| /* |
| * Copyright (c) 2023 The WebM project authors. All rights reserved. |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| |
| static inline uint32_t highbd_sad4xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| uint32x4_t sum = vdupq_n_u32(0); |
| |
| do { |
| uint16x4_t s = vld1_u16(src16_ptr); |
| uint16x4_t r = vld1_u16(ref16_ptr); |
| sum = vabal_u16(sum, s, r); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| } while (--h != 0); |
| |
| return horizontal_add_u32x4(sum); |
| } |
| |
| static inline uint32_t highbd_sad8xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| |
| // 'h_overflow' is the number of 8-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 16 8-wide rows. |
| const int h_overflow = 16; |
| // If block height 'h' is smaller than this limit, use 'h' instead. |
| const int h_limit = h < h_overflow ? h : h_overflow; |
| assert(h % h_limit == 0); |
| |
| uint32x4_t sum_u32 = vdupq_n_u32(0); |
| |
| do { |
| uint16x8_t sum_u16 = vdupq_n_u16(0); |
| |
| int i = h_limit; |
| do { |
| uint16x8_t s0 = vld1q_u16(src16_ptr); |
| uint16x8_t r0 = vld1q_u16(ref16_ptr); |
| sum_u16 = vabaq_u16(sum_u16, s0, r0); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| } while (--i != 0); |
| |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16); |
| |
| h -= h_limit; |
| } while (h != 0); |
| |
| return horizontal_add_u32x4(sum_u32); |
| } |
| |
| static inline uint32_t highbd_sadwxh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int w, int h, |
| const int h_overflow) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| |
| const int h_limit = h < h_overflow ? h : h_overflow; |
| assert(h % h_limit == 0); |
| |
| uint32x4_t sum_u32 = vdupq_n_u32(0); |
| |
| do { |
| uint16x8_t sum_u16[2] = { vdupq_n_u16(0), vdupq_n_u16(0) }; |
| |
| int i = h_limit; |
| do { |
| int j = 0; |
| do { |
| uint16x8_t s0 = vld1q_u16(src16_ptr + j); |
| uint16x8_t r0 = vld1q_u16(ref16_ptr + j); |
| sum_u16[0] = vabaq_u16(sum_u16[0], s0, r0); |
| |
| uint16x8_t s1 = vld1q_u16(src16_ptr + j + 8); |
| uint16x8_t r1 = vld1q_u16(ref16_ptr + j + 8); |
| sum_u16[1] = vabaq_u16(sum_u16[1], s1, r1); |
| |
| j += 16; |
| } while (j < w); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| } while (--i != 0); |
| |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[0]); |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[1]); |
| |
| h -= h_limit; |
| } while (h != 0); |
| return horizontal_add_u32x4(sum_u32); |
| } |
| |
| static inline uint32_t highbd_sad16xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| // 'h_overflow' is the number of 16-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 16 16-wide rows using two accumulators. |
| const int h_overflow = 16; |
| return highbd_sadwxh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 16, h, |
| h_overflow); |
| } |
| |
| static inline uint32_t highbd_sad32xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| // 'h_overflow' is the number of 32-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 8 32-wide rows using two accumulators. |
| const int h_overflow = 8; |
| return highbd_sadwxh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 32, h, |
| h_overflow); |
| } |
| |
| static inline uint32_t highbd_sad64xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| // 'h_overflow' is the number of 64-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 4 64-wide rows using two accumulators. |
| const int h_overflow = 4; |
| return highbd_sadwxh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 64, h, |
| h_overflow); |
| } |
| |
| static inline uint32_t highbd_sad128xh_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h) { |
| // 'h_overflow' is the number of 128-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 2 128-wide rows using two accumulators. |
| const int h_overflow = 2; |
| return highbd_sadwxh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 128, h, |
| h_overflow); |
| } |
| |
| #define HBD_SAD_WXH_NEON(w, h) \ |
| unsigned int aom_highbd_sad##w##x##h##_neon( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, \ |
| int ref_stride) { \ |
| return highbd_sad##w##xh_neon(src, src_stride, ref, ref_stride, (h)); \ |
| } |
| |
| HBD_SAD_WXH_NEON(4, 4) |
| HBD_SAD_WXH_NEON(4, 8) |
| |
| HBD_SAD_WXH_NEON(8, 4) |
| HBD_SAD_WXH_NEON(8, 8) |
| HBD_SAD_WXH_NEON(8, 16) |
| |
| HBD_SAD_WXH_NEON(16, 8) |
| HBD_SAD_WXH_NEON(16, 16) |
| HBD_SAD_WXH_NEON(16, 32) |
| |
| HBD_SAD_WXH_NEON(32, 16) |
| HBD_SAD_WXH_NEON(32, 32) |
| HBD_SAD_WXH_NEON(32, 64) |
| |
| HBD_SAD_WXH_NEON(64, 32) |
| HBD_SAD_WXH_NEON(64, 64) |
| HBD_SAD_WXH_NEON(64, 128) |
| |
| HBD_SAD_WXH_NEON(128, 64) |
| HBD_SAD_WXH_NEON(128, 128) |
| |
| #if !CONFIG_REALTIME_ONLY |
| HBD_SAD_WXH_NEON(4, 16) |
| |
| HBD_SAD_WXH_NEON(8, 32) |
| |
| HBD_SAD_WXH_NEON(16, 4) |
| HBD_SAD_WXH_NEON(16, 64) |
| |
| HBD_SAD_WXH_NEON(32, 8) |
| |
| HBD_SAD_WXH_NEON(64, 16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #undef HBD_SAD_WXH_NEON |
| |
| #define HBD_SAD_SKIP_WXH_NEON(w, h) \ |
| unsigned int aom_highbd_sad_skip_##w##x##h##_neon( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, \ |
| int ref_stride) { \ |
| return 2 * highbd_sad##w##xh_neon(src, 2 * src_stride, ref, \ |
| 2 * ref_stride, (h) / 2); \ |
| } |
| |
| HBD_SAD_SKIP_WXH_NEON(8, 16) |
| |
| HBD_SAD_SKIP_WXH_NEON(16, 16) |
| HBD_SAD_SKIP_WXH_NEON(16, 32) |
| |
| HBD_SAD_SKIP_WXH_NEON(32, 16) |
| HBD_SAD_SKIP_WXH_NEON(32, 32) |
| HBD_SAD_SKIP_WXH_NEON(32, 64) |
| |
| HBD_SAD_SKIP_WXH_NEON(64, 32) |
| HBD_SAD_SKIP_WXH_NEON(64, 64) |
| HBD_SAD_SKIP_WXH_NEON(64, 128) |
| |
| HBD_SAD_SKIP_WXH_NEON(128, 64) |
| HBD_SAD_SKIP_WXH_NEON(128, 128) |
| |
| #if !CONFIG_REALTIME_ONLY |
| HBD_SAD_SKIP_WXH_NEON(4, 16) |
| |
| HBD_SAD_SKIP_WXH_NEON(8, 32) |
| |
| HBD_SAD_SKIP_WXH_NEON(16, 64) |
| |
| HBD_SAD_SKIP_WXH_NEON(64, 16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #undef HBD_SAD_SKIP_WXH_NEON |
| |
| static inline uint32_t highbd_sad8xh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h, |
| const uint8_t *second_pred) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| const uint16_t *pred16_ptr = CONVERT_TO_SHORTPTR(second_pred); |
| |
| // 'h_overflow' is the number of 8-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 16 8-wide rows. |
| const int h_overflow = 16; |
| // If block height 'h' is smaller than this limit, use 'h' instead. |
| const int h_limit = h < h_overflow ? h : h_overflow; |
| assert(h % h_limit == 0); |
| |
| uint32x4_t sum_u32 = vdupq_n_u32(0); |
| |
| do { |
| uint16x8_t sum_u16 = vdupq_n_u16(0); |
| |
| int i = h_limit; |
| do { |
| uint16x8_t s = vld1q_u16(src16_ptr); |
| uint16x8_t r = vld1q_u16(ref16_ptr); |
| uint16x8_t p = vld1q_u16(pred16_ptr); |
| |
| uint16x8_t avg = vrhaddq_u16(r, p); |
| sum_u16 = vabaq_u16(sum_u16, s, avg); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| pred16_ptr += 8; |
| } while (--i != 0); |
| |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16); |
| |
| h -= h_limit; |
| } while (h != 0); |
| |
| return horizontal_add_u32x4(sum_u32); |
| } |
| |
| static inline uint32_t highbd_sad16xh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h, |
| const uint8_t *second_pred) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| const uint16_t *pred16_ptr = CONVERT_TO_SHORTPTR(second_pred); |
| |
| // 'h_overflow' is the number of 16-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 16 16-wide rows using two accumulators. |
| const int h_overflow = 16; |
| // If block height 'h' is smaller than this limit, use 'h' instead. |
| const int h_limit = h < h_overflow ? h : h_overflow; |
| assert(h % h_limit == 0); |
| |
| uint32x4_t sum_u32 = vdupq_n_u32(0); |
| |
| do { |
| uint16x8_t sum_u16[2] = { vdupq_n_u16(0), vdupq_n_u16(0) }; |
| |
| int i = h_limit; |
| do { |
| uint16x8_t s0 = vld1q_u16(src16_ptr); |
| uint16x8_t r0 = vld1q_u16(ref16_ptr); |
| uint16x8_t p0 = vld1q_u16(pred16_ptr); |
| |
| uint16x8_t avg0 = vrhaddq_u16(r0, p0); |
| sum_u16[0] = vabaq_u16(sum_u16[0], s0, avg0); |
| |
| uint16x8_t s1 = vld1q_u16(src16_ptr + 8); |
| uint16x8_t r1 = vld1q_u16(ref16_ptr + 8); |
| uint16x8_t p1 = vld1q_u16(pred16_ptr + 8); |
| |
| uint16x8_t avg1 = vrhaddq_u16(r1, p1); |
| sum_u16[1] = vabaq_u16(sum_u16[1], s1, avg1); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| pred16_ptr += 16; |
| } while (--i != 0); |
| |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[0]); |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[1]); |
| |
| h -= h_limit; |
| } while (h != 0); |
| |
| return horizontal_add_u32x4(sum_u32); |
| } |
| |
| static inline uint32_t highbd_sadwxh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, |
| const uint8_t *second_pred, int w, |
| int h, const int h_overflow) { |
| const uint16_t *src16_ptr = CONVERT_TO_SHORTPTR(src_ptr); |
| const uint16_t *ref16_ptr = CONVERT_TO_SHORTPTR(ref_ptr); |
| const uint16_t *pred16_ptr = CONVERT_TO_SHORTPTR(second_pred); |
| |
| const int h_limit = h < h_overflow ? h : h_overflow; |
| assert(h % h_limit == 0); |
| |
| uint32x4_t sum_u32 = vdupq_n_u32(0); |
| |
| do { |
| uint16x8_t sum_u16[4] = { vdupq_n_u16(0), vdupq_n_u16(0), vdupq_n_u16(0), |
| vdupq_n_u16(0) }; |
| |
| int i = h_limit; |
| do { |
| int j = 0; |
| do { |
| uint16x8_t s0 = vld1q_u16(src16_ptr + j); |
| uint16x8_t r0 = vld1q_u16(ref16_ptr + j); |
| uint16x8_t p0 = vld1q_u16(pred16_ptr + j); |
| |
| uint16x8_t avg0 = vrhaddq_u16(r0, p0); |
| sum_u16[0] = vabaq_u16(sum_u16[0], s0, avg0); |
| |
| uint16x8_t s1 = vld1q_u16(src16_ptr + j + 8); |
| uint16x8_t r1 = vld1q_u16(ref16_ptr + j + 8); |
| uint16x8_t p1 = vld1q_u16(pred16_ptr + j + 8); |
| |
| uint16x8_t avg1 = vrhaddq_u16(r1, p1); |
| sum_u16[1] = vabaq_u16(sum_u16[1], s1, avg1); |
| |
| uint16x8_t s2 = vld1q_u16(src16_ptr + j + 16); |
| uint16x8_t r2 = vld1q_u16(ref16_ptr + j + 16); |
| uint16x8_t p2 = vld1q_u16(pred16_ptr + j + 16); |
| |
| uint16x8_t avg2 = vrhaddq_u16(r2, p2); |
| sum_u16[2] = vabaq_u16(sum_u16[2], s2, avg2); |
| |
| uint16x8_t s3 = vld1q_u16(src16_ptr + j + 24); |
| uint16x8_t r3 = vld1q_u16(ref16_ptr + j + 24); |
| uint16x8_t p3 = vld1q_u16(pred16_ptr + j + 24); |
| |
| uint16x8_t avg3 = vrhaddq_u16(r3, p3); |
| sum_u16[3] = vabaq_u16(sum_u16[3], s3, avg3); |
| |
| j += 32; |
| } while (j < w); |
| |
| src16_ptr += src_stride; |
| ref16_ptr += ref_stride; |
| pred16_ptr += w; |
| } while (--i != 0); |
| |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[0]); |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[1]); |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[2]); |
| sum_u32 = vpadalq_u16(sum_u32, sum_u16[3]); |
| |
| h -= h_limit; |
| } while (h != 0); |
| |
| return horizontal_add_u32x4(sum_u32); |
| } |
| |
| static inline uint32_t highbd_sad32xh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h, |
| const uint8_t *second_pred) { |
| // 'h_overflow' is the number of 32-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 16 32-wide rows using four accumulators. |
| const int h_overflow = 16; |
| return highbd_sadwxh_avg_neon(src_ptr, src_stride, ref_ptr, ref_stride, |
| second_pred, 32, h, h_overflow); |
| } |
| |
| static inline uint32_t highbd_sad64xh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h, |
| const uint8_t *second_pred) { |
| // 'h_overflow' is the number of 64-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 8 64-wide rows using four accumulators. |
| const int h_overflow = 8; |
| return highbd_sadwxh_avg_neon(src_ptr, src_stride, ref_ptr, ref_stride, |
| second_pred, 64, h, h_overflow); |
| } |
| |
| static inline uint32_t highbd_sad128xh_avg_neon(const uint8_t *src_ptr, |
| int src_stride, |
| const uint8_t *ref_ptr, |
| int ref_stride, int h, |
| const uint8_t *second_pred) { |
| // 'h_overflow' is the number of 128-wide rows we can process before 16-bit |
| // accumulators overflow. After hitting this limit accumulate into 32-bit |
| // elements. 65535 / 4095 ~= 16, so 4 128-wide rows using four accumulators. |
| const int h_overflow = 4; |
| return highbd_sadwxh_avg_neon(src_ptr, src_stride, ref_ptr, ref_stride, |
| second_pred, 128, h, h_overflow); |
| } |
| |
| #define HBD_SAD_WXH_AVG_NEON(w, h) \ |
| uint32_t aom_highbd_sad##w##x##h##_avg_neon( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ |
| const uint8_t *second_pred) { \ |
| return highbd_sad##w##xh_avg_neon(src, src_stride, ref, ref_stride, (h), \ |
| second_pred); \ |
| } |
| |
| HBD_SAD_WXH_AVG_NEON(8, 8) |
| HBD_SAD_WXH_AVG_NEON(8, 16) |
| |
| HBD_SAD_WXH_AVG_NEON(16, 8) |
| HBD_SAD_WXH_AVG_NEON(16, 16) |
| HBD_SAD_WXH_AVG_NEON(16, 32) |
| |
| HBD_SAD_WXH_AVG_NEON(32, 16) |
| HBD_SAD_WXH_AVG_NEON(32, 32) |
| HBD_SAD_WXH_AVG_NEON(32, 64) |
| |
| HBD_SAD_WXH_AVG_NEON(64, 32) |
| HBD_SAD_WXH_AVG_NEON(64, 64) |
| HBD_SAD_WXH_AVG_NEON(64, 128) |
| |
| HBD_SAD_WXH_AVG_NEON(128, 64) |
| HBD_SAD_WXH_AVG_NEON(128, 128) |
| |
| #if !CONFIG_REALTIME_ONLY |
| HBD_SAD_WXH_AVG_NEON(8, 32) |
| |
| HBD_SAD_WXH_AVG_NEON(16, 64) |
| |
| HBD_SAD_WXH_AVG_NEON(32, 8) |
| |
| HBD_SAD_WXH_AVG_NEON(64, 16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #undef HBD_SAD_WXH_AVG_NEON |