blob: 997f78e27ce62e14c871a9b2842f71fc292c5cae [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/tune_vmaf.h"
#include "aom_dsp/psnr.h"
#include "aom_dsp/vmaf.h"
#include "aom_ports/system_state.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/rdopt.h"
static const double kBaselineVmaf = 97.42773;
// TODO(sdeng): Add the SIMD implementation.
static AOM_INLINE void highbd_unsharp_rect(const uint16_t *source,
int source_stride,
const uint16_t *blurred,
int blurred_stride, uint16_t *dst,
int dst_stride, int w, int h,
double amount, int bit_depth) {
const int max_value = (1 << bit_depth) - 1;
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
const double val =
(double)source[j] + amount * ((double)source[j] - (double)blurred[j]);
dst[j] = (uint16_t)clamp((int)(val + 0.5), 0, max_value);
}
source += source_stride;
blurred += blurred_stride;
dst += dst_stride;
}
}
static AOM_INLINE void unsharp_rect(const uint8_t *source, int source_stride,
const uint8_t *blurred, int blurred_stride,
uint8_t *dst, int dst_stride, int w, int h,
double amount) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
const double val =
(double)source[j] + amount * ((double)source[j] - (double)blurred[j]);
dst[j] = (uint8_t)clamp((int)(val + 0.5), 0, 255);
}
source += source_stride;
blurred += blurred_stride;
dst += dst_stride;
}
}
static AOM_INLINE void unsharp(const AV1_COMP *const cpi,
const YV12_BUFFER_CONFIG *source,
const YV12_BUFFER_CONFIG *blurred,
const YV12_BUFFER_CONFIG *dst, double amount) {
const int bit_depth = cpi->td.mb.e_mbd.bd;
if (bit_depth > 8) {
highbd_unsharp_rect(CONVERT_TO_SHORTPTR(source->y_buffer), source->y_stride,
CONVERT_TO_SHORTPTR(blurred->y_buffer),
blurred->y_stride, CONVERT_TO_SHORTPTR(dst->y_buffer),
dst->y_stride, source->y_width, source->y_height,
amount, bit_depth);
} else {
unsharp_rect(source->y_buffer, source->y_stride, blurred->y_buffer,
blurred->y_stride, dst->y_buffer, dst->y_stride,
source->y_width, source->y_height, amount);
}
}
// 8-tap Gaussian convolution filter with sigma = 1.0, sums to 128,
// all co-efficients must be even.
DECLARE_ALIGNED(16, static const int16_t, gauss_filter[8]) = { 0, 8, 30, 52,
30, 8, 0, 0 };
static AOM_INLINE void gaussian_blur(const int bit_depth,
const YV12_BUFFER_CONFIG *source,
const YV12_BUFFER_CONFIG *dst) {
const int block_size = BLOCK_128X128;
const int block_w = mi_size_wide[block_size] * 4;
const int block_h = mi_size_high[block_size] * 4;
const int num_cols = (source->y_width + block_w - 1) / block_w;
const int num_rows = (source->y_height + block_h - 1) / block_h;
int row, col;
ConvolveParams conv_params = get_conv_params(0, 0, bit_depth);
InterpFilterParams filter = { .filter_ptr = gauss_filter,
.taps = 8,
.subpel_shifts = 0,
.interp_filter = EIGHTTAP_REGULAR };
for (row = 0; row < num_rows; ++row) {
for (col = 0; col < num_cols; ++col) {
const int row_offset_y = row * block_h;
const int col_offset_y = col * block_w;
uint8_t *src_buf =
source->y_buffer + row_offset_y * source->y_stride + col_offset_y;
uint8_t *dst_buf =
dst->y_buffer + row_offset_y * dst->y_stride + col_offset_y;
if (bit_depth > 8) {
av1_highbd_convolve_2d_sr(
CONVERT_TO_SHORTPTR(src_buf), source->y_stride,
CONVERT_TO_SHORTPTR(dst_buf), dst->y_stride, block_w, block_h,
&filter, &filter, 0, 0, &conv_params, bit_depth);
} else {
av1_convolve_2d_sr(src_buf, source->y_stride, dst_buf, dst->y_stride,
block_w, block_h, &filter, &filter, 0, 0,
&conv_params);
}
}
}
}
static double frame_average_variance(const AV1_COMP *const cpi,
const YV12_BUFFER_CONFIG *const frame) {
const uint8_t *const y_buffer = frame->y_buffer;
const int y_stride = frame->y_stride;
const BLOCK_SIZE block_size = BLOCK_64X64;
const int block_w = mi_size_wide[block_size] * 4;
const int block_h = mi_size_high[block_size] * 4;
int row, col;
const int bit_depth = cpi->td.mb.e_mbd.bd;
double var = 0.0, var_count = 0.0;
// Loop through each block.
for (row = 0; row < frame->y_height / block_h; ++row) {
for (col = 0; col < frame->y_width / block_w; ++col) {
struct buf_2d buf;
const int row_offset_y = row * block_h;
const int col_offset_y = col * block_w;
buf.buf = (uint8_t *)y_buffer + row_offset_y * y_stride + col_offset_y;
buf.stride = y_stride;
if (bit_depth > 8) {
var += av1_high_get_sby_perpixel_variance(cpi, &buf, block_size,
bit_depth);
} else {
var += av1_get_sby_perpixel_variance(cpi, &buf, block_size);
}
var_count += 1.0;
}
}
var /= var_count;
return var;
}
static double cal_approx_vmaf(const AV1_COMP *const cpi, double source_variance,
YV12_BUFFER_CONFIG *const source,
YV12_BUFFER_CONFIG *const sharpened) {
const int bit_depth = cpi->td.mb.e_mbd.bd;
double new_vmaf;
aom_calc_vmaf(cpi->oxcf.vmaf_model_path, source, sharpened, bit_depth,
&new_vmaf);
const double sharpened_var = frame_average_variance(cpi, sharpened);
return source_variance / sharpened_var * (new_vmaf - kBaselineVmaf);
}
static double find_best_frame_unsharp_amount_loop(
const AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source,
YV12_BUFFER_CONFIG *const blurred, YV12_BUFFER_CONFIG *const sharpened,
double best_vmaf, const double baseline_variance,
const double unsharp_amount_start, const double step_size,
const int max_loop_count, const double max_amount) {
const double min_amount = 0.0;
int loop_count = 0;
double approx_vmaf = best_vmaf;
double unsharp_amount = unsharp_amount_start;
do {
best_vmaf = approx_vmaf;
unsharp_amount += step_size;
if (unsharp_amount > max_amount || unsharp_amount < min_amount) break;
unsharp(cpi, source, blurred, sharpened, unsharp_amount);
approx_vmaf = cal_approx_vmaf(cpi, baseline_variance, source, sharpened);
loop_count++;
} while (approx_vmaf > best_vmaf && loop_count < max_loop_count);
unsharp_amount =
approx_vmaf > best_vmaf ? unsharp_amount : unsharp_amount - step_size;
return AOMMIN(max_amount, AOMMAX(unsharp_amount, min_amount));
}
static double find_best_frame_unsharp_amount(const AV1_COMP *const cpi,
YV12_BUFFER_CONFIG *const source,
YV12_BUFFER_CONFIG *const blurred,
const double unsharp_amount_start,
const double step_size,
const int max_loop_count,
const double max_filter_amount) {
const AV1_COMMON *const cm = &cpi->common;
const int width = source->y_width;
const int height = source->y_height;
YV12_BUFFER_CONFIG sharpened;
memset(&sharpened, 0, sizeof(sharpened));
aom_alloc_frame_buffer(
&sharpened, width, height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
const double baseline_variance = frame_average_variance(cpi, source);
double unsharp_amount;
if (unsharp_amount_start <= step_size) {
unsharp_amount = find_best_frame_unsharp_amount_loop(
cpi, source, blurred, &sharpened, 0.0, baseline_variance, 0.0,
step_size, max_loop_count, max_filter_amount);
} else {
double a0 = unsharp_amount_start - step_size, a1 = unsharp_amount_start;
double v0, v1;
unsharp(cpi, source, blurred, &sharpened, a0);
v0 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened);
unsharp(cpi, source, blurred, &sharpened, a1);
v1 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened);
if (fabs(v0 - v1) < 0.01) {
unsharp_amount = a0;
} else if (v0 > v1) {
unsharp_amount = find_best_frame_unsharp_amount_loop(
cpi, source, blurred, &sharpened, v0, baseline_variance, a0,
-step_size, max_loop_count, max_filter_amount);
} else {
unsharp_amount = find_best_frame_unsharp_amount_loop(
cpi, source, blurred, &sharpened, v1, baseline_variance, a1,
step_size, max_loop_count, max_filter_amount);
}
}
aom_free_frame_buffer(&sharpened);
return unsharp_amount;
}
void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi,
YV12_BUFFER_CONFIG *const source) {
aom_clear_system_state();
const AV1_COMMON *const cm = &cpi->common;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const int width = source->y_width;
const int height = source->y_height;
YV12_BUFFER_CONFIG source_extended, blurred;
memset(&source_extended, 0, sizeof(source_extended));
memset(&blurred, 0, sizeof(blurred));
aom_alloc_frame_buffer(
&source_extended, width, height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
aom_alloc_frame_buffer(
&blurred, width, height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
av1_copy_and_extend_frame(source, &source_extended);
gaussian_blur(bit_depth, &source_extended, &blurred);
aom_free_frame_buffer(&source_extended);
const double best_frame_unsharp_amount = find_best_frame_unsharp_amount(
cpi, source, &blurred, cpi->last_frame_unsharp_amount, 0.05, 20, 1.01);
cpi->last_frame_unsharp_amount = best_frame_unsharp_amount;
unsharp(cpi, source, &blurred, source, best_frame_unsharp_amount);
aom_free_frame_buffer(&blurred);
aom_clear_system_state();
}
void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi,
YV12_BUFFER_CONFIG *const source) {
aom_clear_system_state();
const AV1_COMMON *const cm = &cpi->common;
const int width = source->y_width;
const int height = source->y_height;
const int bit_depth = cpi->td.mb.e_mbd.bd;
YV12_BUFFER_CONFIG source_extended, blurred;
memset(&blurred, 0, sizeof(blurred));
memset(&source_extended, 0, sizeof(source_extended));
aom_alloc_frame_buffer(
&blurred, width, height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
aom_alloc_frame_buffer(
&source_extended, width, height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
av1_copy_and_extend_frame(source, &source_extended);
gaussian_blur(bit_depth, &source_extended, &blurred);
aom_free_frame_buffer(&source_extended);
const double best_frame_unsharp_amount = find_best_frame_unsharp_amount(
cpi, source, &blurred, cpi->last_frame_unsharp_amount, 0.05, 20, 1.01);
cpi->last_frame_unsharp_amount = best_frame_unsharp_amount;
const int block_size = BLOCK_64X64;
const int block_w = mi_size_wide[block_size] * 4;
const int block_h = mi_size_high[block_size] * 4;
const int num_cols = (source->y_width + block_w - 1) / block_w;
const int num_rows = (source->y_height + block_h - 1) / block_h;
double *best_unsharp_amounts =
aom_malloc(sizeof(*best_unsharp_amounts) * num_cols * num_rows);
memset(best_unsharp_amounts, 0,
sizeof(*best_unsharp_amounts) * num_cols * num_rows);
YV12_BUFFER_CONFIG source_block, blurred_block;
memset(&source_block, 0, sizeof(source_block));
memset(&blurred_block, 0, sizeof(blurred_block));
aom_alloc_frame_buffer(
&source_block, block_w, block_h, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
aom_alloc_frame_buffer(
&blurred_block, block_w, block_h, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int row_offset_y = row * block_h;
const int col_offset_y = col * block_w;
const int block_width = AOMMIN(width - col_offset_y, block_w);
const int block_height = AOMMIN(height - row_offset_y, block_h);
const int index = col + row * num_cols;
if (bit_depth > 8) {
uint16_t *frame_src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) +
row_offset_y * source->y_stride +
col_offset_y;
uint16_t *frame_blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) +
row_offset_y * blurred.y_stride +
col_offset_y;
uint16_t *blurred_dst = CONVERT_TO_SHORTPTR(blurred_block.y_buffer);
uint16_t *src_dst = CONVERT_TO_SHORTPTR(source_block.y_buffer);
// Copy block from source frame.
for (int i = 0; i < block_h; ++i) {
for (int j = 0; j < block_w; ++j) {
if (i >= block_height || j >= block_width) {
src_dst[j] = 0;
blurred_dst[j] = 0;
} else {
src_dst[j] = frame_src_buf[j];
blurred_dst[j] = frame_blurred_buf[j];
}
}
frame_src_buf += source->y_stride;
frame_blurred_buf += blurred.y_stride;
src_dst += source_block.y_stride;
blurred_dst += blurred_block.y_stride;
}
} else {
uint8_t *frame_src_buf =
source->y_buffer + row_offset_y * source->y_stride + col_offset_y;
uint8_t *frame_blurred_buf =
blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y;
uint8_t *blurred_dst = blurred_block.y_buffer;
uint8_t *src_dst = source_block.y_buffer;
// Copy block from source frame.
for (int i = 0; i < block_h; ++i) {
for (int j = 0; j < block_w; ++j) {
if (i >= block_height || j >= block_width) {
src_dst[j] = 0;
blurred_dst[j] = 0;
} else {
src_dst[j] = frame_src_buf[j];
blurred_dst[j] = frame_blurred_buf[j];
}
}
frame_src_buf += source->y_stride;
frame_blurred_buf += blurred.y_stride;
src_dst += source_block.y_stride;
blurred_dst += blurred_block.y_stride;
}
}
best_unsharp_amounts[index] = find_best_frame_unsharp_amount(
cpi, &source_block, &blurred_block, best_frame_unsharp_amount, 0.1, 3,
1.5);
}
}
// Apply best blur amounts
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int row_offset_y = row * block_h;
const int col_offset_y = col * block_w;
const int block_width = AOMMIN(source->y_width - col_offset_y, block_w);
const int block_height = AOMMIN(source->y_height - row_offset_y, block_h);
const int index = col + row * num_cols;
if (bit_depth > 8) {
uint16_t *src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) +
row_offset_y * source->y_stride + col_offset_y;
uint16_t *blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) +
row_offset_y * blurred.y_stride + col_offset_y;
highbd_unsharp_rect(src_buf, source->y_stride, blurred_buf,
blurred.y_stride, src_buf, source->y_stride,
block_width, block_height,
best_unsharp_amounts[index], bit_depth);
} else {
uint8_t *src_buf =
source->y_buffer + row_offset_y * source->y_stride + col_offset_y;
uint8_t *blurred_buf =
blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y;
unsharp_rect(src_buf, source->y_stride, blurred_buf, blurred.y_stride,
src_buf, source->y_stride, block_width, block_height,
best_unsharp_amounts[index]);
}
}
}
aom_free_frame_buffer(&source_block);
aom_free_frame_buffer(&blurred_block);
aom_free_frame_buffer(&blurred);
aom_free(best_unsharp_amounts);
aom_clear_system_state();
}
typedef struct FrameData {
const YV12_BUFFER_CONFIG *source, *blurred;
int block_w, block_h, num_rows, num_cols, row, col, bit_depth;
} FrameData;
// A callback function used to pass data to VMAF.
// Returns 0 after reading a frame.
// Returns 2 when there is no more frame to read.
static int update_frame(float *ref_data, float *main_data, float *temp_data,
int stride, void *user_data) {
FrameData *frames = (FrameData *)user_data;
const int width = frames->source->y_width;
const int height = frames->source->y_height;
const int row = frames->row;
const int col = frames->col;
const int num_rows = frames->num_rows;
const int num_cols = frames->num_cols;
const int block_w = frames->block_w;
const int block_h = frames->block_h;
const YV12_BUFFER_CONFIG *source = frames->source;
const YV12_BUFFER_CONFIG *blurred = frames->blurred;
const int bit_depth = frames->bit_depth;
const float scale_factor = 1.0f / (float)(1 << (bit_depth - 8));
(void)temp_data;
stride /= (int)sizeof(*ref_data);
for (int i = 0; i < height; ++i) {
float *ref, *main;
ref = ref_data + i * stride;
main = main_data + i * stride;
if (bit_depth == 8) {
uint8_t *src;
src = source->y_buffer + i * source->y_stride;
for (int j = 0; j < width; ++j) {
ref[j] = main[j] = (float)src[j];
}
} else {
uint16_t *src;
src = CONVERT_TO_SHORTPTR(source->y_buffer) + i * source->y_stride;
for (int j = 0; j < width; ++j) {
ref[j] = main[j] = scale_factor * (float)src[j];
}
}
}
if (row < num_rows && col < num_cols) {
// Set current block
const int row_offset = row * block_h;
const int col_offset = col * block_w;
const int block_width = AOMMIN(width - col_offset, block_w);
const int block_height = AOMMIN(height - row_offset, block_h);
float *main_buf = main_data + col_offset + row_offset * stride;
if (bit_depth == 8) {
uint8_t *blurred_buf =
blurred->y_buffer + row_offset * blurred->y_stride + col_offset;
for (int i = 0; i < block_height; ++i) {
for (int j = 0; j < block_width; ++j) {
main_buf[j] = (float)blurred_buf[j];
}
main_buf += stride;
blurred_buf += blurred->y_stride;
}
} else {
uint16_t *blurred_buf = CONVERT_TO_SHORTPTR(blurred->y_buffer) +
row_offset * blurred->y_stride + col_offset;
for (int i = 0; i < block_height; ++i) {
for (int j = 0; j < block_width; ++j) {
main_buf[j] = scale_factor * (float)blurred_buf[j];
}
main_buf += stride;
blurred_buf += blurred->y_stride;
}
}
frames->col++;
if (frames->col >= num_cols) {
frames->col = 0;
frames->row++;
}
return 0;
} else {
return 2;
}
}
void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const int y_width = cpi->source->y_width;
const int y_height = cpi->source->y_height;
const int resized_block_size = BLOCK_32X32;
const int resize_factor = 2;
const int bit_depth = cpi->td.mb.e_mbd.bd;
aom_clear_system_state();
YV12_BUFFER_CONFIG resized_source;
memset(&resized_source, 0, sizeof(resized_source));
aom_alloc_frame_buffer(
&resized_source, y_width / resize_factor, y_height / resize_factor, 1, 1,
cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels,
cm->features.byte_alignment);
av1_resize_and_extend_frame(cpi->source, &resized_source, bit_depth,
av1_num_planes(cm));
const int resized_y_width = resized_source.y_width;
const int resized_y_height = resized_source.y_height;
const int resized_block_w = mi_size_wide[resized_block_size] * 4;
const int resized_block_h = mi_size_high[resized_block_size] * 4;
const int num_cols =
(resized_y_width + resized_block_w - 1) / resized_block_w;
const int num_rows =
(resized_y_height + resized_block_h - 1) / resized_block_h;
YV12_BUFFER_CONFIG blurred;
memset(&blurred, 0, sizeof(blurred));
aom_alloc_frame_buffer(&blurred, resized_y_width, resized_y_height, 1, 1,
cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels,
cm->features.byte_alignment);
gaussian_blur(bit_depth, &resized_source, &blurred);
double *scores = aom_malloc(sizeof(*scores) * (num_rows * num_cols));
memset(scores, 0, sizeof(*scores) * (num_rows * num_cols));
FrameData frame_data;
frame_data.source = &resized_source;
frame_data.blurred = &blurred;
frame_data.block_w = resized_block_w;
frame_data.block_h = resized_block_h;
frame_data.num_rows = num_rows;
frame_data.num_cols = num_cols;
frame_data.row = 0;
frame_data.col = 0;
frame_data.bit_depth = bit_depth;
aom_calc_vmaf_multi_frame(&frame_data, cpi->oxcf.vmaf_model_path,
update_frame, resized_y_width, resized_y_height,
bit_depth, scores);
// Loop through each 'block_size' block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
const int row_offset_y = row * resized_block_h;
const int col_offset_y = col * resized_block_w;
uint8_t *const orig_buf = resized_source.y_buffer +
row_offset_y * resized_source.y_stride +
col_offset_y;
uint8_t *const blurred_buf =
blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y;
const double vmaf = scores[index];
const double dvmaf = kBaselineVmaf - vmaf;
unsigned int sse;
cpi->fn_ptr[resized_block_size].vf(orig_buf, resized_source.y_stride,
blurred_buf, blurred.y_stride, &sse);
const double mse =
(double)sse / (double)(resized_y_width * resized_y_height);
double weight;
const double eps = 0.01 / (num_rows * num_cols);
if (dvmaf < eps || mse < eps) {
weight = 1.0;
} else {
weight = mse / dvmaf;
}
// Normalize it with a data fitted model.
weight = 6.0 * (1.0 - exp(-0.05 * weight)) + 0.8;
cpi->vmaf_rdmult_scaling_factors[index] = weight;
}
}
aom_free_frame_buffer(&resized_source);
aom_free_frame_buffer(&blurred);
aom_free(scores);
aom_clear_system_state();
}
void av1_set_vmaf_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int *const rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const int bsize_base = BLOCK_64X64;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
int row, col;
double num_of_mi = 0.0;
double geom_mean_of_scale = 0.0;
aom_clear_system_state();
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->vmaf_rdmult_scaling_factors[index]);
num_of_mi += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
*rdmult = AOMMAX(*rdmult, 0);
set_error_per_bit(x, *rdmult);
aom_clear_system_state();
}
// TODO(sdeng): replace them with the SIMD versions.
static AOM_INLINE double highbd_image_sad_c(const uint16_t *src, int src_stride,
const uint16_t *ref, int ref_stride,
int w, int h) {
double accum = 0.0;
int i, j;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
double img1px = src[i * src_stride + j];
double img2px = ref[i * ref_stride + j];
accum += fabs(img1px - img2px);
}
}
return accum / (double)(h * w);
}
static AOM_INLINE double image_sad_c(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w,
int h) {
double accum = 0.0;
int i, j;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
double img1px = src[i * src_stride + j];
double img2px = ref[i * ref_stride + j];
accum += fabs(img1px - img2px);
}
}
return accum / (double)(h * w);
}
static AOM_INLINE double calc_vmaf_motion_score(
const AV1_COMP *const cpi, const AV1_COMMON *const cm,
const YV12_BUFFER_CONFIG *const cur, const YV12_BUFFER_CONFIG *const last,
const YV12_BUFFER_CONFIG *const next) {
const int y_width = cur->y_width;
const int y_height = cur->y_height;
YV12_BUFFER_CONFIG blurred_cur, blurred_last, blurred_next;
const int bit_depth = cpi->td.mb.e_mbd.bd;
memset(&blurred_cur, 0, sizeof(blurred_cur));
memset(&blurred_last, 0, sizeof(blurred_last));
memset(&blurred_next, 0, sizeof(blurred_next));
aom_alloc_frame_buffer(
&blurred_cur, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
aom_alloc_frame_buffer(
&blurred_last, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
aom_alloc_frame_buffer(
&blurred_next, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment);
gaussian_blur(bit_depth, cur, &blurred_cur);
gaussian_blur(bit_depth, last, &blurred_last);
if (next) gaussian_blur(bit_depth, next, &blurred_next);
double motion1, motion2 = 65536.0;
if (bit_depth > 8) {
const float scale_factor = 1.0f / (float)(1 << (bit_depth - 8));
motion1 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer),
blurred_cur.y_stride,
CONVERT_TO_SHORTPTR(blurred_last.y_buffer),
blurred_last.y_stride, y_width, y_height) *
scale_factor;
if (next) {
motion2 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer),
blurred_cur.y_stride,
CONVERT_TO_SHORTPTR(blurred_next.y_buffer),
blurred_next.y_stride, y_width, y_height) *
scale_factor;
}
} else {
motion1 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride,
blurred_last.y_buffer, blurred_last.y_stride, y_width,
y_height);
if (next) {
motion2 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride,
blurred_next.y_buffer, blurred_next.y_stride,
y_width, y_height);
}
}
aom_free_frame_buffer(&blurred_cur);
aom_free_frame_buffer(&blurred_last);
aom_free_frame_buffer(&blurred_next);
return AOMMIN(motion1, motion2);
}
// Calculates the new qindex from the VMAF motion score. This is based on the
// observation: when the motion score becomes higher, the VMAF score of the
// same source and distorted frames would become higher.
int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) {
const AV1_COMMON *const cm = &cpi->common;
if (cm->current_frame.frame_number == 0 || cpi->oxcf.pass == 1) {
return current_qindex;
}
const int bit_depth = cpi->td.mb.e_mbd.bd;
const double approx_sse =
cpi->last_frame_ysse /
(double)((1 << (bit_depth - 8)) * (1 << (bit_depth - 8)));
const double approx_dvmaf = kBaselineVmaf - cpi->last_frame_vmaf;
const double sse_threshold =
0.01 * cpi->source->y_width * cpi->source->y_height;
const double vmaf_threshold = 0.01;
if (approx_sse < sse_threshold || approx_dvmaf < vmaf_threshold) {
return current_qindex;
}
aom_clear_system_state();
const GF_GROUP *gf_group = &cpi->gf_group;
YV12_BUFFER_CONFIG *cur_buf = cpi->source;
int src_index = 0;
if (cm->show_frame == 0) {
src_index = gf_group->arf_src_offset[gf_group->index];
struct lookahead_entry *cur_entry =
av1_lookahead_peek(cpi->lookahead, src_index, cpi->compressor_stage);
cur_buf = &cur_entry->img;
}
assert(cur_buf);
const struct lookahead_entry *last_entry =
av1_lookahead_peek(cpi->lookahead, src_index - 1, cpi->compressor_stage);
const struct lookahead_entry *next_entry =
av1_lookahead_peek(cpi->lookahead, src_index + 1, cpi->compressor_stage);
const YV12_BUFFER_CONFIG *next_buf = &next_entry->img;
const YV12_BUFFER_CONFIG *last_buf =
cm->show_frame ? cpi->last_source : &last_entry->img;
assert(last_buf);
const double motion =
calc_vmaf_motion_score(cpi, cm, cur_buf, last_buf, next_buf);
// Get dVMAF through a data fitted model.
const double dvmaf = 26.11 * (1.0 - exp(-0.06 * motion));
const double dsse = dvmaf * approx_sse / approx_dvmaf;
const double beta = approx_sse / (dsse + approx_sse);
const int offset = av1_get_deltaq_offset(cpi, current_qindex, beta);
int qindex = current_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
aom_clear_system_state();
return qindex;
}
void av1_update_vmaf_curve(AV1_COMP *cpi, YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *recon) {
const int bit_depth = cpi->td.mb.e_mbd.bd;
aom_calc_vmaf(cpi->oxcf.vmaf_model_path, source, recon, bit_depth,
&cpi->last_frame_vmaf);
if (bit_depth > 8) {
cpi->last_frame_ysse = (double)aom_highbd_get_y_sse(source, recon);
} else {
cpi->last_frame_ysse = (double)aom_get_y_sse(source, recon);
}
}