blob: 9b5b1cbf9d302325f5f3c3ba40f19de23a60fd40 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = {
BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, BLOCK_128X128,
};
typedef struct {
tran_low_t *coeff_buf[MAX_MB_PLANE];
tran_low_t *qcoeff_buf[MAX_MB_PLANE];
tran_low_t *dqcoeff_buf[MAX_MB_PLANE];
} PC_TREE_SHARED_BUFFERS;
static AOM_INLINE void alloc_mode_context(AV1_COMMON *cm, int num_pix,
PICK_MODE_CONTEXT *ctx,
PC_TREE_SHARED_BUFFERS *shared_bufs) {
const int num_planes = av1_num_planes(cm);
int i;
const int num_blk = num_pix / 16;
ctx->num_4x4_blk = num_blk;
CHECK_MEM_ERROR(cm, ctx->blk_skip,
aom_calloc(num_blk, sizeof(*ctx->blk_skip)));
CHECK_MEM_ERROR(cm, ctx->tx_type_map,
aom_calloc(num_blk, sizeof(*ctx->tx_type_map)));
for (i = 0; i < num_planes; ++i) {
ctx->coeff[i] = shared_bufs->coeff_buf[i];
ctx->qcoeff[i] = shared_bufs->qcoeff_buf[i];
ctx->dqcoeff[i] = shared_bufs->dqcoeff_buf[i];
CHECK_MEM_ERROR(cm, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
CHECK_MEM_ERROR(
cm, ctx->txb_entropy_ctx[i],
aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i])));
}
if (num_pix <= MAX_PALETTE_SQUARE) {
for (i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
}
}
}
static AOM_INLINE void free_mode_context(PICK_MODE_CONTEXT *ctx,
const int num_planes) {
int i;
aom_free(ctx->blk_skip);
ctx->blk_skip = 0;
aom_free(ctx->tx_type_map);
ctx->tx_type_map = 0;
for (i = 0; i < num_planes; ++i) {
ctx->coeff[i] = 0;
ctx->qcoeff[i] = 0;
ctx->dqcoeff[i] = 0;
aom_free(ctx->eobs[i]);
ctx->eobs[i] = 0;
aom_free(ctx->txb_entropy_ctx[i]);
ctx->txb_entropy_ctx[i] = 0;
}
for (i = 0; i < 2; ++i) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = 0;
}
}
static AOM_INLINE void alloc_tree_contexts(
AV1_COMMON *cm, PC_TREE *tree, int num_pix, int is_leaf,
PC_TREE_SHARED_BUFFERS *shared_bufs) {
alloc_mode_context(cm, num_pix, &tree->none, shared_bufs);
if (is_leaf) return;
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[0], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[1], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[0], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[1], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->verticala[2], shared_bufs);
alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2], shared_bufs);
for (int i = 0; i < 4; ++i) {
alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i], shared_bufs);
alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i], shared_bufs);
}
}
static AOM_INLINE void free_tree_contexts(PC_TREE *tree, const int num_planes) {
int i;
for (i = 0; i < 3; i++) {
free_mode_context(&tree->horizontala[i], num_planes);
free_mode_context(&tree->horizontalb[i], num_planes);
free_mode_context(&tree->verticala[i], num_planes);
free_mode_context(&tree->verticalb[i], num_planes);
}
for (i = 0; i < 4; ++i) {
free_mode_context(&tree->horizontal4[i], num_planes);
free_mode_context(&tree->vertical4[i], num_planes);
}
free_mode_context(&tree->none, num_planes);
free_mode_context(&tree->horizontal[0], num_planes);
free_mode_context(&tree->horizontal[1], num_planes);
free_mode_context(&tree->vertical[0], num_planes);
free_mode_context(&tree->vertical[1], num_planes);
}
// This function will compute the number of pc_tree nodes to be allocated
// or freed as per the super block size of BLOCK_128X128 or BLOCK_64X64
static AOM_INLINE int get_pc_tree_nodes(const int is_sb_size_128,
int stat_generation_stage) {
const int tree_nodes_inc = is_sb_size_128 ? 1024 : 0;
const int tree_nodes =
stat_generation_stage ? 1 : (tree_nodes_inc + 256 + 64 + 16 + 4 + 1);
return tree_nodes;
}
// This function sets up a tree of contexts such that at each square
// partition level. There are contexts for none, horizontal, vertical, and
// split. Along with a block_size value and a selected block_size which
// represents the state of our search.
void av1_setup_pc_tree(AV1_COMP *const cpi, ThreadData *td) {
AV1_COMMON *const cm = &cpi->common;
int i, j, stat_generation_stage = is_stat_generation_stage(cpi);
const int is_sb_size_128 = cm->seq_params.sb_size == BLOCK_128X128;
const int tree_nodes =
get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
int pc_tree_index = 0;
PC_TREE *this_pc;
PC_TREE_SHARED_BUFFERS shared_bufs;
int square_index = 1;
int nodes;
aom_free(td->pc_tree);
CHECK_MEM_ERROR(cm, td->pc_tree,
aom_calloc(tree_nodes, sizeof(*td->pc_tree)));
this_pc = &td->pc_tree[0];
for (i = 0; i < 3; i++) {
const int max_num_pix = MAX_SB_SIZE * MAX_SB_SIZE;
CHECK_MEM_ERROR(cm, td->tree_coeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
CHECK_MEM_ERROR(cm, td->tree_qcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
CHECK_MEM_ERROR(cm, td->tree_dqcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
shared_bufs.coeff_buf[i] = td->tree_coeff_buf[i];
shared_bufs.qcoeff_buf[i] = td->tree_qcoeff_buf[i];
shared_bufs.dqcoeff_buf[i] = td->tree_dqcoeff_buf[i];
}
if (!stat_generation_stage) {
const int leaf_factor = is_sb_size_128 ? 4 : 1;
const int leaf_nodes = 256 * leaf_factor;
// Sets up all the leaf nodes in the tree.
for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
tree->block_size = square[0];
alloc_tree_contexts(cm, tree, 16, 1, &shared_bufs);
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (i = 0; i < nodes; ++i) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0,
&shared_bufs);
tree->block_size = square[square_index];
for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
++pc_tree_index;
}
++square_index;
}
} else {
// Allocation for firstpass/LAP stage
// TODO(Mufaddal): refactor square_index to use a common block_size macro
// from firstpass.c
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
square_index = 2;
alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 1, &shared_bufs);
tree->block_size = square[square_index];
}
// Set up the root node for the applicable superblock size
td->pc_root = &td->pc_tree[tree_nodes - 1];
#if CONFIG_INTERNAL_STATS
td->pc_root->none.best_mode_index = THR_INVALID;
#endif // CONFIG_INTERNAL_STATS
}
void av1_free_pc_tree(const AV1_COMP *const cpi, ThreadData *td,
const int num_planes, BLOCK_SIZE sb_size) {
int stat_generation_stage = is_stat_generation_stage(cpi);
if (td->pc_tree != NULL) {
const int is_sb_size_128 = sb_size == BLOCK_128X128;
const int tree_nodes =
get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
for (int i = 0; i < tree_nodes; ++i) {
free_tree_contexts(&td->pc_tree[i], num_planes);
}
for (int i = 0; i < 3; ++i) {
aom_free(td->tree_coeff_buf[i]);
aom_free(td->tree_qcoeff_buf[i]);
aom_free(td->tree_dqcoeff_buf[i]);
td->tree_coeff_buf[i] = NULL;
td->tree_qcoeff_buf[i] = NULL;
td->tree_dqcoeff_buf[i] = NULL;
}
aom_free(td->pc_tree);
td->pc_tree = NULL;
}
}
void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx,
PICK_MODE_CONTEXT *src_ctx) {
dst_ctx->mic = src_ctx->mic;
dst_ctx->mbmi_ext_best = src_ctx->mbmi_ext_best;
dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk;
dst_ctx->skippable = src_ctx->skippable;
#if CONFIG_INTERNAL_STATS
dst_ctx->best_mode_index = src_ctx->best_mode_index;
#endif // CONFIG_INTERNAL_STATS
memcpy(dst_ctx->blk_skip, src_ctx->blk_skip,
sizeof(uint8_t) * src_ctx->num_4x4_blk);
av1_copy_array(dst_ctx->tx_type_map, src_ctx->tx_type_map,
src_ctx->num_4x4_blk);
dst_ctx->hybrid_pred_diff = src_ctx->hybrid_pred_diff;
dst_ctx->comp_pred_diff = src_ctx->comp_pred_diff;
dst_ctx->single_pred_diff = src_ctx->single_pred_diff;
dst_ctx->rd_stats = src_ctx->rd_stats;
dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready;
memcpy(dst_ctx->pred_mv, src_ctx->pred_mv, sizeof(MV) * REF_FRAMES);
dst_ctx->partition = src_ctx->partition;
}