE && !is_interp_needed(xd))
mbmi->interp_filter = EIGHTTAP;
#endif
rate2 += rate;
distortion2 += distortion;
rate2 += av1_get_switchable_rate(cpi, xd);
if (!mode_excluded)
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
: cm->reference_mode == COMPOUND_REFERENCE;
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
tmp_best_rdu =
best_rd - AOMMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
if (tmp_best_rdu > 0) {
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
av1_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8);
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
&uv_sse, BLOCK_8X8, tmp_best_rdu))
continue;
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
}
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (second_ref_frame > INTRA_FRAME) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
if (!disable_skip) {
// Skip is never coded at the segment level for sub8x8 blocks and instead
// always coded in the bitstream at the mode info level.
if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = AOMMIN(best_filter_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
int max_plane = MAX_MB_PLANE;
// Note index of best mode so far
best_ref_index = ref_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
max_plane = 1;
}
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_yrd =
best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mbmi;
best_skip2 = this_skip2;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i];
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (x->skip && !comp_pred) break;
}
if (best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
if (best_rd == INT64_MAX) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
av1_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh,
bsize, best_ref_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
if (!is_inter_block(&best_mbmode)) {
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
} else {
for (i = 0; i < 4; ++i)
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
#if CONFIG_REF_MV
mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv[0].as_int;
mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv[1].as_int;
#endif
mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
}
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
store_coding_context(x, ctx, best_ref_index, best_pred_diff, 0);
}