| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "vpx_mem/vpx_mem.h" |
| |
| #include "vp9/common/vp9_alloccommon.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| |
| #define DEFAULT_KF_BOOST 2000 |
| #define DEFAULT_GF_BOOST 2000 |
| |
| #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 |
| |
| #define MIN_BPB_FACTOR 0.005 |
| #define MAX_BPB_FACTOR 50 |
| |
| // Bits Per MB at different Q (Multiplied by 512) |
| #define BPER_MB_NORMBITS 9 |
| |
| // Tables relating active max Q to active min Q |
| static int kf_low_motion_minq[QINDEX_RANGE]; |
| static int kf_high_motion_minq[QINDEX_RANGE]; |
| static int gf_low_motion_minq[QINDEX_RANGE]; |
| static int gf_high_motion_minq[QINDEX_RANGE]; |
| static int inter_minq[QINDEX_RANGE]; |
| static int afq_low_motion_minq[QINDEX_RANGE]; |
| static int afq_high_motion_minq[QINDEX_RANGE]; |
| static int gf_high = 2000; |
| static int gf_low = 400; |
| static int kf_high = 5000; |
| static int kf_low = 400; |
| |
| // Functions to compute the active minq lookup table entries based on a |
| // formulaic approach to facilitate easier adjustment of the Q tables. |
| // The formulae were derived from computing a 3rd order polynomial best |
| // fit to the original data (after plotting real maxq vs minq (not q index)) |
| static int get_minq_index(double maxq, double x3, double x2, double x1) { |
| int i; |
| const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq, |
| maxq); |
| |
| // Special case handling to deal with the step from q2.0 |
| // down to lossless mode represented by q 1.0. |
| if (minqtarget <= 2.0) |
| return 0; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) |
| if (minqtarget <= vp9_convert_qindex_to_q(i)) |
| return i; |
| |
| return QINDEX_RANGE - 1; |
| } |
| |
| void vp9_rc_init_minq_luts() { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double maxq = vp9_convert_qindex_to_q(i); |
| |
| kf_low_motion_minq[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.15); |
| kf_high_motion_minq[i] = get_minq_index(maxq, 0.000002, -0.0012, 0.50); |
| gf_low_motion_minq[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.32); |
| gf_high_motion_minq[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.50); |
| afq_low_motion_minq[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.33); |
| afq_high_motion_minq[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55); |
| inter_minq[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.75); |
| } |
| } |
| |
| // These functions use formulaic calculations to make playing with the |
| // quantizer tables easier. If necessary they can be replaced by lookup |
| // tables if and when things settle down in the experimental bitstream |
| double vp9_convert_qindex_to_q(int qindex) { |
| // Convert the index to a real Q value (scaled down to match old Q values) |
| return vp9_ac_quant(qindex, 0) / 4.0; |
| } |
| |
| int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
| double correction_factor) { |
| const double q = vp9_convert_qindex_to_q(qindex); |
| int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; |
| |
| // q based adjustment to baseline enumerator |
| enumerator += (int)(enumerator * q) >> 12; |
| return (int)(0.5 + (enumerator * correction_factor / q)); |
| } |
| |
| void vp9_save_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Stores a snapshot of key state variables which can subsequently be |
| // restored with a call to vp9_restore_coding_context. These functions are |
| // intended for use in a re-code loop in vp9_compress_frame where the |
| // quantizer value is adjusted between loop iterations. |
| vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); |
| vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); |
| vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); |
| |
| vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); |
| |
| vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, |
| cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); |
| vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); |
| |
| cc->fc = cm->fc; |
| } |
| |
| void vp9_restore_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Restore key state variables to the snapshot state stored in the |
| // previous call to vp9_save_coding_context. |
| vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); |
| vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); |
| vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); |
| |
| vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); |
| |
| vpx_memcpy(cm->last_frame_seg_map, |
| cpi->coding_context.last_frame_seg_map_copy, |
| (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); |
| vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); |
| |
| cm->fc = cc->fc; |
| } |
| |
| static int estimate_bits_at_q(int frame_kind, int q, int mbs, |
| double correction_factor) { |
| const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor)); |
| |
| // Attempt to retain reasonable accuracy without overflow. The cutoff is |
| // chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
| // largest Bpm takes 20 bits. |
| return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs |
| : (bpm * mbs) >> BPER_MB_NORMBITS; |
| } |
| |
| int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const int min_frame_target = MAX(rc->min_frame_bandwidth, |
| rc->av_per_frame_bandwidth >> 5); |
| if (target < min_frame_target) |
| target = min_frame_target; |
| if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { |
| // If there is an active ARF at this location use the minimum |
| // bits on this frame even if it is a constructed arf. |
| // The active maximum quantizer insures that an appropriate |
| // number of bits will be spent if needed for constructed ARFs. |
| target = min_frame_target; |
| } |
| // Clip the frame target to the maximum allowed value. |
| if (target > rc->max_frame_bandwidth) |
| target = rc->max_frame_bandwidth; |
| return target; |
| } |
| |
| int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const VP9_CONFIG *oxcf = &cpi->oxcf; |
| if (oxcf->rc_max_intra_bitrate_pct) { |
| const int max_rate = rc->av_per_frame_bandwidth * |
| oxcf->rc_max_intra_bitrate_pct / 100; |
| target = MIN(target, max_rate); |
| } |
| if (target > rc->max_frame_bandwidth) |
| target = rc->max_frame_bandwidth; |
| return target; |
| } |
| |
| |
| // Update the buffer level for higher layers, given the encoded current layer. |
| static void update_layer_buffer_level(VP9_COMP *const cpi, |
| int encoded_frame_size) { |
| int temporal_layer = 0; |
| int current_temporal_layer = cpi->svc.temporal_layer_id; |
| for (temporal_layer = current_temporal_layer + 1; |
| temporal_layer < cpi->svc.number_temporal_layers; ++temporal_layer) { |
| LAYER_CONTEXT *lc = &cpi->svc.layer_context[temporal_layer]; |
| RATE_CONTROL *lrc = &lc->rc; |
| int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - |
| encoded_frame_size); |
| lrc->bits_off_target += bits_off_for_this_layer; |
| |
| // Clip buffer level to maximum buffer size for the layer. |
| lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size); |
| lrc->buffer_level = lrc->bits_off_target; |
| } |
| } |
| |
| // Update the buffer level: leaky bucket model. |
| static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const VP9_CONFIG *oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if (!cm->show_frame) { |
| rc->bits_off_target -= encoded_frame_size; |
| } else { |
| rc->bits_off_target += rc->av_per_frame_bandwidth - encoded_frame_size; |
| } |
| |
| // Clip the buffer level to the maximum specified buffer size. |
| rc->bits_off_target = MIN(rc->bits_off_target, oxcf->maximum_buffer_size); |
| rc->buffer_level = rc->bits_off_target; |
| |
| if (cpi->use_svc && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| update_layer_buffer_level(cpi, encoded_frame_size); |
| } |
| } |
| |
| int vp9_rc_drop_frame(VP9_COMP *cpi) { |
| const VP9_CONFIG *oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| if (!oxcf->drop_frames_water_mark) { |
| return 0; |
| } else { |
| if (rc->buffer_level < 0) { |
| // Always drop if buffer is below 0. |
| return 1; |
| } else { |
| // If buffer is below drop_mark, for now just drop every other frame |
| // (starting with the next frame) until it increases back over drop_mark. |
| int drop_mark = (int)(oxcf->drop_frames_water_mark * |
| oxcf->optimal_buffer_level / 100); |
| if ((rc->buffer_level > drop_mark) && |
| (rc->decimation_factor > 0)) { |
| --rc->decimation_factor; |
| } else if (rc->buffer_level <= drop_mark && |
| rc->decimation_factor == 0) { |
| rc->decimation_factor = 1; |
| } |
| if (rc->decimation_factor > 0) { |
| if (rc->decimation_count > 0) { |
| --rc->decimation_count; |
| return 1; |
| } else { |
| rc->decimation_count = rc->decimation_factor; |
| return 0; |
| } |
| } else { |
| rc->decimation_count = 0; |
| return 0; |
| } |
| } |
| } |
| } |
| |
| static double get_rate_correction_factor(const VP9_COMP *cpi) { |
| if (cpi->common.frame_type == KEY_FRAME) { |
| return cpi->rc.key_frame_rate_correction_factor; |
| } else { |
| if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| !(cpi->use_svc && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) |
| return cpi->rc.gf_rate_correction_factor; |
| else |
| return cpi->rc.rate_correction_factor; |
| } |
| } |
| |
| static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { |
| if (cpi->common.frame_type == KEY_FRAME) { |
| cpi->rc.key_frame_rate_correction_factor = factor; |
| } else { |
| if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| !(cpi->use_svc && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) |
| cpi->rc.gf_rate_correction_factor = factor; |
| else |
| cpi->rc.rate_correction_factor = factor; |
| } |
| } |
| |
| void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
| const int q = cpi->common.base_qindex; |
| int correction_factor = 100; |
| double rate_correction_factor = get_rate_correction_factor(cpi); |
| double adjustment_limit; |
| |
| int projected_size_based_on_q = 0; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); |
| |
| // Work out how big we would have expected the frame to be at this Q given |
| // the current correction factor. |
| // Stay in double to avoid int overflow when values are large |
| projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, |
| cpi->common.MBs, |
| rate_correction_factor); |
| // Work out a size correction factor. |
| if (projected_size_based_on_q > 0) |
| correction_factor = (100 * cpi->rc.projected_frame_size) / |
| projected_size_based_on_q; |
| |
| // More heavily damped adjustment used if we have been oscillating either side |
| // of target. |
| switch (damp_var) { |
| case 0: |
| adjustment_limit = 0.75; |
| break; |
| case 1: |
| adjustment_limit = 0.375; |
| break; |
| case 2: |
| default: |
| adjustment_limit = 0.25; |
| break; |
| } |
| |
| if (correction_factor > 102) { |
| // We are not already at the worst allowable quality |
| correction_factor = |
| (int)(100 + ((correction_factor - 100) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } else if (correction_factor < 99) { |
| // We are not already at the best allowable quality |
| correction_factor = |
| (int)(100 - ((100 - correction_factor) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor < MIN_BPB_FACTOR) |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| |
| set_rate_correction_factor(cpi, rate_correction_factor); |
| } |
| |
| |
| int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, |
| int active_best_quality, int active_worst_quality) { |
| const VP9_COMMON *const cm = &cpi->common; |
| int q = active_worst_quality; |
| int last_error = INT_MAX; |
| int i, target_bits_per_mb; |
| const double correction_factor = get_rate_correction_factor(cpi); |
| |
| // Calculate required scaling factor based on target frame size and size of |
| // frame produced using previous Q. |
| if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
| // Case where we would overflow int |
| target_bits_per_mb = (target_bits_per_frame / cm->MBs) << BPER_MB_NORMBITS; |
| else |
| target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs; |
| |
| i = active_best_quality; |
| |
| do { |
| const int bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i, |
| correction_factor); |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| q = i; |
| else |
| q = i - 1; |
| |
| break; |
| } else { |
| last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| } |
| } while (++i <= active_worst_quality); |
| |
| return q; |
| } |
| |
| static int get_active_quality(int q, int gfu_boost, int low, int high, |
| int *low_motion_minq, int *high_motion_minq) { |
| if (gfu_boost > high) { |
| return low_motion_minq[q]; |
| } else if (gfu_boost < low) { |
| return high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - gfu_boost; |
| const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| return low_motion_minq[q] + adjustment; |
| } |
| } |
| |
| static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const unsigned int curr_frame = cpi->common.current_video_frame; |
| int active_worst_quality; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| active_worst_quality = curr_frame == 0 ? rc->worst_quality |
| : rc->last_q[KEY_FRAME] * 2; |
| } else { |
| if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 |
| : rc->last_q[INTER_FRAME]; |
| } else { |
| active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 |
| : rc->last_q[INTER_FRAME] * 2; |
| } |
| } |
| |
| return MIN(active_worst_quality, rc->worst_quality); |
| } |
| |
| // Adjust active_worst_quality level based on buffer level. |
| static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { |
| // Adjust active_worst_quality: If buffer is above the optimal/target level, |
| // bring active_worst_quality down depending on fullness of buffer. |
| // If buffer is below the optimal level, let the active_worst_quality go from |
| // ambient Q (at buffer = optimal level) to worst_quality level |
| // (at buffer = critical level). |
| const VP9_CONFIG *oxcf = &cpi->oxcf; |
| const RATE_CONTROL *rc = &cpi->rc; |
| // Buffer level below which we push active_worst to worst_quality. |
| int64_t critical_level = oxcf->optimal_buffer_level >> 2; |
| int64_t buff_lvl_step = 0; |
| int adjustment = 0; |
| int active_worst_quality; |
| if (cpi->common.frame_type == KEY_FRAME) |
| return rc->worst_quality; |
| if (cpi->common.current_video_frame > 1) |
| active_worst_quality = MIN(rc->worst_quality, |
| rc->avg_frame_qindex[INTER_FRAME] * 5 / 4); |
| else |
| active_worst_quality = MIN(rc->worst_quality, |
| rc->avg_frame_qindex[KEY_FRAME] * 3 / 2); |
| if (rc->buffer_level > oxcf->optimal_buffer_level) { |
| // Adjust down. |
| // Maximum limit for down adjustment, ~30%. |
| int max_adjustment_down = active_worst_quality / 3; |
| if (max_adjustment_down) { |
| buff_lvl_step = ((oxcf->maximum_buffer_size - |
| oxcf->optimal_buffer_level) / max_adjustment_down); |
| if (buff_lvl_step) |
| adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) / |
| buff_lvl_step); |
| active_worst_quality -= adjustment; |
| } |
| } else if (rc->buffer_level > critical_level) { |
| // Adjust up from ambient Q. |
| if (critical_level) { |
| buff_lvl_step = (oxcf->optimal_buffer_level - critical_level); |
| if (buff_lvl_step) { |
| adjustment = |
| (int)((rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) * |
| (oxcf->optimal_buffer_level - rc->buffer_level) / |
| buff_lvl_step); |
| } |
| active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment; |
| } |
| } else { |
| // Set to worst_quality if buffer is below critical level. |
| active_worst_quality = rc->worst_quality; |
| } |
| return active_worst_quality; |
| } |
| |
| static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int active_best_quality; |
| int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); |
| int q; |
| |
| if (frame_is_intra_only(cm)) { |
| active_best_quality = rc->best_quality; |
| // Handle the special case for key frames forced when we have75 reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| int qindex = rc->last_boosted_qindex; |
| double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
| int delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, |
| (last_boosted_q * 0.75)); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } else if (cm->current_video_frame > 0) { |
| // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| active_best_quality = get_active_quality(rc->avg_frame_qindex[KEY_FRAME], |
| rc->kf_boost, |
| kf_low, kf_high, |
| kf_low_motion_minq, |
| kf_high_motion_minq); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp9_convert_qindex_to_q(active_best_quality); |
| active_best_quality += vp9_compute_qdelta(cpi, q_val, q_val * |
| q_adj_factor); |
| } |
| } else if (!rc->is_src_frame_alt_ref && |
| !cpi->use_svc && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = active_worst_quality; |
| } |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| if (cm->current_video_frame > 1) { |
| if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
| active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| else |
| active_best_quality = inter_minq[active_worst_quality]; |
| } else { |
| if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) |
| active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| else |
| active_best_quality = inter_minq[active_worst_quality]; |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced) { |
| if (!(cm->current_video_frame == 0)) |
| *top_index = (active_worst_quality + active_best_quality * 3) / 4; |
| } |
| #endif |
| // Special case code to try and match quality with forced key frames |
| if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { |
| q = rc->last_boosted_qindex; |
| } else { |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (cpi->rc.this_frame_target >= cpi->rc.max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9_CONFIG *const oxcf = &cpi->oxcf; |
| int active_best_quality; |
| int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); |
| int q; |
| |
| if (frame_is_intra_only(cm)) { |
| active_best_quality = rc->best_quality; |
| #if !CONFIG_MULTIPLE_ARF |
| // Handle the special case for key frames forced when we have75 reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| int qindex = rc->last_boosted_qindex; |
| double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
| int delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, |
| (last_boosted_q * 0.75)); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } else if (cm->current_video_frame > 0) { |
| // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| active_best_quality = get_active_quality(rc->avg_frame_qindex[KEY_FRAME], |
| rc->kf_boost, |
| kf_low, kf_high, |
| kf_low_motion_minq, |
| kf_high_motion_minq); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp9_convert_qindex_to_q(active_best_quality); |
| active_best_quality += vp9_compute_qdelta(cpi, q_val, q_val * |
| q_adj_factor); |
| } |
| #else |
| double current_q; |
| // Force the KF quantizer to be 30% of the active_worst_quality. |
| current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| active_best_quality = active_worst_quality |
| + vp9_compute_qdelta(cpi, current_q, current_q * 0.3); |
| #endif |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = rc->avg_frame_qindex[KEY_FRAME]; |
| } |
| // For constrained quality dont allow Q less than the cq level |
| if (oxcf->end_usage == USAGE_CONSTRAINED_QUALITY) { |
| if (q < cpi->cq_target_quality) |
| q = cpi->cq_target_quality; |
| if (rc->frames_since_key > 1) { |
| active_best_quality = get_active_quality(q, rc->gfu_boost, |
| gf_low, gf_high, |
| afq_low_motion_minq, |
| afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality(q, rc->gfu_boost, |
| gf_low, gf_high, |
| gf_low_motion_minq, |
| gf_high_motion_minq); |
| } |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| |
| } else if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| if (!cpi->refresh_alt_ref_frame) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| if (rc->frames_since_key > 1) { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| afq_low_motion_minq, afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } |
| } else { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } else { |
| if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| if (cm->current_video_frame > 1) |
| active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| else |
| active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((oxcf->end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (active_best_quality < cpi->cq_target_quality)) { |
| // If we are strongly undershooting the target rate in the last |
| // frames then use the user passed in cq value not the auto |
| // cq value. |
| if (rc->rolling_actual_bits < rc->min_frame_bandwidth) |
| active_best_quality = oxcf->cq_level; |
| else |
| active_best_quality = cpi->cq_target_quality; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced) { |
| if (!(cm->current_video_frame == 0)) |
| *top_index = (active_worst_quality + active_best_quality * 3) / 4; |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| *top_index = (active_worst_quality + active_best_quality) / 2; |
| } |
| #endif |
| if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames |
| } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { |
| q = rc->last_boosted_qindex; |
| } else { |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (cpi->rc.this_frame_target >= cpi->rc.max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| #if CONFIG_MULTIPLE_ARF |
| // Force the quantizer determined by the coding order pattern. |
| if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && |
| cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) { |
| double new_q; |
| double current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| int level = cpi->this_frame_weight; |
| assert(level >= 0); |
| new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); |
| q = active_worst_quality + |
| vp9_compute_qdelta(cpi, current_q, new_q); |
| |
| *bottom_index = q; |
| *top_index = q; |
| printf("frame:%d q:%d\n", cm->current_video_frame, q); |
| } |
| #endif |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9_CONFIG *const oxcf = &cpi->oxcf; |
| int active_best_quality; |
| int active_worst_quality = cpi->twopass.active_worst_quality; |
| int q; |
| |
| if (frame_is_intra_only(cm)) { |
| #if !CONFIG_MULTIPLE_ARF |
| // Handle the special case for key frames forced when we have75 reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| int qindex = rc->last_boosted_qindex; |
| double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
| int delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, |
| (last_boosted_q * 0.75)); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } else { |
| // Not forced keyframe. |
| double q_adj_factor = 1.0; |
| double q_val; |
| // Baseline value derived from cpi->active_worst_quality and kf boost. |
| active_best_quality = get_active_quality(active_worst_quality, |
| rc->kf_boost, |
| kf_low, kf_high, |
| kf_low_motion_minq, |
| kf_high_motion_minq); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Make a further adjustment based on the kf zero motion measure. |
| q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp9_convert_qindex_to_q(active_best_quality); |
| active_best_quality += vp9_compute_qdelta(cpi, q_val, q_val * |
| q_adj_factor); |
| } |
| #else |
| double current_q; |
| // Force the KF quantizer to be 30% of the active_worst_quality. |
| current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| active_best_quality = active_worst_quality |
| + vp9_compute_qdelta(cpi, current_q, current_q * 0.3); |
| #endif |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = active_worst_quality; |
| } |
| // For constrained quality dont allow Q less than the cq level |
| if (oxcf->end_usage == USAGE_CONSTRAINED_QUALITY) { |
| if (q < cpi->cq_target_quality) |
| q = cpi->cq_target_quality; |
| if (rc->frames_since_key > 1) { |
| active_best_quality = get_active_quality(q, rc->gfu_boost, |
| gf_low, gf_high, |
| afq_low_motion_minq, |
| afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality(q, rc->gfu_boost, |
| gf_low, gf_high, |
| gf_low_motion_minq, |
| gf_high_motion_minq); |
| } |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| |
| } else if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| if (!cpi->refresh_alt_ref_frame) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| if (rc->frames_since_key > 1) { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| afq_low_motion_minq, afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } |
| } else { |
| active_best_quality = get_active_quality( |
| q, rc->gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } else { |
| if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| active_best_quality = inter_minq[active_worst_quality]; |
| |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((oxcf->end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (active_best_quality < cpi->cq_target_quality)) { |
| // If we are strongly undershooting the target rate in the last |
| // frames then use the user passed in cq value not the auto |
| // cq value. |
| if (rc->rolling_actual_bits < rc->min_frame_bandwidth) |
| active_best_quality = oxcf->cq_level; |
| else |
| active_best_quality = cpi->cq_target_quality; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits. |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced) { |
| *top_index = (active_worst_quality + active_best_quality * 3) / 4; |
| } else if (!rc->is_src_frame_alt_ref && |
| (oxcf->end_usage != USAGE_STREAM_FROM_SERVER) && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| *top_index = (active_worst_quality + active_best_quality) / 2; |
| } |
| #endif |
| |
| if (oxcf->end_usage == USAGE_CONSTANT_QUALITY) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames. |
| } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { |
| q = rc->last_boosted_qindex; |
| } else { |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate. |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| #if CONFIG_MULTIPLE_ARF |
| // Force the quantizer determined by the coding order pattern. |
| if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && |
| cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) { |
| double new_q; |
| double current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| int level = cpi->this_frame_weight; |
| assert(level >= 0); |
| new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); |
| q = active_worst_quality + |
| vp9_compute_qdelta(cpi, current_q, new_q); |
| |
| *bottom_index = q; |
| *top_index = q; |
| printf("frame:%d q:%d\n", cm->current_video_frame, q); |
| } |
| #endif |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| int q; |
| if (cpi->pass == 0) { |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); |
| else |
| q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); |
| } else { |
| q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); |
| } |
| |
| // Q of 0 is disabled because we force tx size to be |
| // 16x16... |
| if (cpi->sf.use_nonrd_pick_mode) { |
| if (q == 0) |
| q++; |
| if (cpi->sf.force_frame_boost == 1) |
| q -= cpi->sf.max_delta_qindex; |
| |
| if (q < *bottom_index) |
| *bottom_index = q; |
| else if (q > *top_index) |
| *top_index = q; |
| } |
| return q; |
| } |
| |
| void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, |
| int this_frame_target, |
| int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| // Set-up bounds on acceptable frame size: |
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| int recode_tolerance = |
| (cpi->sf.recode_tolerance * this_frame_target) / 100; |
| |
| *frame_over_shoot_limit = this_frame_target + recode_tolerance; |
| *frame_under_shoot_limit = this_frame_target - recode_tolerance; |
| |
| // For very small rate targets where the fractional adjustment |
| // may be tiny make sure there is at least a minimum range. |
| *frame_over_shoot_limit += 200; |
| *frame_under_shoot_limit -= 200; |
| if (*frame_under_shoot_limit < 0) |
| *frame_under_shoot_limit = 0; |
| |
| // Clip to maximum allowed rate for a frame. |
| if (*frame_over_shoot_limit > cpi->rc.max_frame_bandwidth) { |
| *frame_over_shoot_limit = cpi->rc.max_frame_bandwidth; |
| } |
| } |
| } |
| |
| void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) { |
| const VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| rc->this_frame_target = target; |
| // Target rate per SB64 (including partial SB64s. |
| rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) / |
| (cm->width * cm->height); |
| } |
| |
| static void update_alt_ref_frame_stats(VP9_COMP *cpi) { |
| // this frame refreshes means next frames don't unless specified by user |
| cpi->rc.frames_since_golden = 0; |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (!cpi->multi_arf_enabled) |
| #endif |
| // Clear the alternate reference update pending flag. |
| cpi->rc.source_alt_ref_pending = 0; |
| |
| // Set the alternate reference frame active flag |
| cpi->rc.source_alt_ref_active = 1; |
| } |
| |
| static void update_golden_frame_stats(VP9_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Update the Golden frame usage counts. |
| if (cpi->refresh_golden_frame) { |
| // this frame refreshes means next frames don't unless specified by user |
| rc->frames_since_golden = 0; |
| |
| if (!rc->source_alt_ref_pending) |
| rc->source_alt_ref_active = 0; |
| |
| // Decrement count down till next gf |
| if (rc->frames_till_gf_update_due > 0) |
| rc->frames_till_gf_update_due--; |
| |
| } else if (!cpi->refresh_alt_ref_frame) { |
| // Decrement count down till next gf |
| if (rc->frames_till_gf_update_due > 0) |
| rc->frames_till_gf_update_due--; |
| |
| rc->frames_since_golden++; |
| } |
| } |
| |
| void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| cm->last_frame_type = cm->frame_type; |
| // Update rate control heuristics |
| rc->projected_frame_size = (int)(bytes_used << 3); |
| |
| // Post encode loop adjustment of Q prediction. |
| vp9_rc_update_rate_correction_factors( |
| cpi, (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF || |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0); |
| |
| // Keep a record of last Q and ambient average Q. |
| if (cm->frame_type == KEY_FRAME) { |
| rc->last_q[KEY_FRAME] = cm->base_qindex; |
| rc->avg_frame_qindex[KEY_FRAME] = ROUND_POWER_OF_TWO( |
| 3 * rc->avg_frame_qindex[KEY_FRAME] + cm->base_qindex, 2); |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) && |
| !(cpi->use_svc && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { |
| rc->last_q[2] = cm->base_qindex; |
| rc->avg_frame_qindex[2] = ROUND_POWER_OF_TWO( |
| 3 * rc->avg_frame_qindex[2] + cm->base_qindex, 2); |
| } else { |
| rc->last_q[INTER_FRAME] = cm->base_qindex; |
| rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO( |
| 3 * rc->avg_frame_qindex[INTER_FRAME] + cm->base_qindex, 2); |
| rc->ni_frames++; |
| rc->tot_q += vp9_convert_qindex_to_q(cm->base_qindex); |
| rc->avg_q = rc->tot_q / (double)rc->ni_frames; |
| |
| // Calculate the average Q for normal inter frames (not key or GFU frames). |
| rc->ni_tot_qi += cm->base_qindex; |
| rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; |
| } |
| |
| // Keep record of last boosted (KF/KF/ARF) Q value. |
| // If the current frame is coded at a lower Q then we also update it. |
| // If all mbs in this group are skipped only update if the Q value is |
| // better than that already stored. |
| // This is used to help set quality in forced key frames to reduce popping |
| if ((cm->base_qindex < rc->last_boosted_qindex) || |
| ((cpi->static_mb_pct < 100) && |
| ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { |
| rc->last_boosted_qindex = cm->base_qindex; |
| } |
| |
| update_buffer_level(cpi, rc->projected_frame_size); |
| |
| // Rolling monitors of whether we are over or underspending used to help |
| // regulate min and Max Q in two pass. |
| if (cm->frame_type != KEY_FRAME) { |
| rc->rolling_target_bits = ROUND_POWER_OF_TWO( |
| rc->rolling_target_bits * 3 + rc->this_frame_target, 2); |
| rc->rolling_actual_bits = ROUND_POWER_OF_TWO( |
| rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); |
| rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( |
| rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); |
| rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( |
| rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); |
| } |
| |
| // Actual bits spent |
| rc->total_actual_bits += rc->projected_frame_size; |
| rc->total_target_bits += (cm->show_frame ? rc->av_per_frame_bandwidth : 0); |
| |
| rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; |
| |
| if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame && |
| (cm->frame_type != KEY_FRAME)) |
| // Update the alternate reference frame stats as appropriate. |
| update_alt_ref_frame_stats(cpi); |
| else |
| // Update the Golden frame stats as appropriate. |
| update_golden_frame_stats(cpi); |
| |
| if (cm->frame_type == KEY_FRAME) |
| rc->frames_since_key = 0; |
| if (cm->show_frame) { |
| rc->frames_since_key++; |
| rc->frames_to_key--; |
| } |
| } |
| |
| void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) { |
| // Update buffer level with zero size, update frame counters, and return. |
| update_buffer_level(cpi, 0); |
| cpi->common.last_frame_type = cpi->common.frame_type; |
| cpi->rc.frames_since_key++; |
| cpi->rc.frames_to_key--; |
| } |
| |
| static int test_for_kf_one_pass(VP9_COMP *cpi) { |
| // Placeholder function for auto key frame |
| return 0; |
| } |
| // Use this macro to turn on/off use of alt-refs in one-pass mode. |
| #define USE_ALTREF_FOR_ONE_PASS 1 |
| |
| static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| static const int af_ratio = 10; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| #if USE_ALTREF_FOR_ONE_PASS |
| target = (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ? |
| (rc->av_per_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / |
| (rc->baseline_gf_interval + af_ratio - 1) : |
| (rc->av_per_frame_bandwidth * rc->baseline_gf_interval) / |
| (rc->baseline_gf_interval + af_ratio - 1); |
| #else |
| target = rc->av_per_frame_bandwidth; |
| #endif |
| return vp9_rc_clamp_pframe_target_size(cpi, target); |
| } |
| |
| static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| static const int kf_ratio = 25; |
| const RATE_CONTROL *rc = &cpi->rc; |
| int target = rc->av_per_frame_bandwidth * kf_ratio; |
| return vp9_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| rc->frames_to_key == 0 || |
| (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) { |
| cm->frame_type = KEY_FRAME; |
| rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| rc->frames_to_key == 0; |
| rc->frames_to_key = cpi->key_frame_frequency; |
| rc->kf_boost = DEFAULT_KF_BOOST; |
| rc->source_alt_ref_active = 0; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| if (rc->frames_till_gf_update_due == 0) { |
| rc->baseline_gf_interval = DEFAULT_GF_INTERVAL; |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| // NOTE: frames_till_gf_update_due must be <= frames_to_key. |
| if (rc->frames_till_gf_update_due > rc->frames_to_key) |
| rc->frames_till_gf_update_due = rc->frames_to_key; |
| cpi->refresh_golden_frame = 1; |
| rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; |
| rc->gfu_boost = DEFAULT_GF_BOOST; |
| } |
| if (cm->frame_type == KEY_FRAME) |
| target = calc_iframe_target_size_one_pass_vbr(cpi); |
| else |
| target = calc_pframe_target_size_one_pass_vbr(cpi); |
| vp9_rc_set_frame_target(cpi, target); |
| } |
| |
| static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| const VP9_CONFIG *oxcf = &cpi->oxcf; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level; |
| const int64_t one_pct_bits = 1 + oxcf->optimal_buffer_level / 100; |
| int min_frame_target = MAX(rc->av_per_frame_bandwidth >> 4, |
| FRAME_OVERHEAD_BITS); |
| int target = rc->av_per_frame_bandwidth; |
| if (cpi->svc.number_temporal_layers > 1 && |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| // Note that for layers, av_per_frame_bandwidth is the cumulative |
| // per-frame-bandwidth. For the target size of this frame, use the |
| // layer average frame size (i.e., non-cumulative per-frame-bw). |
| int current_temporal_layer = cpi->svc.temporal_layer_id; |
| const LAYER_CONTEXT *lc = &cpi->svc.layer_context[current_temporal_layer]; |
| target = lc->avg_frame_size; |
| min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); |
| } |
| if (diff > 0) { |
| // Lower the target bandwidth for this frame. |
| const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct); |
| target -= (target * pct_low) / 200; |
| } else if (diff < 0) { |
| // Increase the target bandwidth for this frame. |
| const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct); |
| target += (target * pct_high) / 200; |
| } |
| return MAX(min_frame_target, target); |
| } |
| |
| static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| int target; |
| |
| if (cpi->common.current_video_frame == 0) { |
| target = ((cpi->oxcf.starting_buffer_level / 2) > INT_MAX) |
| ? INT_MAX : (int)(cpi->oxcf.starting_buffer_level / 2); |
| } else { |
| const int initial_boost = 32; |
| int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16)); |
| if (rc->frames_since_key < cpi->output_framerate / 2) { |
| kf_boost = (int)(kf_boost * rc->frames_since_key / |
| (cpi->output_framerate / 2)); |
| } |
| target = ((16 + kf_boost) * rc->av_per_frame_bandwidth) >> 4; |
| } |
| return vp9_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| void vp9_rc_get_svc_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target = rc->av_per_frame_bandwidth; |
| if ((cm->current_video_frame == 0) || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| (cpi->oxcf.auto_key && (rc->frames_since_key % |
| cpi->key_frame_frequency == 0))) { |
| cm->frame_type = KEY_FRAME; |
| rc->source_alt_ref_active = 0; |
| if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| target = calc_iframe_target_size_one_pass_cbr(cpi); |
| } |
| } else { |
| cm->frame_type = INTER_FRAME; |
| if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| target = calc_pframe_target_size_one_pass_cbr(cpi); |
| } |
| } |
| vp9_rc_set_frame_target(cpi, target); |
| rc->frames_till_gf_update_due = INT_MAX; |
| rc->baseline_gf_interval = INT_MAX; |
| } |
| |
| void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| if ((cm->current_video_frame == 0 || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| rc->frames_to_key == 0 || |
| (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) { |
| cm->frame_type = KEY_FRAME; |
| rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| rc->frames_to_key == 0; |
| rc->frames_to_key = cpi->key_frame_frequency; |
| rc->kf_boost = DEFAULT_KF_BOOST; |
| rc->source_alt_ref_active = 0; |
| target = calc_iframe_target_size_one_pass_cbr(cpi); |
| } else { |
| cm->frame_type = INTER_FRAME; |
| target = calc_pframe_target_size_one_pass_cbr(cpi); |
| } |
| vp9_rc_set_frame_target(cpi, target); |
| // Don't use gf_update by default in CBR mode. |
| rc->frames_till_gf_update_due = INT_MAX; |
| rc->baseline_gf_interval = INT_MAX; |
| } |